WO2020019347A1 - 微细管内壁缺陷检测修复装置 - Google Patents

微细管内壁缺陷检测修复装置 Download PDF

Info

Publication number
WO2020019347A1
WO2020019347A1 PCT/CN2018/097661 CN2018097661W WO2020019347A1 WO 2020019347 A1 WO2020019347 A1 WO 2020019347A1 CN 2018097661 W CN2018097661 W CN 2018097661W WO 2020019347 A1 WO2020019347 A1 WO 2020019347A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
wall
microtube
repair
defect
Prior art date
Application number
PCT/CN2018/097661
Other languages
English (en)
French (fr)
Inventor
王星泽
舒远
Original Assignee
合刃科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合刃科技(深圳)有限公司 filed Critical 合刃科技(深圳)有限公司
Priority to CN201880067097.4A priority Critical patent/CN111226108B/zh
Priority to PCT/CN2018/097661 priority patent/WO2020019347A1/zh
Publication of WO2020019347A1 publication Critical patent/WO2020019347A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Definitions

  • the present application relates to the field of pipeline inspection, and in particular, to a micro-tube inner wall defect detection and repair device.
  • Micro-tubes and small-sized characteristic inner holes have been widely used in the fields of machinery manufacturing, chemical engineering, and medical instruments. Once these critical inner hole structures are exploded, leaked, etc., the whole machine will not work, and it will even pose a serious threat to human life and property. The repair of micro-tube inner wall defects is of great significance for manufacturing, quality control and safety assurance.
  • the pore size of microtubes is generally between 1mm and 15mm.
  • Existing repair tools cannot reach the microtubes to repair the defects in them, so that defects on the inner wall of the microtubes seriously threaten production safety.
  • the embodiment of the present application provides a micro-tube inner wall defect detection and repair device, which solves the problem that the prior art cannot repair the micro-tube inner wall defect and ensures production safety.
  • an embodiment of the present application provides a microtube inner wall defect detection and repair device, including:
  • the detection probe is configured to irradiate incident coherent light onto the inner wall of the microtube, and transmit the reflected coherent light to the processing device;
  • the processing device is configured to obtain a speckle image of the inner wall of the micro tube according to the reflected coherent light; and when it is determined that there is a defect in the inner wall of the micro tube according to the speckle image, controlling the repair probe to probe the inner wall of the micro tube Wall defects were repaired.
  • the processing device includes:
  • a coherent light transmitter for generating the incident coherent light and transmitting the incident coherent light to the detection probe through an optical fiber
  • a coherent light receiver configured to convert the reflected coherent light into a speckle image on the inner wall of the microtube, and transmit the speckle image on the inner wall of the microtube to an image processor;
  • the image processor is configured to determine whether there is a defect on the inner wall of the microtube according to the speckle image; when it is determined that there is a defect on the inner wall of the microtube, determine a defect type of the inner wall of the microtube;
  • the controller is configured to control a functional probe corresponding to the defect type in the repair probe to repair the defect of the inner wall of the micro tube according to a defect type stored in the inner wall of the micro tube.
  • the image processor is specifically configured to:
  • the defect type corresponding to the calculation result is obtained.
  • the image processor is further configured to:
  • L is the distance between the defect and the detection entrance of the inner wall of the microtube
  • is the angle between the straight line connecting the defect and the center of the cross section where it is located, and the horizontal line.
  • the detection and repair device further includes a movement mechanism connected to the repair probe, the repair probe includes a marking probe, the marking probe is curved, and the marking probe includes a rotating device;
  • the marking probe is configured to move to the position information (L, ⁇ ) of the defect in the inner wall of the microtube under the traction of the moving mechanism and the control of the rotating device; and mark the defect.
  • the detection and repair device further includes a movement mechanism connected to the repair probe, and the defect type is deformation, and the deformation causes a convex surface on the inner wall of the microtube.
  • the repair probe includes a polishing probe and a garbage recovery probe; the controller controls the repair probe to repair a defect on the inner wall of the microtube, including:
  • the controller controls the movement mechanism to draw the polishing probe and the garbage recovery probe to a position where the convex surface is located;
  • the polishing probe is used for polishing the convex surface on the inner wall of the microtube to eliminate the convex surface caused by deformation;
  • the garbage recovery probe is configured to recover waste generated when the grinding probe grinds defects on the inner wall of the microtube.
  • the detection and repair device further includes a movement mechanism connected to the repair probe, and the defect type is deformation, and when the deformation causes a concave surface on the inner wall of the microtube, the The repair probe includes a filling probe, a polishing probe, and a garbage recovery probe; the controller controls the repair probe to repair a defect on the inner wall of the microtube, including:
  • the controller controls the movement mechanism to move the filling probe, the polishing probe, and the garbage recovery probe to a position where the recessed surface is located;
  • the filling probe is used for filling the concave surface with the same material as the microtube material to eliminate the concave surface caused by deformation;
  • the polishing probe is used for polishing the filled concave surface
  • the garbage recovery probe is configured to recover waste generated when the polishing probe grinds the filled concave surface.
  • the detection and repair device further includes a movement mechanism connected to the repair probe, the defect type is dirt, and the dirt is caused by dust, and the repair probe includes a suction A dust probe, the controller controlling the repair probe to repair a defect on the inner wall of the microtube, including:
  • the controller controls the movement mechanism to draw the dust suction probe to a position where the dirt is located
  • the dust suction probe is used for processing the dust in the dirt to eliminate the dirt.
  • the detection and repair device further includes a movement mechanism connected to the repair probe, the defect type is dirt, and the dirt is caused by a sticky substance, and the repair probe
  • the controller includes a cleaning probe, a substance type detection probe, and a garbage recovery probe. The controller controls the repair probe to repair a defect on the inner wall of the microtube, including:
  • the controller controls the movement mechanism to move the cleaning probe, the substance type detection probe and the garbage recovery probe to the position where the dirt is located;
  • the substance type detection probe is used to detect a substance type of the sticky substance
  • the cleaning probe cleans the viscous substance using a corresponding cleaning agent according to the substance type of the viscous substance
  • the garbage recovery probe is configured to recover garbage generated by the cleaning probe cleaning the foreign matter.
  • the coherent light is a laser at any frequency between ultraviolet light and near-infrared light.
  • a speckle image of the inner wall of the microtube is obtained by coherent light, and whether the inner wall of the microtube has a defect is determined based on the speckle image.
  • the corresponding functional probe in the repair probe repairs the defect.
  • FIG. 1 is a schematic structural diagram of a microtube inner wall defect detection and repair device according to an embodiment of the present application
