WO2020017262A1 - 回転電機のロータおよび回転電機 - Google Patents
回転電機のロータおよび回転電機 Download PDFInfo
- Publication number
- WO2020017262A1 WO2020017262A1 PCT/JP2019/025301 JP2019025301W WO2020017262A1 WO 2020017262 A1 WO2020017262 A1 WO 2020017262A1 JP 2019025301 W JP2019025301 W JP 2019025301W WO 2020017262 A1 WO2020017262 A1 WO 2020017262A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- electric machine
- laminated steel
- rotating electric
- magnet
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
Definitions
- the present invention relates to a rotating electric machine rotor and a rotating electric machine.
- the embedded permanent magnet type rotating electric machine has an outer peripheral bridge and a magnet positioning projection on the outer peripheral side of the permanent magnet storage portion to prevent the permanent magnet from jumping out. Therefore, the magnetic flux leaking to the outer peripheral bridge and the magnet positioning projection causes a decrease in torque and an increase in torque ripple of the rotating electric machine.
- an EPS device fluctuates in torque of the rotating electric machine cause noise and vibration in a vehicle cabin, thereby deteriorating ride comfort.
- Patent Document 1 As a technique for reducing torque ripple due to a magnetic flux leaking to an outer peripheral bridge or a magnet positioning protrusion provided in a rotating electric machine, for example, as described in Patent Document 1, a laminated steel sheet having an outer peripheral bridge having a large leakage magnetic flux and a laminated steel sheet having a small leakage magnetic flux are disclosed. There is a technique in which laminated steel sheets having a central bridge are alternately laminated one by one or in units of several sheets. Further, as described in Patent Document 2, there is a technique of laminating laminated steel sheets having a part of an outer peripheral bridge that is not rotated and rotated by a predetermined angle about a rotation axis of a rotor. Further, as described in Patent Document 3, there is a technique of laminating laminated steel sheets without magnet positioning projections.
- Patent Literature 1 and Patent Literature 2 projections for magnet positioning are provided at positions on the outer peripheral side of the magnet housing portions of all the laminated steel plates. Further, even in a laminated steel sheet without an outer peripheral bridge, the leakage magnetic flux to the magnet positioning protrusion increases instead, so that the torque ripple cannot be sufficiently reduced.
- Patent Literature 3 laminated steel sheets without magnet positioning protrusions are laminated, but since all the laminated steel sheets are provided with an outer peripheral bridge, leakage magnetic flux is generated and torque ripple cannot be sufficiently reduced.
- a rotor core constituted by a plurality of laminated steel sheets and provided with a plurality of magnet housing portions, and a plurality of permanent magnets housed in the plurality of magnet housing portions to form magnetic poles, respectively.
- the plurality of laminated steel sheets includes a plurality of pole piece portions that are separated by the magnet housing portion on the outer peripheral side of the rotor, and at least one of the plurality of laminated steel sheets.
- One first laminated steel sheet includes an inner circumferential bridge that holds the pole piece portion on the inner circumferential side of the rotor, and includes a side surface of the permanent magnet along a magnetization direction of the permanent magnet on an outer circumferential side of the rotor. The side surface does not contact the first laminated steel sheet, and the magnet housing communicates with an air gap formed between the rotor and the stator.
- a rotor core constituted by a plurality of laminated steel sheets and provided with a plurality of magnet housing portions, and a plurality of permanent magnets housed in the plurality of magnet housing portions to form magnetic poles, respectively.
- At least one of the plurality of laminated steel plates has an inner peripheral bridge that restrains an inner peripheral side surface of the rotor among side surfaces of the permanent magnet along a magnetization direction of the permanent magnet.
- a second magnet storage portion having an outer peripheral bridge that restrains the outer peripheral side surface of the rotor among the side surfaces of the permanent magnet.
- low torque ripple and high torque of the rotating electric machine can be realized by reducing the leakage magnetic flux from the laminated steel sheet forming the rotor core.
- FIG. 2 is an axial sectional view of the rotating electric machine according to the first embodiment.
- FIG. 3 is a radial cross-sectional view of the stator and the rotor in an AA cross section. It is an enlarged view which expands and shows one magnetic pole of a 1st laminated steel sheet.
- FIG. 3 is a radial cross-sectional view of the stator and the rotor in a BB cross section. It is an enlarged view which expands and shows one magnetic pole of a 2nd laminated steel plate.
- 7 shows an axial cross-sectional view of a rotor according to Modification 1.
- FIG. FIG. 10 is an enlarged view showing one magnetic pole of a first laminated steel sheet according to Modification Example 2 in an enlarged manner.
- FIG. 13 is an enlarged view showing one magnetic pole of a first laminated steel sheet according to Modification Example 3 in an enlarged manner.
- FIG. 13 is an enlarged view showing one magnetic pole of a first laminated steel sheet according to another example of Modification Example 3 in an enlarged manner.
- FIG. 6 is a radial cross-sectional view of a stator and a rotor according to a second embodiment. It is an enlarged drawing which expands and shows one magnetic pole of the 3rd laminated steel sheet concerning a 2nd embodiment. It is an enlarged view which expands and shows one magnetic pole of the 3rd laminated steel sheet which concerns on the modification of 2nd Embodiment.
- FIG. 14 is a radial cross-sectional view of a stator and a rotor according to a third embodiment.
- FIG. 11 is an enlarged view showing one magnetic pole in a radial cross section of a rotor according to a third embodiment. It is an enlarged drawing which expands and shows one magnetic pole of the radial cross section of the rotor which concerns on 4th Embodiment. It is an enlarged drawing which expands and shows one magnetic pole of the radial cross section of the rotor which concerns on 4th Embodiment. It is an enlarged drawing which expands and shows one magnetic pole of the radial cross section of the rotor which concerns on 4th Embodiment.
- FIG. 13 shows a radial cross-sectional view of a rotor of a consequent pole type rotating electric machine according to a sixth embodiment.
- FIG. 13 shows a radial cross-sectional view of a rotor of a consequent pole type rotating electric machine according to a sixth embodiment.
- FIG. 13 shows a radial cross-sectional view of a rotor of a consequent pole type rotating electric machine according to a sixth embodiment. It is a figure showing composition of a drive system of a rotary electric machine concerning a 7th embodiment. It is a figure showing the EPS device concerning an 8th embodiment. It is a figure which shows the ratio of torque, torque ripple, and cogging torque of this embodiment and a comparative example.
- rotating electric machine 100 according to an embodiment of the present invention will be described with reference to the drawings.
- the rotating electric machine 100 in the following embodiments can be applied to the rotating electric machine 100 of other electric auxiliaries for automobiles such as an electric power steering device and an electric brake device.
- the present invention can be applied to general industrial rotary electric machines 100.
- the same components are denoted by the same reference numerals, and redundant description will be omitted.
- FIG. 1 is an axial sectional view of a rotating electric machine 100 according to the present embodiment.
- the rotating electric machine 100 according to the present embodiment includes a stator 1, a rotor 3 rotatably disposed in the stator 1 via an air gap 12, a drive shaft 7, and a frame 8 holding the stator 1.
- Stator 1 has stator core 2, coil 10 (see FIG. 2) wound around teeth 11 (see FIG. 2) of stator core 2, and coil end portion 6 of coil 10.
- the rotor 3 includes a rotor core 4 composed of a plurality of laminated steel plates and a plurality of permanent magnets 5 stored in a magnet storage section 9 of the rotor core 4.
- FIG. 2 is a radial cross-sectional view of the stator 1 and the rotor 3 taken along the line AA in FIG.
- the coil 10 is wound around the teeth 11.
- the first laminated steel sheet 51 in this cross section of the rotor 3 is arranged in the V-shaped magnet housing 9 with the rotor core 4 provided with the V-shaped magnet housing 9 and forms one magnetic pole.
- a plurality of (two in FIG. 2) permanent magnets 5 are provided, and an inner peripheral bridge 13 is provided near the center of the magnetic pole on the inner peripheral side of the permanent magnet 5.
- FIG. 3 is an enlarged view of the vicinity of one magnetic pole of the rotor 3 surrounded by the broken line 2A in FIG.
- the first laminated steel sheet 51 has a pole piece portion 17 divided by a V-shaped magnet storage portion 9. Further, there is provided an inner peripheral bridge 13 for holding the pole piece portion 17 on the inner peripheral side of the rotor.
- the inner peripheral bridge 13 also has a function of restricting the inner peripheral side surface 5 a of the rotor 3 among the side surfaces of the permanent magnet 5 along the magnetization direction 15 of the permanent magnet 5.
- the side surface 5 b on the outer peripheral side of the rotor 3 does not contact the first laminated steel sheet 51, and the magnet housing portion 9 is formed by air formed between the permanent magnet 5 and the stator 1. It communicates with the gap 12 via the recess 18. That is, since neither the positioning protrusion of the permanent magnet 5 nor the outer peripheral bridge is provided on the outer peripheral side surface 5b of the permanent magnet 5, the leakage magnetic flux can be sufficiently reduced.
- the first laminated steel sheet 51 is divided by the V-shaped magnet storage portion 9 and has the pole piece portion 17 held by the inner peripheral bridge 13.
- the inner peripheral bridge 13 supports the pole piece portion 17 instead of the outer peripheral bridge (see the outer peripheral bridge 14 in FIG. 5 described later).
- mechanical and magnetic characteristics of the outer bridge and the inner bridge 13 will be described.
- the stress applied to the outer peripheral bridge is a bending stress, and the force applied to the inner peripheral bridge 13 can be approximated to a tensile stress.
- the tensile stress is smaller than the bending stress with respect to the same force (here, the centrifugal force acting on the pole piece 17). Therefore, the inner bridge 13 has better mechanical strength than the outer bridge, and the width of the inner bridge 13 can be reduced. Also, one magnetic flux of one permanent magnet 5 passes through one outer peripheral bridge, while two magnetic fluxes of permanent magnet 5 pass through one inner bridge 13. . As a result, assuming that the width of the outer bridge and the width of the inner bridge 13 are the same, the magnetic resistance of the inner bridge 13 is simply twice that of the outer bridge, and the inner bridge 13 has a smaller leakage flux.
- the rotor 3 of the rotating electric machine 100 is manufactured by increasing the ratio of the first laminated steel sheet 51 constituting the rotor 3, both the mechanical characteristics and the magnetic characteristics are improved, and low torque ripple and high torque are obtained.
- the rotating electric machine 100 can be provided.
- the opening angle of the V-shaped permanent magnets 5 is sufficiently large and the permanent magnets 5 are arranged substantially horizontally, or when the residual magnetic flux density of the permanent magnets 5 is sufficiently large, the magnetic attraction can be achieved even during rotation. Since the permanent magnet 5 is fixed to the magnet housing 9 only by the force and the frictional force, the rotor 3 can be manufactured by stacking only the first laminated steel sheet 51.
- FIG. 4 is a radial cross-sectional view of the stator 1 and the rotor 3 taken along the line BB of FIG.
- the second laminated steel sheet 52 of this cross section of the rotor 3 is arranged in the V-shaped magnet housing 9 with the rotor core 4 provided with the V-shaped magnet housing 9 and forms one magnetic pole. It has a plurality of permanent magnets 5, and has an outer peripheral bridge 14 that restrains the outer peripheral side 5 b of the permanent magnets 5.
- the inner peripheral bridge 13 provided on the first laminated steel sheet 51 is not provided on the second laminated steel sheet 52.
