WO2020020297A1 - 用于扭矩系数采样的测量装置及扭矩系数模型的创建方法 - Google Patents

用于扭矩系数采样的测量装置及扭矩系数模型的创建方法 Download PDF

Info

Publication number
WO2020020297A1
WO2020020297A1 PCT/CN2019/097729 CN2019097729W WO2020020297A1 WO 2020020297 A1 WO2020020297 A1 WO 2020020297A1 CN 2019097729 W CN2019097729 W CN 2019097729W WO 2020020297 A1 WO2020020297 A1 WO 2020020297A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
pressure sensor
pressure
tension
measuring device
Prior art date
Application number
PCT/CN2019/097729
Other languages
English (en)
French (fr)
Inventor
张之敬
金鑫
崔璨
肖木峥
王子夫
孙椰望
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to JP2021503755A priority Critical patent/JP7391938B2/ja
Publication of WO2020020297A1 publication Critical patent/WO2020020297A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/24Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed

Definitions

  • the invention relates to the field of assembling precision instruments, in particular to a measuring device for torque coefficient sampling, and a method for creating a torque coefficient model.
  • threaded fasteners are widely used in the assembly of precision instruments because of the following advantages:
  • the quality of the threaded connection provided by the threaded fastener directly affects the quality and reliability of the product's assembly. From an economic point of view, although the cost of threaded fasteners is not high, products using threaded fasteners are usually very expensive. When a threaded connection fails due to quality problems, the impact on the product will cause huge economic losses.
  • the pre-tightening force of the screw refers to the force in the direction of the axis of the screw generated between the screw and the connected part under the action of the tightening torque.
  • the screws will cause stress concentration in the connected parts, and then cause plastic deformation of the connected parts, which will affect the precision of the precision instruments; It will cause the connection effect of the screw to be invalid, and too low pre-tightening force may cause the screw to loosen in the vibration environment, causing the connected part to slip, seriously affecting the precision of the precision instrument or causing damage to the precision instrument.
  • the indirect control of the pre-tightening force can be achieved by controlling the torque during the tightening process of the threaded fastener.
  • the indirect control can refer to the torque and pre-tightening expressed by the following expression Force relationship:
  • T is the torque
  • K is the torque coefficient
  • d is the nominal thread diameter of the threaded fastener
  • F is the pre-tightening force of the threaded fastener.
  • the torque coefficient K in the above expression is usually set to a constant based on experience.
  • the torque coefficient K can be set to 0.2;
  • the torque coefficient K can be set to 0.1 when the bearing surface supporting the threaded fastener is smooth and the threads of the threaded fastener and the connected component are lubricated.
  • the torque coefficient K may not be constant. External factors such as the smoothness or roughness of the support surface, the degree of lubrication of the thread fit, the tightening speed, the tightening tool, and the temperature during tightening will all affect the torque coefficient K.
  • the torque coefficient K may be different due to changes in external factors.
  • the torque coefficient K may be in the range of 0.1 to 0.3 or even a wider range with the change of external factors. change.
  • the variation of the torque coefficient K will inevitably lead to a reduction in the control accuracy of the pre-tensioning force, and make the pre-tensioning force of the threaded fastener have a large dispersion during the actual assembly.
  • a measurement device for sampling the torque coefficient which can support the measurement of any type of threaded fastener under any target assembly pressure to obtain Sampling data of the mapping relationship between pretension and torque under different assembly pressure conditions. These sampling data are helpful to study the influence of assembly pressure on torque coefficient.
  • the measurement device for torque coefficient sampling in this embodiment may include:
  • a loading platform including a tension / pressure sensor
  • a screwing tool comprising a housing, a torque test module and a pressure test module accommodated in the housing, and a batch head installed outside the housing;
  • the tension / pressure sensor outputs the thread tightness.
  • the loading platform further includes: a base plate that carries the tension / pressure sensor; and a test piece holding member that supports the screwed test piece at the pull / pressure Above the sensor, wherein the test piece with the screw hole is connected to the tension / pressure sensor through a tensile / pressure conducting member; a supporting table, the supporting table is supported by the supporting member above the specimen holding member and carries In the threaded fastener, the support table is provided with a through hole through which a threaded post of the threaded fastener passes.
  • the torque test module includes: a torque sensor; a first torque transmitting member, the first torque transmitting member being fixed to the housing and connected to one end of the torque sensor in an axial direction; Two torque-transmitting members, the second torque-transmitting member is connected to the other end of the torque sensor in the axial direction, and is coaxially connected with the bit head.
  • the first torque-transmitting member is fixed to the casing by a force-transmitting shaft penetrating radially.
  • the housing is provided with a limiting hole through which the pin is inserted, and an end of the pin is inserted into the limiting hole through a bush.
  • the second torque transmitting member is coaxially connected with the torque output shaft, a root portion of the torque output shaft is penetrated in a rotary bearing accommodated in the housing, and an end portion of the torque output shaft protrudes It is externally connected to the shell and is detachably connected to the batch mounting sleeve.
  • the batch is coaxially mounted on the batch mounting sleeve.
  • the torque output shaft and the bit-head mounting sleeve are detachably connected through a locking pin member penetrating in the radial direction.
  • the pressure test module includes: a pressure sensor, the pressure sensor is fixed to the housing; a thrust bearing, the thrust bearing is arranged in the axial direction between the pressure sensor and the first torque transmission Between components.
  • an anti-wear member is arranged between the pressure sensor and the thrust bearing.
  • the sampling data obtained by the measurement device is used to model the torque coefficient model
  • the variation law of the torque coefficient under different assembly pressure conditions can be obtained, and the change law can be used to guide production practices.
  • a method for creating a torque coefficient model including:
  • the torque coefficient process curve obtained by testing n threaded fasteners is used to determine the ideal torque coefficient of the target pre-tightening force, and the determined ideal torque coefficient is used to establish the target pre-tightening force and torque under the set assembly pressure conditions. Relationship model.
  • the measuring device can use a tension / pressure sensor to measure the pre-tightening force generated by the threaded fastener when it is screwed with the test piece with the screw hole, and use a torque sensor to measure the threaded fastener
  • the mapping between force and torque guides production practices.
  • the measuring device can also monitor the assembly pressure applied to the threaded fastener by using a pressure sensor, so as to correlate the preload force and torque monitored with the set assembly pressure, thereby further reflecting the effect of the assembly pressure on the torque coefficient. .
  • the measurement device in the above embodiment uses a vertical distribution mode to ensure that the internal structure of the screwing tool is not eccentric due to the influence of gravity, thereby improving the accuracy of the measurement.
  • the screwing tool in the measurement device in the above embodiment may include a batch head mounting sleeve that supports batch head replacement to allow the batch head to be replaced, thereby supporting testing of threaded fasteners of different specifications.
  • the batch mounting sleeve adopts a locking pin member to achieve detachable connection, so as to avoid the axial displacement of the mounting of the batch mounting sleeve, so that the test result of the assembly pressure can be prevented from being affected by the axial displacement to ensure that Consistency of test results for assembly pressure and torque.
  • the screwing tool in the measuring device in the above embodiment can switch between manual and electric use modes by replacing the cover plate.
  • the manual mode introduces artificial feel to further reflect the degree of control of the pre-tightening force by different artificial feel; the introduction of the electric mode
  • the screwing speed can be set so that the created torque coefficient model can further reflect the influence of different tightening speeds on the torque coefficient.
