WO2020017379A1 - 測距装置 - Google Patents

測距装置 Download PDF

Info

Publication number
WO2020017379A1
WO2020017379A1 PCT/JP2019/027000 JP2019027000W WO2020017379A1 WO 2020017379 A1 WO2020017379 A1 WO 2020017379A1 JP 2019027000 W JP2019027000 W JP 2019027000W WO 2020017379 A1 WO2020017379 A1 WO 2020017379A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving element
distance measuring
vehicle
measuring device
Prior art date
Application number
PCT/JP2019/027000
Other languages
English (en)
French (fr)
Inventor
徹 永島
修己 山本
俊亮 岡村
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2020531251A priority Critical patent/JPWO2020017379A1/ja
Publication of WO2020017379A1 publication Critical patent/WO2020017379A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present disclosure relates to a distance measuring device mounted on a vehicle.
  • Patent Document 1 discloses a LiDAR (Light Detecting and Ranging) sensor unit as an example of a distance sensor mounted on a vehicle.
  • the LiDAR sensor unit detects the distance to the object that has generated the reflected light based on the time from when the detection light is emitted to when the reflected light is received.
  • One mode for meeting the above demand is a distance measuring device mounted on a vehicle, A light emitting element that emits detection light for measuring a distance to an object located outside the vehicle, A light-receiving element that outputs a light-receiving signal according to the amount of incident light; A light-transmitting cover that covers the light-emitting element and the light-receiving element and forms a part of an outer surface of the vehicle; An anti-reflection coating layer formed on at least one of the inner surface and the outer surface of the light-transmitting cover, It has.
  • the anti-reflection coating layer suppresses the generation of such reflected light. Therefore, it is possible to reduce the possibility that the light reflected by the light transmitting cover enters the light receiving element. Alternatively, the amount of reflected light from the translucent cover incident on the light receiving element can be reduced. Thus, it is possible to suppress the influence of the inward reflected light from the light transmitting cover on the distance measurement to the object.
  • the reflected light from the object passes through the translucent cover, the reflected light is generated outward by the inner surface or the outer surface. The generation of such reflected light leads to a decrease in the amount of reflected light incident on the light receiving element.
  • the antireflection coating layer suppresses the generation of such outward reflected light. Therefore, a decrease in the amount of reflected light incident on the light receiving element can be suppressed. This suppresses a decrease in the level of the light receiving signal associated with the object.
  • the detection of the distance measuring device is performed. The accuracy is improved.
  • the above distance measuring device can be configured as follows. At least one of the inner surface and the outer surface of the light-transmitting cover has an arc-shaped portion having a constant curvature, The center of curvature of the arc portion coincides with a reference position for measuring the distance.
  • the detection light emitted from the light-emitting element passes through the light-transmitting cover without being refracted regardless of the traveling direction. Therefore, it is possible to further suppress the generation of reflected light from the translucent cover that can enter the light receiving element.
  • the above distance measuring device can be configured as follows.
  • a modulator that imparts identification information by modulating the detection light
  • a processor that calculates a distance to an object that has generated the reflected light based on the time and the identification information from when the detection light is emitted from the light emitting element to when the reflected light is incident on the light receiving element, It has.
  • the processor When external light having a wavelength equal to or close to the detection light passes through the light-transmitting cover from outside and enters the light receiving element, and a light receiving signal based on the external light is output from the light receiving element, the processor generates the external light. There is a possibility that the distance to the object is calculated.
  • the identification information given to the detection light through the modulation is carried over to the reflected light. Therefore, the identification information is also reflected on the light receiving signal output from the light receiving element based on the reflected light.
  • the processor By configuring the processor to calculate the distance to the object based on the identification information, it is possible to eliminate the possibility that the distance to the object is calculated based on external light without identification information. Therefore, the measurement accuracy of the distance measuring device is improved.
  • the above distance measuring device can be configured as follows.
  • a lamp unit is provided in a space defined by the translucent cover and emits visible light to the outside of the vehicle.
  • lamp units are arranged at four corners of a vehicle. The four corners are also places where there are few obstacles when detecting information outside the vehicle.
  • the light emitting element and the light receiving element By arranging the light emitting element and the light receiving element so that the space defined by the light transmitting cover is shared with the lamp unit, information outside the vehicle can be efficiently detected.
  • light emitted from the lamp unit can be reflected inward by the light transmitting cover.
  • the non-reflective coating layer is formed on the translucent cover, the influence of such reflected light on the measurement of the distance to the object can be suppressed.
  • the above distance measuring device can be configured as follows.
  • the light emitting element and the light receiving element are a part of at least one of a LiDAR sensor unit, a TOF (Time of Flight) camera unit, and a millimeter wave radar unit.
  • sensor unit means a component unit of a part that can provide a desired information detection function and can be distributed by itself.
  • the term “light” refers to electromagnetic waves having any wavelength at which desired information can be detected.
  • the term “light” in this specification is used to include not only visible light but also ultraviolet light, infrared light, millimeter waves, and microwaves.
  • lamp unit used in this specification means a component unit of a part that can provide a desired lighting function and can be distributed as a single unit.
  • FIG. 1 illustrates a configuration of a left-front distance measuring apparatus according to an embodiment.
  • 2 illustrates a position of the left front distance measuring device in FIG. 1 in a vehicle.
  • FIG. 2 illustrates a specific configuration of the front left distance measuring apparatus in FIG. 1.
  • 2 shows another example of the configuration of the light-transmitting cover in the left-front distance measuring device in FIG. 1.
  • arrow F indicates the forward direction of the illustrated structure.
  • Arrow B indicates the backward direction of the illustrated structure.
  • Arrow U indicates the upward direction of the illustrated structure.
  • Arrow D indicates the downward direction of the illustrated structure.
