WO2023089667A1 - 回転電機の回転子 - Google Patents

回転電機の回転子 Download PDF

Info

Publication number
WO2023089667A1
WO2023089667A1 PCT/JP2021/042107 JP2021042107W WO2023089667A1 WO 2023089667 A1 WO2023089667 A1 WO 2023089667A1 JP 2021042107 W JP2021042107 W JP 2021042107W WO 2023089667 A1 WO2023089667 A1 WO 2023089667A1
Authority
WO
WIPO (PCT)
Prior art keywords
straight line
center
point
bridge
hole
Prior art date
Application number
PCT/JP2021/042107
Other languages
English (en)
French (fr)
Inventor
秀範 内田
大介 山岸
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2022520567A priority Critical patent/JP7124247B1/ja
Priority to PCT/JP2021/042107 priority patent/WO2023089667A1/ja
Priority to CN202180042601.7A priority patent/CN116458033A/zh
Priority to US18/317,746 priority patent/US20230291255A1/en
Publication of WO2023089667A1 publication Critical patent/WO2023089667A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the embodiment of the present invention relates to a rotor of a rotating electric machine.
  • Permanent magnet-type rotating electric machines using permanent magnets are widely used as rotating electric machines for vehicles.
  • the rotor is rotated by a rotating magnetic field generated by the stator.
  • a rotating electric machine is known in which the inner and outer peripheral sides of a rotor core are connected by a center bridge, and magnet holes in the rotor core communicate with an air gap between the rotor and the stator.
  • An object of the embodiments is to provide a rotor of a rotating electrical machine that can suppress leakage magnetic flux and reduce stress due to centrifugal force.
  • a cylindrical shaft and a plurality of annular magnetic steel sheets having an inner hole into which the shaft is inserted are laminated in the central axis direction of the shaft, and each first magnet hole penetrates to the outer peripheral surface of the cylindrical shape. and a rotor core having second magnet holes, first permanent magnets forming magnetic poles in the rotor core and inserted into the first magnet holes and second permanent magnets inserted into the second magnet holes , wherein an axis passing through the central axis of the shaft and the centers of the magnetic poles in the circumferential direction is defined as a d-axis, and the first angle closest to the d-axis of the first permanent magnet and the d
  • a straight line passing through the second corner closest to the axis is defined as a first straight line, a straight line passing through the first angle and the central axis is defined as a second straight line, and a straight line passing through the second angle and the central axis is defined as a third straight line.
  • the A bridge which is a solid wall portion of the rotor core, exists within a region surrounded by one straight line, the second straight line, the third straight line, and the fourth straight line, and the first straight line and the fourth straight line
  • a straight line equidistant from is defined as a fifth straight line
  • a point on the fifth straight line among points on the inner wall of the first magnet hole is defined as a third point
  • a point on the inner wall of the second magnet hole is defined by the fifth straight line.
  • a point on five straight lines is defined as a fourth point, a point equidistant from said third and fourth points on said fifth straight line is defined as an intermediate point, and a straight line passing through said intermediate point and said central axis is defined as the center of the bridge.
  • a line segment connecting the first point and the second point on the fourth straight line is defined as a bridge inner peripheral side end, the bridge inner peripheral side end of the rotor core, the bridge center line, the bridge center line,
  • the circumscribed circle of the rotor core and the hole and notch existing in the first region surrounded by the inner wall of the first magnet hole are Km
  • the area of the region surrounded by the ridgeline of the hole Km and the notch Km are Let Skm be the area of the region surrounded by the ridgelines and the circumscribed circle of the rotor core, and the region surrounded by the ridgelines of the holes Km and the ridgelines of the cutouts Km and the circumscribed circle of the rotor core
  • Kgm be the center of gravity when actual meat exists in the area
  • rm be the distance from the central axis to the center of gravity Kgm
  • let rbm be the distance from the intersection of the bridge center line and the fourth straight line to the center of gravity Kgm
  • Jgn be the center of gravity when actual meat is present
  • Rn be the distance from the center axis to the center of gravity Jgn
  • Rbn be the distance from the intersection to the center of gravity Jgn
  • the straight line passing through the center axis and the center of gravity Jgn be the eighth line.
  • the first region and the second region are asymmetric with respect to the d-axis, and the rotor core has a structure that satisfies the following formula: , the rotor of a rotating electric machine.
  • a cylindrical shaft and a plurality of annular magnetic steel sheets having an inner hole into which the shaft is inserted are laminated in the central axis direction of the shaft, and each first magnet hole penetrates to the outer peripheral surface of the cylindrical shape. and a second magnet hole, and a hole positioned between the first magnet hole and the second magnet hole in the circumferential direction; a magnetic pole is formed in the rotor core; a first permanent magnet inserted into the first magnet hole and a second permanent magnet inserted into the second magnet hole; and a straight line passing through a first angle closest to the d-axis of the first permanent magnet and a second angle closest to the d-axis of the second permanent magnet is defined as a first straight line, and the first angle and the center
  • a straight line passing through the axis is defined as a second straight line
  • a straight line passing through the second corner and the central axis is defined as a third straight line
  • points on the inner wall of the first magnet hole are defined as the second straight line and the third straight line.
  • the first point is the point on the innermost side between A region surrounded by the first straight line, the second straight line, the third straight line, and the fourth straight line, where a straight line passing through the first point and the second point is a fourth straight line.
  • a fifth straight line equidistant from the first straight line and the fourth straight line is defined as a straight line equidistant from the first straight line and the fourth straight line, and the inner wall of the first magnet hole
  • a point on the fifth straight line among the upper points is a third point, and a point on the fifth straight line between the second straight line and the d-axis among the points on the inner wall of the hole is the fourth point.
  • a point on the fifth straight line is defined as a sixth point
  • a point equidistant from the third point and the fourth point on the fifth straight line is defined as a first midpoint
  • a point on the fifth straight line is defined as the fifth point.
  • a straight line passing through the first intermediate point and the central axis is defined as a first bridge center line
  • the second intermediate point and the central axis are defined as A straight line is a second bridge center line
  • a line segment connecting the first point and the second point on the fourth straight line is a bridge inner peripheral end
  • the bridge inner peripheral end of the rotor core is Let Km be holes and notches present in a first region surrounded by the first bridge center line, the circumscribed circle of the rotor core, and the inner wall of the first magnet hole, and the ridgeline of the hole Km
  • Skm be the area of the region surrounded by the ridgelines of the cutouts Km and the circumscribed circle of the rotor core, and the region surrounded by the ridgelines of the holes Km, the ridgelines of the cutouts Km, and the rotor core.
  • Kgm be the center of gravity when there is real meat in the area surrounded by the circumscribed circle
  • rm be the distance from the center axis to the center of gravity Kgm
  • first bridge center line and the fourth straight line Let rbm be the distance from the intersection to the center of gravity Kgm, let a sixth straight line pass through the central axis and the center of gravity Kgm, let ⁇ km be the angle between the sixth straight line and the center line of the first bridge, and let ⁇ km be the first intersection point.
  • Kgm is defined as a seventh straight line
  • the angle between the seventh straight line and the center line of the first bridge is defined as ⁇ bkm (where m is a natural number)
  • Jn be holes and notches present in a second region surrounded by the inner peripheral edge of the bridge, the second bridge center line, the circumscribed circle of the rotor core, and the inner wall of the second magnet hole.
  • the area surrounded by the ridgelines of the hole Jn and the area of the area surrounded by the ridgelines of the notch Jn and the circumscribed circle of the rotor core are Sjn, and the area surrounded by the ridgelines of the hole Jn and Let Jgn be the center of gravity when actual thickness exists in an area surrounded by the ridgeline of the notch Jn and the circumscribed circle of the rotor core, let Rn be the distance from the central axis to the center of gravity Jgn, and the center of the second bridge.
  • Rbn be the distance from the second intersection point of the line and the fourth straight line to the center of gravity Jgn
  • Rbn be the straight line passing through the center axis and the center of gravity Jgn
  • the eighth straight line be the distance between the eighth straight line and the center line of the second bridge.
  • the angle formed be ⁇ jn
  • the straight line passing through the second intersection point and the center of gravity Jgn be the ninth straight line
  • the angle formed by the ninth straight line and the center line of the second bridge be ⁇ bjn (however, the n are both natural numbers)
  • the first region and the second region are asymmetrical with respect to the d-axis
  • the rotor core has a structure satisfying the following formula.
  • FIG. 1 is a cross-sectional view of a rotating electric machine 1.
  • FIG. FIG. 2 is a cross-sectional view of the rotor 3 of the rotating electrical machine 1 shown in FIG. 1, taken along the line AB.
  • FIG. 3 is a cross-sectional view showing an enlarged rotor core 32 for one magnetic pole of the rotor 3.
  • FIG. 4 is a cross-sectional view showing an enlarged rotor 3 for one magnetic pole shown in FIG.