  • FIG. 1 is an exemplary schematic structural diagram of a measurement device for torque coefficient sampling in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the internal structure of the screwing tool in the measuring device shown in FIG. 1;
  • FIG. 3 is a schematic diagram of an external shape of a screwing tool in the measuring device shown in FIG. 1;
  • FIG. 4 is a schematic flowchart of an exemplary method for creating a torque coefficient model in another embodiment of the present invention.
  • small-sized threaded fasteners suitable for precision instruments such as screws with a thread size in the range of M1 to M6.
  • small-sized threaded fasteners suitable for precision instruments are more prone to processing quality problems, such as the dispersion of parameters such as shape errors, dimensional errors, and surface roughness. Large, which results in relatively large dispersion of measurement results.
  • the friction area of small-sized threaded fasteners is small, and it is difficult to use a patch-type sensor to perform accurate measurements.
  • the assembly pressure applied during the process of screwing the threaded fastener is also an important parameter affecting the torque coefficient, which is often easily overlooked. Therefore, in the following embodiments, the measurement of the assembly pressure is specifically introduced to reflect and study the influence of the assembly pressure on the torque coefficient.
  • FIG. 1 is an exemplary schematic structural diagram of a measurement device for torque coefficient sampling in an embodiment of the present invention.
  • a measurement device for torque coefficient sampling may include:
  • a screwing tool 30 including a housing 31, a torque test module 32 and a pressure test module 36 housed in the housing 31, and a batch head 35 installed outside the housing 31;
  • the tension / pressure sensor 12 can output the pre-tightening force between the screw fastener 20 and the screw hole 17
  • the torque test module 32 may output the torque generated by the batch head 35 on the threaded fastener 20, and the pressure test module 36 may output the assembly pressure generated by the batch head 35 on the threaded fastener 20 in the axial direction.
  • the measuring device can use a tension / pressure sensor 12 to measure the pre-tightening force generated by the threaded fastener 20 when it is threadedly connected to the test piece 17 with a screw hole, and use a torque sensor 32 to measure the Torque to which the test piece 17 with the screw hole is subjected during screw connection, thereby real-time monitoring of the pre-tensioning force and torque of the threaded fastener 20 can be realized, and further, the pre-tensioning force and torque obtained by the real-time monitoring can be used to create a torque coefficient model In order to accurately determine the mapping relationship between preload and torque, and then guide production practice.
  • the measuring device can also monitor the assembly pressure applied to the threaded fastener 20 by using the pressure sensor 36, so as to correlate the preload force and torque monitored with the set assembly pressure, thereby further reflecting the assembly pressure versus torque coefficient. Impact.
  • the loading platform 10 may further include a base plate 11, a specimen holding member 13, and a support table 16.
  • the substrate 11 can carry a tension / pressure sensor 12.
  • the test piece holding member 13 may support the screw hole test piece 17 above the tension / pressure sensor 12, wherein the screw hole test piece 17 may be connected to the tension / pressure sensor 12 through the tension / pressure conducting member 14.
  • the support table 16 can be supported by the support member 15 such as a stud and an optical axis above the specimen holding member 13 and can carry the threaded fastener 20.
  • the support table 16 is provided with a threaded column for the threaded fastener 20 to pass through.
  • the through hole may be a light hole without a thread on the hole wall.
  • the measurement device in this embodiment can use the substrate 11, the specimen holding member 13, and the support table 16 of the loading base 10 to align the tension / pressure sensor 12, the test piece 17 with screw holes, and the tested threaded fasteners, respectively.
  • 20 provides layered limit support to reduce or even eliminate the influence of the eccentricity of the tensile / pressure sensor 12, the test piece 17 with screw holes, and the tested threaded fastener 20 on the measurement result, thereby improving the measurement accuracy.
  • FIG. 2 is a schematic diagram of the internal structure of the screwing tool in the measuring device shown in FIG. 1.
  • FIG. 3 is a schematic diagram of an external shape of a screwing tool in the measuring device shown in FIG. 1.
  • the screwing tool 30 of the measuring device is a screwdriver as an example.
  • the casing 31 of the screwing tool 30 may include a main cylinder case 311 and an auxiliary cylinder case 316, wherein the outer circumferential surface of the main cylinder case 311 may be plated with non-slip rubber to facilitate the operator to rotate the casing 31, and one end of the main cylinder case 311
  • the opening (bottom end opening) has a first flange edge 312, the other end opening (top opening) is covered by a cover plate 314, and the one end opening (top opening) of the auxiliary cylinder case 316 has a second flange edge 317 and the other end opening (Bottom end opening) is provided with an end cover 318, which is provided with a shaft hole 319, and the first flange edge 312 of the main cylinder shell 311 and the second flange edge 317 of the auxiliary cylinder shell 316 are buttedly assembled,
  • the housing 31 can be assembled.
  • the torque test module 32 includes a torque sensor 320, a first torque transmitting member 321, and a second torque transmitting member 324.
  • the torque sensor 320 is accommodated in the housing 31, for example, as shown in FIG.
  • the first torque transmitting member 321 is fixed to the housing 31 and is connected to one end of the torque sensor 320 in the axial direction.
  • the first torque transmitting member 321 is fixed to the main cylinder case 311 as shown in FIG. 2 and is connected to the torque sensor 320 in the axial direction. The top in the direction.
  • the first torque transmitting member 321 may be fixed to the case 31 (for example, the main cylinder case 311) through a force transmission shaft 322 penetrating radially, and accordingly, the case 31 (for example, the main cylinder case 311)
  • a limiting hole 313 is formed for inserting the force transmission shaft 322.
  • the limiting hole 313 may be a long hole extending in the axial direction.
  • the inner surface of the long hole and the outer circumferential surface of the transmission shaft have a set gap.
  • the sleeve 323 is inserted into the limiting hole 313.
  • the sleeve 323 is used to reduce the wear of the power transmission shaft 322 to the main cylinder shell 311. Its material can be polytetrafluoroethylene (PTFE).
  • the second torque transmitting member 324 may be connected to the torque sensor 320 in the axial direction facing away from the other end of the first torque transmitting member 321 and coaxially connected with the bit 35.
  • the bottom end of the torque sensor 320 in the axial direction is connected as shown in FIG. 2.
  • the second torque transmitting member 324 may be coaxially connected with the torque output shaft 326, and the root of the torque output shaft 326 is threaded through a rotary bearing accommodated in the housing 31 (for example, the auxiliary cylinder housing 316).
  • the bottom end of the second torque transmitting member 324 may have a boss 325, and the upper end surface of the torque output shaft 326 has a groove matching the boss 325, and the second torque transmission may be achieved through the cooperation of the boss 325 and the groove.
  • the member 324 is coaxially connected with the torque output shaft 326.
  • the inner ring of the rotary bearing 327 is in contact with the outer circumferential surface of the torque output shaft 326, and the outer ring is in contact with the inner circumferential surface of the auxiliary cylinder housing 316, which is used to realize the relative rotation of the torque output shaft 326 and the auxiliary cylinder housing 316, that is, using In order to realize the rotation separation of the torque output shaft 326 and the auxiliary cylinder housing 316.
  • the top end of the inner ring of the rotary bearing 327 is in contact with the annular flange of the torque output shaft 326, and the bottom end of the outer ring is in contact with the annular boss of the end cover 318, which is used to realize the axial positioning of the rotary bearing 327.
  • the rotary bearing 327 may be an angular contact ball bearing.
  • the end of the torque output shaft 326 extends out of the housing 31 through the shaft hole 319 of the end cover 318 and is detachably connected to the bit mounting sleeve 33.
  • the torque output shaft 326 It can be detachably connected to the bit mounting sleeve 33 by a locking pin member 34 penetrating in the radial direction.
  • the batch head 35 can be coaxially mounted on the batch head mounting sleeve 33.
  • the batch head 35 may have an outer hexagonal shape of the plug-in rod, and the batch head mounting sleeve 33 may have an internal hexagonal shape of the plug hole.
  • the batch head 35 can be connected with the internal hexagonal shape. Coaxial transmission connection of the bit mounting sleeve 33.