  • Arrow L indicates the left direction of the illustrated structure.
  • Arrow R indicates the right direction of the illustrated structure. “Left” and “right” used in the following description indicate left and right directions viewed from the driver's seat.
  • FIG. 1 illustrates a configuration of a front left range finder 1 according to one embodiment.
  • the front left distance measuring device 1 is arranged in a front left portion LF of the vehicle 100 illustrated in FIG.
  • the left front part LF is an area located on the left side of the center of the vehicle 100 in the left-right direction and on the front side of the center of the vehicle 100 in the front-rear direction.
  • the front left range finder 1 includes a housing 11 and a light-transmitting cover 12.
  • the housing 11 defines a housing chamber 13 together with the light-transmitting cover 12.
  • the translucent cover 12 forms a part of the outer surface of the vehicle 100.
  • the front left range finder 1 includes the LiDAR sensor unit 14.
  • the LiDAR sensor unit 14 is arranged in the accommodation room 13.
  • FIG. 3 shows an example of the configuration of the front left distance measuring device 1.
  • the LiDAR sensor unit 14 includes a light emitting element 41 and a light receiving element 42.
  • the translucent cover 12 covers the light emitting element 41 and the light receiving element 42.
  • the light emitting element 41 is configured to emit the detection light L1 to the outside of the vehicle 100.
  • the detection light L1 for example, infrared light having a wavelength of 905 nm can be used.
  • a semiconductor light emitting element such as a laser diode or a light emitting diode can be used.
  • the LiDAR sensor unit 14 may appropriately include an optical system (not shown) for irradiating the detection light L1 in a desired direction.
  • the LiDAR sensor unit 14 may include a scanning mechanism (not shown) for changing the irradiation direction of the detection light L1 to scan the detection area.
  • the light receiving element 42 is configured to output a light receiving signal S1 corresponding to the amount of incident light.
  • a photodiode, a phototransistor, a photoresistor, or the like can be used as the light receiving element 42.
  • the LiDAR sensor unit 14 may include an amplifier circuit (not shown) for amplifying the light receiving signal S1.
  • the front left range finder 1 includes a processor 15.
  • the processor 15 is arranged in the accommodation room 13.
  • the processor 15 may be built in the LiDAR sensor unit 14.
  • the processor 15 outputs a control signal S0 for causing the light emitting element 41 to emit the detection light L1 at a desired timing.
  • the processor 15 receives the light receiving signal S1 output from the light receiving element 42.
  • the processor 15 calculates the distance to the object 200 that has generated the reflected light L2 based on the time from when the detection light L1 is emitted from the light emitting element 41 to when the reflected light L2 enters the light receiving element 42.
  • the LiDAR sensor unit 14 can acquire information on the shape of the object 200 associated with the reflected light L2 by accumulating the data on the distance thus calculated in association with the irradiation direction of the detection light L1.
  • the left front distance measuring device 1 includes the inner anti-reflection coating layer 16.
  • the inner anti-reflection coating layer 16 is formed on the inner surface 12 a of the translucent cover 12.
  • the inner antireflection coating layer 16 contains, for example, magnesium fluoride.
  • the inner antireflection coating layer 16 may be a single layer or a multilayer.
  • the inner antireflection coating layer 16 is formed on the inner surface 12a by vacuum deposition, sputtering, or the like.
  • the inner anti-reflection coating layer 16 suppresses the generation of the reflected light L3. Therefore, the possibility that the reflected light L3 enters the light receiving element 42 can be reduced. Alternatively, the amount of the reflected light L3 incident on the light receiving element 42 can be reduced. Thereby, the influence of the reflected light L3 on the distance measurement to the object 200 by the LiDAR sensor unit 14 can be suppressed.
  • the inner anti-reflection coating layer 16 suppresses the generation of the reflected light L4. Therefore, a decrease in the amount of reflected light L2 incident on the light receiving element 42 can be suppressed. This suppresses a decrease in the level of the light receiving signal S1 associated with the object 200.
  • the influence on the distance measurement due to the inward reflection by the inner surface 12a of the translucent cover 12 is suppressed, and the decrease in the amount of light incident on the light receiving element 42 due to the outward reflection by the inner surface 12a is suppressed.
  • the detection accuracy of the distance measuring device 1 is improved.
  • the left front range finder 1 includes the outer anti-reflection coating layer 17.
  • the outer anti-reflection coating layer 17 is formed on the outer surface 12 b of the light-transmitting cover 12.
  • the outer anti-reflection coating layer 17 contains, for example, magnesium fluoride.
  • the outer anti-reflection coating layer 17 may be a single layer or a multilayer.
  • the outer anti-reflection coating layer 17 is formed on the outer surface 12b by vacuum evaporation, sputtering, or the like.
  • the outer non-reflective coating layer 17 suppresses the generation of the reflected light L5. Therefore, the possibility that the reflected light L5 enters the light receiving element 42 can be reduced. Alternatively, the amount of the reflected light L5 incident on the light receiving element 42 can be reduced. Thereby, the influence of the reflected light L5 on the distance measurement to the object 200 by the LiDAR sensor unit 14 can be suppressed.
  • the reflected light L2 from the object 200 passes through the translucent cover 12, the outward reflected light L6 by the outer surface 12b is generated.
  • the generation of the reflected light L6 leads to a decrease in the amount of the reflected light L2 incident on the light receiving element 42.
  • the outer non-reflective coating layer 17 suppresses the generation of the reflected light L6. Therefore, a decrease in the amount of reflected light L2 incident on the light receiving element 42 can be suppressed. This suppresses a decrease in the level of the light receiving signal S1 associated with the object 200.
  • the influence on the distance measurement due to the inward reflection by the outer surface 12b of the translucent cover 12 is suppressed, and the decrease in the amount of light incident on the light receiving element 42 due to the outward reflection by the outer surface 12b is suppressed.
  • the detection accuracy of the distance measuring device 1 is improved.
  • FIG. 4 shows another configuration example of the light-transmitting cover 12.
  • the inner surface 12a of the light-transmitting cover 12 in this example has an inner arc-shaped portion 12c.
  • the inner arc-shaped portion 12c is formed as a concave surface when viewed from inside the translucent cover 12.
  • the curvature of the concave surface is constant.
  • the inner arc-shaped portion 12c is arranged such that the center of curvature thereof coincides with the detection reference position P of the LiDAR sensor unit 14.
  • the detection reference position P of the LiDAR sensor unit 14 can be appropriately determined as a reference position for measuring the distance to the object 200.