  • FIG. 2 is a schematic partial structural diagram of a micro-tube inner wall defect detection and repair device according to an embodiment of the present application
  • FIG. 3 is a schematic partial structural diagram of another microtube inner wall defect detection and repair device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a microtube inner wall defect detection and repair method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another microtube inner wall defect detection and repair detection method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of determining defect position information
  • FIG. 8 is a schematic diagram of a working principle of a marking probe according to an embodiment of the present application.
  • FIG. 9 is a partial image of a speckle image on the inner wall of a microtube.
  • FIG. 1 is a schematic structural diagram of a microtube inner wall defect detection and repair device according to an embodiment of the present application. As shown in FIG. 1, the micro-tube inner wall defect detection and repair device includes:
  • the detection probe 101 is configured to irradiate incident coherent light 10 onto the inner wall of the microtube 109 and transmit the reflected coherent light 11 to the processing device 104; the reflected coherent light 11 is reflected by the inner wall of the microtube 109 Or scattered coherent light;
  • the processing device 104 is configured to obtain a speckle image of the inner wall of the microtube 109 according to the reflected coherent light 11; when it is determined that there is a defect in the inner wall of the microtube 109 according to the speckle image, control the repair probe 102 Defects in the inner wall of the microtube 109 are repaired.
  • the detection probe 101 and the repair probe 102 are located in the same sleeve 103.
  • a coherent light emitter 1041 is configured to generate the incident coherent light and transmit the incident coherent light to the detection probe 101 through an optical fiber;
  • a coherent light receiver 1042 configured to convert the reflected coherent light 11 into a speckle image on the inner wall of the microtube 109, and transmit the speckle image on the inner wall of the microtube 109 to the image processor 1043;
  • the image processor 1043 is configured to determine whether there is a defect on the inner wall of the microtube 109 according to the speckle image; when it is determined that there is a defect on the inner wall of the microtube 109, determine a defect type of the inner wall of the microtube 109;
  • the controller 1044 is configured to control the repair probe 103 to repair the defect on the inner wall of the micro tube 109 according to the type of the defect existing on the inner wall of the micro tube 109.
  • the coherent light receiver 1042 may be a CCD camera or a CMOS camera.
  • the incident coherent light generated by the coherent light transmitter 1041 is irradiated onto the transflective mirror 106 through the first lens 107, and then transmitted to the detection probe 101 through the optical fiber 105 to pass the detection.
  • a conical mirror 1011 provided at the front end of the probe 101 irradiates incident coherent light onto the inner wall of the aforementioned microtube 109.
  • the conical mirror 1011 in the detection probe 101 reflects the coherent light 11 reflected or scattered on the inner wall of the microtube 109, and the reflected or scattered coherent light 11 passes through the optical fiber 105, the transflective mirror 106, and the second The lens 108 to the above-mentioned coherent light receiver 1042, which converts the received coherent light into a speckle image on the inner wall of the microtube, and transmits the speckle image on the inner wall of the microtube to the image processor 1043 .
  • the image processor 1043 After the image processor 1043 receives the speckle image of the inner wall of the microtube, the image processor 1043 inputs the speckle image of the inner wall of the microtube into the defect recognition model for calculation to obtain a calculation result; from the calculation result and In the defect type correspondence table, the defect types corresponding to the above calculation results are obtained.
  • the defect recognition model is a neural network model or a deep learning model.
  • the image processor 1043 before receiving the speckle image on the inner wall of the microtube, the image processor 1043 obtains the defect recognition model and the correspondence table between the calculation result and the defect type from a third-party server, or the image processor 1043 obtains A plurality of speckle images corresponding to different defect types are subjected to a neural network operation on the speckle image to obtain the above-mentioned defect recognition model and a correspondence table between the above calculation results and the defect types.
  • the above-mentioned incident coherent light may be laser light having any frequency between ultraviolet light and near-infrared light.
  • the inner wall of the microtube has a fixed structure or a smooth surface, and the defects are mainly distributed on the inner wall of the component.
  • the size of these defects is generally between 50um and 1mm.
  • Microscopic deformation of the inner wall of the microtube will cause changes in the diffraction spot.
  • the inner wall of the microtube reflects or scatters the coherent light to the coherent light receiver.
  • the coherent light receiver converts the received light signal into an image to obtain a fine Speckle image of the inner wall of the tube.
  • the image processor 1043 is further configured to:
  • L is the distance between the defect and the detection entrance of the inner wall of the microtube
  • is the angle between the straight line connecting the defect and the center of the cross section where it is located, and the horizontal line.
  • each time the detection area of the detection probe 101 for the inner wall of the microtube is a circular area with a width of d; the detection probe 101 detects each circular area, and the coherent light receiver 1042 obtains a fine
  • the sub-speckle image on the inner wall of the tube is transmitted to the image processor 1043; after the detection probe 101 detects the inner wall of the micro tube, the image processor 1043 obtains the sub-wall on the inner wall of the L1 / d micro-tubes. Speckle image; the image processor 1043 stitches the sub-speckle images of the inner wall of the L1 / d microtubes to obtain the speckle image of the inner wall of the microtube.
  • the image processor 1043 inputs the speckle image of the inner wall of the microtube into the defect equipment model for calculation to obtain a calculation result; and determines a defect type corresponding to the calculation result according to a correspondence table between the calculation result and the defect type; when it is determined that there is a defect in the inner wall of the microtube, the image processor 1043 establishes a coordinate system as shown in FIG. 6 for the speckle image of the inner wall of the microtube, and determines the speckle patch corresponding to the defect on the inner wall of the microtube.
  • is the ratio of the length of the microtube to the length of the speckle image on the inner wall of the microtube; or the ratio of the perimeter of the cross section of the microtube to the width of the speckle image on the inner wall of the microtube.
  • the image processor 1043 determines the defect type and the position of the defect in the inner wall of the micro tube. The information is transmitted to the above-mentioned controller 1044.
  • the detection and repair device further includes a movement mechanism 110 connected to the repair probe 103.
  • the repair probe 103 includes a marking probe, the marking probe is curved, and the marking probe includes a rotation device 1012. ;
  • the marking probe is configured to move to the position information (L, ⁇ ) of the defect in the inner wall of the microtube under the traction of the movement mechanism 110 and the control of the rotating device 1012; and mark the defect .