  • FIG. 5 is a cross-sectional view showing an enlarged rotor core 32 for one magnetic pole of the rotor 3.
  • FIG. 6 is a cross-sectional view showing an enlarged rotor 3 for one magnetic pole shown in FIG.
  • FIG. 7 is a cross-sectional view showing an enlarged rotor core 32 for one magnetic pole of the rotor 3.
  • FIG. 8 is a cross-sectional view showing an enlarged rotor 3 for one magnetic pole shown in FIG.
  • FIG. 1 is a cross-sectional view of a rotating electric machine 1.
  • the rotary electric machine 1 of the present embodiment is configured as an interior permanent magnet (IPM) rotary electric machine, and is applied to a drive motor or a generator in, for example, a hybrid vehicle (HEV) or an electric vehicle (EV).
  • the rotary electric machine 1 includes a substantially cylindrical stator 2, a substantially cylindrical rotor 3 in which permanent magnets are embedded, a housing 10 that accommodates the stator 2 and the rotor 3, and a cover fixed to the housing 10. 11 and.
  • the stator 2 includes a cylindrical stator core 21 and windings 22 attached to the stator core 21 .
  • the stator core 21 is configured as a laminated body in which a large number of magnetic materials, for example, annular electromagnetic steel plates, are concentrically laminated.
  • the housing 10 has a cylindrical inner peripheral surface 10A.
  • the stator core 21 is fixed to the inner peripheral surface 10A.
  • the structure of the stator 2 is not particularly limited, and general structures can be widely adopted.
  • the rotor 3 is positioned inside the stator 2 with a small gap (air gap) between itself and the stator 2 .
  • the rotor 3 includes a cylindrical shaft 31, a substantially cylindrical rotor core 32, and permanent magnets (not shown in FIG. 1).
  • the shaft 31 and rotor core 32 are configured to be rotatable around a central axis (rotational center) Rc.
  • Bearings 41 and 42 are attached to the shaft 31 .
  • Bearings 41 and 42 are fixed by housing 10 and cover 11 .
  • the shaft 31 is rotatably supported by the housing 10 and the cover 11 via bearings 41 and 42 around the central axis Rc.
  • the illustrated example simply shows an example of a bearing structure for supporting the shaft 31, and a detailed description of the structure is omitted.
  • the rotor core 32 is configured as a laminate in which a large number of magnetic material, for example, circular electromagnetic steel plates such as silicon steel, are laminated in the direction of the central axis Rc of the shaft 31 .
  • An outer peripheral surface 32S of the rotor core 32 is cylindrical and faces the inner peripheral surface 2S of the stator 2 with a small gap therebetween.
  • the rotor core 32 has an inner hole 32H at its center. The inner hole 32H axially penetrates the rotor core 32 .
  • the shaft 31 is inserted into the inner hole 32H.
  • rotor core 32 is fixed to shaft 31 by shrink fitting onto shaft 31 .
  • the axial direction corresponds to the direction in which the shaft 31 or central axis Rc shown in FIG. 1 extends.
  • the radial direction which will be described later, corresponds to the direction in which a straight line connecting the central axis Rc and the outer peripheral surface 32S of the rotor core 32 extends in a cross section perpendicular to the central axis Rc
  • the circumferential direction corresponds to the direction in which the straight line extends in the cross section. , correspond to directions along the circumference of the rotor 3 .
  • FIG. 2 is a cross-sectional view of the rotor 3 of the rotating electrical machine 1 shown in FIG. 1, taken along the line AB.
  • the rotor 3 has a plurality of magnetic poles, for example 8 magnetic poles.
  • the axis extending in the radial direction of the rotor core 32 through the boundary between the magnetic poles adjacent in the circumferential direction and the central axis Rc is referred to as the q-axis.
  • An axis separated by degrees, that is, an axis passing through the center of one magnetic pole in the circumferential direction and the central axis Rc is called a d-axis.
  • the direction in which the interlinking magnetic flux formed by the stator easily flows is called the q-axis.
  • the d-axis and the q-axis are provided alternately in the circumferential direction of the rotor core 32 and at predetermined phases.
  • One magnetic pole portion of the rotor core 32 refers to a region between two q-axes adjacent in the circumferential direction (circumferential angle region of 1/8 circumference).
  • the rotor 3 includes a shaft 31, a rotor core 32, and a plurality of permanent magnets M.
  • a plurality of permanent magnets M for example, two permanent magnets M, are inserted for each magnetic pole in the rotor core 32 .
  • two permanent magnets M are arranged across the d-axis.
  • the permanent magnet M is, for example, formed in an elongated flat plate shape with a rectangular cross section, and has a length substantially equal to the axial length of the rotor core 32 . That is, each permanent magnet M is embedded over substantially the entire length of the rotor core 32 .
  • the permanent magnet M may be configured by combining a plurality of magnets divided in the axial direction. Each permanent magnet M has a pair of long sides, a pair of short sides, and four corners in cross section.
  • the shape of the cross section of the permanent magnet M is not limited to a rectangular shape (rectangle), and may be a parallelogram. Each permanent magnet M is magnetized in a direction perpendicular to its long side.
  • the two permanent magnets M located on both sides in the circumferential direction with the d-axis interposed therebetween, that is, the two permanent magnets M forming one magnetic pole, are arranged so that their magnetization directions are the same. Also, the two permanent magnets M located on both sides in the circumferential direction with the q-axis interposed therebetween are arranged so that their magnetization directions are opposite to each other.
  • the rotor core 32 has a plurality of magnet holes H.
  • the plurality of magnet holes H each penetrate the rotor core 32 in the axial direction.
  • a permanent magnet M is inserted into the magnet hole H.
  • Such a magnet hole H may be called a magnet holding hole, a magnet insertion hole, or the like. Focusing on one magnetic pole, the magnet holes H are formed on both sides in the circumferential direction with the d-axis interposed therebetween. These two magnet holes H are arranged such that the circumferential interval in the cross section gradually increases from the central axis Rc toward the outer peripheral surface 32S of the rotor core 32 . Further, the plurality of magnet holes H each penetrate to the cylindrical outer peripheral surface 32S. Magnetic flux leakage is thereby suppressed.
  • FIG. 3 is a cross-sectional view showing an enlarged rotor core 32 for one magnetic pole of the rotor 3.
  • the magnet hole located on the left side of the d-axis is defined as a first magnet hole H1
  • the permanent magnet inserted into the first magnet hole H1 is defined as a first permanent magnet M1.
  • the magnet hole positioned on the right side is designated as a second magnet hole H2, and the permanent magnet inserted into the second magnet hole H2 is designated as a second permanent magnet M2.
  • the first permanent magnet M1 and the second permanent magnet M2 have rectangular cross sections.
  • the rotor core 32 includes a pair of holding projections C1 and C2 projecting from edges B1 facing one long side of the first permanent magnet M1 at both ends in the long side direction of the first permanent magnet M1, and a holding protrusion C3 protruding from the edge B2 facing the other long side.
  • the holding projection C3 faces the holding projection C2.
  • the first permanent magnet M1 is held by these holding protrusions C1 to C3.
  • the rotor core 32 also has holding projections C1 to C3 for holding the second permanent magnets M2.
  • the rotor core 32 has a bridge BR between the first magnet hole H1 and the second magnet hole H2.
  • the bridge BR lies within the area defined below. That is, of the four corners of the first permanent magnet M1, the corner closest to the d-axis is defined as the first corner A1. Of the four corners of the second permanent magnet M2, the corner closest to the d-axis is defined as a second corner A2.
  • a straight line passing through the first angle A1 and the second angle A2 is defined as a first straight line L1.
  • a straight line passing through the first angle A1 and the central axis Rc is defined as a second straight line L2.
  • a straight line passing through the second angle A2 and the central axis Rc is defined as a third straight line L3.
  • the point closest to the inner circumference in the radial direction between the second straight line L2 and the third straight line L3 is defined as a first point P1.
  • the point on the radially innermost side between the second straight line L2 and the third straight line L3 is defined as a second point P2.
  • a straight line passing through the first point P1 and the second point P2 is defined as a fourth straight line L4.
  • One illustrated bridge BR is a solid portion of the rotor core 32 existing within a region surrounded by the first straight line L1, the second straight line L2, the third straight line L3, and the fourth straight line L4. The bridge BR extends radially.
  • the bridge centerline BC is defined as follows. That is, when a straight line equidistant from the first straight line L1 and the fourth straight line L4 is defined as a fifth straight line L5, the bridge BR intersects the fifth straight line L5. A point on the fifth straight line L5 among the points on the inner wall of the first magnet hole H1 is a third point P3. Among the points on the inner wall of the second magnet hole H2, a point on the fifth straight line L5 is defined as a fourth point P4. An intermediate point E is defined as a point equidistant from the third point P3 and the fourth point P4 on the fifth straight line L5.