- FIG. 5 is an enlarged view showing one magnetic pole of the rotor 3 surrounded by the broken line 4A in FIG. Since the outer peripheral side 5b of the permanent magnet 5 is constrained by the outer peripheral bridge 14 in the second laminated steel sheet 52, a magnetic flux leaking to the outer peripheral bridge 14 is generated, but it is possible to prevent the permanent magnet 5 from jumping out due to centrifugal force. it can.
- FIG. 6 shows an axial sectional view of the rotor 3 according to the first modification. As shown in FIG. 6, the second laminated steel sheets 52 are arranged at both axial ends and the center of the rotor 3.
- the second laminated steel sheet 52 By arranging the second laminated steel sheet 52 at least at both ends in the axial direction of the rotor 3 in this way, the corners of the permanent magnet 5 that are easily damaged are protected by the outer peripheral bridge 14 of the second laminated steel sheet 52, and the permanent magnet 5 can also be prevented from jumping out. Also, when the permanent magnet 5 is long in the axial direction or when the permanent magnet 5 is divided into a plurality of pieces in the axial direction, as shown in FIG. By arranging 52, it is possible to reliably prevent the main body of the permanent magnet 5 from jumping out while protecting the corners of the permanent magnet 5 with the outer peripheral bridge 14 of the second laminated steel sheet.
- the pole piece portion 17 of the rotor 3 can be supported by both the inner bridge 13 and the outer bridge 14. .
- the rattling of the pole piece portion 17 during rotation of the rotary electric machine 100 is suppressed as compared with the case where the rotor 3 is configured only by the inner peripheral bridge 13, and the cogging torque and the cogging torque accompanying the rattling of the pole piece portion 17 are reduced.
- the occurrence of torque ripple can be suppressed.
- each laminated steel sheet 51, 52 is disposed between the pole piece parts 17 adjacent in the circumferential direction and the outer peripheral surface of the pole piece part 17. It has a recessed portion 18 that is recessed on the inner peripheral side from (the surface facing the stator 1).
- a magnetic flux passes therethrough, and torque ripple increases. Therefore, by providing the concave portion 18 between the adjacent pole piece portions 17 of the first laminated steel plate 51 and the second laminated steel plate 52, it is possible to suppress the increase of the torque ripple.
- FIG. 7 is an enlarged view of the vicinity of one magnetic pole of the rotor 3 surrounded by the broken line 2A in FIG.
- FIG. 8 is an enlarged view showing one magnetic pole of the rotor 3 surrounded by a broken line 4A in FIG.
- the first laminated steel plate 51 of FIG. 7 and the second laminated steel plate 52 of FIG. 8 include a plurality of pole piece portions 17 formed on the outer diameter side of the magnet housing 9, and the pole piece portions 17 are stacked adjacent to each other. And a connecting portion 19 for connecting the laminated steel plates to be formed. By using the connecting portion 19, the first laminated steel plates 51, or the first laminated steel plates 51 and the second laminated steel plates 52, can be firmly connected and laminated with a small displacement.
- the radial cross section of the rotor 3 at the connecting portion 19 is formed so that the radial direction of the rotor 3 is longer than the circumferential direction of the rotor 3. Thereby, the magnet magnetic flux passing in the radial direction of the pole piece portion 17 is not obstructed, and a decrease in torque can be avoided.
- the connecting portion 19 is formed by caulking, an adhesive, a rivet, a bolt, a screw, a screw, or the like, and connects and fixes the laminated steel sheets that are adjacently stacked.
- FIG. 9 is an enlarged view showing one magnetic pole of the first laminated steel sheet 51 according to the third modification.
- This is a modification of one magnetic pole shown in FIG. 3, and the first laminated steel sheet 51 will be described as an example, but the structure described below is applied to at least one laminated steel sheet of the second laminated steel sheet 52 and other types of laminated steel sheets. It may be provided.
- the first laminated steel plate 51 supports the pole piece portion 17 with the inner peripheral bridge 13.
- the first laminated steel plate 51 includes the protrusion 20 that restrains the side surface 5 b on the outer peripheral side of the rotor 3 among the side surfaces of the permanent magnet 5.
- the pole piece portion 17 has a projection 21. When the first laminated steel plate 51 is punched by a mold, the projections 20 and the projections 21 are used as presses. Since the projections 20 and 21 do not contact the side surfaces 5a and 5b of the permanent magnet 5, the leakage magnetic flux can be reduced.
- FIG. 10 is an enlarged view showing one magnetic pole of the first laminated steel sheet 51 according to another example of the third modification.
- the first laminated steel sheet 51 has a magnet positioning projection 22 on the inner peripheral side 5 a of the permanent magnet 5, separately from the inner peripheral bridge 13.
- the inner peripheral bridge 13 may be provided with a projection that contacts the inner peripheral side 5a of the permanent magnet 5, and the projection may be used to position the inner peripheral side 5a of the permanent magnet 5.
- FIG. 11 is a radial cross-sectional view of the stator 1 and the rotor 3 of the rotary electric machine 100 according to the second embodiment.
- the third laminated steel sheet 53 in this cross section of the rotor 3 is arranged in the V-shaped magnet housing 9 with the rotor core 4 having the V-shaped magnet housing 9 and forms one magnetic pole.
- a plurality of permanent magnets 5 are provided.
- the third laminated steel sheet 53 of the second embodiment includes the inner peripheral bridge 13 and the outer peripheral bridge 13. A connecting portion 19 is provided without the bridge 14.
- FIG. 12 is an enlarged view of the vicinity of one magnetic pole of the rotor 3 surrounded by a broken line 11A in FIG.
- At least one of the plurality of laminated steel sheets constituting the rotor 3 is a third laminated steel sheet 53, and as shown in FIG. Neither a bridge that restricts the inner peripheral side of the permanent magnet 5 nor a bridge that restricts the outer peripheral side of the permanent magnet 5 is provided. Since there is no bridge portion around the permanent magnet 5, the leakage magnetic flux can be reduced as compared with the first laminated steel sheet 51.
- the rotating electric machine 100 can be provided.
- the third laminated steel sheet 53 similarly to the first laminated steel sheet 51 and the second laminated steel sheet 52, if the concave portion 18 is provided between the adjacent pole piece portions 17, the torque ripple can be reduced.
- the pole piece part 17 is provided with a connecting part 19 for connecting adjacent laminated steel sheets, and is laminated with the first laminated steel sheet 51 or the second laminated steel sheet 52 provided with the same kind of connecting part 19. Then, the pole piece 17 is securely fixed.
- the position, shape, and the like of the connecting portion 19 are as described in the first embodiment.
- FIG. 13 is an enlarged view showing one magnetic pole of the third laminated steel sheet 53 according to a modification of the second embodiment.
- the magnet positioning projection 22 may be provided in contact with the outer peripheral side 5b of the permanent magnet 5 to the extent that no bridge is formed. Since no bridge is formed, it is possible to suppress leakage magnetic flux and prevent the permanent magnet 5 from jumping out.
- FIG. 14 is a radial cross-sectional view of the rotating electric machine 100 according to the third embodiment.
- FIG. 15 is an enlarged view of the vicinity 14A of the magnetic pole of the rotor 3 of the rotary electric machine 100 according to the third embodiment.
- the laminated steel plates 54 in the plurality of laminated steel plates 54 constituting the rotor 3, at least one of the laminated steel plates 54 has a half of the plurality of magnet housing portions 9 on the inner circumferential side of the permanent magnet 5.
- the first magnet storage portion 23 having the inner peripheral bridge 13 for restraining 5 a
- the other half is the second magnet storage portion 24 having the outer peripheral bridge 14 for restraining the outer peripheral side 5 b of the permanent magnet 5.
- the laminated steel plates 54 are laminated by rotating a predetermined angle every single sheet or every several sheets.
- the rotor core 4 is formed by laminating a plurality of laminated steel plates 54 provided with the first magnet housing portion 23 and the second magnet housing portion 24 while being shifted from each other by a predetermined angle in a rotation direction about the axis of the rotor 3. Formed.
- the number of magnetic poles having the first magnet housing 23 and the number of magnetic poles having the second magnet housing 24 are the same. If the number of magnetic poles having the portion 24 is reduced and the number of magnetic poles having the first magnet housing portion 23 is increased, the magnetic characteristics of the rotating electric machine 100 can be further improved.
- the number of dies for punching the laminated steel sheet 54 can be reduced.
- a V-shaped embedded magnet type rotating electric machine has been described as an example, but the present technology is also applied to a spoke type embedded magnet type rotating electric machine described later in which the magnet storage portions are arranged in an I shape. it can.
- FIGS. 16 to 18 are enlarged views of one magnetic pole of the rotor 3 of the rotary electric machine 100 according to the fourth embodiment.
- FIGS. 16, 17, and 18 correspond to the first laminated steel plate 51, the second laminated steel plate 52, and the third laminated steel plate 53 in the first embodiment and the second embodiment, respectively.
- the outer peripheral side surface 5b along the magnetization direction 15 of the permanent magnet 5 has an air gap between the stator 1 and the rotor 3. It is open to the gap 12. Therefore, when the permanent magnet 5 is damaged by vibration or the like, fragments of the permanent magnet 5 smaller than the open portion may fly out into the air gap 12 and lock the rotating electric machine 100 during rotation.
- FIG. 16 to FIG. Protect the surface. Thereby, it is possible to prevent the surface of the permanent magnet 5 from being damaged, and to prevent the fragments of the permanent magnet 5 from scattering even if the surface is damaged.
- the scattering prevention member 25 of the permanent magnet 5 can be securely fixed without being separated from the surface of the permanent magnet 5 by laminating the second laminated steel sheet 52 having the outer peripheral bridge 14 of FIG.
- the shape of the scattering prevention member 25 may cover a part of the circumferential direction including the outer peripheral side surface 5b along the magnetization direction 15 of the permanent magnet 5, or the permanent magnet 5 , Or the entire permanent magnet 5 may be covered.
- FIGS. 19 to 21 show radial cross-sectional views of the rotor 3 of the rotary electric machine 100 according to the fifth embodiment.
- a so-called spoke type embedded magnet including a rotor core 4 provided with an I-shaped magnet housing 9 and a permanent magnet 5 arranged in the I-shape in the I-shaped magnet housing 9 to form one magnetic pole.
- FIGS. 19, 20, and 21 correspond to the first laminated steel sheet 51, the second laminated steel sheet 52, and the third laminated steel sheet 53 in the first embodiment and the second embodiment, respectively.
- the thickness of the magnet is doubled, but the number of magnets can be reduced by half.
- the number of poles of the motor that is, the number of magnets
- the number of magnets can be increased without reducing the cross-sectional area of the magnet in the radial direction, so that a multi-pole, high-torque motor can be designed.
- the first laminated steel plate 51 has a pole piece 17 divided by an I-shaped magnet housing 9, and holds the pole piece 17 on the inner circumference side of the rotor. It has a bridge 13.
- the inner peripheral bridge 13 has an inner peripheral bridge 13a that holds the pole piece 17 in the radial direction and an inner peripheral bridge 13b that holds the pole piece 17 in the circumferential direction.
- the side surface 5 b on the outer peripheral side of the rotor 3 does not contact the first laminated steel sheet 51, and the magnet housing portion 9 is formed by air formed between the permanent magnet 5 and the stator 1. It communicates with the gap 12.
- the stress applied to the inner peripheral bridge 13a is a tensile stress, and the stress applied to the inner peripheral bridge 13b can be approximated to the bending stress similarly to the outer peripheral bridge 14 (see FIG. 20). Therefore, the inner peripheral bridge 13a has better mechanical strength than the inner peripheral bridge 13b, and can reduce the bridge width and reduce the number of bridges.