  • the marking probe 101 is moved to the position L from the detection inlet of the inner wall of the microtube under the traction of the moving mechanism 110, and then the rotating device 1012 controls the marking probe to rotate, and the rotation angle is ⁇ .
  • the marker probe is aligned with the defective position, and after determining that the current position is defective, the position information (L, ⁇ ) is transmitted to the controller 1044, so that the controller 1044 controls other probes or other devices to the position. Defects are repaired.
  • the inspection and repair device further includes a movement mechanism 110 connected to the repair probe 103, and the defect type is deformation, and the deformation causes a convex surface on the inner wall of the microtube.
  • the repair probe 103 includes a polishing probe and a garbage recovery probe; and both the polishing probe and the garbage recovery probe include a rotating device 1012, and the controller 1044 controls the repair probe to repair a defect on the inner wall of the microtube, including:
  • the controller 1044 controls the movement mechanism 110 to pull the polishing probe and the garbage recovery probe to a position away from the detection inlet L at the inner wall of the microtube, and controls the rotating devices of the polishing probe and the garbage recovery probe, respectively. 1012 rotation, the rotation angle is ⁇ , at this time, the polishing probe and the garbage recovery probe are aligned with the position corresponding to the position information (L, ⁇ ) in the inner wall of the microtube, that is, the convex surface.
  • the polishing probe grinds the convex surface on the inner wall of the microtube to eliminate the convex surface caused by deformation.
  • the garbage recovery probe works simultaneously. And recovering waste generated when the grinding probe grinds defects on the inner wall of the microtube.
  • the detection and repair device further includes a movement mechanism 110 connected to the repair probe, and the defect type is deformation, and the deformation causes a concave surface on the inner wall of the microtube.
  • the repair probe includes a filling probe, a polishing probe, and a garbage recovery probe, and the filling probe, the polishing probe, and the garbage recovery probe each include a rotating device 1012; the controller 1044 controls the repair probe to perform defects on the inner wall of the microtube.
  • Fixes including:
  • the controller 1044 controls the movement mechanism 110 to pull the filling probe, the polishing probe and the garbage recovery probe to a position away from the detection inlet L at the inner wall of the microtube, and controls the filling probe, the polishing probe and the garbage recovery probe, respectively.
  • the rotating device 1012 rotates at an angle of ⁇ . At this time, the filling probe, the polishing probe, and the garbage recovery probe are aligned with the position corresponding to the position information (L, ⁇ ) in the inner wall of the microtube, that is, the concave surface;
  • the filling probe uses the same material as that of the microtube to fill the concave surface to eliminate the concave surface caused by deformation; after the filling of the concave surface is completed, the polishing probe applies the filled concave surface to the concave surface. Grinding; and while the grinding probe is working, the garbage recovery probe starts to work and recovers waste generated when the grinding probe grinds the filled concave surface.
  • FIG. 9 is a partial image of the speckle image on the inner wall of the microtube.
  • the shaded part is dark streaks, and the light streaks are between the two dark streaks.
  • the image processor 1043 further determines whether the defect corresponding to the defect location is a convex surface or a concave surface according to the speckle image corresponding to the defect location; when the defect location corresponds to The speckle image shown in Figure 9 is shown in Figure a, that is, when the dark streaks are shifted to the left, the image processor 1043 determines that the defect corresponding to the defect location is a concave surface; when the speckle image corresponding to the defect location is As shown in FIG. 9B, when the dark stripes are shifted to the right, the image processor 1043 determines that the defect corresponding to the defect location is a convex surface.
  • the controller 1044 controls the corresponding functional probe in the repair probe 103 to repair the defect according to the defect type (concave surface or convex surface) determined by the image processor 1043.
  • the repair probe 103 may repair the chipped position in the same manner as described above.
  • the detection and repair device further includes a movement mechanism 110 connected to the repair probe, the defect type is dirty, and the dirt is caused by dust, and the repair probe includes A dust suction probe, and the dust suction probe includes a rotating device 1012, and the controller controls the repair probe to repair a defect on the inner wall of the microtube, including:
  • the controller 1044 controls the movement mechanism 110 to pull the vacuum cleaner probe to a position away from the detection inlet L of the inner wall of the microtube, and controls the rotation device 1012 of the vacuum cleaner probe to rotate at an angle of ⁇ , At this time, the dust suction probe is aligned with a position corresponding to the position information (L, ⁇ ) in the inner wall of the microtube, that is, a position where dust exists.
  • the above-mentioned dust suction probe starts to process the dust in the dirty place and suck the dust away to eliminate the dirt.
  • the detection and repair device further includes a movement mechanism 110 connected to the repair probe, the defect type is dirty, and the dirty is caused by a sticky substance, and the repair
  • the probe includes a cleaning probe, a substance type detection probe, and a garbage recovery probe, and the cleaning probe, the substance type detection probe, and the garbage recovery probe all include a rotating device, and the controller 1044 controls the repair probe to defect the inner wall of the microtube. Perform repairs, including:
  • the controller 1044 controls the movement mechanism 110 to draw the cleaning probe, the substance type detection probe, and the garbage recovery probe to a position away from the detection point L at the inner wall of the microtube, and controls the cleaning probe and the substance type detection probe, respectively. It rotates with the rotation device 1012 of the garbage recovery probe, and the rotation angles are both ⁇ . At this time, the grinding probe and the garbage recovery probe are aligned with the position corresponding to the position information (L, ⁇ ) of the defect in the inner wall of the microtube, that is, dirty. Dirty location.
  • the substance type detection probe is used to detect the substance type of the viscous substance; the cleaning probe uses the corresponding cleaning agent to clean the viscous substance according to the substance type of the viscous substance;
  • the corresponding cleaning agent can be detergent or alcohol; when the thick substance is soil, the corresponding cleaning agent is water.
  • the garbage recovery probe When the cleaning probe is working, the garbage recovery probe is started, and the garbage generated by the cleaning probe cleaning the viscous material is recovered.
  • the detection probe 101 reuses coherent light to detect the inner wall of the microtube, and the image processor 1043 obtains a speckle image of the inner wall of the microtube again. And determine whether there are still defects in the inner wall of the microtube by the above method.
  • a speckle image of the inner wall of the microtube is obtained by coherent light, and whether the inner wall of the microtube has a defect is determined based on the speckle image; when it is determined that there is a defect, control is performed according to the type of the defect.
  • the corresponding functional probe in the repair probe repairs the defect.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本申请公开了一种微细管内壁缺陷检测修复装置,包括:检测探头,修复探头和与所述检测探头和修复探头相连的处理装置;检测探头将相干光照射到所述微细管内壁上,并将反射的相干光传输至所述处理装置;处理装置根据反射的相干光得到所述微细管内壁的散斑图像;当根据所述散斑图像确定所述微细管内壁存在缺陷时,控制所述修复探头对所述微细管内壁的缺陷进行修复。采用本申请实施例,不仅解决现有技术对微细管内壁缺陷无法精确检测的问题,同时对微细管内壁的缺陷进行修复。