  • the bridge centerline BC is defined as a line passing through the intermediate point E and the central axis Rc.
  • the bridge centerline BC in this definition coincides with the d-axis.
  • An intersection F is a point where the bridge center line BC and the fourth straight line L4 intersect.
  • the radially outer peripheral side of the bridge inner peripheral edge G of the rotor core 32 is Let it be the core piece I.
  • the core piece I has a first region I1 and a second region I2.
  • the first region I1 is a region surrounded by the bridge inner peripheral side end G of the rotor core 32, the bridge center line BC, the circumscribed circle N of the rotor core 32, and the inner wall of the first magnet hole H1. (area on the left side of the bridge center line BC in the figure).
  • the second region I2 is a region surrounded by the bridge inner peripheral side end G of the rotor core 32, the bridge center line BC, the circumscribed circle N of the rotor core 32, and the inner wall of the second magnet hole H2. (the region on the right side of the bridge center line BC in the figure).
  • the first region I1 and the second region I2 have an asymmetrical shape with respect to the d-axis.
  • Km be the holes and notches that exist in the first region I1. Although the notch Km does not exist in the first region I1 in the illustrated example, the notch Km may exist in the first region I1.
  • the area of the region surrounded by the ridgeline of the hole Km and the area of the region surrounded by the ridgeline of the notch Km and the circumscribed circle N of the rotor core 32 are assumed to be Skm.
  • Kgm be the center of gravity when actual thickness exists in the area surrounded by the ridgeline of the hole Km and the area surrounded by the ridgeline of the notch Km and the circumscribed circle N of the rotor core 32 .
  • all of the above m are natural numbers.
  • Jn be the holes and notches that exist in the second region I2.
  • Sjn be the area of the region surrounded by the edge of the hole Jn and the area of the region surrounded by the edge of the notch Jn and the circumscribed circle N of the rotor core 32 .
  • Jgn be the center of gravity when actual thickness exists in the area surrounded by the ridgeline of the hole Jn and the area surrounded by the ridgeline of the notch Jn and the circumscribed circle N of the rotor core 32 .
  • all of the above n are natural numbers.
  • rm be the distance from the central axis Rc to the center of gravity Kgm.
  • rbm be the distance from the intersection F between the bridge center line BC and the fourth straight line L4 to the center of gravity Kgm.
  • a straight line passing through the central axis Rc and the center of gravity Kgm is defined as a sixth straight line L6.
  • ⁇ km be the angle between the sixth straight line L6 and the bridge center line BC.
  • a straight line passing through the intersection point F and the center of gravity Kgm is defined as a seventh straight line L7.
  • ⁇ bkm be the angle between the seventh straight line L7 and the bridge center line BC.
  • Rn be the distance from the central axis Rc to the center of gravity Jgn.
  • Rbn be the distance from the intersection point F to the center of gravity Jgn.
  • a straight line passing through the central axis Rc and the center of gravity Jgn is defined as an eighth straight line L8.
  • ⁇ jn be the angle between the eighth straight line L8 and the bridge center line BC.
  • a straight line passing through the intersection point F and the center of gravity Jgn is defined as a ninth straight line L9.
  • ⁇ bjn be the angle between the ninth straight line L9 and the bridge center line BC.
  • FIG. 4 the sixth straight line L6 and the seventh straight line L7 passing through one center of gravity Kgm of the first region I1 are shown.
  • a seventh straight line L7 exists.
  • the eighth straight line L8 and the ninth straight line L9 passing through one center of gravity Jgn of the second region I2 are shown.
  • a ninth straight line L9 exists.
  • the rotor core 32 has a structure that satisfies the following formula (1).
  • the first region I1 and the second region I2 of the core piece I are asymmetrical with respect to the d-axis.
  • the rotor core 32 has a structure that satisfies the above formula, the weight distribution of the first region I1 and the weight distribution of the second region I2 can be aligned, and the rotor 3 It is possible to reduce the bending stress acting on the bridge BR due to the difference between the centrifugal force generated in the first region I1 and the centrifugal force generated in the second region I2 when the BR rotates.
  • FIG. 5 is a cross-sectional view showing an enlarged rotor core 32 for one magnetic pole of the rotor 3. As shown in FIG. In the configuration example shown in FIG. 5, the rotor core 32 has holes 321 located between the first magnet hole H1 and the second magnet hole H2 in the circumferential direction. The air holes 321 axially penetrate the rotor core 32 .
  • the rotor core 32 has a first bridge BR1 and a second bridge BR2, which are actual thickness portions existing within a region surrounded by the first straight line L1, the second straight line L2, the third straight line L3, and the fourth straight line L4. have.
  • the definitions of the first straight line L1, the second straight line L2, the third straight line L3, and the fourth straight line L4 are as explained with reference to FIG.
  • the first bridge BR1 radially extends between the d-axis and the second straight line L2.
  • the second bridge BR2 radially extends between the d-axis and the third straight line L3.
  • the definition of the first bridge centerline BC1 of the first bridge BR1 will be explained below. That is, when a straight line equidistant from the first straight line L1 and the fourth straight line L4 is defined as a fifth straight line L5, the first bridge BR1 intersects the fifth straight line L5. A point on the fifth straight line L5 among the points on the inner wall of the first magnet hole H1 is a third point P3. Among the points on the inner wall of the hole 321, a point on the fifth straight line L5 between the second straight line L2 and the d-axis is a fourth point P4. A point equidistant from the third point P3 and the fourth point P4 on the fifth straight line L5 is defined as a first intermediate point E1. At this time, the first bridge centerline BC1 is defined as a line passing through the first intermediate point E1 and the central axis Rc. A point where the first bridge center line BC1 and the fourth straight line L4 intersect is defined as a first intersection point F1.
  • the second bridge centerline BC2 of the second bridge BR2 intersects the fifth straight line L5.
  • the point on the fifth straight line L5 between the d-axis and the third straight line L3 is the fifth point P5.
  • a point on the fifth straight line L5 is defined as a sixth point P6.
  • a point equidistant from the fifth point P5 and the sixth point P6 on the fifth straight line L5 is defined as a second intermediate point E2.
  • the second bridge centerline BC2 is defined as a line passing through the second intermediate point E2 and the central axis Rc.
  • a second intersection F2 is a point where the second bridge center line BC2 and the fourth straight line L4 intersect.
  • the d-axis is located between the first bridge centerline BC1 and the second bridge centerline BC2.
  • the first region I1 of the core piece I is located within the bridge of the rotor core 32.
  • the second region I2 of the core piece I includes the bridge inner peripheral end G of the rotor core 32, the second bridge center line BC2, the circumscribed circle N of the rotor core 32, and the inner wall of the second magnet hole H2. and (the area on the right side of the second bridge center line BC2 in the drawing).
  • the first region I1 and the second region I2 have an asymmetrical shape with respect to the d-axis.
  • Km be the holes and notches that exist in the first region I1.
  • hole Km does not exist in first region I1, but hole Km may exist in first region I1.
  • the area of the region surrounded by the ridgeline of the hole Km and the area of the region surrounded by the ridgeline of the notch Km and the circumscribed circle N of the rotor core 32 are assumed to be Skm.
  • Kgm be the center of gravity when actual thickness exists in the area surrounded by the ridgeline of the hole Km and the area surrounded by the ridgeline of the notch Km and the circumscribed circle N of the rotor core 32 .
  • all of the above m are natural numbers.
  • Jn be the holes and notches that exist in the second region I2. Although the hole Jn does not exist in the second region I2 in the illustrated example, the hole Jn may exist in the second region I2.
  • Sjn be the area of the region surrounded by the edge of the hole Jn and the area of the region surrounded by the edge of the notch Jn and the circumscribed circle N of the rotor core 32 .
  • Jgn be the center of gravity when actual thickness exists in the area surrounded by the ridgeline of the hole Jn and the area surrounded by the ridgeline of the notch Jn and the circumscribed circle N of the rotor core 32 .
  • all of the above n are natural numbers.
  • rm be the distance from the central axis Rc to the center of gravity Kgm.
  • rbm be the distance from the first intersection point F1 between the first bridge center line BC1 and the fourth straight line L4 to the center of gravity Kgm.
  • a straight line passing through the central axis Rc and the center of gravity Kgm is defined as a sixth straight line L6.
  • ⁇ km be the angle between the sixth straight line L6 and the first bridge center line BC1.
  • a straight line passing through the first intersection point F1 and the center of gravity Kgm is defined as a seventh straight line L7.
  • ⁇ bkm be the angle between the seventh straight line L7 and the first bridge center line BC1.
  • Rn be the distance from the central axis Rc to the center of gravity Jgn.
  • Rbn be the distance from the second intersection F2 between the second bridge center line BC2 and the fourth straight line L4 to the center of gravity Jgn.
  • a straight line passing through the central axis Rc and the center of gravity Jgn is defined as an eighth straight line L8.