- the bridge width and the bridge length of the inner peripheral bridge 13a and the inner peripheral bridge 13b are simply the same, the leakage magnetic flux is smaller in the magnetic path length passing through the inner peripheral bridge 13b than the magnetic path length passing through the inner peripheral bridge 13a.
- the inner peripheral bridge 13b has a smaller magnetic resistance and a larger leakage magnetic flux than the inner peripheral bridge 13a.
- the leakage flux can be reduced by reducing the number or width of one or both of the inner bridge 13a and the inner bridge 13b.
- the rotor 3 is provided with a lightening hole 60 for reducing inertia and leakage magnetic flux, and a part of the outer edge thereof is formed by an inner peripheral bridge 13a and an inner peripheral bridge 13b. Therefore, the mechanical strength and magnetic properties of the inner peripheral bridge 13a and the inner peripheral bridge 13b also depend on the shape of the lightening hole 60.
- the inner peripheral bridge 13a that is, the outer peripheral edge of the lightening hole 60
- the inner peripheral bridge 13a is connected not to the inner peripheral bridge 13b but to the inner peripheral side of the pole piece 17 in order to avoid transient stress concentration during rotation. Is desirable.
- the number of the inner peripheral bridges 13a and the inner peripheral bridges 13b can be reduced to the minimum number necessary for the strength of the rotor 3.
- the number of the inner peripheral bridges 13a is set to half of that of the first laminated steel plate 51 of FIG. 19, and the number of the inner peripheral bridges 13b is set to the same number as the first laminated steel plate 51. I have.
- the number of the inner peripheral bridges 13a can be increased or decreased according to the margin of the mechanical strength.
- only the inner peripheral bridge 13b may be reduced from the first laminated steel sheet 51 in FIG. 19, or both the inner peripheral bridge 13a and the inner peripheral bridge 13b may be replaced with the first in FIG.
- the number of the inner peripheral bridges 13a and 13b may be eliminated. If the inner peripheral bridge 13a is frequently used, mechanical strength can be increased. On the other hand, if the inner peripheral bridge 13b is frequently used, the leakage flux can be effectively reduced.
- the third laminated steel sheet 53 includes an inner peripheral bridge 14 that holds the outer peripheral side surface 5 b of the permanent magnet 5 and an inner peripheral bridge that holds the pole piece portion 17 radially on the inner peripheral side of the rotor 3.
- An inner peripheral bridge 13b for holding the pole piece portion 17 in the circumferential direction on the inner peripheral side of the rotor, and a connecting portion 19 are provided.
- the example in which the connecting portion 19 is provided at every other magnetic pole has been described, but can be increased or decreased according to the strength of the rotor 3. Since the bridge around the permanent magnet 5 is only the inner peripheral bridge 13b, the leakage magnetic flux can be reduced as compared with the second laminated steel sheet 52 in FIG. Further, in the third laminated steel sheet 53 of FIG.
- FIG. 21 is an example.
- the number of the inner peripheral bridges 13b may be reduced, or the inner peripheral bridge 13a may be provided instead of not having the inner peripheral bridge 13b. However, both the inner peripheral bridge 13a and the inner peripheral bridge 13b may not be provided.
- each pole piece portion 17 is provided with a connecting portion 19 so as to suppress rattling of the pole piece portion 17 and displacement of the pole piece portion 17 when laminated. It is desirable that the layers are firmly connected and laminated.
- FIGS. 22 to FIG. 24 are radial sectional views of the rotor 3 of the rotary electric machine 100 according to the sixth embodiment.
- a so-called consequent pole type rotating electric machine in which the rotor 3 has a rotor core 4, a plurality of permanent magnets 5, and a plurality of pseudo magnetic poles 26 made of a soft magnetic material formed between magnetic poles having a pair of permanent magnets 5. is there.
- FIGS. 22, 23, and 24 correspond to the first laminated steel sheet 51, the second laminated steel sheet 52, and the third laminated steel sheet 53 in the first embodiment and the second embodiment, respectively.
- the magnetic poles of the rotor 3 are composed of the pseudo magnetic poles 26 made of a soft magnetic material and the permanent magnets 5, so that the amount of the permanent magnets 5 used can be reduced.
- the first laminated steel sheet 51 has an inner peripheral bridge 13 that restrains a side surface 5 a on the inner peripheral side of the rotor 3 among the side surfaces of the permanent magnet 5 along the magnetization direction 15 of the permanent magnet 5.
- the third laminated steel sheet 53 includes the connecting portion 19 without having both a bridge that restricts the inner peripheral side of the permanent magnet 5 and a bridge that restricts the outer peripheral side of the permanent magnet 5.
- the examples in which the permanent magnets 5 are arranged in the V-shaped magnet housing 9 and the examples in which the permanent magnets 5 are arranged in the I-shaped magnet housing 9 have been described.
- the present invention is not limited to these.
- the U-shaped permanent magnets 5 may be arranged in the U-shaped magnet storage unit 9, and the U-shaped permanent magnets 5 may have other shapes. .
- FIG. 25 shows a drive system of the rotating electric machine 100 according to the present embodiment.
- the U phase, the V phase, and the W phase are divided into two groups, and the first inverter 41 uses the U11 to U15 phases, the V11 to V15 phases, and the W11 to W15.
- the phases are driven, and the second inverter 42 drives the U21 to U25 phases, the V21 to V25 phases, and the W21 to W25 phases.
- the U-phase, V-phase, and W-phase may be divided into a plurality of groups and driven by a plurality of inverters.
- FIG. 8 An EPS apparatus according to an eighth embodiment will be described with reference to FIG.
- This is an example in which the rotating electric machine 100 shown in the first to sixth embodiments is applied to an electric power steering device (EPS device).
- EPS device is called a column assist type because it has a rotating electric machine 100 for generating an assist torque near a steering column.
- the EPS device of this method includes a steering wheel ST, a torque sensor TS for detecting a rotational driving force of the steering wheel ST, an ECU (Electronic Control Unit) for controlling an assist torque based on an output of the torque sensor TS, A rotating electric machine 100 that outputs assist torque based on a signal from an ECU that controls the torque.
- ECU Electronic Control Unit
- the vehicle further includes a vehicle-mounted battery BA serving as an energy supply source for the ECU and the rotary electric machine 100, and a gear mechanism GE for reducing the rotational driving force of the rotary electric machine 100 with gears and outputting a desired torque. Further, it includes a pinion gear PN for transmitting torque generated by the gear mechanism GE, one or a plurality of rods RO for connecting the pinion gear PN and the gear mechanism GE, and one or a plurality of joints JT.
- a rack gear RCG that changes the rotational driving force generated in the pinion gear PN into a horizontal force
- a rack gear case RC that covers the rack gear
- a first dust boot DB1 that is provided to prevent dust and the like from entering the rack case.
- a second dust boot DB2 a first tire WH1, which is actually steered, a second tire WH2, and a first tire WH1 for transmitting a horizontal force generated on a rack shaft to the first tire WH1.
- a second tie rod TR2 for transmitting a horizontal force generated on the rack shaft to the second tire WH2.
- the operation of the column assist type EPS device will be described.
- the rotational driving force is detected by the torque sensor TS.
- the ECU calculates an energization pattern for generating a desired assist torque based on the detection signal of the torque sensor TS, and issues a command to the rotating electric machine 100.
- the rotating electric machine 100 performs energization based on a command from the ECU to generate an assist torque.
- the speed is reduced by the gear mechanism GE connected to the rotating electric machine 100, and the rotational driving force is transmitted to the pinion gear PN via the rod RO and the joint JT.
- the pinion gear PN meshes with the rack gear RCG, whereby the rotational driving force of the pinion gear PN is converted into a thrust perpendicular to the traveling direction of the vehicle.
- the horizontal thrust generated in this manner steers the tires WH1 and WH2 via the tie rods TR1 and TR2.
- a pinion assist type EPS device including a rotary electric machine 100 for generating assist torque near the pinion gear PN, and a rotary electric machine 100 for generating assist torque for the rack gear RCG are provided.
- a rack assist type EPS device provided.
- the highly reliable prevention of the lock of the rotating electric machine 100 the improvement of the assist performance at the time of steering wheel operation, and the It is possible to provide an EPS device capable of achieving both noise reduction and noise reduction.
- the same effect can be exerted not only when applied to the EPS device but also to other automobile accessory systems, for example, when applied to an electric brake system.
- FIG. 27 shows a comparison result between the rotating electric machine 100 of the comparative example in which only the second laminated steel sheet 52 is laminated, and the first and second embodiments.
- the ratio in the first embodiment and the second embodiment when the comparative example is set to 1 is shown.
- the first embodiment is a rotating electric machine 100 in which 80% of the second laminated steel sheet 52 of the comparative example is replaced with the first laminated steel sheet 51.
- the second embodiment is a rotating electrical machine 100 in which 33% of the second laminated steel sheet 52 of the comparative example is replaced with the first laminated steel sheet 51, and 50% of the second laminated steel sheet 52 is replaced with the third laminated steel sheet 53. .
- the first embodiment has a smaller leakage magnetic flux than the comparative example, so that the torque T1 increases and the torque ripple T2 and the cogging torque T3 decrease. Furthermore, the leakage flux is smaller in the second embodiment than in the first embodiment, so that the torque T1 increases and the torque ripple T2 decreases. Regarding the cogging torque T3, it can be confirmed that the cogging torque T3 has increased due to the phase inversion, but has decreased with respect to the comparative example.
- the rotating electric machine 100 having 10 poles and 60 slots has been described, but the present invention can be applied to the rotating electric machine 100 having an arbitrary number of poles and slots. Further, the stator winding may be a concentrated winding or a distributed winding.
- the rotor 3 of the rotary electric machine 100 is composed of a plurality of laminated steel plates and has a rotor core 4 provided with a plurality of magnet housing portions 9 and a plurality of permanent magnets housed in the plurality of magnet housing portions 9 to form magnetic poles. And a plurality of laminated steel sheets provided with the magnet 5, the plurality of laminated steel sheets provided with a plurality of pole piece portions 17 on the outer peripheral side of the rotor 3 and divided by the magnet storage portions 9, and at least one of the plurality of laminated steel sheets.
- the first laminated steel sheet 51 includes an inner peripheral bridge 13 that holds the pole piece portion 17 on the inner peripheral side of the rotor 3, and the outer peripheral side of the rotor 3 among the side surfaces of the permanent magnet 5 along the magnetization direction 15 of the permanent magnet 5.
- the side surface 5b does not contact the first laminated steel sheet 51, and the magnet housing 9 communicates with the air gap 12 formed between the rotor 3 and the stator 1. Accordingly, by reducing the leakage magnetic flux from the laminated steel sheet forming the rotor core 4, low torque ripple and high torque of the rotating electric machine 100 can be realized.
- the rotor 3 of the rotary electric machine 100 is formed of a plurality of laminated steel plates and has a rotor core provided with a plurality of magnet housing portions 23 and 24 and housed in the plurality of magnet housing portions 23 and 24 to form magnetic poles.
- a plurality of permanent magnets 5 are provided, and at least one of the plurality of laminated steel plates restrains a side surface 5 a on the inner peripheral side of the rotor 3 among the side surfaces of the permanent magnet 5 along the magnetization direction 15 of the permanent magnet 5.