  • the detection reference position P may be a position of a light source (light emission center) of the light emitting element 41.
  • the detection reference position P may be the position of the scanning center.
  • the detection light L1 emitted from the light emitting element 41 passes through the inner surface 12a of the light transmitting cover 12 without being refracted regardless of the traveling direction. Therefore, generation of reflected light from the inner surface 12a that can enter the light receiving element 42 can be further suppressed.
  • the outer surface 12b of the translucent cover 12 in this example has an outer arc-shaped portion 12d.
  • the outer arc-shaped portion 12d is formed as a convex surface when viewed from the outside of the light transmitting cover 12.
  • the curvature of the convex surface is constant.
  • the outer arc-shaped portion 12 d is arranged such that the center of curvature thereof coincides with the detection reference position P of the LiDAR sensor unit 14.
  • the detection light L1 emitted from the light emitting element 41 passes through the outer surface 12b of the light transmitting cover 12 without being refracted regardless of the direction. Therefore, generation of reflected light from the outer surface 12b that can enter the light receiving element 42 can be further suppressed.
  • the front left ranging device 1 can include a modulator 18.
  • the modulator 18 gives identification information to the detection light L1 by modulating the detection light L1 emitted from the light emitting element 41.
  • the modulation may be performed through at least one of amplitude modulation, frequency modulation, and phase modulation.
  • the modulation operation by the modulator 18 can be controlled by the processor 15.
  • the identification information given to the detection light L1 through the modulation is also carried over to the reflected light L2. Therefore, the identification information is also reflected on the light receiving signal S1 output from the light receiving element 42 based on the reflected light L2.
  • the processor 15 can be configured to calculate a distance to the object 200 that has generated the reflected light L2 based on the identification information. Specifically, when the processor 15 receives the light receiving signal S1 in which the reflection of the identification information is recognized, the processor 15 controls the time from when the detection light L1 is emitted from the light emitting element 41 to when the reflected light L2 enters the light receiving element 42. , The distance to the object 200 is calculated.
  • the processor 15 may calculate the distance to the object where the external light E has occurred. According to the above configuration, it is possible to exclude the possibility that the distance to the object is calculated based on the external light E without identification information. Therefore, the measurement accuracy of the front left distance measuring device 1 is improved.
  • the front left range finder 1 may include a lamp unit 20.
  • the lamp unit 20 is disposed in the accommodation room 13.
  • the lamp unit 20 is a device that emits visible light to the outside of the vehicle 100. Examples of the lamp unit 20 include a headlight unit, a vehicle width light unit, a direction indicator light unit, and a fog light unit.
  • the lamp units 20 are arranged at four corners of the vehicle 100. The four corners are also places where there are few obstacles when detecting information outside the vehicle 100.
  • the LiDAR sensor unit 14 By arranging the LiDAR sensor unit 14 so that the lamp unit 20 and the accommodation room 13 are shared, information outside the vehicle 100 can be efficiently detected.
  • light emitted from the lamp unit 20 can be reflected inward by the inner surface 12a and the outer surface 12b of the light transmitting cover 12.
  • the inner non-reflective coating layer 16 and the outer non-reflective coating layer 17 are formed on the translucent cover 12, the influence of such reflected light on the measurement of the distance to the object by the processor 15 can be suppressed.
  • processor 15 may be realized by a general-purpose microprocessor operating in cooperation with a memory, or may be realized by a dedicated integrated circuit such as a microcontroller, an FPGA, or an ASIC.
  • the inner anti-reflection coating layer 16 and the outer anti-reflection coating layer 17 are formed on the inner surface 12a and the outer surface 12b of the translucent cover 12, respectively.
  • a configuration in which only one of the inner non-reflective coating layer 16 and the outer non-reflective coating layer 17 is formed on the light-transmitting cover 12 may be adopted.
  • the inner arc-shaped portion 12c and the outer arc-shaped portion 12d are formed on the inner surface 12a and the outer surface 12b of the translucent cover 12, respectively.
  • a configuration in which only one of the inner arc-shaped portion 12c and the outer arc-shaped portion 12d is formed on the light-transmitting cover 12 may be adopted.
  • a right front distance measuring device having a symmetrical configuration with the left front distance measuring device 1 illustrated in FIG. 1 may be mounted on the right front portion RF of the vehicle 100 illustrated in FIG.
  • the right front portion RF is a region located on the right side of the center of the vehicle 100 in the left-right direction and on the front side of the center of the vehicle 100 in the front-rear direction.
  • the configuration of the front left range finder 1 is also applicable to the rear left range finder.
  • the rear left distance measuring device is mounted on the rear left portion LB of the vehicle 100 illustrated in FIG.
  • the left rear portion LB is an area located on the left side of the center of the vehicle 100 in the left-right direction and on the rear side of the center of the vehicle 100 in the front-rear direction.
  • the basic configuration of the rear left range finder may be symmetrical with the front left range finder 1.
  • the configuration of the front left range finder 1 is also applicable to the rear right range finder.
  • the right rear distance measuring device is mounted on a right rear portion RB of the vehicle 100 illustrated in FIG.
  • the right rear portion RB is a region located on the right side of the center of the vehicle 100 in the left-right direction and on the rear side of the center of the vehicle 100 in the front-rear direction.
  • the basic configuration of the right rear distance measuring device may be symmetric with the left rear distance measuring device described above.
  • Examples of the lamp unit 20 mounted on the rear left range finder and the right rear range finder include a brake lamp unit, a stop lamp unit, a direction indicator lamp unit, and a vehicle width lamp unit.
  • the LiDAR sensor unit 14 can be replaced with an appropriate sensor unit that can be used for distance measurement to the object 200 located outside the vehicle 100.
  • Examples of such a sensor unit include a TOF camera unit and a millimeter-wave radar unit.
  • a configuration using a plurality of types of measurement methods may be built in a single sensor unit.
  • the wavelength of the detection light L1 emitted by the light emitting element 41 and the wavelength at which the light receiving element 42 has sensitivity can be appropriately determined according to the measurement method used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