  • ⁇ jn be the angle between the eighth straight line L8 and the second bridge center line BC2.
  • a straight line passing through the second intersection point F2 and the center of gravity Jgn is defined as a ninth straight line L9.
  • ⁇ bjn be the angle between the ninth straight line L9 and the second bridge center line BC2.
  • the rotor core 32 has a structure that satisfies the above formula (1).
  • the weight distribution in the first region I1 and the weight distribution in the second region I2 can be aligned, and when the rotor 3 rotates, the weight distribution occurs in the first region I1.
  • the bending stress acting on the first bridge BR1 and the second bridge BR2 due to the difference between the centrifugal force and the centrifugal force generated in the second region I2 can be reduced.
  • FIG. 7 is a cross-sectional view showing an enlarged rotor core 32 for one magnetic pole of the rotor 3.
  • the rotor core 32 includes a pair of holding protrusions C1 and C2 protruding from an edge B1 facing one long side of the first permanent magnet M1 at both ends in the long side direction of the first permanent magnet M1. and a pair of holding protrusions C3 and C4 protruding from the edge B2 facing the other long side of the first permanent magnet M1.
  • the holding protrusion C3 faces the holding protrusion C2, and the holding protrusion C4 faces the holding protrusion C1.
  • the first permanent magnet M1 is held by these holding protrusions C1 to C4.
  • the rotor core 32 also has holding projections C1 to C4 for holding the second permanent magnets M2.
  • the rotor core 32 has a bridge BR, which is a real thickness portion, existing within a region surrounded by the first straight line L1, the second straight line L2, the third straight line L3, and the fourth straight line L4.
  • the definitions of the first straight line L1, the second straight line L2, the third straight line L3, and the fourth straight line L4 are as explained with reference to FIG.
  • the bridge centerline BC is defined as a line passing through the intermediate point E and the central axis Rc, as described with reference to FIG.
  • a bridge centerline BC coincides with the d-axis.
  • the first region I1 of the core piece I is located within the bridge of the rotor core 32.
  • the second region I2 of the core piece I is defined by the bridge inner peripheral end G of the rotor core 32, the bridge center line BC, the circumscribed circle N of the rotor core 32, and the inner wall of the second magnet hole H2. This is the enclosed area (the area on the right side of the bridge center line BC in the drawing).
  • the first region I1 and the second region I2 have an asymmetrical shape with respect to the d-axis.
  • Km be the holes and notches that exist in the first region I1.
  • the area of the region surrounded by the ridgeline of the hole Km and the area of the region surrounded by the ridgeline of the notch Km and the circumscribed circle N of the rotor core 32 are assumed to be Skm.
  • Kgm be the center of gravity when actual thickness exists in the area surrounded by the ridgeline of the hole Km and the area surrounded by the ridgeline of the notch Km and the circumscribed circle N of the rotor core 32 .
  • all of the above m are natural numbers.
  • Jn be the holes and notches that exist in the second region I2. Although the notch Jn does not exist in the second region I2 in the illustrated example, the notch Jn may exist in the second region I2.
  • Sjn be the area of the region surrounded by the edge of the hole Jn and the area of the region surrounded by the edge of the notch Jn and the circumscribed circle N of the rotor core 32 .
  • Jgn be the center of gravity when actual thickness exists in the area surrounded by the ridgeline of the hole Jn and the area surrounded by the ridgeline of the notch Jn and the circumscribed circle N of the rotor core 32 .
  • all of the above n are natural numbers.
  • rm be the distance from the central axis Rc to the center of gravity Kgm.
  • rbm be the distance from the intersection point F to the center of gravity Kgm.
  • a straight line passing through the central axis Rc and the center of gravity Kgm is defined as a sixth straight line L6.
  • ⁇ km be the angle between the sixth straight line L6 and the bridge center line BC.
  • a straight line passing through the intersection point F and the center of gravity Kgm is defined as a seventh straight line L7.