- a first magnet housing portion 23 having an inner circumferential bridge 13 and a second magnet housing portion 24 having an outer circumferential bridge 14 for restraining a side surface 5b on the outer circumferential side of the rotor 3 among the side surfaces of the permanent magnet 5 are provided. Accordingly, by reducing the leakage magnetic flux from the laminated steel sheet forming the rotor core 4, low torque ripple and high torque of the rotating electric machine 100 can be realized.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
ロータを構成する積層鋼板に磁石位置決め突起や外周ブリッジが設けられているため、漏れ磁束が発生し、トルクリプルを十分低減できない。 第1積層鋼板51は、ポールピース部17をロータ3の内周側で保持する内周ブリッジ13を有する。永久磁石5の磁化方向15に沿う永久磁石5の側面のうちロータ3の外周側の側面5bは第1積層鋼板51と接触せず、磁石収納部9がロータ3とステータ1との間に形成されるエアギャップ12に連通する。すなわち、永久磁石5の外周側の側面5bには、永久磁石5の位置決め突起と外周ブリッジとの両者が無いため、漏れ磁束を十分低減することができる。
Description
本発明は、回転電機のロータおよび回転電機に関する。
埋め込み永久磁石型回転電機は、永久磁石の飛び出し防止のため、永久磁石の磁石収納部の外周側には外周ブリッジや磁石位置決め用の突起が設けられている。そのため、外周ブリッジや磁石位置決め用の突起への漏れ磁束により、回転電機のトルク低下やトルクリプルが増加する。例えば、電動パワーステアリング装置(以下、EPS装置)に使用される回転電機では、回転電機のトルク変動が車室内の騒音や振動の原因となり、乗り心地を悪化させる。回転電機に設けられた外周ブリッジや磁石位置決め突起への漏れ磁束によるトルクリプルの低減技術としては、例えば、特許文献1に記載のように、漏れ磁束の大きい外周ブリッジを有する積層鋼板と漏れ磁束の小さい中央ブリッジを有する積層鋼板とを1枚ずつ、又は数枚単位で交互に積層する技術がある。また、特許文献2に記載のように、外周ブリッジが一部存在しない積層鋼板をロータの回転軸を中心に所定角度回転した状態で積層する技術がある。また、特許文献3に記載のように、磁石位置決め突起のない積層鋼板を積層する技術がある。
特許文献1および特許文献2では、全ての積層鋼板の磁石収納部の外周側の位置に、磁石位置決めの突起が設けられている。また、外周ブリッジが無い積層鋼板においても、替わりに磁石位置決め突起への漏れ磁束が増加するため、トルクリプルを十分低減できない。特許文献3においては、磁石位置決め突起のない積層鋼板を積層しているが、全ての積層鋼板に外周ブリッジが設けられているため、漏れ磁束が発生し、トルクリプルを十分低減できない。
本発明の第1の態様によると、複数枚の積層鋼板により構成され複数の磁石収納部を設けたロータコアと、前記複数の磁石収納部にそれぞれ収納されて磁極を形成する複数の永久磁石とを備えた回転電機のロータにおいて、前記複数枚の積層鋼板は、前記ロータの外周側であって前記磁石収納部で区分された複数のポールピース部を備え、前記複数枚の積層鋼板のうち、少なくとも1枚の第1積層鋼板は、前記ポールピース部を前記ロータの内周側で保持する内周ブリッジを備え、前記永久磁石の磁化方向に沿う前記永久磁石の側面のうち前記ロータの外周側の側面は前記第1積層鋼板と接触せず、前記磁石収納部が前記ロータとステータとの間に形成されるエアギャップに連通する。
本発明の第2の態様によると、複数枚の積層鋼板により構成され複数の磁石収納部を設けたロータコアと、前記複数の磁石収納部にそれぞれ収納されて磁極を形成する複数の永久磁石とを備えた回転電機のロータにおいて、前記複数枚の積層鋼板のうち、少なくとも1枚は、前記永久磁石の磁化方向に沿う永久磁石の側面のうち前記ロータの内周側の側面を拘束する内周ブリッジを有する第1磁石収納部、および前記永久磁石の側面のうち前記ロータの外周側の側面を拘束する外周ブリッジを有する第2磁石収納部を備える。
本発明の第2の態様によると、複数枚の積層鋼板により構成され複数の磁石収納部を設けたロータコアと、前記複数の磁石収納部にそれぞれ収納されて磁極を形成する複数の永久磁石とを備えた回転電機のロータにおいて、前記複数枚の積層鋼板のうち、少なくとも1枚は、前記永久磁石の磁化方向に沿う永久磁石の側面のうち前記ロータの内周側の側面を拘束する内周ブリッジを有する第1磁石収納部、および前記永久磁石の側面のうち前記ロータの外周側の側面を拘束する外周ブリッジを有する第2磁石収納部を備える。
本発明によれば、ロータコアを形成する積層鋼板からの漏れ磁束を低減することで、回転電機の低トルクリプル化、高トルク化を実現できる。
以下、図面を参照して本発明の一実施形態に係る回転電機100について説明する。なお、以下の実施形態における回転電機100は、電動パワーステアリング装置をはじめ、電動ブレーキ装置など、その他の自動車用電動補機装置の回転電機100へも適用可能である。さらには、産業用の回転電機100全般にも適用可能である。なお、各図において同一構成には同一の符号を記し、重複する説明は省略する。
[第1の実施形態]
図1~図10を参照して、第1の実施形態である回転電機100の構成を説明する。図1は、本実施形態に係る回転電機100の軸方向断面図である。本実施形態の回転電機100は、ステータ1と、ステータ1内に、エアギャップ12を介して、回転可能に配置されたロータ3と、駆動軸7と、ステータ1を保持するフレーム8とを備える。ステータ1は、ステータコア2と、ステータコア2のティース11(図2参照)に巻回されるコイル10(図2参照)と、コイル10のコイルエンド部6とを有する。ロータ3は、複数枚の積層鋼板から構成されたロータコア4と、ロータコア4の磁石収納部9に収納された複数の永久磁石5を備える。
図1~図10を参照して、第1の実施形態である回転電機100の構成を説明する。図1は、本実施形態に係る回転電機100の軸方向断面図である。本実施形態の回転電機100は、ステータ1と、ステータ1内に、エアギャップ12を介して、回転可能に配置されたロータ3と、駆動軸7と、ステータ1を保持するフレーム8とを備える。ステータ1は、ステータコア2と、ステータコア2のティース11(図2参照)に巻回されるコイル10(図2参照)と、コイル10のコイルエンド部6とを有する。ロータ3は、複数枚の積層鋼板から構成されたロータコア4と、ロータコア4の磁石収納部9に収納された複数の永久磁石5を備える。
図2は、図1のA-A断面におけるステータ1及びロータ3の径方向断面図である。ティース11にコイル10が巻き回される。ロータ3のこの断面における第1積層鋼板51は、V字状の磁石収納部9を設けたロータコア4と、V字状の磁石収納部9にV字状に配置されて1つの磁極を形成する複数(図2では2つ)の永久磁石5を備え、永久磁石5の内周側の磁極中央付近には、内周ブリッジ13を有する。
図3は、図2の破線2Aで囲ったロータ3の1磁極分の磁極付近の拡大図であり、第1積層鋼板51を示す。この第1積層鋼板51は、V字状の磁石収納部9で区分されたポールピース部17を有する。また、このポールピース部17をロータの内周側で保持する内周ブリッジ13を有する。内周ブリッジ13は、永久磁石5の磁化方向15に沿う永久磁石5の側面のうちロータ3の内周側の側面5aを拘束する機能も有する。永久磁石5の磁化方向15に沿う永久磁石5の側面のうちロータ3の外周側の側面5bは第1積層鋼板51と接触せず、磁石収納部9はステータ1との間に形成されるエアギャップ12に凹部18を介して連通する。すなわち、永久磁石5の外周側の側面5bには、永久磁石5の位置決め突起と外周ブリッジとの両者が無いため、漏れ磁束を十分低減することができる。
第1積層鋼板51は、V字状の磁石収納部9で区分され、内周ブリッジ13で保持されるポールピース部17を有する。回転電機100の回転時において、ポールピース部17には自身と永久磁石5の遠心力が作用する。そのため、内周ブリッジ13は外周ブリッジ(後述する図5の外周ブリッジ14参照)の替わりに、ポールピース部17を支持する。ここで、外周ブリッジと内周ブリッジ13の機械的、磁気的な特徴について述べる。ポールピース部17に作用する遠心力に対し、外周ブリッジにかかる応力は曲げ応力であり、内周ブリッジ13にかかる力は引っ張り応力と近似できる。材料力学の一般論として、曲げ応力より引っ張り応力のほうが、同じ力(ここではポールピース部17に作用する遠心力)に対する応力が小さい。そのため、外周ブリッジよりも内周ブリッジ13の方が機械強度が優れ、内周ブリッジ13の幅を細くすることができる。また、外周ブリッジ1つ当たりには、永久磁石5の1つ分の磁束が通るのに対し、内周ブリッジ13の1つ当たりには、永久磁石5の2つ分の磁束が通ることになる。その結果、外周ブリッジの幅と内周ブリッジ13の幅が同じと仮定すると、単純に内周ブリッジ13の磁気抵抗は外周ブリッジの2倍となり、内周ブリッジ13の方が漏れ磁束が小さくなる。
以上のように、ロータ3を構成する第1積層鋼板51の割合を多くして、回転電機100のロータ3を製造すれば、機械特性と磁気特性の両方を向上し、低トルクリプル・高トルクな回転電機100を提供できる。V字状に配置された永久磁石5の開き角度が十分大きく、永久磁石5がほぼ横一文字に配置される時や、永久磁石5の残留磁束密度が十分大きい時には、回転時においても、磁気吸引力と摩擦力のみで永久磁石5は磁石収納部9に固定されるため、この第1積層鋼板51のみを積層してロータ3を製造することができる。
(変形例1)
次に第1の実施形態における変形例1について説明する。図4は、図1のB-B断面におけるステータ1及びロータ3の径方向断面図である。ロータ3のこの断面の第2積層鋼板52は、V字状の磁石収納部9を設けたロータコア4と、V字状の磁石収納部9にV字状に配置されて1つの磁極を形成する複数の永久磁石5を備え、永久磁石5の外周側5bを拘束する外周ブリッジ14を有する。第1積層鋼板51に設けられていた内周ブリッジ13は、第2積層鋼板52には設けられていない。
次に第1の実施形態における変形例1について説明する。図4は、図1のB-B断面におけるステータ1及びロータ3の径方向断面図である。ロータ3のこの断面の第2積層鋼板52は、V字状の磁石収納部9を設けたロータコア4と、V字状の磁石収納部9にV字状に配置されて1つの磁極を形成する複数の永久磁石5を備え、永久磁石5の外周側5bを拘束する外周ブリッジ14を有する。第1積層鋼板51に設けられていた内周ブリッジ13は、第2積層鋼板52には設けられていない。
図5は、図4の破線4Aで囲ったロータ3の1磁極分を拡大して示す拡大図であり、第2積層鋼板52を示す。第2積層鋼板52は、永久磁石5の外周側5bが外周ブリッジ14で拘束されているため、外周ブリッジ14への漏れ磁束は発生するが、遠心力による永久磁石5の飛び出しを防止することができる。
V字状に配置された永久磁石5の開き角度がある程度大きい場合は、ロータコア4を構成する複数枚の積層鋼板51、52のうち、永久磁石5の飛び出しを防止するために必要な最低限の枚数の第2積層鋼板52を用い、残りは第1積層鋼板51とする。これにより、永久磁石5の飛び出しを防止して、低トルクリプル・高トルクな回転電機100を提供できる。図6は、この変形例1に係るロータ3の軸方向断面図を示す。図6に示すとおり、第2積層鋼板52をロータ3の軸方向両端部と中央部に配置する。このように、第2積層鋼板52を少なくともロータ3の軸方向両端部に配置することで、破損しやすい永久磁石5の角部を第2積層鋼板52の外周ブリッジ14で保護しつつ、永久磁石5の本体の飛び出しも防止することができる。また、永久磁石5が軸方向に長い場合や、永久磁石5が軸方向に複数に分割されて配置されている場合においても、図6に示すとおり、軸方向両端部以外にも第2積層鋼板52を配置することで、永久磁石5の角部を第2積層鋼板の外周ブリッジ14で保護しつつ、永久磁石5の本体の飛び出しを確実に防止することができる。