透光カバー(12)は、発光素子(41)と受光素子(42)を覆い、車両の外面の一部を形成する。発光素子(41)は、車両の外部に位置する物体(200)までの距離を測定するための検出光(L1)を出射する。受光素子(42)は入射光量に応じた受光信号を出力する。透光カバー(12)の内面(12a)に内側無反射コーティング層(16)が形成されている。透光カバー(12)の外面(12b)に外側無反射コーティング層(17)が形成されている。

Description

測距装置
 本開示は、車両に搭載される測距装置に関する。
 特許文献1は、車両に搭載される距離センサの一例としてLiDAR(Light Detecting and Ranging)センサユニットを開示している。当該LiDARセンサユニットは、検出光を出射してから反射光が受光されるまでの時間に基づいて、当該反射光を生じた物体までの距離を検出する。
日本国特許出願公開2018-049014号公報
 車両に搭載される測距装置の測定精度を向上させることが求められている。
 上記の要求に応えるための一態様は、車両に搭載される測距装置であって、
 前記車両の外部に位置する物体までの距離を測定するための検出光を出射する発光素子と、
 入射光量に応じた受光信号を出力する受光素子と、
 前記発光素子と前記受光素子を覆い、前記車両の外面の一部を形成する透光カバーと、
 前記透光カバーの内面と外面の少なくとも一方に形成された無反射コーティング層と、
を備えている。
 発光素子より出射された検出光が透光カバーを通過する際に、内面や外面による内方への反射光が生じる。当該反射光が受光素子に入射し、当該反射光に基づく受光信号が受光素子より出力されると、透光カバーの内面や外面の位置に物体が存在すると認識されてしまう可能性がある。
 無反射コーティング層は、そのような反射光の発生を抑制する。したがって、透光カバーによる反射光が受光素子に入射する可能性を低減できる。あるいは、受光素子に入射する透光カバーからの反射光の光量を低減できる。これにより、透光カバーによる内方への反射光が物体までの距離測定に与える影響を抑制できる。
 他方、物体からの反射光が透光カバーを通過する際に、内面や外面による外方への反射光が生じる。そのような反射光の発生は、受光素子に入射する反射光の光量の低下に繋がる。
 無反射コーティング層は、そのような外方への反射光の発生を抑制する。したがって、受光素子に入射する反射光の光量低下を抑制できる。これにより、物体に関連付けられた受光信号のレベル低下が抑制される。
 透光カバーによる内方への反射による距離測定への影響が抑制されるとともに、透光カバーによる外方への反射による受光素子への入射光量の低下が抑制されるので、測距装置の検出精度が向上する。
 上記の測距装置は、以下のように構成されうる。
 前記透光カバーの内面と外面の少なくとも一方は、曲率一定の弧状部分を有しており、
 前記弧状部分の曲率中心は、前記距離を測定するための基準位置に一致している。
 このような構成によれば、発光素子から出射された検出光は、その進行方向に依らず、屈折せずに透光カバーを通過する。したがって、受光素子に入射しうる透光カバーからの反射光の発生をさらに抑制できる。
 上記の測距装置は、以下のように構成されうる。
 前記検出光を変調することにより識別情報を付与する変調器と、
 前記発光素子より前記検出光が出射されてから前記受光素子に反射光が入射するまでの時間と前記識別情報に基づいて、当該反射光を生じた物体までの距離を算出するプロセッサと、
を備えている。
 検出光と同じか近い波長の外光が外方から透光カバーを通過して受光素子に入射し、外光に基づく受光信号が受光素子より出力されると、プロセッサは、当該外光を生じた物体までの距離を算出してしまう可能性がある。上記のような構成によれば、変調を通じて検出光に付与された識別情報は、反射光にも引き継がれる。したがって、反射光に基づいて受光素子から出力される受光信号にも識別情報が反映される。この識別情報に基づいて物体までの距離を算出するようにプロセッサを構成することにより、識別情報を伴わない外光に基づいて物体までの距離が算出される可能性を排除できる。したがって、測距装置の測定精度が向上する。
 上記の測距装置は、以下のように構成されうる。
 前記透光カバーにより区画される空間内に配置されており、前記車両の外部に可視光を出射するランプユニットを備えている。
 ランプユニットは、車両の四隅部に配置されることが一般的である。四隅部は、車両の外部の情報を検出するに際しての障害物が少ない箇所でもある。透光カバーにより区画される空間をランプユニットと共有するように発光素子と受光素子が配置されることにより、車両の外部の情報を効率的に検出できる。他方、ランプユニットから照射された光が透光カバーによって内方へ反射されうる。しかしながら、透光カバーには無反射コーティング層が形成されているので、そのような反射光が物体までの距離の測定に与える影響も抑制できる。