  • the screwing tool 30 includes a bit mounting sleeve 33 that supports the replacement of the bit 35, the replacement of the bit can be allowed, and thus the testing of threaded fasteners 20 of different specifications can be supported.
  • the bit mounting sleeve 33 adopts a locking pin member 34 to achieve detachable connection, and the limit of the locking pin member 34 in the axial direction can be used to avoid the axial displacement of the mounting of the bit mounting sleeve 33, which can avoid the The test results of assembly pressure are affected by this axial offset to ensure consistency of test results of assembly pressure and torque.
  • the external force received by the housing 31 when being held can be transmitted to the first torque transmitting member 321 through the force transmitting shaft 322, and then the first torque transmitting member 321 passes the torque sensor 320, the second torque transmitting member 324, and the torque.
  • the output shaft 326 and the batch head mounting sleeve 33 are transmitted step by step and drive the batch head 35 to rotate, so as to realize the screwing of the threaded fastener 20.
  • the reaction torque that the bit 35 receives when screwing the threaded fastener 20 can be transmitted to the torque sensor 320 in the reverse direction, so that the torque sensor 320 can measure the torque equivalent to the reaction torque.
  • the pressure test module 36 may include a pressure sensor 360 and a thrust bearing 362.
  • the pressure sensor 360 is fixed to the housing 31, for example, as shown in FIG. 2 and arranged on the side of the torque test module 32 facing away from the batch head 35, and fixed to the accommodation of the lower surface of the cover plate 314 of the housing 31 In slot 315.
  • the thrust bearing 362 may be arranged between the pressure sensor 360 and the first torque transmitting member 321 in the axial direction. For achieving rotational separation between the pressure sensor 360 and the first torque transmitting member 321.
  • an anti-wear member 361 may be disposed between the pressure sensor 360 and the thrust bearing 362.
  • the reaction axial force that the bit 35 receives when screwing the threaded fastener 20 can be passed through the bit mounting sleeve 33, the torque output shaft 326, the second torque transmitting member 324, the torque sensor 320, and the first torque transmitting member.
  • the 321 and the thrust bearing 362 are transmitted to the pressure sensor 360 in the reverse direction in stages, so that the assembly pressure equivalent to the reaction axial force can be obtained by the pressure sensor 360 measurement.
  • the outer surface of the cover plate 314 of the screwing tool 30 of the measuring device is smooth, which can take into account the comfort when manually driving the screwing tool 30, and the cover plate 314 can be replaced with a drive Another cover of the butt joint, the driving butt joint can be drive-connected with the power unit to realize the automatic driving of the screwing tool 30. That is, the manual and electric use modes can be switched by replacing the cover plate 314. Among them, the manual feel introduced in the manual mode can further reflect the degree of control of the pre-tightening force by different artificial feel; the electric mode introduces a settable screwing speed, so that the created torque coefficient model can further reflect different tightening speed pairs. Effect of torque coefficient.
  • the measurement process of the above measuring device can further introduce the lubrication conditions and the material conditions of the connected parts, and include (taking the aerospace screw with thread type M2 as an example):
  • an aeronautical screw with a thread type of M2 is randomly selected as a test piece.
  • the screw is tightened by the screwing tool 30, that is, the test piece 17 with the screw hole is first supported by the test piece holding member and installed in the pull /
  • the top of the pressure sensor 20 is connected to the tension / pressure sensor 20 through the tension / pressure conducting member 14, and then the screw 20 to be measured passes through the light hole of the support table 16 and the screw hole of the test piece 17 with the screw hole Coaxially opposed, after that, the operator holds the screwing tool 30 with his hand and brings the bit 35 into contact with the screw 20 to be measured, then presses down and rotates the housing 31 of the screwing tool 30 through the force transmission shaft 322 drives the torque sensor 320, the torque output shaft 326, the bit mounting sleeve 33 and the bit 35 to rotate with the housing 31. The bit 35 rotates so that the screw 20 is screwed into the test piece 17 with a screw hole, and then the screw 20 is tightened.
  • the support table 16 is fastened to the test piece 17
  • the assembly pressure on the screw 20 is monitored by the pressure sensor 360, and the screwing tool 30 is pushed down to make the assembly pressure on the screw 20 reach the set value Fn; the screw 20 is monitored by the torque sensor 320
  • the data measured by the sensor 360 are collected, and the torque and pre-tightening force of the screw 20 under n specific test pressures Fn, determined lubrication conditions, and set materials of the connected parts are obtained, and then used n times.
  • the test output pretension force and torque create a dynamic relationship curve of torque and pretension force under the condition of the assembly pressure Fn, where n is a natural number, and preferably, n is greater than 3.
  • the torque and pretension force of the screw 20 obtained in the third step under the conditions of the assembly pressure Fn, the determined lubrication condition, and the material of the connected component are set. Based on the dynamic relationship curve, the data set ⁇ Ki ⁇ of the torque coefficient of the screw 20 in response to the change of the preload force under the condition of the assembly pressure Fn is calculated, and the data set ⁇ Ki ⁇ of the torque coefficient of the screw in response to the change of the preload force is calculated.
  • the sixth step is to repeat the second step to the fifth step to complete the tightening of a single screw 20 in different batches under different assembly pressures, and / or different lubrication conditions, and / or different materials of the connected parts to create multiple torque coefficients. Curve clusters for process curves.
  • the seventh step is to use the curve clusters of the torque coefficient process curves obtained through multiple batch tightening measurements to select the torque coefficient value mapping set ⁇ K_map ⁇ to map the target pretension force in each torque coefficient process curve to the target pretension force.
  • Exclusion processing is performed on the torque coefficient value mapping set ⁇ K_map ⁇ of each torque coefficient process curve, for example, deleting the maximum and minimum values in the torque coefficient value mapping set ⁇ K_map ⁇ and the difference value with a prominent difference is deleted , Using the average of the remaining values in the torque coefficient value map set ⁇ K_map ⁇ after rejection filtering Establish a model of the relationship between the target pretension force and the torque under the assembly pressure Fn, the determined lubrication conditions and the material conditions of the connected parts
  • FIG. 4 is a schematic flowchart of an exemplary method for creating a torque coefficient model in another embodiment of the present invention.
  • a method for creating a torque coefficient model may include:
  • S410 The pre-tension force and torque of the receiving and measuring device are tested by outputting n threaded fasteners while maintaining the set assembly pressure, where n is a natural number, and preferably, n is greater than 3;
  • this step can further perform denoising processing on the data set ⁇ Ki ⁇ in which the torque coefficient responds to the change of the pretension force;
  • S430 Use the torque coefficient process curve obtained by testing n threaded fasteners to determine the ideal torque coefficient of the target pre-tightening force, and use the determined ideal torque coefficient to establish the target pre-tightening force and Torque relationship model.
  • the set of torque coefficient values ⁇ K_map ⁇ mapped by the target pretension force in each torque coefficient process curve may be determined first, and then the set of torque coefficient value maps ⁇ K_map ⁇ of the target pretension force in each torque coefficient process curve ⁇ Perform rejection processing, for example, delete the maximum and minimum values of the torque coefficient value mapping set ⁇ K_map ⁇ and the differentiated values with prominent differences, and then remove the torque coefficient value mapping set filtered by exclusion ⁇ K_map ⁇ average of the remaining values As the ideal torque coefficient, establish the relationship between the target preload and torque under the set assembly pressure
  • the measurement process for a specific value of the assembly pressure is ended, and the above measurement process can also set the tightening speed, the lubrication condition, and the material of the connected component, that is, to include the assembly pressure, the lubrication condition, and the connected component
  • the multi-dimensional conditions of the material are used to create a corresponding torque coefficient model, so that the created torque coefficient model can further reflect the influence of different lubrication conditions and the materials of the connected components on the torque coefficient.