また、第1積層鋼板51と第2積層鋼板52とを積層してロータ3を構成した場合は、ロータ3のポールピース部17を内周ブリッジ13と外周ブリッジ14の両方で支持することができる。このため、内周ブリッジ13のみでロータ3を構成した場合よりも、回転電機100の回転時のポールピース部17のがたつきを抑制し、ポールピース部17のがたつきに伴うコギングトルクやトルクリプルの発生を抑制できる。
また、図3の第1積層鋼板51や図5の第2積層鋼板52に示すとおり、各積層鋼板51、52は周方向に隣り合うポールピース部17の間に、ポールピース部17の外周面(ステータ1との対向面)よりも内周側に凹んだ凹部18を有している。一般に、磁極間(q軸)において、ロータコア4の最外周部がステータ1に近いとそこに磁束が通り、トルクリプルが大きくなる。したがって、第1積層鋼板51や第2積層鋼板52の隣り合うポールピース部17の間に凹部18を設けることで、このトルクリプルの増加を抑制することができる。
(変形例2)
次に第1の実施形態における変形例2について説明する。図7は、図2の破線2Aで囲ったロータ3の1磁極分の磁極付近の拡大図であり、第1積層鋼板51を示す。また、図8は、図4の破線4Aで囲ったロータ3の1磁極分を拡大して示す拡大図であり、第2積層鋼板52を示す。図7の第1積層鋼板51、図8の第2積層鋼板52は、磁石収納部9の外径側に形成された複数のポールピース部17を備え、ポールピース部17は、隣接して積層する積層鋼板同士を連結するための連結部19を有する。この連結部19を用いて、第1積層鋼板51同士や、第1積層鋼板51と第2積層鋼板52を、位置ずれを小さくして、強固に連結して積層することができる。
次に第1の実施形態における変形例2について説明する。図7は、図2の破線2Aで囲ったロータ3の1磁極分の磁極付近の拡大図であり、第1積層鋼板51を示す。また、図8は、図4の破線4Aで囲ったロータ3の1磁極分を拡大して示す拡大図であり、第2積層鋼板52を示す。図7の第1積層鋼板51、図8の第2積層鋼板52は、磁石収納部9の外径側に形成された複数のポールピース部17を備え、ポールピース部17は、隣接して積層する積層鋼板同士を連結するための連結部19を有する。この連結部19を用いて、第1積層鋼板51同士や、第1積層鋼板51と第2積層鋼板52を、位置ずれを小さくして、強固に連結して積層することができる。
これにより、コギングトルクに悪影響を及ぼす、ポールピース部17の外径形状のばらつきや積層鋼板の積層間の隙間の発生を抑制することができる。ここで、連結部19の位置を、ポールピース部17の重心付近に設けることにより、ポールピース部17の外縁全体で積層ばらつきや積層間の隙間を抑制することができる。
また、連結部19におけるロータ3の径方向断面形状は、ロータ3の径方向がロータ3の周方向より長くなるように形成する。これにより、ポールピース部17の径方向を通る磁石磁束を阻害せず、トルク低下を避けることができる。連結部19は、カシメ、接着剤、リベット、ボルト、ねじ、ビスなどにより形成され、隣接して積層する積層鋼板を互いに連結して固定する。
(変形例3)
図9は、変形例3に係る第1積層鋼板51の1磁極分を拡大して示す拡大図である。図3に示した1磁極分の変形例であり、第1積層鋼板51を例に説明するが、第2積層鋼板52やその他の種類の積層鋼板の少なくとも一つの積層鋼板に以下に述べる構造を設けてもよい。図9に示すように、第1積層鋼板51は、ポールピース部17を内周ブリッジ13で支持する。そして、第1積層鋼板51は、永久磁石5の側面のうちロータ3の外周側の側面5bを拘束する突起20を備える。また、ポールピース部17は突起21を備える。金型により、第1積層鋼板51を打ち抜く場合、これらの突起20及び突起21が押さえとして用いられる。そしてこれらの突起20及び突起21が永久磁石5の側面5a、5bと接触しないので、漏れ磁束を低減できる。
図9は、変形例3に係る第1積層鋼板51の1磁極分を拡大して示す拡大図である。図3に示した1磁極分の変形例であり、第1積層鋼板51を例に説明するが、第2積層鋼板52やその他の種類の積層鋼板の少なくとも一つの積層鋼板に以下に述べる構造を設けてもよい。図9に示すように、第1積層鋼板51は、ポールピース部17を内周ブリッジ13で支持する。そして、第1積層鋼板51は、永久磁石5の側面のうちロータ3の外周側の側面5bを拘束する突起20を備える。また、ポールピース部17は突起21を備える。金型により、第1積層鋼板51を打ち抜く場合、これらの突起20及び突起21が押さえとして用いられる。そしてこれらの突起20及び突起21が永久磁石5の側面5a、5bと接触しないので、漏れ磁束を低減できる。
図10は、変形例3の他の例に係る第1積層鋼板51の1磁極分を拡大して示す拡大図である。第1積層鋼板51は、内周ブリッジ13とは別に、永久磁石5の内周側5aに磁石位置決め突起22を備えている。なお、内周ブリッジ13に永久磁石5の内周側5aに当接する突起を設けて、この突起により永久磁石5の内周側5aの位置決めを行ってもよい。
[第2の実施形態]
図11~図13を参照して、第2の実施形態に係る回転電機100のロータ3の構成を説明する。図11は、第2の実施形態に係る回転電機100のステータ1及びロータ3の径方向断面図を示す。ロータ3のこの断面における第3積層鋼板53は、V字状の磁石収納部9を設けたロータコア4と、V字状の磁石収納部9にV字状に配置されて1つの磁極を形成する複数の永久磁石5を備える。
図11~図13を参照して、第2の実施形態に係る回転電機100のロータ3の構成を説明する。図11は、第2の実施形態に係る回転電機100のステータ1及びロータ3の径方向断面図を示す。ロータ3のこの断面における第3積層鋼板53は、V字状の磁石収納部9を設けたロータコア4と、V字状の磁石収納部9にV字状に配置されて1つの磁極を形成する複数の永久磁石5を備える。
第1の実施形態では、磁石収納部9の周囲に、内周ブリッジ13や外周ブリッジ14を有する例を説明したが、第2の実施形態の第3積層鋼板53は、内周ブリッジ13や外周ブリッジ14を有しておらず、連結部19を設けている。
図12は、図11の破線11Aで囲ったロータ3の1磁極分の磁極付近の拡大図であり、第3積層鋼板53を示す。ロータ3を構成する複数枚の積層鋼板のうち、少なくとも1枚の積層鋼板は、第3積層鋼板53であり、図12に示すように、ポールピース部17を内周側で保持し、永久磁石5の内周側を拘束するブリッジや永久磁石5の外周側を拘束するブリッジの両方を持たない。永久磁石5の周囲にブリッジ部がないため、第1積層鋼板51よりも漏れ磁束を低減できる。第3積層鋼板53を第1の実施形態で示した第1積層鋼板51や第2積層鋼板52とともに積層することで、第1の実施形態で示した回転電機100よりもさらに低トルクリプル・高トルクな回転電機100を提供できる。この第3積層鋼板53も、第1積層鋼板51や第2積層鋼板52と同様、隣り合うポールピース部17の間に凹部18を設けておけば、トルクリプルを低減できる。ポールピース部17には、隣接して積層する積層鋼板同士を連結するための連結部19が設けられ、同種の連結部19を設けた第1積層鋼板51や第2積層鋼板52と積層することで、ポールピース部17を確実に固定する。連結部19の位置や形状等は第1の実施形態で説明したとおりである。
図13は、第2の実施形態の変形例に係る第3積層鋼板53の1磁極分を拡大して示す拡大図である。図13に示すように、ブリッジを形成しない程度に永久磁石5の外周側5bに当接して、磁石位置決め突起22を設けても良い。ブリッジを形成しないので、漏れ磁束を抑制して、永久磁石5の飛び出しを防止できる。
[第3の実施形態]
図14~図15を参照して、第3の実施形態である回転電機100のロータ3の構成を説明する。図14は、第3の実施形態に係る回転電機100の径方向断面図を示す。図15は、第3の実施形態に係る回転電機100のロータ3の磁極付近14Aの拡大図を示す。
図14~図15を参照して、第3の実施形態である回転電機100のロータ3の構成を説明する。図14は、第3の実施形態に係る回転電機100の径方向断面図を示す。図15は、第3の実施形態に係る回転電機100のロータ3の磁極付近14Aの拡大図を示す。
図14、図15に示すとおり、ロータ3を構成する複数枚の各積層鋼板54において、少なくとも1枚の積層鋼板54は、複数の磁石収納部9のうち、半数は永久磁石5の内周側5aを拘束する内周ブリッジ13を有する第1磁石収納部23であり、残りの半数は、永久磁石5の外周側5bを拘束する外周ブリッジ14を有する第2磁石収納部24である。この積層鋼板54を、1枚毎または数枚毎に所定の角度ずつ回転して積層する。すなわち、ロータコア4は、第1磁石収納部23および第2磁石収納部24を備えた複数枚の積層鋼板54を、ロータ3の軸を中心とする回転方向に所定角度ずつ互いにずらした状態で積層して形成される。このようにロータ3を製作することで、永久磁石5の飛び出しを防止しつつ、外周ブリッジ14の数を減らし、内周ブリッジ13の数を増やすことができ、第1の実施形態と同様の効果を得ることができる。
図14と図15では、第1磁石収納部23を持つ磁極数と、第2磁石収納部24を持つ磁極数を同数にしているが、ロータ3の機械強度を満たす範囲で、第2磁石収納部24を持つ磁極数を減らし、第1磁石収納部23を持つ磁極数を増やせば、回転電機100の磁気特性をさらに向上できる。第3の実施形態では、1種類の積層鋼板54を積層して製造するため、積層鋼板54を打ち抜く金型の数を減らすこともできる。図14、図15ではV字型の埋め込み磁石式回転電機を例に取り説明したが、磁石収納部がI字状に配置された後述するスポーク式埋め込み磁石型回転電機についても、本技術を適用できる。
[第4の実施形態]
図16~図18を参照して、第4の実施形態である回転電機100のロータ3の構成を説明する。図16~図18は、第4の実施形態に係る回転電機100のロータ3の1磁極分の拡大図を示す。図16、図17、図18が、第1の実施形態及び第2の実施形態における、第1積層鋼板51、第2積層鋼板52、第3積層鋼板53に、それぞれ対応している。第1の実施形態の第1積層鋼板51や第2の実施形態の第3積層鋼板53においては、永久磁石5の磁化方向15に沿う外周側の側面5bがステータ1とロータ3の間のエアギャップ12に開放されている。そのため、振動などで永久磁石5が破損した場合、開放部より微小な永久磁石5の破片は、エアギャップ12中に飛び出し、回転中の回転電機100がロックする懼れがある。
図16~図18を参照して、第4の実施形態である回転電機100のロータ3の構成を説明する。図16~図18は、第4の実施形態に係る回転電機100のロータ3の1磁極分の拡大図を示す。図16、図17、図18が、第1の実施形態及び第2の実施形態における、第1積層鋼板51、第2積層鋼板52、第3積層鋼板53に、それぞれ対応している。第1の実施形態の第1積層鋼板51や第2の実施形態の第3積層鋼板53においては、永久磁石5の磁化方向15に沿う外周側の側面5bがステータ1とロータ3の間のエアギャップ12に開放されている。そのため、振動などで永久磁石5が破損した場合、開放部より微小な永久磁石5の破片は、エアギャップ12中に飛び出し、回転中の回転電機100がロックする懼れがある。
本実施形態では、図16~図18に示すとおり、永久磁石5の磁化方向15に沿う外周側の側面5bを覆うように、紙やテープなどの永久磁石5の飛散防止部材25で永久磁石5の表面を保護する。これにより、永久磁石5の表面の破損を防止し、たとえ破損したとしても永久磁石5の破片が飛散することを防止することができる。この永久磁石5の飛散防止部材25は、図17の外周ブリッジ14を持つ第2積層鋼板52が積層されることにより、永久磁石5の表面からはがれることなく、確実に固定できる。飛散防止部材25の形状は、図16~図18に示すとおり、永久磁石5の磁化方向15に沿う外周側の側面5bを含む周方向の一部を覆うようにしても良いし、永久磁石5の周方向全体または永久磁石5の全体を覆っても良い。