  • ⁇ bkm be the angle between the seventh straight line L7 and the bridge center line BC.
  • Rn be the distance from the central axis Rc to the center of gravity Jgn.
  • Rbn be the distance from the intersection point F to the center of gravity Jgn.
  • a straight line passing through the central axis Rc and the center of gravity Jgn is defined as an eighth straight line L8.
  • ⁇ jn be the angle between the eighth straight line L8 and the bridge center line BC.
  • a straight line passing through the intersection point F and the center of gravity Jgn is defined as a ninth straight line L9.
  • ⁇ bjn be the angle between the ninth straight line L9 and the bridge center line BC.
  • FIG. 8 the sixth straight line L6 and the seventh straight line L7 passing through one center of gravity Kgm of the first region I1 are shown.
  • a seventh straight line L7 exists.
  • the eighth straight line L8 and the ninth straight line L9 passing through one center of gravity Jgn of the second region I2 are shown.
  • a ninth straight line L9 exists.
  • the rotor core 32 has a structure that satisfies the above formula (1).
  • the weight distribution in the first region I1 and the weight distribution in the second region I2 can be made uniform, and when the rotor 3 rotates, the weight distribution occurs in the first region I1.
  • the bending stress acting on the bridge BR due to the difference between the centrifugal force and the centrifugal force generated in the second region I2 can be reduced.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the present invention at the implementation stage.
  • various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all components shown in the embodiments. Furthermore, components across different embodiments may be combined as appropriate.
  • the number of magnetic poles, size, shape, etc., of the rotor 3 are not limited to the above-described embodiment, and can be variously changed according to the design.
  • the number of permanent magnets M installed in each magnetic pole of the rotor 3 is not limited to two, and can be increased as required.
  • Rotary electric machine 2 ... Stator 3... Rotor Rc... Central shaft 31... Shaft 32... Rotor core 32S... Outer peripheral surface H1... First magnet hole H2... Second magnet hole 321... Air hole BR... Bridge M1... No. 1 permanent magnet M2... second permanent magnet

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本実施形態の目的は、漏れ磁束を抑制するとともに遠心力に対する応力を低減することが可能な回転電機の回転子を提供することにある。 本実施形態の回転子は、ブリッジ内周側端、ブリッジ中心線、回転子鉄心の外接円、及び、第1磁石孔の内壁で囲まれた第1領域とブリッジ内周側端、ブリッジ中心線、回転子鉄心の外接円、及び、第2磁石孔の内壁で囲まれた第2領域とがd軸に関して非対称であり、回転子鉄心が次の式を満たす構造を有している、回転電機の回転子。

Description

回転電機の回転子
 本発明の実施形態は、回転電機の回転子に関する。
 車両用の回転電機としては、永久磁石を用いた永久磁石型回転電機が広く用いられている。このような回転電機では、固定子によって発生される回転磁界によって回転子が回転するように構成されている。一例では、回転子鉄心の内周側と外周側とをセンターブリッジで接続し、回転子鉄心の磁石孔が回転子と固定子の間のエアギャップに連通する回転電機が知られている。
特開2020-14322号公報
 実施形態の目的は、漏れ磁束を抑制するとともに遠心力に対する応力を低減することが可能な回転電機の回転子を提供することにある。
 一実施形態によれば、
 円柱状のシャフトと、前記シャフトが挿入される内孔を有する円環状の電磁鋼板を前記シャフトの中心軸方向に複数枚積層して構成され、それぞれ円筒状の外周面まで貫通した第1磁石孔及び第2磁石孔を有する回転子鉄心と、前記回転子鉄心において磁極を構成し、前記第1磁石孔に挿入された第1永久磁石及び前記第2磁石孔に挿入された第2永久磁石と、を備え、前記シャフトの中心軸と前記磁極の周方向の中心とを通る軸をd軸とし、前記第1永久磁石の前記d軸に最も近い第1角と前記第2永久磁石の前記d軸に最も近い第2角とを通る直線を第1直線とし、前記第1角と前記中心軸とを通る直線を第2直線とし、前記第2角と前記中心軸とを通る直線を第3直線とし、前記第1磁石孔の内壁上の点のうち前記第2直線と前記第3直線との間で最も内周側の点を第1点とし、前記第2磁石孔の内壁上の点のうち前記第2直線と前記第3直線との間で最も内周側の点を第2点とし、前記第1点と前記第2点とを通る直線を第4直線としたとき、前記第1直線、前記第2直線、前記第3直線、及び、前記第4直線で囲まれた領域内に前記回転子鉄心の実肉部であるブリッジが存在し、前記第1直線及び前記第4直線から等距離の直線を第5直線とし、前記第1磁石孔の内壁上の点のうち前記第5直線上の点を第3点とし、前記第2磁石孔の内壁上の点のうち前記第5直線上の点を第4点とし、前記第5直線上で前記第3点及び前記第4点から等距離の点を中間点とし、前記中間点と前記中心軸とを通る直線をブリッジ中心線とし、前記第4直線上の前記第1点と前記第2点と結ぶ線分をブリッジ内周側端とし、前記回転子鉄心のうちの前記ブリッジ内周側端、前記ブリッジ中心線、前記回転子鉄心の外接円、及び、前記第1磁石孔の内壁で囲まれた第1領域に存在する穴及び切欠をKmとし、前記穴Kmの稜線で囲まれた領域の面積及び前記切欠Kmの稜線と前記回転子鉄心の外接円とで囲まれた領域の面積をSkmとし、前記穴Kmの稜線で囲まれた領域及び前記切欠Kmの稜線と前記回転子鉄心の外接円とで囲まれた領域に実肉が存在する場合の重心をKgmとし、前記中心軸から重心Kgmまでの距離をrmとし、前記ブリッジ中心線と前記第4直線との交点から重心Kgmまでの距離をrbmとし、前記中心軸と重心Kgmとを通る直線を第6直線とし、前記第6直線と前記ブリッジ中心線とのなす角をθkmとし、前記交点と前記重心Kgmとを通る直線を第7直線とし、前記第7直線と前記ブリッジ中心線とのなす角度をθbkmとし(但し、前記のmはいずれも自然数である)、前記回転子鉄心のうちの前記ブリッジ内周側端、前記ブリッジ中心線、前記回転子鉄心の外接円、及び、前記第2磁石孔の内壁で囲まれた第2領域に存在する穴及び切欠をJnとし、前記穴Jnの稜線で囲まれた領域の面積及び前記切欠Jnの稜線と前記回転子鉄心の外接円とで囲まれた領域の面積をSjnとし、前記穴Jnの稜線で囲まれた領域及び前記切欠Jnの稜線と前記回転子鉄心の外接円とで囲まれた領域に実肉が存在する場合の重心をJgnとし、前記中心軸から重心Jgnまでの距離をRnとし、前記交点から重心Jgnまでの距離をRbnとし、前記中心軸と重心Jgnとを通る直線を第8直線とし、前記第8直線と前記ブリッジ中心線とのなす角をθjnとし、前記交点と前記重心Jgnとを通る直線を第9直線とし、前記第9直線と前記ブリッジ中心線とのなす角度をθbjnとしたとき(但し、前記のnはいずれも自然数である)、前記第1領域及び前記第2領域が前記d軸に関して非対称であり、前記回転子鉄心が次の式を満たす構造を有している、回転電機の回転子。