Abstract

一种用于扭矩系数采样的测量装置,包括:具有拉/压力传感器(12)的装载平台(10);旋拧工具(30),旋拧工具(30)包括壳体(31)、容纳在壳体(31)内的扭矩测试模组(32)和压力测试模组(36)、以及装设在壳体(31)外的批头(35);其中,当批头(35)旋拧螺纹紧固件(20)旋入承载于装载平台(10)、并与拉/压力传感器(12)连接的带螺孔试件(17)时,拉/压力传感器(12)输出螺纹紧固件(20)与带螺孔试件(17)之间的预紧力,扭矩测试模组(32)输出批头(35)对螺纹紧固件(20)产生的扭矩,压力测试模组(36)输出批头(35)沿轴向方向对螺纹紧固件(20)产生的装配压力。还提供了一种扭矩系数模型的创建方法。

Description

用于扭矩系数采样的测量装置及扭矩系数模型的创建方法 技术领域
本发明涉及精密仪器的装配领域,具体涉及一种用于扭矩系数采样的测量装置、以及一种扭矩系数模型的创建方法。
发明背景
随着航空、航天、军事、医疗等领域中对精密仪器的精度和稳定性的要求不断增加,对精密仪器的装配精度的要求也随之提升。
其中,螺纹紧固件由于具有如下的优点,因而在精密仪器的装配中得到广泛应用:
(1)、可以借助螺纹配合而提供足够大的连接力;
(2)、螺纹配合便于装拆;
(3)、由于具有通用的标准化设计而易于实现大批量生产;
(4)、由于支持大批量生产,因而加工成本低;
(5)、无需借助复杂的装配工艺,因而装配成本低;
(6)、具有互换性。
螺纹紧固件所提供的螺纹连接的质量直接影响产品的装配质量及可靠性。从经济角度来看,螺纹紧固件的成本虽然不高,但是使用螺纹紧固件的产品却通常都很昂贵。在螺纹连接由于质量问题导致连接失效时,对产品造成的影响会产生巨大的经济损失。
以螺纹紧固件中的螺钉为例,螺钉的预紧力是指在拧紧扭矩作用下的螺钉与被连接件之间产生的沿螺钉轴心线方向的作用力。在精密仪器的装配中,若预紧力过高,则螺钉会在被连接件引起应力集中,进而造成被连接件的塑性变形,从而影响精密仪器的精度;若预紧力过低,则 可能会导致螺钉产生的连接作用无效,并且过低的预紧力可能会导致螺钉在振动环境中的脱松,导致被连接件出现滑移,严重影响精密仪器的精度或造成精密仪器的损坏。
因此,对于精密仪器而言,螺纹紧固件的预紧力的控制非常重要。
为了控制螺纹紧固件的预紧力,可以在拧紧螺纹紧固件的过程中通过控制扭矩来实现对预紧力的间接控制,该间接控制可以参照如下述表达式所表示的扭矩与预紧力的关系:
T=K×d×F
其中,T为扭矩,K为扭矩系数,d为螺纹紧固件的螺纹公称直径,F为螺纹紧固件的预紧力。
在生产时间中,上述表达式中的扭矩系数K通常依据经验设定为常数。例如,对于被连接件用于支撑螺纹紧固件的支承表面不光滑、且螺纹紧固件与被连接件的螺纹配合无润滑的情况,扭矩系数K可以设定为0.2;对于被连接件用于支撑螺纹紧固件的支承表面光滑、且螺纹紧固件与被连接件的螺纹配合有润滑的情况,扭矩系数K可以设定为0.1。
然而,在实际的拧紧过程中,扭矩系数K可能并不是常数。支撑表面的光滑程度或粗糙度、螺纹配合的润滑程度、拧紧速度、拧紧工具、拧紧时的温度等外界因素都会对扭矩系数K产生影响。
因此,对于同样的螺纹紧固件,扭矩系数K都可能由于外界因素的变化而不同,例如,扭矩系数K可能会随着外界因素的变化而在0.1~0.3的范围、甚至更宽泛的范围内变动。扭矩系数K的变动必然会导致对预紧力的控制精度的降低,并使得螺纹紧固件的预紧力在实际装配时具有较大的离散性。
由此可见,对于需要对预紧力实施精确控制的精密仪器而言,如何获得兼顾外界因素的准确的扭矩系数K,以准确获得螺纹紧固件的预紧 力和扭矩在工程实践中的映射关系,成为现有技术中有待解决的技术问题。
发明内容
有鉴于此,在本发明的一个实施例中,提供了一种用于扭矩系数采样的测量装置,能够支持对任意型号的螺纹紧固件在任意目标装配压力作用下的测量,以获取能够体现预紧力和扭矩在不同装配压力条件下的映射关系的采样数据,这些采样数据有助于研究装配压力对扭矩系数的影响。
具体地,该实施例中用于扭矩系数采样的测量装置可以包括:
装载平台,所述装载平台包括拉/压力传感器;
旋拧工具,所述旋拧工具包括壳体、容纳在所述壳体内的扭矩测试模组和压力测试模组、以及装设在所述壳体外的批头;
其中,当所述批头旋拧螺纹紧固件旋入承载于所述装载平台、并与所述拉/压力传感器连接的带螺孔试件时,所述拉/压力传感器输出所述螺纹紧固件与所述带螺孔试件之间的预紧力,所述扭矩测试模组输出所述批头对所述螺纹紧固件产生的扭矩,所述压力测试模组输出所述批头沿轴向方向对所述螺纹紧固件产生的装配压力。
可选地,所述装载平台进一步包括:基板,所述基板承载所述拉/压力传感器;试件保持构件,所述试件保持构件将所述带螺孔试件支撑在所述拉/压力传感器的上方,其中,所述带螺孔试件通过拉/压力传导构件与所述拉/压力传感器连接;支撑台面,所述支撑台面被支撑构件支撑在所述试件保持构件的上方并承载所述螺纹紧固件,其中,所述支撑台面开设有供所述螺纹紧固件的螺纹柱穿过的通孔。
可选地,所述扭矩测试模组包括:扭矩传感器;第一扭矩传递构件, 所述第一扭矩传递构件固定于所述壳体、并连接所述扭矩传感器在轴向方向上的一端;第二扭矩传递构件,所述第二扭矩传递构件连接所述扭矩传感器在轴向方向上的另一端、并与所述批头同轴传动连接。
可选地,所述第一扭矩传递构件通过径向穿设的传力轴杆固定于所述壳体。
可选地,所述壳体开设有供所述销轴插入的限位孔,并且,所述销轴的端部通过衬套插入在所述限位孔内。
可选地,所述第二扭矩传递构件与扭矩输出轴同轴连接,所述扭矩输出轴的根部穿设于容纳在所述壳体内的转动轴承内,所述扭矩输出轴的端部伸出至所述壳体外、并与批头安装套筒可拆卸地连接,所述批头同轴装设于所述批头安装套筒。
可选地,所述扭矩输出轴与所述批头安装套筒通过沿径向穿设的锁销构件可拆卸地连接。
可选地,所述压力测试模组包括:压力传感器,所述压力传感器固定于所述壳体;推力轴承,所述推力轴承沿轴向方向布置在所述压力传感器与所述第一扭矩传递构件之间。
可选地,所述压力传感器与所述推力轴承之间布置有防磨构件。
而且,当测量装置得到的采样数据被用于扭矩系数模型的建模时,可以获得不同装配压力条件下的扭矩系数的变化规律,该变化规律可用于指导生产实践。
具体地,在另一个实施例中,提供了一种扭矩系数模型的创建方法,包括:
接收如前述实施例所述的测量装置在保持设定的装配压力条件下对n个螺纹紧固件分别进行测试输出的预紧力和扭矩,其中,n为自然数;
利用测量装置对n个螺纹紧固件进行测试输出的预紧力和扭矩,分 别创建对每个螺纹紧固件测试得到的扭矩系数过程曲线;
利用对n个螺纹紧固件测试得到的扭矩系数过程曲线,确定目标预紧力的理想扭矩系数,并利用确定的理想扭矩系数建立在设定的装配压力条件下的目标预紧力和扭矩的关系模型。
基于上述实施例,测量装置可以利用拉/压力传感器测量得到螺纹紧固件在与带螺孔试件螺纹连接时产生的预紧力,并利用扭矩传感器测量螺纹紧固件在与带螺孔试件螺纹连接时承受的扭矩,由此,可以实现对螺纹紧固件的预紧力和扭矩的实时监测,进而可以利用实时监测得到的预紧力和扭矩创建扭矩系数模型,以准确确定预紧力和扭矩的映射关系,进而指导生产实践。而且,测量装置还可以利用压力传感器监测对螺纹紧固件施加的装配压力,以将实施监测的预紧力和扭矩与设定的装配压力关联,从而可以进一步反映出装配压力对扭矩系数的影响。
上述实施例中的测量装置采用垂直的分布模式,保证旋拧工具内部结构不因受重力的影响而发生偏心,提高了测量的准确度。
上述实施例中的测量装置中的旋拧工具可以包括支持批头更换的批头安装套筒,以允许批头的更换,从而可以支持对不同规格的螺纹紧固件的测试。而且,批头安装套筒采用锁销构件实现可拆卸连接,以避免批头安装套筒的安装产生轴向偏移,从而可以避免装配压力的测试结果受该轴向偏移的影响,以确保装配压力和扭矩的测试结果的一致性。