[第5の実施形態]
図19~図21を参照して、第5の実施形態である回転電機100のロータ3の構成を説明する。図19~図21は、第5の実施形態に係る回転電機100のロータ3の径方向断面図を示す。I字状の磁石収納部9を設けたロータコア4と、I字状の磁石収納部9にI字状に配置されて1つの磁極を形成する永久磁石5とを備えた、いわゆるスポーク式埋め込み磁石型回転電機のロータ3である。図19、図20、図21が、第1の実施形態及び第2の実施形態における、第1積層鋼板51、第2積層鋼板52、第3積層鋼板53に、それぞれ対応している。V字状の磁石配置に対し、I字状の磁石配置とすることで、磁石の厚さは2倍になるが、磁石個数を半分にできる。その結果、磁石の径方向断面積を減らさずに、モータの極数(すなわち磁石の個数)を増やすことができるため、多極にして高トルクのモータを設計することができる。
図19~図21を参照して、第5の実施形態である回転電機100のロータ3の構成を説明する。図19~図21は、第5の実施形態に係る回転電機100のロータ3の径方向断面図を示す。I字状の磁石収納部9を設けたロータコア4と、I字状の磁石収納部9にI字状に配置されて1つの磁極を形成する永久磁石5とを備えた、いわゆるスポーク式埋め込み磁石型回転電機のロータ3である。図19、図20、図21が、第1の実施形態及び第2の実施形態における、第1積層鋼板51、第2積層鋼板52、第3積層鋼板53に、それぞれ対応している。V字状の磁石配置に対し、I字状の磁石配置とすることで、磁石の厚さは2倍になるが、磁石個数を半分にできる。その結果、磁石の径方向断面積を減らさずに、モータの極数(すなわち磁石の個数)を増やすことができるため、多極にして高トルクのモータを設計することができる。
図19に示すように、第1積層鋼板51は、I字状の磁石収納部9で区分されたポールピース部17を有し、このポールピース部17をロータの内周側で保持する内周ブリッジ13を有する。内周ブリッジ13は、ポールピース部17を半径方向で保持する内周ブリッジ13aとポールピース部17を周方向で保持する内周ブリッジ13bとを有する。永久磁石5の磁化方向15に沿う永久磁石5の側面のうちロータ3の外周側の側面5bは第1積層鋼板51と接触せず、磁石収納部9はステータ1との間に形成されるエアギャップ12に連通する。
ここで、内周ブリッジ13aと内周ブリッジ13bの機械的、磁気的な特徴について述べる。ポールピース部17に作用する遠心力に対し、内周ブリッジ13aにかかる応力は引っ張り応力であり、内周ブリッジ13bにかかる応力は外周ブリッジ14(図20参照)と同様に曲げ応力と近似できる。そのため、内周ブリッジ13bより内周ブリッジ13aの方が、機械強度に優れ、ブリッジ幅を細くしたり、ブリッジ数を減らすことができる。一方、単純に内周ブリッジ13aと内周ブリッジ13bのブリッジ幅とブリッジ長さが同じと仮定すると、漏れ磁束が内周ブリッジ13aを通る磁路長よりも内周ブリッジ13bを通る磁路長の方が、通過するブリッジの数が半分になるため短くなる。そのため、内周ブリッジ13bの方が、内周ブリッジ13aよりも磁気抵抗が小さくなり漏れ磁束が大きい。以上より、内周ブリッジ13aと内周ブリッジ13bのどちらか一方あるいは両方の個数や幅を減少させれば、漏れ磁束を低減できる。また、ロータ3には慣性や漏れ磁束の低減のため、肉抜き穴60が開けられており、その外縁の一部は内周ブリッジ13aと内周ブリッジ13bから成る。そのため、内周ブリッジ13aと内周ブリッジ13bの機械強度や磁気特性は、この肉抜き穴60の形状にも依存する。図19のように、内周ブリッジ13a(すなわち肉抜き穴60の周方向外縁)は、回転時の過渡な応力集中を避けるため、内周ブリッジ13bではなくポールピース17の内周側に接続されていることが望ましい。
図20に示すように、第2積層鋼板52は、永久磁石5の外周側の側面5bが外周ブリッジ14で拘束されているため、外周ブリッジ14への漏れ磁束は発生するが、遠心力による永久磁石5の飛び出しを防止することができる。図20の第2積層鋼板52において、内周ブリッジ13aや内周ブリッジ13bは、ロータ3の強度上必要な最低限の本数まで減らすこともできる。一例として、図20の第2積層鋼板52では、内周ブリッジ13aの本数を、図19の第1積層鋼板51の半分にして、内周ブリッジ13bの本数を第1積層鋼板51と同数にしている。機械強度の裕度に応じて、内周ブリッジ13aの本数を増減させることもできる。他の例として、第2積層鋼板52では、内周ブリッジ13bのみ、図19の第1積層鋼板51より減らしても良いし、内周ブリッジ13aと内周ブリッジ13bの両方を図19の第1積層鋼板51より減らしても良いし、内周ブリッジ13aと内周ブリッジ13bを全て無くしても良い。内周ブリッジ13aを多用すれば、機械強度を上げることができる。一方、内周ブリッジ13bを多用すれば、漏れ磁束を効果的に減らすことができる。
図21に示すように、第3積層鋼板53は、永久磁石5の外周側の側面5bを拘束する外周ブリッジ14やポールピース部17をロータ3の内周側で半径方向に保持する内周ブリッジ13aを持たず、ポールピース部17をロータの内周側で周方向に保持する内周ブリッジ13bと連結部19を備える。連結部19は、磁極の一つおきに設けた例を示したが、ロータ3の強度に応じて増減できる。永久磁石5の周囲にあるブリッジは内周ブリッジ13bのみのため、図19の第2積層鋼板52よりも漏れ磁束を低減できる。また、図21の第3積層鋼板53では、各ポールピース部17が内周ブリッジ13bを介して連結しているため、ポールピース部17のがたつきを抑制し、ポールピース部17のがたつきに伴うコギングトルクやトルクリプルの発生を抑制できる。図21は1例であり、第3積層鋼板53の他の例として、内周ブリッジ13bの本数を減らしても良いし、内周ブリッジ13bを持たない代わりに内周ブリッジ13aを備えても良いし、内周ブリッジ13aと内周ブリッジ13bの両方が無くても良い。内周ブリッジ13bの本数を減らしたり無くす場合は、ポールピース部17のがたつきや積層した時の位置ずれを抑制するため、各ポールピース部17に連結部19を備えて、各積層鋼板を強固に連結して積層することが望ましい。
[第6の実施形態]
図22~図24を参照して、第6の実施形態である回転電機100のロータ3の構成を説明する。図22~図24は、第6の実施形態に係る回転電機100のロータ3の径方向断面図を示す。ロータ3が、ロータコア4と、複数の永久磁石5と、1対の永久磁石5を有する磁極間に形成された軟磁性材からなる複数の疑似磁極26を有する、いわゆるコンシクエントポール式回転電機である。図22、図23、図24が、第1の実施形態及び第2の実施形態における、第1積層鋼板51、第2積層鋼板52、第3積層鋼板53に、それぞれ対応している。コンシクエントポール式回転電機は、ロータ3の磁極が、軟磁性材料からなる疑似磁極26と永久磁石5とで構成されるため、使用する永久磁石5の量を少なくできる。
図22~図24を参照して、第6の実施形態である回転電機100のロータ3の構成を説明する。図22~図24は、第6の実施形態に係る回転電機100のロータ3の径方向断面図を示す。ロータ3が、ロータコア4と、複数の永久磁石5と、1対の永久磁石5を有する磁極間に形成された軟磁性材からなる複数の疑似磁極26を有する、いわゆるコンシクエントポール式回転電機である。図22、図23、図24が、第1の実施形態及び第2の実施形態における、第1積層鋼板51、第2積層鋼板52、第3積層鋼板53に、それぞれ対応している。コンシクエントポール式回転電機は、ロータ3の磁極が、軟磁性材料からなる疑似磁極26と永久磁石5とで構成されるため、使用する永久磁石5の量を少なくできる。
図22に示すように、第1積層鋼板51は、永久磁石5の磁化方向15に沿う永久磁石5の側面のうちロータ3の内周側の側面5aを拘束する内周ブリッジ13を有する。
図23に示すように、第2積層鋼板52は、永久磁石5の外周側5bが外周ブリッジ14で拘束されているため、外周ブリッジ14への漏れ磁束は発生するが、遠心力による永久磁石5の飛び出しを防止することができる。
図24に示すように、第3積層鋼板53は、永久磁石5の内周側を拘束するブリッジや永久磁石5の外周側を拘束するブリッジの両方を持たず、連結部19を備える。
図23に示すように、第2積層鋼板52は、永久磁石5の外周側5bが外周ブリッジ14で拘束されているため、外周ブリッジ14への漏れ磁束は発生するが、遠心力による永久磁石5の飛び出しを防止することができる。
図24に示すように、第3積層鋼板53は、永久磁石5の内周側を拘束するブリッジや永久磁石5の外周側を拘束するブリッジの両方を持たず、連結部19を備える。
第1の実施形態~第6の実施形態では、V字状の磁石収納部9に永久磁石5を配置した例や、I字状の磁石収納部9に永久磁石5を配置した例で説明した。しかし、本発明はこれらに限定せず、例えば、U字状の磁石収納部9にU字状の永久磁石5を配置してもよく、U字状に限らずその他の形状であってもよい。
[第7の実施形態]
図25を参照して、第7の実施形態である回転電機100の駆動システムの構成を説明する。第1の実施形態から第6の実施形態で示したロータ3を備えた回転電機100は、同一のインバータで駆動させても良いし、別のインバータで駆動させても良い。別のインバータで駆動させた場合、片方のインバータが故障した際でも、もう片方のインバータで回転電機100を駆動させることができ、緊急時のフェールセーフの観点から有効である。図25に本実施形態における回転電機100の駆動システムを示す。
図25を参照して、第7の実施形態である回転電機100の駆動システムの構成を説明する。第1の実施形態から第6の実施形態で示したロータ3を備えた回転電機100は、同一のインバータで駆動させても良いし、別のインバータで駆動させても良い。別のインバータで駆動させた場合、片方のインバータが故障した際でも、もう片方のインバータで回転電機100を駆動させることができ、緊急時のフェールセーフの観点から有効である。図25に本実施形態における回転電機100の駆動システムを示す。
図2等で示した10極60スロットの回転電機100において、U相、V相、W相を2つのグループに分け、第1インバータ41により、U11~U15相、V11~V15相、W11~W15相が駆動され、第2インバータ42により、U21~U25相、V21~V25相、W21~W25相が駆動される。なお、2つのインバータで駆動する例を示したが、U相、V相、W相を複数のグループに分け、複数のインバータで駆動してもよい。
[第8の実施形態]
図26を参照して、第8の実施形態であるEPS装置について説明する。第1の実施形態から第6の実施形態で示した回転電機100を電動パワーステアリング装置(EPS装置)に適用した例である。このEPS装置は、ステアリングコラム付近にアシストトルクを発生させるための回転電機100を備えていることから、コラムアシスト式と呼ばれる。本方式のEPS装置は、ステアリングホイールSTと、ステアリングホイールSTの回転駆動力を検出するトルクセンサTSと、トルクセンサTSの出力に基づいて、アシストトルクを制御するECU(Electronic Control Unit)と、アシストルクを制御するECUの信号に基づいて、アシストルクを出力する回転電機100とを備える。
図26を参照して、第8の実施形態であるEPS装置について説明する。第1の実施形態から第6の実施形態で示した回転電機100を電動パワーステアリング装置(EPS装置)に適用した例である。このEPS装置は、ステアリングコラム付近にアシストトルクを発生させるための回転電機100を備えていることから、コラムアシスト式と呼ばれる。本方式のEPS装置は、ステアリングホイールSTと、ステアリングホイールSTの回転駆動力を検出するトルクセンサTSと、トルクセンサTSの出力に基づいて、アシストトルクを制御するECU(Electronic Control Unit)と、アシストルクを制御するECUの信号に基づいて、アシストルクを出力する回転電機100とを備える。