Description

微细管内壁缺陷检测修复装置 技术领域
本申请涉及管道检测领域,尤其涉及一种微细管内壁缺陷检测修复装置。
背景技术
微细管、小尺寸特征内孔在机械制造业、化工、医学仪器等领域得到了广泛的应用。这些关键性的内孔结构一旦发生爆炸、泄露等事故,将导致机器整体不能工作,甚至对人的生命和财产造成严重威胁。微细管的内壁缺陷修复对于制造,质量控制以及安全保障有着重要的意义。
但是微细管的孔径一般在1mm-15mm之间,现有的修复工具无法伸入到微细管对其中存在的缺陷进行修复,使得微细管内壁的缺陷严重威胁到生产安全。
发明内容
本申请实施例提供一种微细管内壁缺陷检测修复装置,解决了现有技术无法对微细管内壁的缺陷进行修复的问题,保证了生产安全。
第一方面,本申请实施例提供一种微细管内壁缺陷检测修复装置,包括:
检测探头、修复探头和与所述检测探头和修复探头相连的处理装置;其中,所述修复探头包括打磨探头、填充探头、清洗探头和吸尘探头中的至少一个;
所述检测探头,用于将入射相干光照射到所述微细管内壁上,并将反射的相干光传输至所述处理装置;
所述处理装置,用于根据反射的相干光得到所述微细管内壁的散斑图像;当根据所述散斑图像确定所述微细管内壁存在缺陷时,控制所述修复探头对所述微细管内壁的缺陷进行修复。
在一种可行的实施例中,所述处理装置包括:
相干光发射器,用于产生所述入射相干光,并通过光纤将所述入射相干光传输至所述检测探头;
相干光接收器,用于将所述反射的相干光转换为所述微细管内壁的散斑图 像,并将所述微细管内壁的散斑图像传输至图像处理器;
所述图像处理器,用于根据所述散斑图像判断所述微细管内壁上是否存在缺陷;当确定所述微细管内壁存在缺陷时,确定所述微细管内壁的缺陷类型;
控制器,用于根据所述微细管内壁存的缺陷类型,控制所述修复探头中与所述缺陷类型对应的功能探头对所述微细管内壁的缺陷进行修复。
在一种可行的实施例中,所述图像处理器具体用于:
将所述微细管内壁的散斑图像输入到缺陷识别模型中进行计算,以得到计算结果;
根据计算结果与缺陷类型的对应关系表,获取计算结果对应的缺陷类型。
在一种可行的实施例中,所述图像处理器还用于:
当确定所述微细管内壁存在缺陷时,确定所述缺陷对应的散斑图块在所述微细管内壁的散斑图像的坐标(x,y);
根据所述缺陷对应的散斑图块在所述微细管内壁的散斑图像的坐标(x,y),确定所述缺陷在所述微细管内壁中的位置信息(L,α),且L=βx,α=βy/2πr*360°
其中,所述L为所述缺陷与所述微细管内壁的检测入口处之间的距离,所述α为连接所述缺陷与其所在横截面的中心的直线与水平线之间的夹角,所述r为所述微细管的内半径;所述β为常数。
在一种可行的实施例中,所述检测修复装置还包括与所述修复探头连接的运动机构,所述修复探头包括标记探头,所述标记探头为弯曲状,所述标记探头包括旋转装置;
所述标记探头,用于在所述运动机构的牵引下和旋转装置控制下,运动至所述缺陷在所述微细管内壁中的位置信息(L,α);对所述缺陷进行标记。
在一种可行的实施例中,所述检测修复装置还包括与所述修复探头连接的运动机构,所述缺陷类型为形变,且所述形变导致所述微细管内壁产生凸起面时,所述修复探头包括打磨探头和垃圾回收探头;所述控制器控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
所述控制器控制所述运动机构牵引所述打磨探头和所述垃圾回收探头运动至所述凸起面所在的位置;
所述打磨探头,用于对所述微细管内壁上的凸起面进行打磨,以消除因形变导致的凸起面;
所述垃圾回收探头,用于回收所述打磨探头对所述微细管内壁上的缺陷进行打磨时产生的废弃物。
在一种可行的实施例中,所述检测修复装置还包括与所述修复探头连接的运动机构,所述缺陷类型为形变,且所述形变导致所述微细管内壁产生凹陷面时,所述修复探头包括填充探头、打磨探头和垃圾回收探头;所述控制器控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
所述控制器控制所述运动机构牵引所述填充探头、所述打磨探头和所述垃圾回收探头运动至所述凹陷面所在的位置;
所述填充探头,用于使用与所述微细管材质相同的材料对所述凹陷面进行填充,以消除因形变导致的凹陷面;
所述打磨探头,用于对填充后的凹陷面进行打磨;
所述垃圾回收探头,用于回收所述打磨探头对所述填充后的凹陷面进行打磨时产生的废弃物。
在一种可行的实施例中,所述检测修复装置还包括与所述修复探头连接的运动机构,所述缺陷类型为脏污,且该脏污是由粉尘引起的,所述修复探头包括吸尘探头,所述控制器控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
所述控制器控制所述运动机构牵引所述吸尘探头运动至所述脏污所在的位置;
所述吸尘探头,用于对所述脏污处的粉尘进行处理,以消除所述脏污。
在一种可行的实施例中,所述检测修复装置还包括与所述修复探头连接的运动机构,所述缺陷类型为脏污,且该脏污是由粘稠物引起的,所述修复探头包括清洗探头、物质类别检测探头和垃圾回收探头,所述控制器控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
所述控制器控制所述运动机构牵引所述清洗探头、物质类别检测探头和垃圾回收探头运动至所述脏污所在的位置;
所述物质类型检测探头,用于检测所述粘稠物的物质类别;
所述清洗探头根据所述粘稠物的物质类别,使用对应的清洗剂对所述粘稠物进行清洗;
所述垃圾回收探头用于对所述清洗探头清洗所述异物产生的垃圾进行回收。
在一种可行的实施例中,所述相干光为紫外光到近红外光之间任一频率的激光。
可以看出,在本申请实施例的方案中,通过相干光获取微细管内壁的散斑图像,并根据该散斑图像确定微细管内壁是否存在缺陷;当确定存在缺陷时,根据缺陷的类型控制修复探头中对应的功能探头对缺陷进行修复。采用本申请实施例,解决了现有技术无法对微细管内壁的缺陷进行修复的问题,保证了生产安全。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种微细管内壁缺陷检测修复装置的结构示意图;
图2为本申请实施例提供的一种微细管内壁缺陷检测修复装置的局部结构示意图;
图3为本申请实施例提供的另一种微细管内壁缺陷检测修复装置的局部结构示意图;