 上記の測距装置は、以下のように構成されうる。
 前記発光素子と前記受光素子は、LiDARセンサユニット、TOF(Time of Flight)カメラユニット、およびミリ波レーダユニットの少なくとも一つの一部である。
 本明細書において用いられる「センサユニット」という語は、所望の情報検出機能を備えつつ、それ自身が単体で流通可能な部品の構成単位を意味する。
 本明細書において用いられる「光」という語は、所望の情報を検出可能な任意の波長を有する電磁波を意味する。例えば、本明細書における「光」という語は、可視光のみならず、紫外光や赤外光、ミリ波やマイクロ波を含む意味で用いられる。
 本明細書において用いられる「ランプユニット」という語は、所望の照明機能を備えつつ、それ自身が単体で流通可能な部品の構成単位を意味する。
一実施形態に係る左前測距装置の構成を例示している。 図1の左前測距装置の車両における位置を例示している。 図1の左前測距装置の具体的な構成を例示している。 図1の左前測距装置における透光カバーの別構成例を示している。
 添付の図面を参照しつつ、実施形態の例について以下詳細に説明する。以下の説明に用いる各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。
 添付の図面において、矢印Fは、図示された構造の前方向を示している。矢印Bは、図示された構造の後方向を示している。矢印Uは、図示された構造の上方向を示している。矢印Dは、図示された構造の下方向を示している。矢印Lは、図示された構造の左方向を示している。矢印Rは、図示された構造の右方向を示している。以降の説明に用いる「左」および「右」は、運転席から見た左右の方向を示している。
 図1は、一実施形態に係る左前測距装置1の構成を例示している。左前測距装置1は、図2に例示される車両100の左前部LFに配置される。左前部LFは、車両100の左右方向における中央よりも左側、かつ車両100の前後方向における中央よりも前側に位置する領域である。
 図1に例示されるように、左前測距装置1は、ハウジング11と透光カバー12を備えている。ハウジング11は、透光カバー12とともに収容室13を区画している。透光カバー12は、車両100の外面の一部を形成している。
 左前測距装置1は、LiDARセンサユニット14を備えている。LiDARセンサユニット14は、収容室13内に配置されている。
 図3は、左前測距装置1の一構成例を示している。LiDARセンサユニット14は、発光素子41と受光素子42を備えている。透光カバー12は、発光素子41と受光素子42を覆っている。
 発光素子41は、車両100の外部へ向けて検出光L1を出射するように構成されている。検出光L1としては、例えば波長905nmの赤外光が使用されうる。発光素子41としては、レーザダイオードや発光ダイオードなどの半導体発光素子が使用されうる。
 LiDARセンサユニット14は、検出光L1を所望の方向へ照射するための不図示の光学系を適宜に備えうる。LiDARセンサユニット14は、検出光L1の照射方向を変更して検出領域内を走査するための不図示の走査機構を備えうる。
 受光素子42は、入射した光量に応じた受光信号S1を出力するように構成されている。受光素子42としては、フォトダイオード、フォトトランジスタ、フォトレジスタなどが使用されうる。LiDARセンサユニット14は、受光信号S1を増幅するための不図示の増幅回路を備えうる。
 左前測距装置1は、プロセッサ15を備えている。プロセッサ15は、収容室13内に配置されている。プロセッサ15は、LiDARセンサユニット14に内蔵されてもよい。プロセッサ15は、所望のタイミングで発光素子41に検出光L1を出射させる制御信号S0を出力する。プロセッサ15は、受光素子42から出力された受光信号S1を受信する。
 プロセッサ15は、発光素子41より検出光L1が出射されてから受光素子42に反射光L2が入射するまでの時間に基づいて、反射光L2を生じた物体200までの距離を算出する。LiDARセンサユニット14は、そのように算出された距離に係るデータを検出光L1の照射方向と関連付けて集積することにより、反射光L2に関連付けられた物体200の形状に係る情報を取得できる。
 左前測距装置1は、内側無反射コーティング層16を備えている。内側無反射コーティング層16は、透光カバー12の内面12aに形成されている。内側無反射コーティング層16は、例えばフッ化マグネシウムを含有している。内側無反射コーティング層16は、単層でも多層でもよい。内側無反射コーティング層16は、真空蒸着やスパッタリングなどにより、内面12a上に形成される。
 発光素子41より出射された検出光L1が透光カバー12を通過する際に、内面12aによる内方への反射光L3が生じる。反射光L3が受光素子42に入射し、反射光L3に基づく受光信号S1が受光素子42より出力されると、プロセッサ15は、透光カバー12の内面12aの位置に物体が存在すると認識してしまう可能性がある。