さらに、ECUおよび回転電機100のエネルギー供給源となる車載用バッテリーBAと、回転電機100の回転駆動力を歯車によって減速し、所望のトルクを出力するためのギア機構GEとを備える。さらに、ギア機構GEで発生したトルクを伝達するためのピニオンギアPNと、ピニオンギアPNとギア機構GEをつなぐための一つまたは複数のロッドROと、一つまたは複数のジョイントJTとを備える。
さらに、ピニオンギアPNに発生する回転駆動力を水平方向の力に変化するラックギアRCGと、ラックギアを覆うラックギアケースRCと、ラックケース内に塵などが入らないために設けられる第1のダストブーツDB1と第2のダストブーツDB2と、実際に舵取りが行われる第1のタイヤWH1と、第2のタイヤWH2と、ラック軸に発生する水平方向の力を第1のタイヤWH1に伝えるための第1のタイロッドTR1と、同じくラック軸に発生する水平方向の力を第2のタイヤWH2に伝えるための第2のタイロッドTR2とを備える。
次に、コラムアシスト式EPS装置の動作を説明する。ステアリングホイールSTを回転させると、その回転駆動力をトルクセンサTSが検出する。トルクセンサTSの検出信号に基づいて、ECUが所望のアシストトルクを発生させるための通電パターンを演算して、回転電機100に指令を出す。回転電機100はECUの指令に基づいて通電を行い、アシストトルクを発生させる。回転電機100に接続されたギア機構GEにより減速され、ロッドROとジョイントJTを介して、ピニオンギアPNに回転駆動力が伝達される。ピニオンギアPNはラックギアRCGと噛合っており、それによって、ピニオンギアPNの回転駆動力は車の進行方向に対して直角方向の推力に変換される。こうして発生した水平方向の推力は、タイロッドTR1およびTR2を介して、タイヤWH1およびWH2の舵取りを行う。
コラムアシスト式EPS装置の他に、ピニオンギアPN付近にアシストトルクを発生させるための回転電機100を備えているピニオンアシスト式EPS装置、ラックギアRCGに対してアシストトルクを発生させるための回転電機100が備えられているラックアシスト式EPS装置などがある。
以上で説明した様々なEPS装置では、重大事故に直結するため、破損した永久磁石5による回転電機100のロックは許されない。また、回転電機100の振動エネルギーが、ギア機構GE、ロッドRO、ピニオンギアPNなどの機械部品を介して、車室内に伝播し、運転席付近のパネルや内壁から音波として放出される。これを運転者が騒音(所謂、ジッパー音やファスナー音)として感じることになる。この騒音発生メカニズムは、回転電機100を車室内に配置したコラムアシスト式EPS装置、回転電機100をエンジンルーム内に配置するピニオンアシスト式、ラックアシスト式などのEPS装置に共通である。
第1の実施形態から第6の実施形態で示した回転電機100を装着したEPS装置によれば、高信頼の回転電機100のロック防止と、ステアリングホイール操作時のアシスト性能向上と、車室内の静音化を両立可能なEPS装置を提供できる。同様の効果は、EPS装置のみならず他の自動車補機システム、例えば、電動ブレーキシステムに適用した場合においても発揮することができる。
(効果の検証)
図27に、第2積層鋼板52のみを積層してなる比較例の回転電機100と第1の実施形態および第2の実施形態との対比結果を示す。回転電機100のトルクT1、トルクリプルT2、コギングトルクT3のそれぞれについて、比較例を1とした場合の、第1の実施形態および第2の実施形態における比を示す。これらの結果は、磁界解析によるシミュレーションを用いて計算したものである。ここで、第1の実施形態は比較例の第2積層鋼板52のうち80%を第1積層鋼板51で置き換えた回転電機100である。第2の実施形態は比較例の第2積層鋼板52のうち33%を第1積層鋼板51で置き換え、第2積層鋼板52のうち50%を第3積層鋼板53で置き換えた回転電機100である。
図27に、第2積層鋼板52のみを積層してなる比較例の回転電機100と第1の実施形態および第2の実施形態との対比結果を示す。回転電機100のトルクT1、トルクリプルT2、コギングトルクT3のそれぞれについて、比較例を1とした場合の、第1の実施形態および第2の実施形態における比を示す。これらの結果は、磁界解析によるシミュレーションを用いて計算したものである。ここで、第1の実施形態は比較例の第2積層鋼板52のうち80%を第1積層鋼板51で置き換えた回転電機100である。第2の実施形態は比較例の第2積層鋼板52のうち33%を第1積層鋼板51で置き換え、第2積層鋼板52のうち50%を第3積層鋼板53で置き換えた回転電機100である。
図27に示すように、比較例よりも第1の実施形態の方が、漏れ磁束が小さいため、トルクT1が増加し、トルクリプルT2とコギングトルクT3が低減することが確認できる。さらに、第1の実施形態よりも第2の実施形態の方が、漏れ磁束が小さくなるため、トルクT1が増加し、トルクリプルT2が低減する。コギングトルクT3に関しては、位相が反転したために増加しているが、比較例に対しては低減していることが確認できる。
以上の実施形態では、10極60スロットの回転電機100について述べたが、任意の極数、スロット数の回転電機100に適用できる。また、ステータ巻線は、集中巻でも分布巻でも良い。
以上の実施形態では、10極60スロットの回転電機100について述べたが、任意の極数、スロット数の回転電機100に適用できる。また、ステータ巻線は、集中巻でも分布巻でも良い。
以上説明した実施形態によれば、次の作用効果が得られる。
(1)回転電機100のロータ3は、複数枚の積層鋼板により構成され複数の磁石収納部9を設けたロータコア4と、複数の磁石収納部9にそれぞれ収納されて磁極を形成する複数の永久磁石5とを備え、複数枚の積層鋼板は、ロータ3の外周側であって磁石収納部9で区分された複数のポールピース部17を備え、複数枚の積層鋼板のうち、少なくとも1枚の第1積層鋼板51は、ポールピース部17をロータ3の内周側で保持する内周ブリッジ13を備え、永久磁石5の磁化方向15に沿う永久磁石5の側面のうちロータ3の外周側の側面5bは第1積層鋼板51と接触せず、磁石収納部9がロータ3とステータ1との間に形成されるエアギャップ12に連通する。これにより、ロータコア4を形成する積層鋼板からの漏れ磁束を低減することで、回転電機100の低トルクリプル化、高トルク化を実現できる。
(1)回転電機100のロータ3は、複数枚の積層鋼板により構成され複数の磁石収納部9を設けたロータコア4と、複数の磁石収納部9にそれぞれ収納されて磁極を形成する複数の永久磁石5とを備え、複数枚の積層鋼板は、ロータ3の外周側であって磁石収納部9で区分された複数のポールピース部17を備え、複数枚の積層鋼板のうち、少なくとも1枚の第1積層鋼板51は、ポールピース部17をロータ3の内周側で保持する内周ブリッジ13を備え、永久磁石5の磁化方向15に沿う永久磁石5の側面のうちロータ3の外周側の側面5bは第1積層鋼板51と接触せず、磁石収納部9がロータ3とステータ1との間に形成されるエアギャップ12に連通する。これにより、ロータコア4を形成する積層鋼板からの漏れ磁束を低減することで、回転電機100の低トルクリプル化、高トルク化を実現できる。
(2)回転電機100のロータ3は、複数枚の積層鋼板により構成され複数の磁石収納部23、24を設けたロータコアと、複数の磁石収納部23、24にそれぞれ収納されて磁極を形成する複数の永久磁石5とを備え、複数枚の積層鋼板のうち、少なくとも1枚は、永久磁石5の磁化方向15に沿う永久磁石5の側面のうちロータ3の内周側の側面5aを拘束する内周ブリッジ13を有する第1磁石収納部23、および永久磁石5の側面のうちロータ3の外周側の側面5bを拘束する外周ブリッジ14を有する第2磁石収納部24を備える。これにより、ロータコア4を形成する積層鋼板からの漏れ磁束を低減することで、回転電機100の低トルクリプル化、高トルク化を実現できる。
以上、本発明の実施形態について詳述したが、本発明は、第1~第8の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。例えば、各実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。
1…ステータ、2…ステータコア、3…ロータ、4…ロータ-コア、5…永久磁石、6…コイルエンド部、7…駆動軸、8…フレーム、9…磁石収納部、10…コイル、11…ティース、12…エアギャップ、13…内周ブリッジ、14…外周ブリッジ、15…磁化方向、17…ポールピース部、18…凹部、19…連結部、20・21…突起、22…磁石位置決め突起、23…第1磁石収納部、24…第2磁石収納部、25…飛散防止部材、26…疑似磁極、41…第1インバータ、42…第2インバータ、51…第1積層鋼板、52…第2積層鋼板、53…第3積層鋼板、60…肉抜き穴、100…回転電機、ST…ステアリングホイール、TS…トルクセンサ、GE…ギア機構、ECU…制御装置、BA…車載用バッテリー、JT…ジョイント、RO…ロッド、RCG…ラックギア、RC…ラックギアケース、PN…ピニオンギア、DB…ダストブーツ、TR…タイロッド、WH…タイヤ、BS…ボールスクリュー、BT…ベルト。
Claims (18)
- 複数枚の積層鋼板により構成され複数の磁石収納部を設けたロータコアと、前記複数の磁石収納部にそれぞれ収納されて磁極を形成する複数の永久磁石とを備えた回転電機のロータにおいて、
前記複数枚の積層鋼板は、前記ロータの外周側であって前記磁石収納部で区分された複数のポールピース部を備え、
前記複数枚の積層鋼板のうち、少なくとも1枚の第1積層鋼板は、前記ポールピース部を前記ロータの内周側で保持する内周ブリッジを備え、
前記永久磁石の磁化方向に沿う前記永久磁石の側面のうち前記ロータの外周側の側面は前記第1積層鋼板と接触せず、前記磁石収納部が前記ロータとステータとの間に形成されるエアギャップに連通する回転電機のロータ。 - 請求項1に記載の回転電機のロータにおいて、
前記磁石収納部は、V字状に配置され、前記永久磁石は、前記V字状に配置された前記磁石収納部に収納されて磁極を形成する回転電機のロータ。 - 請求項1に記載の回転電機のロータにおいて、
前記磁石収納部は、I字状に配置され、前記永久磁石は、前記I字状に配置された前記磁石収納部に収納されて磁極を形成する回転電機のロータ。 - 請求項1から請求項3までのいずれか一項に記載の回転電機のロータにおいて、
前記複数枚の積層鋼板のうち、少なくとも1枚の第2積層鋼板は、前記永久磁石の前記外周側の側面を拘束する外周ブリッジを備える回転電機のロータ。 - 請求項4に記載の回転電機のロータにおいて、
前記第2積層鋼板は、前記ロータの軸方向両端部付近に配置される回転電機のロータ。 - 請求項1から請求項3までのいずれか一項に記載の回転電機のロータにおいて、
前記ポールピース部は、隣接して積層する積層鋼板を連結する連結部を備える回転電機のロータ。 - 請求項6に記載の回転電機のロータにおいて、
前記連結部は、前記ポールピース部の重心付近に設けられる回転電機のロータ。 - 請求項6に記載の回転電機のロータにおいて、
前記連結部における前記ロータの径方向断面形状は、前記ロータの径方向が前記ロータの周方向より長く形成される回転電機のロータ。 - 請求項6に記載の回転電機のロータにおいて、
前記連結部は、カシメ、接着剤、リベット、ボルト、ねじ、ビスのいずれか一つにより形成される回転電機のロータ。 - 請求項1に記載の回転電機のロータにおいて、
前記ポールピース部を備える前記積層鋼板は、周方向に隣り合う前記ポールピース部の間に、前記ポールピース部の外周面よりも内周側に凹んだ凹部が形成されている回転電機のロータ。 - 請求項4に記載の回転電機のロータにおいて、
前記複数枚の積層鋼板のうち、少なくとも1枚の第3積層鋼板は、前記内周ブリッジおよび前記外周ブリッジを有しない回転電機のロータ。 - 請求項11に記載の回転電機のロータにおいて、
前記第1積層鋼板、もしくは前記第3積層鋼板の少なくとも一つの積層鋼板は、前記永久磁石の前記外周側の側面を拘束する突起を備える回転電機のロータ。 - 複数枚の積層鋼板により構成され複数の磁石収納部を設けたロータコアと、前記複数の磁石収納部にそれぞれ収納されて磁極を形成する複数の永久磁石とを備えた回転電機のロータにおいて、