图4为本申请实施例提供的一种微细管内壁缺陷检测修复的原理示意图;
图5为本申请实施例提供的另一种微细管内壁缺陷检测修复检测的原理示意图;
图6为确定缺陷位置信息的示意图;
图7为另一种确定缺陷位置信息的示意图;
图8为本申请实施例提供的标记探头工作原理示意图;
图9为微细管内壁的散斑图像的部分图像。
具体实施方式
下面结合附图对本申请的实施例进行描述。
参见图1,图1为本申请实施例提供的一种微细管内壁缺陷检测修复装置的结构示意图。如图1所示,该微细管内壁缺陷检测修复装置包括:
检测探头101,修复探头102和与所述检测探头101和修复探头102相连的处理装置104;
所述检测探头101,用于将入射相干光10照射到所述微细管109内壁上,并将反射的相干光11传输至所述处理装置104;该反射的相干光11为微细管109内壁反射或者散射的相干光;
所述处理装置104,用于根据反射的相干光11得到所述微细管109内壁的散斑图像;当根据所述散斑图像确定所述微细管109内壁存在缺陷时,控制所述修复探头102对所述微细管109内壁的缺陷进行修复。
其中,上述检测探头101和修复探头102处于同一套筒103中。
其中,相干光发射器1041,用于产生所述入射相干光,并通过光纤将所述入射相干光传输至所述检测探头101;
相干光接收器1042,用于将所述反射的相干光11转换为所述微细管109内壁的散斑图像,并将所述微细管109内壁的散斑图像传输至图像处理器1043;
所述图像处理器1043,用于根据所述散斑图像判断所述微细管109内壁上是否存在缺陷;当确定所述微细管109内壁存在缺陷时,确定所述微细管内壁109的缺陷类型;
控制器1044,用于根据所述微细管109内壁存的缺陷类型,控制所述修复探头103对所述微细管109内壁的缺陷进行修复。
其中,上述相干光接收器1042可为CCD摄像头或者CMOS摄像头。
具体地,如图3所示,上述相干光发射器1041产生的入射相干光经过第 一透镜107照射到上述半透半反镜106上,再经过光纤105传输至上述检测探头101,通过上述检测探头101前端设置的圆锥反射镜1011将入射相干光照射到上述微细管109内壁上。如图4所示,上述检测探头101中的圆锥反射镜1011反射微细管109内壁反射或者散射的相干光11,该反射或散射的相干光11经过光纤105、半透半反镜106和第二透镜108至上述相干光接收器1042,该相干光接收器1042将接收到的相干光转换为上述微细管内壁的散斑图像,并将该微细管内壁的散斑图像传输至上述图像处理器1043。
上述图像处理器1043接收到上述微细管内壁的散斑图像后,该图像处理器1043将该微细管内壁的散斑图像输入到上述缺陷识别模型中进行计算,以得到计算结果;从计算结果与缺陷类型的对应关系表中,获取与上述计算结果对应的缺陷类型。
其中,上述缺陷识别模型为神经网络模型或者深度学习模型。
进一步地,在接收到上述微细管内壁的散斑图像之前,上述图像处理器1043从第三方服务器中获取上述缺陷识别模型和计算结果与缺陷类型的对应关系表,或者;上述图像处理器1043获取多张对应不同缺陷类型的散斑图像,对该散斑图像进行神经网络运算,以得到上述缺陷识别模型和上述计算结果与缺陷类型的对应关系表。
需要指出的是,可选地,上述入射相干光可为紫外光到近红外光之间任一频率的激光。
在此需要说明的是,微细管内壁存在固定的结构或光滑的表面,缺陷主要分布于构件的内壁,这些缺陷的尺寸一般在50um到1mm之间,对于波长为650nm的相干激光而言,能检测的微细管内壁缺陷的精度可以达到1um。微细管内壁微观形变会引起衍射光斑的改变。当光到粗糙表面上市,表面上每一点都会有散射光,这些散射光就是相干光,其振幅和相位不同,且随机分布。这些散射光叠加后,形成对比度明显的颗粒状结构,这些就是散斑。如图5所示,入射相干光照射到上述微细管内壁后,该微细管内壁反射或散射相干光至上述相干光接收器,该相干光接收器将接收到光信号转化为图像,即得到微细管内壁的散斑图像。
在一种可行的实施例中,上述图像处理器1043还用于:
当确定所述微细管内壁存在缺陷时,确定所述缺陷对应的散斑图块在所述微细管内壁的散斑图像的坐标(x,y);
根据所述缺陷对应的散斑图块在所述微细管内壁的散斑图像的坐标(x,y),确定所述缺陷在所述微细管内壁中的位置信息(L,α),且L=βx,α=βy/2πr*360°
其中,所述L为所述缺陷与所述微细管内壁的检测入口处之间的距离,所述α为连接所述缺陷与其所在横截面的中心的直线与水平线之间的夹角,所述r为所述微细管的内半径;所述β为常数。
如图6所示,上述检测探头101每次针对上述微细管内壁的检测区域为宽度为d的环形区域;上述检测探头101对每个环形区域进行检测,上述相干光接收器1042得到一张微细管内壁的子散斑图像,并将该子散斑图像传输至上述图像处理器1043;上述检测探头101检测完上述微细管内壁后,上述图像处理器1043获取L1/d张微细管内壁的子散斑图像;上述图像处理器1043对该L1/d张微细管内壁的子散斑图像进行拼接,以得到上述微细管内壁的散斑图像。
上述图像处理器1043将上述微细管内壁的散斑图像输入上述缺陷设备模型中进行计算,以得到计算结果;并根据计算结果与缺陷类型的对应关系表,确定上述计算结果对应的缺陷类型;当确定上述微细管内壁存在缺陷时,上述图像处理器1043针对上述微细管内壁的散斑图像,建立如图6所示的坐标系,确定缺陷对应的散斑图块在上述微细管内壁的散斑图像的坐标(x,y);根据该缺陷对应的散斑图块在所述微细管内壁的散斑图像的坐标(x,y),确定所述缺陷在所述微细管内壁中的位置信息(L,α),且L=βx,α=βy/2πr*360°;所述L为所述缺陷与所述微细管内壁的检测入口处之间的距离,所述α为连接所述缺陷与其所在横截面的中心的直线与水平线之间的夹角,如图7所示,所述r为所述微细管的内半径;所述β为常数。
其中,上述β为上述微细管的长度与上述微细管内壁的散斑图像的长度的比值;或者上述微细管横截面的周长与上述微细管内壁的散斑图像的宽度的比值。
进一步地,上述图像处理器1043获取上述微细管内壁中存在的缺陷类型 和缺陷在上述微细管内壁中的位置信息后,上述图像处理器1043将上述缺陷类型和缺陷在上述微细管内壁中的位置信息传输至上述控制器1044。