Figure JPOXMLDOC01-appb-M000003
 一実施形態によれば、
 円柱状のシャフトと、前記シャフトが挿入される内孔を有する円環状の電磁鋼板を前記シャフトの中心軸方向に複数枚積層して構成され、それぞれ円筒状の外周面まで貫通した第1磁石孔及び第2磁石孔と、周方向において前記第1磁石孔と前記第2磁石孔との間に位置する空孔と、を有する回転子鉄心と、前記回転子鉄心において磁極を構成し、前記第1磁石孔に挿入された第1永久磁石及び前記第2磁石孔に挿入された第2永久磁石と、を備え、前記シャフトの中心軸と前記磁極の周方向の中心とを通る軸をd軸とし、前記第1永久磁石の前記d軸に最も近い第1角と前記第2永久磁石の前記d軸に最も近い第2角とを通る直線を第1直線とし、前記第1角と前記中心軸とを通る直線を第2直線とし、前記第2角と前記中心軸とを通る直線を第3直線とし、前記第1磁石孔の内壁上の点のうち前記第2直線と前記第3直線との間で最も内周側の点を第1点とし、前記第2磁石孔の内壁上の点のうち前記第2直線と前記第3直線との間で最も内周側の点を第2点とし、前記第1点と前記第2点とを通る直線を第4直線としたとき、前記第1直線、前記第2直線、前記第3直線、及び、前記第4直線で囲まれた領域内に前記回転子鉄心の実肉部である第1ブリッジ及び第2ブリッジが存在し、前記第1直線及び前記第4直線から等距離の直線を第5直線とし、前記第1磁石孔の内壁上の点のうち前記第5直線上の点を第3点とし、前記空孔の内壁上の点のうち前記第2直線と前記d軸との間で前記第5直線上の点を第4点とし、前記空孔の内壁上の点のうち前記d軸と前記第3直線との間で前記第5直線上の点を第5点とし、前記第2磁石孔の内壁上の点のうち前記第5直線上の点を第6点とし、前記第5直線上で前記第3点及び前記第4点から等距離の点を第1中間点とし、前記第5直線上で前記第5点及び前記第6点から等距離の点を第2中間点とし、前記第1中間点と前記中心軸とを通る直線を第1ブリッジ中心線とし、前記第2中間点と前記中心軸とを通る直線を第2ブリッジ中心線とし、前記第4直線上の前記第1点と前記第2点と結ぶ線分をブリッジ内周側端とし、前記回転子鉄心のうちの前記ブリッジ内周側端、前記第1ブリッジ中心線、前記回転子鉄心の外接円、及び、前記第1磁石孔の内壁で囲まれた第1領域に存在する穴及び切欠をKmとし、前記穴Kmの稜線で囲まれた領域の面積及び前記切欠Kmの稜線と前記回転子鉄心の外接円とで囲まれた領域の面積をSkmとし、前記穴Kmの稜線で囲まれた領域及び前記切欠Kmの稜線と前記回転子鉄心の外接円とで囲まれた領域に実肉が存在する場合の重心をKgmとし、前記中心軸から重心Kgmまでの距離をrmとし、前記第1ブリッジ中心線と前記第4直線との第1交点から重心Kgmまでの距離をrbmとし、前記中心軸と重心Kgmとを通る直線を第6直線とし、前記第6直線と前記第1ブリッジ中心線とのなす角をθkmとし、前記第1交点と前記重心Kgmとを通る直線を第7直線とし、前記第7直線と前記第1ブリッジ中心線とのなす角度をθbkmとし(但し、前記のmはいずれも自然数である)、前記回転子鉄心のうちの前記ブリッジ内周側端、前記第2ブリッジ中心線、前記回転子鉄心の外接円、及び、前記第2磁石孔の内壁で囲まれた第2領域に存在する穴及び切欠をJnとし、前記穴Jnの稜線で囲まれた領域の面積及び前記切欠Jnの稜線と前記回転子鉄心の外接円とで囲まれた領域の面積をSjnとし、前記穴Jnの稜線で囲まれた領域及び前記切欠Jnの稜線と前記回転子鉄心の外接円とで囲まれた領域に実肉が存在する場合の重心をJgnとし、前記中心軸から重心Jgnまでの距離をRnとし、前記第2ブリッジ中心線と前記第4直線との第2交点から重心Jgnまでの距離をRbnとし、前記中心軸と重心Jgnとを通る直線を第8直線とし、前記第8直線と前記第2ブリッジ中心線とのなす角をθjnとし、前記第2交点と前記重心Jgnとを通る直線を第9直線とし、前記第9直線と前記第2ブリッジ中心線とのなす角度をθbjnとしたとき(但し、前記のnはいずれも自然数である)、前記第1領域及び前記第2領域が前記d軸に関して非対称であり、前記回転子鉄心が次の式を満たす構造を有している、回転電機の回転子。
Figure JPOXMLDOC01-appb-M000004
図1は、回転電機1の断面図である。 図2は、図1に示した回転電機1のうち回転子3のA-B線に沿った横断面図である。 図3は、回転子3のうちの1磁極分の回転子鉄心32を拡大して示す横断面図である。 図4は、図3に示した1磁極分の回転子3を拡大して示す横断面図である。 図5は、回転子3のうちの1磁極分の回転子鉄心32を拡大して示す横断面図である。 図6は、図5に示した1磁極分の回転子3を拡大して示す横断面図である。 図7は、回転子3のうちの1磁極分の回転子鉄心32を拡大して示す横断面図である。 図8は、図7に示した1磁極分の回転子3を拡大して示す横断面図である。
 以下、本実施形態について、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。
 図1は、回転電機1の断面図である。
 本実施形態の回転電機1は、埋め込み永久磁石型(IPM:Interior Permanent Magnet)回転電機として構成され、例えば、ハイブリッド自動車(HEV)や電気自動車(EV)において、駆動モータあるいは発電機に適用される。回転電機1は、略円筒状の固定子2と、永久磁石が埋設された略円筒状の回転子3と、固定子2及び回転子3を収容するハウジング10と、ハウジング10に固定されるカバー11と、を備えている。
 固定子2は、円筒形状の固定子鉄心21と、固定子鉄心21に装着された巻線22と、を備えている。固定子鉄心21は、磁性材、例えば、円環状の電磁鋼板を多数枚、同芯状に積層した積層体として構成されている。ハウジング10は、円筒状の内周面10Aを有している。固定子鉄心21は、内周面10Aに固定されている。なお、固定子2の構造は、特に制限されるものではなく、一般的な構造を広く採用することができる。
 回転子3は、固定子2の内側に位置し、固定子2との間に僅かな隙間(エアギャップ)をおいて配置されている。回転子3は、円柱状のシャフト31と、略円筒状の回転子鉄心32と、図1に図示されていない永久磁石と、を備えている。シャフト31及び回転子鉄心32は、中心軸(回転中心)Rcを中心として回転可能に構成されている。
 シャフト31には、ベアリング41及び42が取り付けられている。ベアリング41及び42は、ハウジング10及びカバー11によって固定されている。シャフト31は、ベアリング41及び42を介して、中心軸Rcの周りで回転自在にハウジング10及びカバー11に支持されている。なお、図示した例は、シャフト31を支持する軸受構造の一例を簡略的に示すものであり、詳細な構造についての説明は省略する。
 回転子鉄心32は、磁性材、例えば、ケイ素鋼などの円環状の電磁鋼板を多数枚、シャフト31の中心軸Rcの方向に積層した積層体として構成されている。回転子鉄心32の外周面32Sは、円筒状であり、僅かな隙間をおいて、固定子2の内周面2Sに対向している。回転子鉄心32は、その中心部に内孔32Hを有している。内孔32Hは、回転子鉄心32を軸方向に貫通している。シャフト31は、内孔32Hに挿入されている。一例では、回転子鉄心32は、シャフト31に焼き嵌めすることによってシャフト31に固定されている。
 なお、本明細書において、軸方向とは、図1に示したシャフト31あるいは中心軸Rcが延びる方向に相当する。また、後述する径方向とは、中心軸Rcと直交する横断面において、中心軸Rcと回転子鉄心32の外周面32Sとを結ぶ直線が延びる方向に相当し、周方向とは、横断面において、回転子3の円周に沿った方向に相当する。
 図2は、図1に示した回転電機1のうち回転子3のA-B線に沿った横断面図である。
 本実施形態において、回転子3は、複数の磁極、例えば、8磁極を有している。回転子鉄心32において、周方向に隣り合う磁極間の境界と中心軸Rcとを通り回転子鉄心32の径方向に延びる軸をq軸と称し、q軸に対して周方向に電気的に90°離間した軸、つまり、1磁極の周方向の中心と中心軸Rcと通る軸をd軸と称する。ここでは、固定子によって形成される鎖交磁束の流れ易い方向をq軸と称する。d軸及びq軸は、回転子鉄心32の周方向に交互に、かつ、所定の位相で設けられている。回転子鉄心32の1磁極分とは、周方向に隣り合う2本のq軸間の領域(1/8周の周角度領域)をいう。
 回転子3は、シャフト31と、回転子鉄心32と、複数の永久磁石Mと、を備えている。回転子鉄心32には、1磁極ごとに、複数の永久磁石Mが挿入され、例えば、2つの永久磁石Mが挿入されている。各磁極において、2つの永久磁石Mは、d軸を挟んで配置されている。
 永久磁石Mは、例えば、横断面が矩形状の細長い平板状に形成され、回転子鉄心32の軸方向長さとほぼ等しい長さを有している。つまり、各永久磁石Mは、回転子鉄心32のほぼ全長に亘って埋め込まれている。なお、永久磁石Mは、軸方向に複数に分割された磁石を組み合わせて構成されてもよい。各永久磁石Mは、横断面において、一対の長辺及び一対の短辺と、4つの角と、を有している。なお、永久磁石Mの横断面の形状は、矩形状(長方形)に限らず、平行四辺形であってもよい。各永久磁石Mは、長辺に垂直な方向に磁化されている。d軸を挟んで周方向の両側に位置する2つの永久磁石M、すなわち、1磁極を構成する2つの永久磁石Mは、磁化方向が同一となるように配置されている。また、q軸を挟んで周方向の両側に位置する2つの永久磁石Mは、磁化方向が逆向きとなるように配置されている。
 回転子鉄心32は、複数の磁石孔Hを有している。複数の磁石孔Hは、それぞれ回転子鉄心32を軸方向に貫通している。永久磁石Mは、磁石孔Hに挿入されている。このような磁石孔Hは、磁石保持孔、磁石挿入孔などと称される場合がある。1磁極に着目すると、磁石孔Hは、d軸を挟んで周方向の両側にそれぞれ形成されている。これらの2つの磁石孔Hは、横断面において、中心軸Rcから回転子鉄心32の外周面32Sに向かうにしたがって、周方向の間隔が徐々に広がるよう配置されている。また、複数の磁石孔Hは、それぞれ円筒状の外周面32Sまで貫通している。これにより、磁束漏れが抑制される。