前記複数枚の積層鋼板のうち、少なくとも1枚は、前記永久磁石の磁化方向に沿う永久磁石の側面のうち前記ロータの内周側の側面を拘束する内周ブリッジを有する第1磁石収納部、および前記永久磁石の側面のうち前記ロータの外周側の側面を拘束する外周ブリッジを有する第2磁石収納部を備える回転電機のロータ。 - 請求項13に記載の回転電機のロータにおいて、
前記磁石収納部は、V字状に配置され、前記永久磁石は、前記V字状に配置された前記第1磁石収納部および前記第2磁石収納部に収納されて磁極を形成する回転電機のロータ。 - 請求項13に記載の回転電機のロータにおいて、
前記磁石収納部は、I字状に配置され、前記永久磁石は、前記I字状に配置された前記第1磁石収納部および前記第2磁石収納部に収納されて磁極を形成する回転電機のロータ。 - 請求項13から請求項15までのいずれか一項に記載の回転電機のロータにおいて、
前記ロータコアは、前記第1磁石収納部および前記第2磁石収納部を備えた複数枚の積層鋼板を、前記ロータの軸を中心とする回転方向に所定角度ずつ互いにずらした状態で積層して形成される回転電機のロータ。 - 請求項1または請求項12に記載の回転電機のロータにおいて、
前記磁極の間に軟磁性材から成る疑似磁極が形成されている回転電機のロータ。 - 請求項1または請求項13に記載の回転電機のロータを備えた回転電機において、
前記回転電機は、2つ以上のインバータで駆動される回転電機。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-134955 | 2018-07-18 | ||
JP2018134955A JP2020014322A (ja) | 2018-07-18 | 2018-07-18 | 回転電機のロータおよび回転電機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020017262A1 true WO2020017262A1 (ja) | 2020-01-23 |
Family
ID=69164298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/025301 WO2020017262A1 (ja) | 2018-07-18 | 2019-06-26 | 回転電機のロータおよび回転電機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020014322A (ja) |
WO (1) | WO2020017262A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022085316A1 (ja) * | 2020-10-22 | 2022-04-28 | 株式会社ミツバ | ブラシレスモータ |
WO2022114075A1 (ja) * | 2020-11-26 | 2022-06-02 | 株式会社デンソー | ロータ及び回転電機 |
JP7124247B1 (ja) * | 2021-11-16 | 2022-08-23 | 株式会社東芝 | 回転電機の回転子 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7318138B1 (ja) | 2022-01-13 | 2023-07-31 | 株式会社東芝 | 回転子および回転電機 |
WO2024034149A1 (ja) | 2022-08-10 | 2024-02-15 | 株式会社 東芝 | 永久磁石回転子および永久磁石回転電機 |
CN118633226A (zh) | 2022-10-17 | 2024-09-10 | 株式会社东芝 | 埋入磁铁式转子以及埋入磁铁式旋转电机 |
JPWO2024095452A1 (ja) | 2022-11-04 | 2024-05-10 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01146773U (ja) * | 1988-03-14 | 1989-10-11 | ||
JPH06245451A (ja) * | 1993-02-15 | 1994-09-02 | Fanuc Ltd | 同期電動機のロータ |
JP2006050820A (ja) * | 2004-08-05 | 2006-02-16 | Asmo Co Ltd | 回転電機 |
JP2013187954A (ja) * | 2012-03-06 | 2013-09-19 | Mitsubishi Electric Corp | 回転電機 |
WO2016139719A1 (ja) * | 2015-03-02 | 2016-09-09 | 三菱電機株式会社 | 回転電機の回転子、及びモータ |
CN106385152A (zh) * | 2016-10-26 | 2017-02-08 | 深圳市正宇电动汽车技术有限公司 | 一种低极间漏磁的永磁电机转子 |
WO2018025407A1 (ja) * | 2016-08-05 | 2018-02-08 | 三菱電機株式会社 | コンシクエントポール型の回転子、電動機および空気調和機 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2795576B2 (ja) * | 1992-02-28 | 1998-09-10 | ファナック株式会社 | 同期電動機のロータ |
EP2568578A3 (en) * | 2011-09-07 | 2017-12-06 | Samsung Electronics Co., Ltd. | Motor and washing machine having the same |
US9246364B2 (en) * | 2012-10-15 | 2016-01-26 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor and methods thereof |
-
2018
- 2018-07-18 JP JP2018134955A patent/JP2020014322A/ja active Pending
-
2019
- 2019-06-26 WO PCT/JP2019/025301 patent/WO2020017262A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01146773U (ja) * | 1988-03-14 | 1989-10-11 | ||
JPH06245451A (ja) * | 1993-02-15 | 1994-09-02 | Fanuc Ltd | 同期電動機のロータ |
JP2006050820A (ja) * | 2004-08-05 | 2006-02-16 | Asmo Co Ltd | 回転電機 |
JP2013187954A (ja) * | 2012-03-06 | 2013-09-19 | Mitsubishi Electric Corp | 回転電機 |
WO2016139719A1 (ja) * | 2015-03-02 | 2016-09-09 | 三菱電機株式会社 | 回転電機の回転子、及びモータ |
WO2018025407A1 (ja) * | 2016-08-05 | 2018-02-08 | 三菱電機株式会社 | コンシクエントポール型の回転子、電動機および空気調和機 |
CN106385152A (zh) * | 2016-10-26 | 2017-02-08 | 深圳市正宇电动汽车技术有限公司 | 一种低极间漏磁的永磁电机转子 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022085316A1 (ja) * | 2020-10-22 | 2022-04-28 | 株式会社ミツバ | ブラシレスモータ |
WO2022114075A1 (ja) * | 2020-11-26 | 2022-06-02 | 株式会社デンソー | ロータ及び回転電機 |
JP7124247B1 (ja) * | 2021-11-16 | 2022-08-23 | 株式会社東芝 | 回転電機の回転子 |
WO2023089667A1 (ja) * | 2021-11-16 | 2023-05-25 | 株式会社 東芝 | 回転電機の回転子 |
Also Published As
Publication number | Publication date |
---|---|
JP2020014322A (ja) | 2020-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020017262A1 (ja) | 回転電機のロータおよび回転電機 | |
US9172278B2 (en) | Permanent magnet type rotary electric machine and electric power steering apparatus using the same | |
JP4834386B2 (ja) | 永久磁石型モータ及びそれを使用した電動パワーステアリング装置 | |
JP6307324B2 (ja) | ブラシレスモータおよびこれを用いた電動パワーステアリング装置 | |
WO2014027630A1 (ja) | マグネット補助型リラクタンスモータ用ロータ及びブラシレスモータ | |
JP2018074767A (ja) | 永久磁石同期モータ | |
WO2010087103A1 (ja) | アキシャルギャップ型モータ及びそのロータの製造方法 | |
JP6257212B2 (ja) | ブラシレスモータ | |
US20140084741A1 (en) | Rotating electrical machine and electric power steering system using the same | |
WO2019107104A1 (ja) | 回転電機及びそのロータ製作方法並びに自動車用電動補機装置 | |
WO2014192130A1 (ja) | 多重多相巻線交流回転電機および電動パワーステアリング装置 | |
JP6900846B2 (ja) | ステータコア | |
WO2019064885A1 (ja) | ロータコア、ロータ、回転電機、自動車用電動補機システム | |
JP5887808B2 (ja) | 電動パワーステアリング用電動機及び電動パワーステアリング装置 | |
US20140084728A1 (en) | Rotating electrical machine and electric power steering system using the same | |
WO2019064923A1 (ja) | ロータコア、ロータ、回転電機、自動車用電動補機システム | |
JP4500843B2 (ja) | アキシャルギャップ型モータ | |
WO2017104436A1 (ja) | 永久磁石同期モータ | |
JP2006050709A (ja) | 電動パワーステアリング装置 | |
CN113016121A (zh) | 旋转电机及汽车用电动辅机系统 | |
JP2006121821A (ja) | シンクロナスリラクタンスモータおよびシンクロナスリラクタンスモータを搭載した電動ステアリング装置 | |
JP2012050271A (ja) | アキシャルギャップ型モータ | |
US20210075273A1 (en) | Rotating electric machine and electric power steering device having rotating electric machine | |
JP7219100B2 (ja) | 回転電機及びこの回転電機を搭載した自動車用電動補機装置 | |
WO2019044206A1 (ja) | 回転電機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19837978 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19837978 Country of ref document: EP Kind code of ref document: A1 |