上述实施例中的测量装置中的旋拧工具可以通过更换盖板实现手动和电动使用模式的转换,手动模式引入人工手感,以进一步反映不同的人工手感对预紧力的控制程度;电动模式引入可设定的旋拧速度,以使得创建的扭矩系数模型可以进一步反映不同的拧紧速度对扭矩系数的影响。
附图简要说明
图1为本发明的一个实施例中用于扭矩系数采样的测量装置的示例性结构示意图;
图2为如图1所示测量装置中的旋拧工具的内部结构示意图;
图3为如图1所示测量装置中的旋拧工具的外部造型示意图;
图4为本发明的另一个实施例中的扭矩系数模型的创建方法的示例性流程示意图。
附图标记说明:
10     装载基台
11      基板
12      拉/压力传感器
13      试件保持构件
14      拉/压力传导构件
15      支撑构件
16      支撑台面
17      带螺孔试件
20     螺纹紧固件
30     旋拧工具
31      壳体
311      主筒壳
312      第一法兰缘
313      限位孔
314      盖板
315      容纳槽
316      副筒壳
317     第二法兰缘
318     端盖
319     轴孔
32        扭矩测试模组
320     扭矩传感器
321     第一扭矩传递构件
322     传力轴杆
323     衬套
324     第二扭矩传递构件
325     凸台
326     扭矩输出轴
327     转动轴承
33        批头安装套筒
34        锁销构件
35        批头
36        压力测试模组
360     压力传感器
361     防磨构件
362     推力轴承
实施本发明的方式
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。
对于螺纹紧固件的扭矩系数的研究,下述实施例尤其关注适用于精密仪器的小尺寸螺纹紧固件,例如螺纹规格为M1~M6范围内的螺钉。 不同于承受大型重载的车用、船用螺纹紧固件,适用于精密仪器的小尺寸螺纹紧固件更容易出现加工质量问题,例如形状误差、尺寸误差、表面粗糙度等参数的离散性较大,从而导致测量结果离散性也比较大,而且,小尺寸螺纹紧固件的摩擦面积小,难以使用贴片型传感器实施准确测量。
而且,在旋拧螺纹紧固件的过程中施加的装配压力,也是影响扭矩系数的重要参数,而这往往是容易被忽略的。因此,在下述实施例中,特别引入了装配压力的测量,用以体现和研究装配压力对扭矩系数的影响。
图1为本发明的一个实施例中用于扭矩系数采样的测量装置的示例性结构示意图。请参见图1,在该实施例中,用于扭矩系数采样的测量装置可以包括:
装载平台10,该装载平台10包括拉/压力传感器12,并且,该装载平台10用于承载带螺孔试件17,承载于该装载平台10的带螺孔试件17与拉/压力传感器12连接;
旋拧工具30,该旋拧工具30包括壳体31、容纳在壳体31内的扭矩测试模组32和压力测试模组36、以及装设在壳体31外的批头35;
其中,当批头35旋拧螺纹紧固件20旋入承载于带螺孔试件17时,拉/压力传感器12可以输出螺纹紧固件20与带螺孔试件17之间的预紧力,扭矩测试模组32可以输出批头35对螺纹紧固件20产生的扭矩,以及,压力测试模组36可以输出批头35沿轴向方向对螺纹紧固件20产生的装配压力。
基于上述结构,测量装置可以利用拉/压力传感器12测量得到螺纹紧固件20在与带螺孔试件17螺纹连接时产生的预紧力,并利用扭矩传感器32测量螺纹紧固件20在与带螺孔试件17螺纹连接时承受的扭矩, 由此,可以实现对螺纹紧固件20的预紧力和扭矩的实时监测,进而可以利用实时监测得到的预紧力和扭矩创建扭矩系数模型,以准确确定预紧力和扭矩的映射关系,进而指导生产实践。而且,测量装置还可以利用压力传感器36监测对螺纹紧固件20施加的装配压力,以将实施监测的预紧力和扭矩与设定的装配压力关联,从而可以进一步反映出装配压力对扭矩系数的影响。
请继续参见图1,在该实施例中,装载平台10可以进一步包括基板11、试件保持构件13、以及支撑台面16。
其中,基板11可以承载拉/压力传感器12。试件保持构件13可以将带螺孔试件17支撑在所述拉/压力传感器12的上方,其中,带螺孔试件17可以通过拉/压力传导构件14与拉/压力传感器12连接。支撑台面16可以被例如螺柱、光轴等支撑构件15支撑在试件保持构件13的上方、并承载螺纹紧固件20,其中,支撑台面16开设有供螺纹紧固件20的螺纹柱穿过的通孔,该通孔可以为孔壁不带有螺纹的光孔。
由此,该实施例中的测量装置可以利用装载基台10的基板11、试件保持构件13以及支撑台面16分别对拉/压力传感器12、带螺孔试件17以及测试的螺纹紧固件20提供分层限位支撑,以减小甚至消除拉/压力传感器12、带螺孔试件17以及测试的螺纹紧固件20的偏心对测量结果的影响,从而可以提高测量的准确度。
图2为如图1所示测量装置中的旋拧工具的内部结构示意图。图3为如图1所示测量装置中的旋拧工具的外部造型示意图。
请在参见图2的同时结合图3,在该实施例中,以测量装置的旋拧工具30为螺丝刀为例。
该旋拧工具30的外壳31可以包括主筒壳311和副筒壳316,其中,主筒壳311的外圆周面可以镀有防滑橡胶,便于操作人员旋转壳体31, 主筒壳311的一端开口(底端开口)具有第一法兰缘312、另一端开口(顶端开口)被盖板314封盖,副筒壳316的一端开口(顶端开口)具有第二法兰缘317、另一端开口(底端开口)装设有端盖318,该端盖318开设有轴孔319,并且,主筒壳311的第一法兰缘312与副筒壳316的第二法兰缘317对接装配,可以组装形成壳体31。
扭矩测试模组32包括扭矩传感器320、第一扭矩传递构件321、以及第二扭矩传递构件324。
扭矩传感器320容纳在壳体31内,例如,像图2所示出的那样容纳在主筒壳311内,并且与主筒壳311间隙配合。
第一扭矩传递构件321固定于壳体31、并连接扭矩传感器320在轴向方向上的一端,例如,像图2所示出的那样固定于主筒壳311、并连接扭矩传感器320在轴向方向上的顶端。
具体地,在图2中,第一扭矩传递构件321可以通过径向穿设的传力轴杆322固定于壳体31(例如主筒壳311),相应地,壳体31例如(主筒壳311)开设有供传力轴杆322插入的限位孔313。其中,限位孔313可以为沿轴向方向沿伸的长孔,长孔的内表面与传递轴杆的外圆周面留有设定间隙,此时,传力轴杆322的端部可以通过套设的衬套323插入在限位孔313内,衬套323用于减少传力轴杆322对主筒壳311的磨损,其材质可以选用聚四氟乙烯(Poly tetra fluoroethylene,PTFE)。
第二扭矩传递构件324可以连接扭矩传感器320在轴向方向上背向第一扭矩传递构件321的另一端、并与批头35同轴传动连接。例如,像图2所示出的那样连接扭矩传感器320在轴向方向上的底端。
具体地,在图2中,第二扭矩传递构件324可以与扭矩输出轴326同轴连接,该扭矩输出轴326的根部穿设于容纳在壳体31(例如副筒壳316)内的转动轴承327内。例如,第二扭矩传递构件324的底端可以 具有凸台325,扭矩输出轴326的上端面具有与凸台325配合的凹槽,通过凸台325与凹槽的配合,可以实现第二扭矩传递构件324与扭矩输出轴326的同轴连接。
该转动轴承327的内环与扭矩输出轴326的外圆周面相接触、外环与副筒壳316的内圆周面相接触,用于实现扭矩输出轴326与副筒壳316的相对转动,即,用于实现扭矩输出轴326与副筒壳316的转动分离。并且,转动轴承327的内环的顶端还与扭矩输出轴326的环形凸缘相抵触,外环的底端与端盖318的环形凸台相抵触,用于实现对转动轴承327的轴向定位。例如,转动轴承327可以选用角接触球轴承。
另外,在图2中,扭矩输出轴326的端部穿过端盖318的轴孔319伸出至壳体31外、并与批头安装套筒33可拆卸地连接,例如,扭矩输出轴326与批头安装套筒33可以通过沿径向穿设的锁销构件34可拆卸地连接。