 内側無反射コーティング層16は、反射光L3の発生を抑制する。したがって、反射光L3が受光素子42に入射する可能性を低減できる。あるいは、受光素子42に入射する反射光L3の光量を低減できる。これにより、反射光L3がLiDARセンサユニット14による物体200までの距離測定に与える影響を抑制できる。
 他方、物体200からの反射光L2が透光カバー12を通過する際に、内面12aによる外方への反射光L4が生じる。反射光L4の発生は、受光素子42に入射する反射光L2の光量の低下に繋がる。
 内側無反射コーティング層16は、反射光L4の発生を抑制する。したがって、受光素子42に入射する反射光L2の光量低下を抑制できる。これにより、物体200に関連付けられた受光信号S1のレベル低下が抑制される。
 透光カバー12の内面12aによる内方への反射による距離測定への影響が抑制されるとともに、内面12aによる外方への反射による受光素子42への入射光量の低下が抑制されるので、左前測距装置1の検出精度が向上する。
 左前測距装置1は、外側無反射コーティング層17を備えている。外側無反射コーティング層17は、透光カバー12の外面12bに形成されている。外側無反射コーティング層17は、例えばフッ化マグネシウムを含有している。外側無反射コーティング層17は、単層でも多層でもよい。外側無反射コーティング層17は、真空蒸着やスパッタリングなどにより、外面12b上に形成される。
 発光素子41より出射された検出光L1が透光カバー12を通過する際に、外面12bによる内方への反射光L5が生じる。反射光L5が受光素子42に入射し、反射光L5に基づく受光信号S1が受光素子42より出力されると、プロセッサ15は、透光カバー12の外面12bの位置に物体が存在すると認識してしまう可能性がある。
 外側無反射コーティング層17は、反射光L5の発生を抑制する。したがって、反射光L5が受光素子42に入射する可能性を低減できる。あるいは、受光素子42に入射する反射光L5の光量を低減できる。これにより、反射光L5がLiDARセンサユニット14による物体200までの距離測定に与える影響を抑制できる。
 他方、物体200からの反射光L2が透光カバー12を通過する際に、外面12bによる外方への反射光L6が生じる。反射光L6の発生は、受光素子42に入射する反射光L2の光量の低下に繋がる。
 外側無反射コーティング層17は、反射光L6の発生を抑制する。したがって、受光素子42に入射する反射光L2の光量低下を抑制できる。これにより、物体200に関連付けられた受光信号S1のレベル低下が抑制される。
 透光カバー12の外面12bによる内方への反射による距離測定への影響が抑制されるとともに、外面12bによる外方への反射による受光素子42への入射光量の低下が抑制されるので、左前測距装置1の検出精度が向上する。
 図4は、透光カバー12の別構成例を示している。本例における透光カバー12の内面12aは、内側弧状部分12cを有している。内側弧状部分12cは、透光カバー12の内方から見て凹面として形成されている。当該凹面の曲率は一定とされている。内側弧状部分12cは、その曲率中心がLiDARセンサユニット14の検出基準位置Pに一致するように配置されている。
 LiDARセンサユニット14の検出基準位置Pは、物体200までの距離を測定する上での基準となる位置として適宜に定められうる。例えば、検出基準位置Pは、発光素子41の光源(発光中心)の位置とされうる。あるいは、検出光L1が適宜の光学系により走査される場合、検出基準位置Pは、走査中心の位置とされうる。
 このような構成によれば、発光素子41から出射された検出光L1は、その進行方向に依らず、屈折せずに透光カバー12の内面12aを通過する。したがって、受光素子42に入射しうる内面12aからの反射光の発生をさらに抑制できる。
 本例における透光カバー12の外面12bは、外側弧状部分12dを有している。外側弧状部分12dは、透光カバー12の外方から見て凸面として形成されている。当該凸面の曲率は一定とされている。外側弧状部分12dは、その曲率中心がLiDARセンサユニット14の検出基準位置Pに一致するように配置されている。
 このような構成によれば、発光素子41から出射された検出光L1は、その方向に依らず、屈折せずに透光カバー12の外面12bを通過する。したがって、受光素子42に入射しうる外面12bからの反射光の発生をさらに抑制できる。
 図3に例示されるように、左前測距装置1は、変調器18を備えうる。変調器18は、発光素子41から出射される検出光L1を変調することにより、検出光L1に識別情報を付与する。変調は、振幅変調、周波数変調、位相変調の少なくとも一つを通じて行なわれうる。変調器18による変調動作は、プロセッサ15によって制御されうる。