如图8所示,所述检测修复装置还包括与所述修复探头103连接的运动机构110,所述修复探头103包括标记探头,所述标记探头为弯曲状,所述标记探头包括旋转装置1012;
所述标记探头,用于在所述运动机构110的牵引下和旋转装置1012控制下,运动至所述缺陷在所述微细管内壁中的位置信息(L,α);对所述缺陷进行标记。
具体地,上述标记探头101在上述运动机构110的牵引下运动至距离微细管内壁检测入口处L的位置,然后其旋转装置1012的控制上述标记探头旋转,且旋转角度为α。此时,上述标记探头对准存在缺陷的位置,确定当前位置存在缺陷后,将上述位置信息(L,α)传输至上述控制器1044,使得该控制器1044控制其他探头或者其他装置对该位置的缺陷进行修复。
在一种可行的实施例中,所述检测修复装置还包括与所述修复探头103连接的运动机构110,所述缺陷类型为形变,且所述形变导致所述微细管内壁产生凸起面时,所述修复探头103包括打磨探头和垃圾回收探头;且打磨探头和垃圾回收探头均包括旋转装置1012,所述控制器1044控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
所述控制器1044控制所述运动机构110牵引所述打磨探头和所述垃圾回收探头运动至距离上述微细管内壁检测入口处L的位置,并分别控制上述打磨探头和上述垃圾回收探头的旋转装置1012旋转,旋转的角度为α,此时上述打磨探头和上述垃圾回收探头均对准上述微细管内壁中的位置信息(L,α)对应的位置,即上述凸起面。
所述打磨探头对所述微细管内壁上的凸起面进行打磨,以消除因形变导致的凸起面;在上述打磨探头对上述微细管内壁的凸起面进行打磨时,垃圾回收探头同时工作,回收所述打磨探头对所述微细管内壁上的缺陷进行打磨时产生的废弃物。
在一种可行的实施例中,所述检测修复装置还包括与所述修复探头连接的运动机构110,所述缺陷类型为形变,且所述形变导致所述微细管内壁产生凹 陷面时,所述修复探头包括填充探头、打磨探头和垃圾回收探头,且该填充探头、打磨探头和垃圾回收探头均包括旋转装置1012;所述控制器1044控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
所述控制器1044控制所述运动机构110牵引所述填充探头、打磨探头和垃圾回收探头运动至距离上述微细管内壁检测入口处L的位置,并分别控制上述填充探头、打磨探头和垃圾回收探头的旋转装置1012旋转,旋转的角度为α,此时上述填充探头、打磨探头和垃圾回收探头均对准上述微细管内壁中的位置信息(L,α)对应的位置,即上述凹陷面;
所述填充探头使用与所述微细管材质相同的材料对所述凹陷面进行填充,以消除因形变导致的凹陷面;在对该凹陷面填充完毕后,所述打磨探头对填充后的凹陷面进行打磨;且上述打磨探头在工作的同时,上述垃圾回收探头启动开始工作,回收所述打磨探头对所述填充后的凹陷面进行打磨时产生的废弃物。
需要说明的是,参见图9,图9为微细管内壁的散斑图像的部分图像。其中,阴影部分为暗条纹,两条暗条纹之间的为亮条纹。当确定上述微细管内壁的缺陷为形变时,上述图像处理器1043进一步根据存在缺陷位置对应的散斑图像确定上述存在缺陷位置对应的缺陷是存在凸起面还是凹陷面;当上述存在缺陷位置对应的散斑图像如9的a图所示,即暗条纹向左偏移时,上述图像处理器1043确定上述存在缺陷位置对应的缺陷是存在凹陷面;当上述存在缺陷位置对应的散斑图像如图9的b图所示,即暗条纹向右偏移时,上述图像处理器1043确定上述存在缺陷位置对应的缺陷是存在凸起面。
上述控制器1044根据上述图像处理器1043确定的缺陷类型(凹陷面或凸起面),控制上述修复探头103中对应的功能探头来修复上述缺陷。
需要说明的是,当确定上述微细管内壁存在的缺陷为崩裂时,上述修复探头103可以采用上述相同的方式对上述崩裂的位置进行修复。
在一种可行的实施例中,所述检测修复装置还包括与所述修复探头连接的运动机构110,所述缺陷类型为脏污,且该脏污是由粉尘引起的,所述修复探头包括吸尘探头,且该吸尘探头包括旋转装置1012,所述控制器控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
所述控制器1044控制所述运动机构110牵引所述吸尘探头运动至距离上述微细管内壁检测入口处L的位置,并分别控制上述吸尘探头的旋转装置1012旋转,旋转的角度为α,此时上述吸尘探头对准上述微细管内壁中的位置信息(L,α)对应的位置,即存在粉尘的位置。
上述吸尘探头开始工作对所述脏污处的粉尘进行处理,将粉尘吸走,以消除所述脏污。
在一种可行的实施例中,所述检测修复装置还包括与所述修复探头连接的运动机构110,所述缺陷类型为脏污,且该脏污是由粘稠物引起的,所述修复探头包括清洗探头、物质类别检测探头和垃圾回收探头,且该清洗探头、物质类别检测探头和垃圾回收探头均包括旋转装置,所述控制器1044控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
所述控制器1044控制所述运动机构110牵引所述清洗探头、物质类别检测探头和垃圾回收探头运动至距离上述微细管内壁检测入口处L的位置,并分别控制上述清洗探头、物质类别检测探头和垃圾回收探头的旋转装置1012旋转,旋转的角度均为α,此时上述打磨探头和上述垃圾回收探头均对准上述微细管内壁中缺陷的位置信息(L,α)对应的位置,即脏污的位置。
所述物质类型检测探头,用于检测所述粘稠物的物质类别;所述清洗探头根据所述粘稠物的物质类别,使用对应的清洗剂对所述粘稠物进行清洗;比如当粘稠物为油渍时,对应的清洗剂可为洗洁精或者酒精;当粘稠物为泥土时,对应的清洗剂为水。
当上述清洗探头工作的同时,上述垃圾回收探头启动,对所述清洗探头清洗上述粘稠物产生的垃圾进行回收。
进一步地,上述修复探头103对上述微细管内壁中的缺陷进行修复后,上述检测探头101重新利用相干光对上述微细管内壁进行检测,上述图像处理器1043重新得到上述微细管内壁的散斑图像,并通过上述方法判断上述微细管内壁中是否还存在缺陷。
可以看出,在本申请实施例的方案中,通过相干光获取微细管内壁的散斑图像,并根据该散斑图像确定微细管内壁是否存在缺陷;当确定存在缺陷时,根据缺陷的类型控制修复探头中对应的功能探头对缺陷进行修复。采用本申请 实施例解决了现有技术无法对微细管内壁的缺陷进行修复的问题,保证了生产安全。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种微细管内壁缺陷检测修复装置,其特征在于,包括:
    检测探头、修复探头和与所述检测探头和修复探头相连的处理装置;其中,所述修复探头包括打磨探头、填充探头、清洗探头和吸尘探头中的至少一个;
    所述检测探头,用于将入射相干光照射到所述微细管内壁上,并将反射的相干光传输至所述处理装置;
    所述处理装置,用于根据反射的相干光得到所述微细管内壁的散斑图像;当根据所述散斑图像确定所述微细管内壁存在缺陷时,控制所述修复探头对所述微细管内壁的缺陷进行修复。
  2. 根据权利要求1所述的装置,其特征在于,所述处理装置包括:
    相干光发射器,用于产生所述入射相干光,并通过光纤将所述入射相干光传输至所述检测探头;
    相干光接收器,用于将所述反射的相干光转换为所述微细管内壁的散斑图像,并将所述微细管内壁的散斑图像传输至图像处理器;
    所述图像处理器,用于根据所述散斑图像判断所述微细管内壁上是否存在缺陷;当确定所述微细管内壁存在缺陷时,确定所述微细管内壁的缺陷类型;
    控制器,用于根据所述微细管内壁存的缺陷类型,控制所述修复探头中与所述缺陷类型对应的功能探头对所述微细管内壁的缺陷进行修复。
  3. 根据权利要求2所述的装置,其特征在于,所述图像处理器具体用于:
    将所述微细管内壁的散斑图像输入到缺陷识别模型中进行计算,以得到计算结果;
    根据计算结果与缺陷类型的对应关系表,获取计算结果对应的缺陷类型。
  4. 根据权利要求2或3所述的装置,其特征在于,所述图像处理器还用于:
    当确定所述微细管内壁存在缺陷时,确定所述缺陷对应的散斑图块在所述微细管内壁的散斑图像的坐标(x,y);
    根据所述缺陷对应的散斑图块在所述微细管内壁的散斑图像的坐标(x,y),确定所述缺陷在所述微细管内壁中的位置信息(L,α),且L=βx, α=βy/2πr*360°
    其中,所述L为所述缺陷与所述微细管内壁的检测入口处之间的距离,所述α为连接所述缺陷与其所在横截面的中心的直线与水平线之间的夹角,所述r为所述微细管的内半径;所述β为常数。
  5. 根据权利要求4所述的装置,其特征在于,所述检测修复装置还包括与所述修复探头连接的运动机构,所述修复探头包括标记探头,所述标记探头为弯曲状,所述标记探头包括旋转装置;
    所述标记探头,用于在所述运动机构的牵引下和旋转装置控制下,运动至所述缺陷在所述微细管内壁中的位置信息(L,α);对所述缺陷进行标记。
  6. 根据权利要求4或5所述的装置,其特征在于,所述检测修复装置还包括与所述修复探头连接的运动机构,所述缺陷类型为形变,且所述形变导致所述微细管内壁产生凸起面时,所述修复探头包括打磨探头和垃圾回收探头;所述控制器控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
    所述控制器控制所述运动机构牵引所述打磨探头和所述垃圾回收探头运动至所述凸起面所在的位置;
    所述打磨探头,用于对所述微细管内壁上的凸起面进行打磨,以消除因形变导致的凸起面;
    所述垃圾回收探头,用于回收所述打磨探头对所述微细管内壁上的缺陷进行打磨时产生的废弃物。
  7. 根据权利要求4或5所述的装置,其特征在于,所述检测修复装置还包括与所述修复探头连接的运动机构,所述缺陷类型为形变,且所述形变导致所述微细管内壁产生凹陷面时,所述修复探头包括填充探头、打磨探头和垃圾回收探头;所述控制器控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
    所述控制器控制所述运动机构牵引所述填充探头、所述打磨探头和所述垃圾回收探头运动至所述凹陷面所在的位置;
    所述填充探头,用于使用与所述微细管材质相同的材料对所述凹陷面进行填充,以消除因形变导致的凹陷面;
    所述打磨探头,用于对填充后的凹陷面进行打磨;
    所述垃圾回收探头,用于回收所述打磨探头对所述填充后的凹陷面进行打磨时产生的废弃物。
  8. 根据权利要求4或5所述的装置,其特征在于,所述检测修复装置还包括与所述修复探头连接的运动机构,所述缺陷类型为脏污,且该脏污是由粉尘引起的,所述修复探头包括吸尘探头,所述控制器控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
    所述控制器控制所述运动机构牵引所述吸尘探头运动至所述脏污所在的位置;
    所述吸尘探头,用于对所述脏污处的粉尘进行处理,以消除所述脏污。
  9. 根据权利要求4或5所述的装置,其特征在于,所述检测修复装置还包括与所述修复探头连接的运动机构,所述缺陷类型为脏污,且该脏污是由粘稠物引起的,所述修复探头包括清洗探头、物质类别检测探头和垃圾回收探头,所述控制器控制所述修复探头对所述微细管内壁的缺陷进行修复,包括:
    所述控制器控制所述运动机构牵引所述清洗探头、物质类别检测探头和垃圾回收探头运动至所述脏污所在的位置;
    所述物质类型检测探头,用于检测所述粘稠物的物质类别;
    所述清洗探头根据所述粘稠物的物质类别,使用对应的清洗剂对所述粘稠物进行清洗;
    所述垃圾回收探头用于对所述清洗探头清洗所述异物产生的垃圾进行回收。
  10. 根据权利要求1-9任一项所述的装置,其特征在于,所述相干光为紫外光到近红外光之间任一频率的激光。
PCT/CN2018/097661 2018-07-27 2018-07-27 微细管内壁缺陷检测修复装置 WO2020019347A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880067097.4A CN111226108B (zh) 2018-07-27 2018-07-27 微细管内壁缺陷检测修复装置
PCT/CN2018/097661 WO2020019347A1 (zh) 2018-07-27 2018-07-27 微细管内壁缺陷检测修复装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097661 WO2020019347A1 (zh) 2018-07-27 2018-07-27 微细管内壁缺陷检测修复装置