相应地,批头35可以同轴装设于批头安装套筒33。例如,批头35可以具有呈外六方形状的插接杆,批头安装套筒33可以具有内六方形状的插接孔,通过外六方形状与内六方形装的配合,可以使批头35与批头安装套筒33的同轴传动连接。
由于旋拧工具30包括支持批头35更换的批头安装套筒33,因而可以允许批头的更换,从而可以支持对不同规格的螺纹紧固件20的测试。而且,批头安装套筒33采用锁销构件34实现可拆卸连接,可以利用锁销构件34在轴向方向上的限位避免批头安装套筒33的安装产生轴向偏移,从而可以避免装配压力的测试结果受该轴向偏移的影响,以确保装配压力和扭矩的测试结果的一致性。
从而,壳体31在被握持时受到的外力可以通过传力轴杆322传至第一扭矩传递构件321,再由第一扭矩传递构件321通过扭矩传感器320、 第二扭矩传递构件324、扭矩输出轴326、批头安装套筒33逐级传递并带动批头35转动,以实现对螺纹紧固件20的旋拧。并且,批头35对螺纹紧固件20旋拧时受到的反作用扭矩可以反向传递至扭矩传感器320,从而可以由扭矩传感器320测量得到与反作用扭矩等值的旋拧扭矩。
压力测试模组36可以包括压力传感器360和推力轴承362。
压力传感器360固定于壳体31,例如,像图2中所示的那样布置在扭矩测试模组32背向批头35的一侧、并固定于壳体31的盖板314的下表面的容纳槽315内。推力轴承362可以沿轴向方向布置在压力传感器360与第一扭矩传递构件321之间。用于实现压力传感器360和第一扭矩传递构件321之间的转动分离。并且,压力传感器360与推力轴承362之间可以布置有防磨构件361。
从而,批头35对螺纹紧固件20旋拧时受到的反作用轴向力可以通过批头安装套筒33、扭矩输出轴326、第二扭矩传递构件324、扭矩传感器320、第一扭矩传递构件321以及推力轴承362逐级反向传递至压力传感器360,从而可以由压力传感器360测量得到与反作用轴向力等值的装配压力。
另外,在上述实施例中,测量装置的旋拧工具30的盖板314的外表面是光滑的,其可以兼顾手动驱动旋拧工具30时的舒适感,并且,盖板314可以更换为具有驱动对接头的另一种盖板,该驱动对接头可以与动力装置传动连接,以实现对旋拧工具30的自动化驱动。即,通过更换盖板314可以实现手动和电动使用模式的转换。其中,手动模式引入的人工手感,可以进一步反映不同的人工手感对预紧力的控制程度;电动模式引入可设定的旋拧速度,以使得创建的扭矩系数模型可以进一步反映不同的拧紧速度对扭矩系数的影响。
上述测量装置的测量过程可以进一步引入润滑条件和被连接件的材质条件,并包括(以螺纹型号为M2的航空螺钉为例):
第一步,随机选取螺纹型号为M2的一枚航空螺钉为试验件。
第二步,确定润滑条件和两个被连接件的材料后,通过旋拧工具30对该螺钉进行拧紧,即,先将带螺孔试件17通过试件保持构件的支撑而安装在拉/压力传感器20的顶部上方、并通过拉/压力传导构件14与拉/压力传感器20连接,再将待测量的螺钉20穿过支撑台面16的光孔后并与带螺孔试件17的螺孔同轴相对,此后,操作人员用手握住旋拧工具30、并使批头35与待测量的螺钉20相接触后,下压并旋转旋拧工具30的壳体31,通过传力轴杆322带动扭矩传感器320、扭矩输出轴326、批头安装套筒33及批头35随壳体31转动,批头35转动使得螺钉20旋入带螺孔试件17中,进而拧紧螺钉20将的支撑台面16与带螺孔试件17紧固连接。
第三步,在拧紧螺钉20的过程中,通过压力传感器360监测螺钉20受到的装配压力,下压旋拧工具30使螺钉20受到的装配压力达到设定值Fn;通过扭矩传感器320监测螺钉20受到的扭矩,当扭矩或者预紧力达到设定值时,完成对螺钉的拧紧;通过拉/压力传感器监测螺钉20受到的预紧力;然后,对扭矩传感器320、拉/压力传感器12和压力传感器360测量得到的数据进行采集,分别得到螺钉20在特定装配压力Fn、确定的润滑条件以及设定的被连接件材料的条件下进行n次测试输出的扭矩和预紧力,再利用n次测试输出的预紧力和扭矩创建扭矩和预紧力在该装配压力Fn的条件下的动态关系曲线,其中,n为自然数,优选地,n大于3。
第四步,根据表达式T=K×d×F、第三步得到的该螺钉20在装配压力Fn、确定的润滑条件以及设定的被连接件材料的条件下的扭矩和预 紧力的动态关系曲线,计算得到该螺钉20在装配压力Fn条件下扭矩系数响应于预紧力变化的数据集合{Ki},得到螺钉的扭矩系数响应于预紧力变化的数据集合{Ki}。
第五步,对扭矩系数响应于预紧力变化的数据集合{Ki}进行去噪处理,例如,去除扭矩系数响应于预紧力变化的数据集合{Ki}中的跳变趋势违反变化规律或跳变幅度超出预设阈值的奇异值,然后,将扭矩系数响应于预紧力变化的数据集合{Ki}经去噪处理后的保留值拟合为在该装配压力Fn、确定的润滑条件以及设定的被连接件材料的条件下的扭矩系数过程曲线。
第六步,重复第二步至第五步,完成单个螺钉20在不同装配压力、和/或不同润滑条件、和/或不同被连接件材质的多批次拧紧,以创建包含多条扭矩系数过程曲线的曲线簇。
第七步,利用通过多批次拧紧测量得到的扭矩系数过程曲线的曲线簇,选取得到目标预紧力在各条扭矩系数过程曲线映射的扭矩系数值映射集合{K_map},对目标预紧力在各条扭矩系数过程曲线的扭矩系数值映射集合{K_map}进行排异处理,例如,将扭矩系数值映射集合{K_map}中的最大值和最小值、以及具有凸显差异的差异化取值删除,利用经排异筛选后的扭矩系数值映射集合{K_map}中的剩余数值的平均值
Figure PCTCN2019097729-appb-000001
建立在该装配压力Fn、确定的润滑条件以及设定的被连接件材料条件下的目标预紧力和扭矩的关系模型
Figure PCTCN2019097729-appb-000002
图4为本发明的另一个实施例中的扭矩系数模型的创建方法的示例性流程示意图。请参见图4,在该实施例中,扭矩系数模型的创建方法可以包括:
S410:接收测量装置在保持设定的装配压力条件下通过对n个螺纹紧固件分别进行测试输出的预紧力和扭矩,其中,n为自然数,优选地, n大于3;
S420:利用测量装置对n个螺纹紧固件进行测试输出的预紧力和扭矩,分别创建对每个螺纹紧固件测试得到的扭矩系数过程曲线,其中,扭矩系数过程曲线由扭矩系数响应于预紧力变化的数据集合{Ki},该数据集合{Ki}中的每个数值满足T=K×d×F,i为大于等于1且小于等于n,d为该型号的螺纹紧固件的公称直径;
其中,本步骤可以进一步对扭矩系数响应于预紧力变化的数据集合{Ki}进行去噪处理;
S430:利用对n个螺纹紧固件测试得到的扭矩系数过程曲线,确定目标预紧力的理想扭矩系数,并利用确定的理想扭矩系数建立在设定的装配压力条件下的目标预紧力和扭矩的关系模型。
例如,本步骤可以先确定目标预紧力在各条扭矩系数过程曲线映射的扭矩系数值映射集合{K_map},然后对目标预紧力在各条扭矩系数过程曲线的扭矩系数值映射集合{K_map}进行排异处理,例如,将扭矩系数值映射集合{K_map}中的最大值和最小值、以及具有凸显差异的差异化取值删除,再将经排异筛选后的扭矩系数值映射集合{K_map}中的剩余数值的平均值
Figure PCTCN2019097729-appb-000003
作为理想扭矩系数,建立在设定的装配压力条件下的目标预紧力和扭矩的关系模型
Figure PCTCN2019097729-appb-000004
至此,针对装配压力的一个特定取值的测量过程结束,并且,上述测量过程还可以同时设定拧紧速度、润滑条件和被连接件的材料,即,以包含装配压力、润滑条件以及被连接件的材质的多维度条件,创建对应的扭矩系数模型,以使得创建的扭矩系数模型可以进一步反映不同的润滑条件和被连接件的材料对扭矩系数的影响。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均 应包含在本发明保护的范围之内。