 変調を通じて検出光L1に付与された識別情報は、反射光L2にも引き継がれる。したがって、反射光L2に基づいて受光素子42から出力される受光信号S1にも識別情報が反映される。プロセッサ15は、識別情報に基づいて反射光L2を生じた物体200までの距離を算出するように構成されうる。具体的には、プロセッサ15は、識別情報の反映が認められる受光信号S1を受信した場合に、発光素子41より検出光L1が出射されてから受光素子42に反射光L2が入射するまでの時間に基づいて、物体200までの距離を算出する。
 検出光L1と同じか近い波長の外光Eが外方から透光カバー12を通過して受光素子42に入射し、外光Eに基づく受光信号S1が受光素子42より出力されると、プロセッサ15は、当該外光Eを生じた物体までの距離を算出してしまう可能性がある。上記のような構成によれば、識別情報を伴わない外光Eに基づいて物体までの距離が算出される可能性を排除できる。したがって、左前測距装置1の測定精度が向上する。
 図1に例示されるように、左前測距装置1は、ランプユニット20を備えうる。ランプユニット20は、収容室13内に配置される。ランプユニット20は、車両100の外方へ可視光を照射する装置である。ランプユニット20としては、前照灯ユニット、車幅灯ユニット、方向指示灯ユニット、霧灯ユニットなどが例示されうる。
 ランプユニット20は、車両100の四隅部に配置されることが一般的である。四隅部は、車両100の外部の情報を検出するに際しての障害物が少ない箇所でもある。ランプユニット20と収容室13を共有するようにLiDARセンサユニット14が配置されることにより、車両100の外部の情報を効率的に検出できる。他方、ランプユニット20から照射された光が透光カバー12の内面12aや外面12bによって内方へ反射されうる。しかしながら、透光カバー12には内側無反射コーティング層16と外側無反射コーティング層17が形成されているので、そのような反射光がプロセッサ15による物体までの距離の測定に与える影響も抑制できる。
 これまで説明したプロセッサ15の機能は、メモリと協働して動作する汎用マイクロプロセッサにより実現されてもよいし、マイクロコントローラ、FPGA、ASICなどの専用集積回路によって実現されてもよい。
 上記の実施形態は、本開示の理解を容易にするための例示にすぎない。上記の実施形態に係る構成は、本開示の趣旨を逸脱しなければ、適宜に変更・改良されうる。
 上記の実施形態においては、内側無反射コーティング層16と外側無反射コーティング層17が、それぞれ透光カバー12の内面12aと外面12b上に形成されている。しかしながら、内側無反射コーティング層16と外側無反射コーティング層17の一方のみが透光カバー12上に形成された構成も採用されうる。
 図4に示された例においては、内側弧状部分12cと外側弧状部分12dが、それぞれ透光カバー12の内面12aと外面12bに形成されている。しかしながら、内側弧状部分12cと外側弧状部分12dの一方のみが透光カバー12に形成された構成も採用されうる。
 図2に例示される車両100の右前部RFには、図1に例示される左前測距装置1と左右対称の構成を有する右前測距装置が搭載されうる。右前部RFは、車両100の左右方向における中央よりも右側、かつ車両100の前後方向における中央よりも前側に位置する領域である。
 左前測距装置1の構成は、左後測距装置にも適用可能である。左後測距装置は、図2に例示される車両100の左後部LBに搭載される。左後部LBは、車両100の左右方向における中央よりも左側、かつ車両100の前後方向における中央よりも後側に位置する領域である。左後測距装置の基本的な構成は、左前測距装置1と前後対称でありうる。
 左前測距装置1の構成は、右後測距装置にも適用可能である。右後測距装置は、図2に例示される車両100の右後部RBに搭載される。右後部RBは、車両100の左右方向における中央よりも右側、かつ車両100の前後方向における中央よりも後側に位置する領域である。右後測距装置の基本的な構成は、上述の左後測距装置と左右対称でありうる。
 左後測距装置や右後測距装置に搭載されるランプユニット20の例としては、ブレーキランプユニット、ストップランプユニット、方向指示灯ユニット、車幅灯ユニットなどが挙げられる。
 LiDARセンサユニット14は、車両100の外部に位置する物体200までの測距に用いられうる適宜のセンサユニットで置き換えられうる。そのようなセンサユニットとしては、TOFカメラユニットやミリ波レーダユニットが例示されうる。複数種の測定手法を用いる構成が単一のセンサユニットに内蔵されていてもよい。発光素子41により出射される検出光L1の波長、および受光素子42が感度を有する波長は、使用される測定手法に応じて適宜に定められうる。
 本出願の記載の一部を構成するものとして、2018年7月18日に提出された日本国特許出願2018-134896号の内容が援用される。