Publications (1)

Publication Number Publication Date
WO2020019347A1 true WO2020019347A1 (zh) 2020-01-30

Family

ID=69181189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097661 WO2020019347A1 (zh) 2018-07-27 2018-07-27 微细管内壁缺陷检测修复装置

Country Status (2)

Country Link
CN (1) CN111226108B (zh)
WO (1) WO2020019347A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113941669A (zh) * 2021-10-18 2022-01-18 青岛北琪实业有限公司 一种基于机器视觉的马口铁罐内壁缺陷修复装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588685B (zh) * 2021-07-26 2024-04-26 江苏金润汽车传动科技有限公司 一种检测阀芯孔缺陷大小的方法、系统
CN115424214B (zh) * 2022-11-03 2023-04-07 之江实验室 基于塑料光纤的准分布式液漏检测方法及装置、电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149884A (ja) * 1991-04-26 1993-06-15 Sekiyu Sangyo Kasseika Center 管内検査装置
JPH0663777A (ja) * 1992-08-19 1994-03-08 Olympus Optical Co Ltd 管内修理装置
JPH07113754A (ja) * 1993-10-18 1995-05-02 Nippon Steel Corp 管内検査手入れ装置
CN204374098U (zh) * 2014-12-19 2015-06-03 东方电气河南电站辅机制造有限公司 管道内视镜装置
CN108181321A (zh) * 2017-12-29 2018-06-19 杭州清本科技有限公司 多个舰载机轮胎同时进行激光散斑无损检测的系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2631697B1 (fr) * 1988-05-17 1991-07-26 Hispano Suiza Sa Appareil pour le controle optique du profil interne d'un tube ou d'un alesage
CN1937871A (zh) * 2005-09-22 2007-03-28 铼宝科技股份有限公司 检测修复系统及检测修复方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149884A (ja) * 1991-04-26 1993-06-15 Sekiyu Sangyo Kasseika Center 管内検査装置
JPH0663777A (ja) * 1992-08-19 1994-03-08 Olympus Optical Co Ltd 管内修理装置
JPH07113754A (ja) * 1993-10-18 1995-05-02 Nippon Steel Corp 管内検査手入れ装置
CN204374098U (zh) * 2014-12-19 2015-06-03 东方电气河南电站辅机制造有限公司 管道内视镜装置
CN108181321A (zh) * 2017-12-29 2018-06-19 杭州清本科技有限公司 多个舰载机轮胎同时进行激光散斑无损检测的系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113941669A (zh) * 2021-10-18 2022-01-18 青岛北琪实业有限公司 一种基于机器视觉的马口铁罐内壁缺陷修复装置
CN113941669B (zh) * 2021-10-18 2024-04-02 青岛北琪实业有限公司 一种基于机器视觉的马口铁罐内壁缺陷修复装置

Also Published As

Publication number Publication date
CN111226108B (zh) 2021-12-31
CN111226108A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2020019347A1 (zh) 微细管内壁缺陷检测修复装置
US7126681B1 (en) Closed region defect detection system
CN106269707A (zh) 一种掩膜版的清洁方法及清洁装置
CN110140022A (zh) 焊接钢管的对接部的形状检测方法及使用该方法的焊接钢管的品质管理方法及其装置
CN110208269A (zh) 一种玻璃表面异物与内部异物区分的方法及系统
CN112453751A (zh) 一种基于视觉传感的管道全位置焊背面在线监测方法
KR20110111144A (ko) 결점 검사장치
JP2006194626A (ja) 偏心測定装置
WO2009131270A1 (en) Substrate quality tester
JP2020106295A (ja) シート欠陥検査装置
KR0141196B1 (ko) 음극선관의 패널 검사장치
WO2020019348A1 (zh) 基于相干光的微细管内壁检测装置及方法
JP4188198B2 (ja) ガラス管の検査装置及び検査システム
JP2000249783A (ja) 炉内配管溶接部の位置検出方法およびその装置
WO2020051780A1 (zh) 图像传感器表面缺陷检测方法及检测系统
CN106198563B (zh) 一种薄膜瑕疵在线监测装置及其方法
JP2009025269A (ja) 光透過性シートの欠点検査装置および欠点検査方法
JP4798512B2 (ja) ガラス基板の異物除去装置およびその方法
CN112128554B (zh) 一种图像处理软件开发方法、图像处理软件开发装置
JPS6388431A (ja) 異物検出方法並びにその装置
CN109799236A (zh) 光学检测设备及光学检测方法
KR20120114579A (ko) 용접 토우 그라인딩부 검사 장치 및 방법
JP2970235B2 (ja) 表面状態検査装置
JPS62261040A (ja) 表面欠陥検査方法
KR200155167Y1 (ko) 이물질 검출 및 제거장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18928127

Country of ref document: EP

Kind code of ref document: A1