Claims (10)

  1. 一种用于扭矩系数采样的测量装置,其特征在于,包括:
    装载平台(10),所述装载平台(10)包括拉/压力传感器(12);
    旋拧工具(30),所述旋拧工具(30)包括壳体(31)、容纳在所述壳体(31)内的扭矩测试模组(32)和压力测试模组(36)、以及装设在所述壳体(31)外的批头(35);
    其中,当所述批头(35)旋拧螺纹紧固件(20)旋入承载于所述装载平台(10)、并与所述拉/压力传感器(12)连接的带螺孔试件(17)时,所述拉/压力传感器(12)输出所述螺纹紧固件(20)与所述带螺孔试件(17)之间的预紧力,所述扭矩测试模组(32)输出所述批头(35)对所述螺纹紧固件(20)产生的扭矩,所述压力测试模组(36)输出所述批头(35)沿轴向方向对所述螺纹紧固件(20)产生的装配压力。
  2. 根据权利要求1所述的测量装置,其特征在于,所述装载平台(10)进一步包括:
    基板(11),所述基板(11)承载所述拉/压力传感器(12);
    试件保持构件(13),所述试件保持构件(13)将所述带螺孔试件(17)支撑在所述拉/压力传感器(12)的上方,其中,所述带螺孔试件(17)通过拉/压力传导构件(14)与所述拉/压力传感器(12)连接;
    支撑台面(16),所述支撑台面(16)被支撑构件(15)支撑在所述试件保持构件(13)的上方并承载所述螺纹紧固件(20),其中,所述支撑台面(16)开设有供所述螺纹紧固件(20)的螺纹柱穿过的通孔。
  3. 根据权利要求1所述的测量装置,其特征在于。所述扭矩测试模组(32)包括:
    扭矩传感器(320);
    第一扭矩传递构件(321),所述第一扭矩传递构件(321)固定于所述壳体(31)、并连接所述扭矩传感器(320)在轴向方向上的一端;
    第二扭矩传递构件(324),所述第二扭矩传递构件(324)连接所述扭矩传感器(320)在轴向方向上的另一端、并与所述批头(35)同轴传动连接。
  4. 根据权利要求3所述的测量装置,其特征在于。所述第一扭矩传递构件(321)通过径向穿设的传力轴杆(322)固定于所述壳体(31)。
  5. 根据权利要求4所述的测量装置,其特征在于,所述壳体(31)开设有供所述销轴插入的限位孔(313),并且,所述销轴的端部通过衬套(323)插入在所述限位孔(313)内。
  6. 根据权利要求3所述的测量装置,其特征在于,所述第二扭矩传递构件(324)与扭矩输出轴(326)同轴连接,所述扭矩输出轴(326)的根部穿设于容纳在所述壳体(31)内的转动轴承(327)内,所述扭矩输出轴(326)的端部伸出至所述壳体(31)外、并与批头安装套筒(33)可拆卸地连接,所述批头(35)同轴装设于所述批头安装套筒(33)。
  7. 根据权利要求6所述的测量装置,其特征在于,所述扭矩输出轴(326)与所述批头安装套筒(33)通过沿径向穿设的锁销构件(34)可拆卸地连接。
  8. 根据权利要求3所述的测量装置,其特征在于,所述压力测试模组(36)包括:
    压力传感器(360),所述压力传感器(360)固定于所述壳体(31);
    推力轴承(362),所述推力轴承(362)沿轴向方向布置在所述压力传感器(360)与所述第一扭矩传递构件(321)之间。
  9. 根据权利要求8所述的测量装置,其特征在于,所述压力传感器(360)与所述推力轴承(362)之间布置有防磨构件(361)。
  10. 一种扭矩系数模型的创建方法,其特征在于,包括:
    接收如权利要求1所述的测量装置在保持设定的装配压力条件下对n个螺纹紧固件分别进行测试输出的预紧力和扭矩,其中,n为自然数;
    利用测量装置对n个螺纹紧固件进行测试输出的预紧力和扭矩,分别创建对每个螺纹紧固件测试得到的扭矩系数过程曲线;
    利用对n个螺纹紧固件测试得到的扭矩系数过程曲线,确定目标预紧力的理想扭矩系数,并利用确定的理想扭矩系数建立在设定的装配压力条件下的目标预紧力和扭矩的关系模型。
PCT/CN2019/097729 2018-07-25 2019-07-25 用于扭矩系数采样的测量装置及扭矩系数模型的创建方法 WO2020020297A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021503755A JP7391938B2 (ja) 2018-07-25 2019-07-25 トルク係数サンプリング用の測定装置、及びトルク係数モデルの構築方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810827557.0A CN109186843B (zh) 2018-07-25 2018-07-25 一种用于研究压紧力对扭矩系数影响的测量装置及方法
CN201810827557.0 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020020297A1 true WO2020020297A1 (zh) 2020-01-30

Family

ID=64937323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097729 WO2020020297A1 (zh) 2018-07-25 2019-07-25 用于扭矩系数采样的测量装置及扭矩系数模型的创建方法

Country Status (3)