Claims (5)

  1.  車両に搭載される測距装置であって、
     前記車両の外部に位置する物体までの距離を測定するための検出光を出射する発光素子と、
     入射光量に応じた受光信号を出力する受光素子と、
     前記発光素子と前記受光素子を覆い、前記車両の外面の一部を形成する透光カバーと、
     前記透光カバーの内面と外面の少なくとも一方に形成された無反射コーティング層と、
    を備えている、
    測距装置。
  2.  前記透光カバーの内面と外面の少なくとも一方は、曲率一定の弧状部分を有しており、
     前記弧状部分の曲率中心は、前記距離を測定するための基準位置に一致している、
    請求項1に記載の測距装置。
  3.  前記検出光を変調することにより識別情報を付与する変調器と、
     前記発光素子より前記検出光が出射されてから前記受光素子に反射光が入射するまでの時間と前記識別情報に基づいて、当該反射光を生じた物体までの距離を算出するプロセッサと、
    を備えている、
    請求項1または2に記載の測距装置。
  4.  前記透光カバーにより区画される空間内に配置されており、前記車両の外部に可視光を出射するランプユニットを備えている、
    請求項1から3のいずれか一項に記載の測距装置。
  5.  前記発光素子と前記受光素子は、LiDARセンサユニット、TOFカメラユニット、およびミリ波レーダユニットの少なくとも一つの一部である、
    請求項1から4のいずれか一項に記載の測距装置。
PCT/JP2019/027000 2018-07-18 2019-07-08 測距装置 WO2020017379A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020531251A JPWO2020017379A1 (ja) 2018-07-18 2019-07-08 測距装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-134896 2018-07-18
JP2018134896 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020017379A1 true WO2020017379A1 (ja) 2020-01-23

Family

ID=69164375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027000 WO2020017379A1 (ja) 2018-07-18 2019-07-08 測距装置

Country Status (2)

Country Link
JP (1) JPWO2020017379A1 (ja)
WO (1) WO2020017379A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022011526A (ja) * 2020-06-30 2022-01-17 豊田合成株式会社 電磁波透過カバー

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338200A (en) * 1976-09-20 1978-04-07 Tech Res & Dev Inst Of Japan Def Agency Active light proximity fuse
JPS59164973A (ja) * 1983-03-10 1984-09-18 Nippon Tsushin Gijutsu Kk ロボツト用ペア形計測ヘツド
JPH0875844A (ja) * 1994-09-07 1996-03-22 Nishimatsu Constr Co Ltd 防塵機構
JP2002243446A (ja) * 2001-02-20 2002-08-28 Minolta Co Ltd 位置情報設定装置および環境情報獲得装置
JP2015025770A (ja) * 2013-07-29 2015-02-05 株式会社リコー 検知装置、車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338200A (en) * 1976-09-20 1978-04-07 Tech Res & Dev Inst Of Japan Def Agency Active light proximity fuse
JPS59164973A (ja) * 1983-03-10 1984-09-18 Nippon Tsushin Gijutsu Kk ロボツト用ペア形計測ヘツド
JPH0875844A (ja) * 1994-09-07 1996-03-22 Nishimatsu Constr Co Ltd 防塵機構
JP2002243446A (ja) * 2001-02-20 2002-08-28 Minolta Co Ltd 位置情報設定装置および環境情報獲得装置
JP2015025770A (ja) * 2013-07-29 2015-02-05 株式会社リコー 検知装置、車両

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022011526A (ja) * 2020-06-30 2022-01-17 豊田合成株式会社 電磁波透過カバー
JP7338567B2 (ja) 2020-06-30 2023-09-05 豊田合成株式会社 電磁波透過カバー

Also Published As

Publication number Publication date
JPWO2020017379A1 (ja) 2021-08-02

Similar Documents

Publication Publication Date Title
US10317523B2 (en) Lighting device for a vehicle and vehicle headlight
JP6786302B2 (ja) 照明装置
WO2018051909A1 (ja) センサシステム
JP6737296B2 (ja) 対象物検出装置
KR101877128B1 (ko) 동적 제어를 이용한 적응형 발광 신호의 광량 제어장치
US11215699B2 (en) Lamp device
WO2020031685A1 (ja) センサシステム
US20050201096A1 (en) Object detecting apparatus for vehicle
US11840170B2 (en) Vehicle lamp having two lamp units each having a two light sources and a receiver for detecting an intensity of reflected light
JP6584370B2 (ja) 車両用光学式レーダ装置
WO2020022206A1 (ja) 測距装置
WO2020017379A1 (ja) 測距装置
JP6594282B2 (ja) レーザレーダ装置
KR20180128538A (ko) 차량용 램프 장치
CN114690155A (zh) 一种光电检测装置及电子设备
KR102041633B1 (ko) 물체 인식 시스템
EP1498311B1 (en) Infrared projector
US11181364B2 (en) Object detection system and method for a motor vehicle
JP2020101471A (ja) 距離画像検出装置及び車両用灯具
WO2020017491A1 (ja) センサシステム
US20220373650A1 (en) Ranging device
WO2021135973A1 (zh) 照明探测灯组及车辆
CN110673110A (zh) 光接收模块
JP2020020709A (ja) センサシステム
WO2020032009A1 (ja) センサシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837318

Country of ref document: EP

Kind code of ref document: A1