 図3は、回転子3のうちの1磁極分の回転子鉄心32を拡大して示す横断面図である。
 図3に示す例において、d軸を挟んで左側に位置する磁石孔を第1磁石孔H1とし、第1磁石孔H1に挿入された永久磁石を第1永久磁石M1とし、d軸を挟んで右側に位置する磁石孔を第2磁石孔H2とし、第2磁石孔H2に挿入された永久磁石を第2永久磁石M2として示している。第1永久磁石M1及び第2永久磁石M2は、長方形状の横断面を有している。
 回転子鉄心32は、第1永久磁石M1の長辺方向両端において第1永久磁石M1の一方の長辺と対向する縁B1から突出した一対の保持突起C1及びC2と、第1永久磁石M1の他方の長辺と対向する縁B2から突出した保持突起C3と、を有している。保持突起C3は、保持突起C2と対向している。第1永久磁石M1は、これらの保持突起C1乃至C3によって保持されている。また、回転子鉄心32は、第2永久磁石M2を保持するための保持突起C1乃至C3も有している。
 回転子鉄心32は、第1磁石孔H1と第2磁石孔H2との間にブリッジBRを有している。ブリッジBRは、以下に規定する領域内に存在している。すなわち、第1永久磁石M1の4つの角のうち、d軸に最も近い角を第1角A1とする。第2永久磁石M2の4つの角のうち、d軸に最も近い角を第2角A2とする。第1角A1と第2角A2とを通る直線を第1直線L1とする。第1角A1と中心軸Rcとを通る直線を第2直線L2とする。第2角A2と中心軸Rcとを通る直線を第3直線L3とする。第1磁石孔H1の内壁上の点のうち、第2直線L2と第3直線L3との間で最も径方向の内周側の点を第1点P1とする。第2磁石孔H2の内壁上の点のうち、第2直線L2と第3直線L3との間で最も径方向の内周側の点を第2点P2とする。第1点P1と第2点P2とを通る直線を第4直線L4とする。図示した1本のブリッジBRは、第1直線L1、第2直線L2、第3直線L3、及び、第4直線L4で囲まれた領域内に存在する回転子鉄心32の実肉部である。ブリッジBRは、径方向に延出している。
 ここで、ブリッジ中心線BCについて、図3を参照しながら説明する。
 本明細書において、ブリッジ中心線BCは、以下の通り定義する。すなわち、第1直線L1及び第4直線L4から等距離の直線を第5直線L5としたとき、ブリッジBRは、第5直線L5と交差する。第1磁石孔H1の内壁上の点のうち、第5直線L5上の点を第3点P3とする。第2磁石孔H2の内壁上の点のうち、第5直線L5上の点を第4点P4とする。第5直線L5上で第3点P3及び第4点P4から等距離の点を中間点Eとする。このとき、ブリッジ中心線BCは、中間点E及び中心軸Rcを通る線として定義する。この定義のブリッジ中心線BCは、d軸に一致している。ブリッジ中心線BCと第4直線L4とが交差する点を交点Fとする。
 第4直線L4上の第1点P1と第2点P2とを結ぶ線分をブリッジ内周側端Gとしたとき、回転子鉄心32のブリッジ内周側端Gよりも径方向の外周側を鉄心片Iとする。鉄心片Iは、第1領域I1及び第2領域I2を有している。第1領域I1は、回転子鉄心32のうちのブリッジ内周側端Gと、ブリッジ中心線BCと、回転子鉄心32の外接円Nと、第1磁石孔H1の内壁とで囲まれた領域(図中のブリッジ中心線BCよりも左側の領域)である。第2領域I2は、回転子鉄心32のうちのブリッジ内周側端Gと、ブリッジ中心線BCと、回転子鉄心32の外接円Nと、第2磁石孔H2の内壁とで囲まれた領域(図中のブリッジ中心線BCよりも右側の領域)である。第1領域I1及び第2領域I2は、d軸に関して非対称の形状を有している。
 第1領域I1に存在する穴及び切欠をKmとする。図示した例では、切欠Kmが第1領域I1に存在しないが、切欠Kmが第1領域I1に存在していてもよい。穴Kmの稜線で囲まれる領域の面積及び切欠Kmの稜線と回転子鉄心32の外接円Nとで囲まれた領域の面積をSkmとする。穴Kmの稜線で囲まれる領域及び切欠Kmの稜線と回転子鉄心32の外接円Nとで囲まれた領域に実肉が存在する場合の重心をKgmとする。但し、上記のmはいずれも自然数である。
 第2領域I2に存在する穴及び切欠をJnとする。穴Jnの稜線で囲まれる領域の面積及び切欠Jnの稜線と回転子鉄心32の外接円Nとで囲まれた領域の面積をSjnとする。穴Jnの稜線で囲まれる領域及び切欠Jnの稜線と回転子鉄心32の外接円Nとで囲まれた領域に実肉が存在する場合の重心をJgnとする。但し、上記のnはいずれも自然数である。
 図4に示すように、中心軸Rcから重心Kgmまでの距離をrmとする。ブリッジ中心線BCと第4直線L4との交点Fから重心Kgmまでの距離をrbmとする。中心軸Rcと重心Kgmとを通る直線を第6直線L6とする。第6直線L6とブリッジ中心線BCとのなす角をθkmとする。交点Fと重心Kgmとを通る直線を第7直線L7とする。第7直線L7とブリッジ中心線BCとのなす角度をθbkmとする。
 中心軸Rcから重心Jgnまでの距離をRnとする。交点Fから重心Jgnまでの距離をRbnとする。中心軸Rcと重心Jgnとを通る直線を第8直線L8とする。第8直線L8とブリッジ中心線BCとのなす角をθjnとする。交点Fと重心Jgnとを通る直線を第9直線L9とする。第9直線L9とブリッジ中心線BCとのなす角度をθbjnとする。なお、図4では、第1領域I1の1つの重心Kgmを通る第6直線L6及び第7直線L7を図示しているが、複数の重心Kgmが存在する場合には複数の第6直線L6及び第7直線L7が存在する。また、図4では、第2領域I2の1つの重心Jgnを通る第8直線L8及び第9直線L9を図示しているが、複数の重心Jgnが存在する場合には複数の第8直線L8及び第9直線L9が存在する。
 このとき、回転子鉄心32は、以下の式(1)を満たす構造を有している。
Figure JPOXMLDOC01-appb-M000005
 回転子3が一方向に回転する際の騒音低減、回転子鉄心32の重量低減、磁路の制御等の観点から、鉄心片Iの第1領域I1及び第2領域I2は、d軸に関して非対称の形状を有している。つまり、面積Skmが面積Sjnとは異なっていたり、距離rmが距離Rnとは異なっていたり、距離rbmが距離Rbnとは異なっていたり、なす角度θbkmとなす角θkmとの差分(θbkm-θkm)がなす角度θbjnとなす角度θjnとの差分(θbjn-θjn)とは異なっていたりする。
 このような場合であっても、回転子鉄心32が上記の式を満たす構造を有することにより、第1領域I1の重量分布と第2領域I2の重量分布とを揃えることができ、回転子3が回転した時に第1領域I1に生ずる遠心力と第2領域I2に生ずる遠心力との差に起因してブリッジBRに作用する曲げ応力を低減することができる。
 次に、本実施形態の他の構成例について説明する。以下の各構成例においては、回転子鉄心32の一部を拡大した横断面図を参照しながら説明する。なお、以下に説明する他の構成例において、前述した構成例と同一の部分には、同一の参照符号を付してその詳細な説明を省略あるいは簡略化し、前述した構成例とは異なる部分を中心に詳しく説明する。
 図5は、回転子3のうちの1磁極分の回転子鉄心32を拡大して示す横断面図である。
 図5に示す構成例では、回転子鉄心32は、周方向において第1磁石孔H1と第2磁石孔H2との間に位置する空孔321を有している。空孔321は、回転子鉄心32を軸方向に貫通している。
 回転子鉄心32は、第1直線L1、第2直線L2、第3直線L3、及び、第4直線L4で囲まれた領域内に存在する実肉部である第1ブリッジBR1及び第2ブリッジBR2を有している。第1直線L1、第2直線L2、第3直線L3、及び、第4直線L4の定義については、図3を参照して説明した通りである。第1ブリッジBR1は、d軸と第2直線L2との間で径方向に延出している。第2ブリッジBR2は、d軸と第3直線L3との間で径方向に延出している。
 第1ブリッジBR1の第1ブリッジ中心線BC1の定義について、以下に説明する。すなわち、第1直線L1及び第4直線L4から等距離の直線を第5直線L5としたとき、第1ブリッジBR1は、第5直線L5と交差する。第1磁石孔H1の内壁上の点のうち、第5直線L5上の点を第3点P3とする。空孔321の内壁上の点のうち、第2直線L2とd軸との間の第5直線L5上の点を第4点P4とする。第5直線L5上で第3点P3及び第4点P4から等距離の点を第1中間点E1とする。このとき、第1ブリッジ中心線BC1は、第1中間点E1及び中心軸Rcを通る線として定義する。第1ブリッジ中心線BC1と第4直線L4とが交差する点を第1交点F1とする。
 第2ブリッジBR2の第2ブリッジ中心線BC2の定義について、以下に説明する。すなわち、第2ブリッジBR2は、第5直線L5と交差する。空孔321の内壁上の点のうち、d軸と第3直線L3との間の第5直線L5上の点を第5点P5とする。第2磁石孔H2の内壁上の点のうち、第5直線L5上の点を第6点P6とする。第5直線L5上で第5点P5及び第6点P6から等距離の点を第2中間点E2とする。このとき、第2ブリッジ中心線BC2は、第2中間点E2及び中心軸Rcを通る線として定義する。第2ブリッジ中心線BC2と第4直線L4とが交差する点を第2交点F2とする。d軸は、第1ブリッジ中心線BC1と第2ブリッジ中心線BC2との間に位置している。
 第4直線L4上の第1点P1と第2点P2とを結ぶ線分をブリッジ内周側端Gとしたとき、鉄心片Iの第1領域I1は、回転子鉄心32のうちのブリッジ内周側端Gと、第1ブリッジ中心線BC1と、回転子鉄心32の外接円Nと、第1磁石孔H1の内壁とで囲まれた領域(図中の第1ブリッジ中心線BC1よりも左側の領域)である。鉄心片Iの第2領域I2は、回転子鉄心32のうちのブリッジ内周側端Gと、第2ブリッジ中心線BC2と、回転子鉄心32の外接円Nと、第2磁石孔H2の内壁とで囲まれた領域(図中の第2ブリッジ中心線BC2よりも右側の領域)である。第1領域I1及び第2領域I2は、d軸に関して非対称の形状を有している。