Country Link
JP (1) JP7391938B2 (zh)
CN (1) CN109186843B (zh)
WO (1) WO2020020297A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537126A (zh) * 2020-04-28 2020-08-14 苏州清陶新能源科技有限公司 用于确定软包电池预紧力的工装、确定软包电池预紧力和模组装配的方法
CN113340510A (zh) * 2021-05-21 2021-09-03 中铁大桥局集团有限公司 一种高强度螺杆紧固检测装置及其紧固检测方法
CN114076651A (zh) * 2020-08-20 2022-02-22 上海飞机制造有限公司 一种复合材料临时紧固件验证装置及其使用方法
CN114850847A (zh) * 2021-02-04 2022-08-05 中国航发商用航空发动机有限责任公司 管接头装配质量检测方法
CN115077764A (zh) * 2022-07-08 2022-09-20 奇瑞捷豹路虎汽车有限公司 螺栓预紧力测试装置和螺栓安装方法
CN116164959A (zh) * 2022-12-30 2023-05-26 上海尚实航空发动机股份有限公司 扭转试验台及使用方法
CN114076651B (zh) * 2020-08-20 2024-04-26 上海飞机制造有限公司 一种复合材料临时紧固件验证装置及其使用方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109186843B (zh) * 2018-07-25 2020-07-17 北京理工大学 一种用于研究压紧力对扭矩系数影响的测量装置及方法
CN111721697A (zh) * 2020-06-24 2020-09-29 北京工业大学 一种适用于扭矩法和转角法的螺栓各关键摩擦系数通用测量装置
CN112014023B (zh) * 2020-08-31 2021-06-01 湖北文理学院 轮毂螺栓力矩检测装置
CN112179554B (zh) * 2020-09-18 2021-07-06 大连理工大学 一种小尺寸螺栓紧固件的螺纹扭矩及预紧力测量装置
CN113654704A (zh) * 2021-08-17 2021-11-16 山西平阳重工机械有限责任公司 一种测试螺纹紧固件预紧力与扭矩关系的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013050344A (ja) * 2011-08-30 2013-03-14 Nsk Ltd 歯車伝達装置用トルク測定装置と駆動系制御装置と転がり軸受の予圧測定方法
KR20140061338A (ko) * 2014-04-21 2014-05-21 (주)에너토크 토크 센서부를 포함하는 밸브 액추에이터 장치
US20150073245A1 (en) * 2008-12-31 2015-03-12 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for measuring force and torque applied to a catheter electrode tip
CN105300671A (zh) * 2015-09-16 2016-02-03 北京理工大学 一种精密螺栓连接扭矩-预紧力映射关系测量装置
CN107702836A (zh) * 2016-08-31 2018-02-16 北京理工大学 一种精密螺纹压圈扭矩‑预紧力映射关系测量装置
CN107845321A (zh) * 2017-12-19 2018-03-27 哈尔滨市计量检定测试院 一种液压式扭矩连接模拟器
CN109186843A (zh) * 2018-07-25 2019-01-11 北京理工大学 一种用于研究压紧力对扭矩系数影响的测量装置及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419698C2 (de) * 1994-06-04 1996-11-14 Peter Neef Vorrichtung zur Prüfung von Drehmomenten für Drehmomentschraubwerkzeuge
JP3262777B2 (ja) 1999-02-08 2002-03-04 株式会社リコー 螺合体の締結力測定装置、その締結力測定方法、その締結力測定治具及び螺合体の評価システム
CN2527990Y (zh) * 2002-03-14 2002-12-25 梁伟成 液压钳扭矩调整装置的扭矩标定器
JP2004330383A (ja) 2003-05-09 2004-11-25 Nitto Seiko Co Ltd ねじ締め装置
JP5618406B2 (ja) 2010-02-01 2014-11-05 有限会社井出計器 ネジ締付け診断装置及び電動ドライバ
CN201983892U (zh) * 2010-12-03 2011-09-21 西安交通大学 一种螺纹拧紧力及被连接件结合面间压力分布的测试装置
CN202126324U (zh) * 2011-04-07 2012-01-25 天津职业技术师范大学 扭力训练器
CN202210007U (zh) * 2011-09-21 2012-05-02 长江大学 一种测量螺纹预紧扭矩系数的实验装置
CN103423274B (zh) * 2013-08-27 2015-07-08 南车株洲电力机车研究所有限公司 一种确保风机高强螺栓预紧力准确施加的方法
JP6027670B1 (ja) 2015-09-28 2016-11-16 ベクトリックス株式会社 タッピンねじの締付軸力の決定方法及びその表示装置
CN205049336U (zh) * 2015-10-10 2016-02-24 武汉辰龙精密仪器有限公司 一种用高强螺栓扭矩系数检测的检测装置
CN207570711U (zh) * 2017-11-20 2018-07-03 上海宏予测试仪器有限公司 一种用于微小螺栓/钉紧固系统的预紧力测量装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150073245A1 (en) * 2008-12-31 2015-03-12 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for measuring force and torque applied to a catheter electrode tip
JP2013050344A (ja) * 2011-08-30 2013-03-14 Nsk Ltd 歯車伝達装置用トルク測定装置と駆動系制御装置と転がり軸受の予圧測定方法
KR20140061338A (ko) * 2014-04-21 2014-05-21 (주)에너토크 토크 센서부를 포함하는 밸브 액추에이터 장치
CN105300671A (zh) * 2015-09-16 2016-02-03 北京理工大学 一种精密螺栓连接扭矩-预紧力映射关系测量装置
CN107702836A (zh) * 2016-08-31 2018-02-16 北京理工大学 一种精密螺纹压圈扭矩‑预紧力映射关系测量装置
CN107845321A (zh) * 2017-12-19 2018-03-27 哈尔滨市计量检定测试院 一种液压式扭矩连接模拟器
CN109186843A (zh) * 2018-07-25 2019-01-11 北京理工大学 一种用于研究压紧力对扭矩系数影响的测量装置及方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537126A (zh) * 2020-04-28 2020-08-14 苏州清陶新能源科技有限公司 用于确定软包电池预紧力的工装、确定软包电池预紧力和模组装配的方法
CN111537126B (zh) * 2020-04-28 2022-12-13 苏州清陶新能源科技有限公司 用于确定软包电池预紧力的工装、确定软包电池预紧力和模组装配的方法
CN114076651A (zh) * 2020-08-20 2022-02-22 上海飞机制造有限公司 一种复合材料临时紧固件验证装置及其使用方法
CN114076651B (zh) * 2020-08-20 2024-04-26 上海飞机制造有限公司 一种复合材料临时紧固件验证装置及其使用方法
CN114850847A (zh) * 2021-02-04 2022-08-05 中国航发商用航空发动机有限责任公司 管接头装配质量检测方法
CN113340510A (zh) * 2021-05-21 2021-09-03 中铁大桥局集团有限公司 一种高强度螺杆紧固检测装置及其紧固检测方法
CN115077764A (zh) * 2022-07-08 2022-09-20 奇瑞捷豹路虎汽车有限公司 螺栓预紧力测试装置和螺栓安装方法
CN116164959A (zh) * 2022-12-30 2023-05-26 上海尚实航空发动机股份有限公司 扭转试验台及使用方法
CN116164959B (zh) * 2022-12-30 2023-10-17 上海尚实航空发动机股份有限公司 扭转试验台及使用方法

Also Published As

Publication number Publication date
CN109186843A (zh) 2019-01-11
JP7391938B2 (ja) 2023-12-05
JP2021532351A (ja) 2021-11-25
CN109186843B (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2020020297A1 (zh) 用于扭矩系数采样的测量装置及扭矩系数模型的创建方法
CN109612855B (zh) 一种用于高温旋转弯曲疲劳试验机的微动疲劳试验装置
CN105021338B (zh) 一种用于微型拉扭疲劳试验机的扭矩测量装置及方法
WO2013020328A1 (zh) 圆柱配合结合面的刚度及非线性关系试验装置及方法
CN102501137A (zh) 一种主轴径向回转精度在线监测装置
CN109142090A (zh) 一种拉压弯扭多轴加载疲劳试验装置
CN105300671B (zh) 一种精密螺栓连接扭矩‑预紧力映射关系测量装置
CN106525424A (zh) 轴承刚度及起动摩擦力矩的综合测量装置及测量方法
JP2017067747A (ja) タッピンねじの締付軸力の決定方法及びその表示装置
CN109029962A (zh) 确定紧固施工方案的试验系统
CN107702836B (zh) 一种精密螺纹压圈扭矩-预紧力映射关系测量装置
CN207936891U (zh) 一种内螺纹中径测量仪
US7373829B2 (en) Pressure calibration instrument and method for use in securement and adjustment of flanges, couplings, bearings, and fasteners
CN109974609A (zh) 一种钻锪质量在线检测装置及方法
CN106595543B (zh) 一种连接中空轴系的内撑式轴系回转精度测量装置
CN110259718B (zh) 蒸汽压缩机压气叶轮组合式超速试验工具及其使用方法
CN204924527U (zh) 一种用于微型拉扭疲劳试验机的扭矩测量装置
TWI676522B (zh) 監測主軸軸承預壓值的方法、定量地界定主軸的溫度與主軸軸承預壓值之間的關係的方法、定量地界定主軸的轉速與主軸軸承預壓值之間的關係的方法以及透過資料庫來界定最佳的主軸軸承預壓值的方法
CN110658129A (zh) 一种测试螺纹紧固件总摩擦系数的装置
CN111044000A (zh) 一种测量装置
CN109724799A (zh) 轴承旋转精度测量装置
CN114354190A (zh) 一种电机轴承随机动载荷测试装置及测试方法
CN114018732A (zh) 一种滚动微动疲劳试验装置及试验方法
CN209858207U (zh) 一种机器人球窝关节摩擦副的测试装置
CN211601822U (zh) 一种测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19842285

Country of ref document: EP

Kind code of ref document: A1