 第1領域I1に存在する穴及び切欠をKmとする。図示した例では、穴Kmが第1領域I1に存在しないが、穴Kmが第1領域I1に存在していてもよい。穴Kmの稜線で囲まれる領域の面積及び切欠Kmの稜線と回転子鉄心32の外接円Nとで囲まれた領域の面積をSkmとする。穴Kmの稜線で囲まれる領域及び切欠Kmの稜線と回転子鉄心32の外接円Nとで囲まれた領域に実肉が存在する場合の重心をKgmとする。但し、上記のmはいずれも自然数である。
 第2領域I2に存在する穴及び切欠をJnとする。図示した例では、穴Jnが第2領域I2に存在しないが、穴Jnが第2領域I2に存在していてもよい。穴Jnの稜線で囲まれる領域の面積及び切欠Jnの稜線と回転子鉄心32の外接円Nとで囲まれた領域の面積をSjnとする。穴Jnの稜線で囲まれる領域及び切欠Jnの稜線と回転子鉄心32の外接円Nとで囲まれた領域に実肉が存在する場合の重心をJgnとする。但し、上記のnはいずれも自然数である。
 図6に示すように、中心軸Rcから重心Kgmまでの距離をrmとする。第1ブリッジ中心線BC1と第4直線L4との第1交点F1から重心Kgmまでの距離をrbmとする。中心軸Rcと重心Kgmとを通る直線を第6直線L6とする。第6直線L6と第1ブリッジ中心線BC1とのなす角をθkmとする。第1交点F1と重心Kgmとを通る直線を第7直線L7とする。第7直線L7と第1ブリッジ中心線BC1とのなす角度をθbkmとする。
 中心軸Rcから重心Jgnまでの距離をRnとする。第2ブリッジ中心線BC2と第4直線L4との第2交点F2から重心Jgnまでの距離をRbnとする。中心軸Rcと重心Jgnとを通る直線を第8直線L8とする。第8直線L8と第2ブリッジ中心線BC2とのなす角をθjnとする。第2交点F2と重心Jgnとを通る直線を第9直線L9とする。第9直線L9と第2ブリッジ中心線BC2とのなす角度をθbjnとする。なお、図6では、第1領域I1の1つの重心Kgmを通る第6直線L6及び第7直線L7を図示しているが、複数の重心Kgmが存在する場合には複数の第6直線L6及び第7直線L7が存在する。また、図6では、第2領域I2の1つの重心Jgnを通る第8直線L8及び第9直線L9を図示しているが、複数の重心Jgnが存在する場合には複数の第8直線L8及び第9直線L9が存在する。
 このとき、回転子鉄心32は、上記の式(1)を満たす構造を有している。
 このため、図5及び図6に示す構成例においても、第1領域I1の重量分布と第2領域I2の重量分布とを揃えることができ、回転子3が回転した時に第1領域I1に生ずる遠心力と第2領域I2に生ずる遠心力との差に起因して第1ブリッジBR1及び第2ブリッジBR2に作用する曲げ応力を低減することができる。
 図7は、回転子3のうちの1磁極分の回転子鉄心32を拡大して示す横断面図である。
 図7に示す構成例では、回転子鉄心32は、第1永久磁石M1の長辺方向両端において第1永久磁石M1の一方の長辺と対向する縁B1から突出した一対の保持突起C1及びC2と、第1永久磁石M1の他方の長辺と対向する縁B2から突出した一対の保持突起C3及びC4と、を有している。保持突起C3は保持突起C2と対向し、保持突起C4は保持突起C1と対向している。第1永久磁石M1は、これらの保持突起C1乃至C4によって保持されている。また、回転子鉄心32は、第2永久磁石M2を保持するための保持突起C1乃至C4も有している。
 回転子鉄心32は、第1直線L1、第2直線L2、第3直線L3、及び、第4直線L4で囲まれた領域内に存在する実肉部であるブリッジBRを有している。第1直線L1、第2直線L2、第3直線L3、及び、第4直線L4の定義については、図3を参照して説明した通りである。ブリッジ中心線BCは、図3を参照して説明した通り、中間点E及び中心軸Rcを通る線として定義する。ブリッジ中心線BCは、d軸に一致している。
 第4直線L4上の第1点P1と第2点P2とを結ぶ線分をブリッジ内周側端Gとしたとき、鉄心片Iの第1領域I1は、回転子鉄心32のうちのブリッジ内周側端Gと、ブリッジ中心線BCと、回転子鉄心32の外接円Nと、第1磁石孔H1の内壁とで囲まれた領域(図中のブリッジ中心線BCよりも左側の領域)である。鉄心片Iの第2領域I2は、回転子鉄心32のうちのブリッジ内周側端Gと、ブリッジ中心線BCと、回転子鉄心32の外接円Nと、第2磁石孔H2の内壁とで囲まれた領域(図中のブリッジ中心線BCよりも右側の領域)である。第1領域I1及び第2領域I2は、d軸に関して非対称の形状を有している。
 第1領域I1に存在する穴及び切欠をKmとする。穴Kmの稜線で囲まれる領域の面積及び切欠Kmの稜線と回転子鉄心32の外接円Nとで囲まれた領域の面積をSkmとする。穴Kmの稜線で囲まれる領域及び切欠Kmの稜線と回転子鉄心32の外接円Nとで囲まれた領域に実肉が存在する場合の重心をKgmとする。但し、上記のmはいずれも自然数である。
 第2領域I2に存在する穴及び切欠をJnとする。図示した例では、切欠Jnが第2領域I2に存在しないが、切欠Jnが第2領域I2に存在していてもよい。穴Jnの稜線で囲まれる領域の面積及び切欠Jnの稜線と回転子鉄心32の外接円Nとで囲まれた領域の面積をSjnとする。穴Jnの稜線で囲まれる領域及び切欠Jnの稜線と回転子鉄心32の外接円Nとで囲まれた領域に実肉が存在する場合の重心をJgnとする。但し、上記のnはいずれも自然数である。
 図8に示すように、中心軸Rcから重心Kgmまでの距離をrmとする。交点Fから重心Kgmまでの距離をrbmとする。中心軸Rcと重心Kgmとを通る直線を第6直線L6とする。第6直線L6とブリッジ中心線BCとのなす角をθkmとする。交点Fと重心Kgmとを通る直線を第7直線L7とする。第7直線L7とブリッジ中心線BCとのなす角度をθbkmとする。
 中心軸Rcから重心Jgnまでの距離をRnとする。交点Fから重心Jgnまでの距離をRbnとする。中心軸Rcと重心Jgnとを通る直線を第8直線L8とする。第8直線L8とブリッジ中心線BCとのなす角をθjnとする。交点Fと重心Jgnとを通る直線を第9直線L9とする。第9直線L9とブリッジ中心線BCとのなす角度をθbjnとする。なお、図8では、第1領域I1の1つの重心Kgmを通る第6直線L6及び第7直線L7を図示しているが、複数の重心Kgmが存在する場合には複数の第6直線L6及び第7直線L7が存在する。また、図8では、第2領域I2の1つの重心Jgnを通る第8直線L8及び第9直線L9を図示しているが、複数の重心Jgnが存在する場合には複数の第8直線L8及び第9直線L9が存在する。
 このとき、回転子鉄心32は、上記の式(1)を満たす構造を有している。
 このため、図7及び図8に示す構成例においても、第1領域I1の重量分布と第2領域I2の重量分布とを揃えることができ、回転子3が回転した時に第1領域I1に生ずる遠心力と第2領域I2に生ずる遠心力との差に起因してブリッジBRに作用する曲げ応力を低減することができる。
 以上説明したように、本実施形態によれば、漏れ磁束を抑制するとともに遠心力に対する応力を低減することが可能な回転電機の回転子を提供することができる。
 なお、この発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化可能である。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 例えば、回転子3の磁極数、寸法、形状等は、前述した実施形態に限定されることなく、設計に応じて種々変更可能である。回転子3の各磁極における永久磁石Mの設置数は、2つに限らず、必要に応じて、増加可能である。
 1…回転電機 2…固定子 3…回転子 Rc…中心軸 31…シャフト 32…回転子鉄心 32S…外周面 H1…第1磁石孔 H2…第2磁石孔 321…空孔 BR…ブリッジ M1…第1永久磁石 M2…第2永久磁石

Claims (2)

  1.  円柱状のシャフトと、
     前記シャフトが挿入される内孔を有する円環状の電磁鋼板を前記シャフトの中心軸方向に複数枚積層して構成され、それぞれ円筒状の外周面まで貫通した第1磁石孔及び第2磁石孔を有する回転子鉄心と、
     前記回転子鉄心において磁極を構成し、前記第1磁石孔に挿入された第1永久磁石及び前記第2磁石孔に挿入された第2永久磁石と、を備え、
     前記シャフトの中心軸と前記磁極の周方向の中心とを通る軸をd軸とし、前記第1永久磁石の前記d軸に最も近い第1角と前記第2永久磁石の前記d軸に最も近い第2角とを通る直線を第1直線とし、前記第1角と前記中心軸とを通る直線を第2直線とし、前記第2角と前記中心軸とを通る直線を第3直線とし、前記第1磁石孔の内壁上の点のうち前記第2直線と前記第3直線との間で最も内周側の点を第1点とし、前記第2磁石孔の内壁上の点のうち前記第2直線と前記第3直線との間で最も内周側の点を第2点とし、前記第1点と前記第2点とを通る直線を第4直線としたとき、前記第1直線、前記第2直線、前記第3直線、及び、前記第4直線で囲まれた領域内に前記回転子鉄心の実肉部であるブリッジが存在し、
     前記第1直線及び前記第4直線から等距離の直線を第5直線とし、前記第1磁石孔の内壁上の点のうち前記第5直線上の点を第3点とし、前記第2磁石孔の内壁上の点のうち前記第5直線上の点を第4点とし、前記第5直線上で前記第3点及び前記第4点から等距離の点を中間点とし、前記中間点と前記中心軸とを通る直線をブリッジ中心線とし、前記第4直線上の前記第1点と前記第2点と結ぶ線分をブリッジ内周側端とし、前記回転子鉄心のうちの前記ブリッジ内周側端、前記ブリッジ中心線、前記回転子鉄心の外接円、及び、前記第1磁石孔の内壁で囲まれた第1領域に存在する穴及び切欠をKmとし、前記穴Kmの稜線で囲まれた領域の面積及び前記切欠Kmの稜線と前記回転子鉄心の外接円とで囲まれた領域の面積をSkmとし、前記穴Kmの稜線で囲まれた領域及び前記切欠Kmの稜線と前記回転子鉄心の外接円とで囲まれた領域に実肉が存在する場合の重心をKgmとし、前記中心軸から重心Kgmまでの距離をrmとし、前記ブリッジ中心線と前記第4直線との交点から重心Kgmまでの距離をrbmとし、前記中心軸と重心Kgmとを通る直線を第6直線とし、前記第6直線と前記ブリッジ中心線とのなす角をθkmとし、前記交点と前記重心Kgmとを通る直線を第7直線とし、前記第7直線と前記ブリッジ中心線とのなす角度をθbkmとし(但し、前記のmはいずれも自然数である)、前記回転子鉄心のうちの前記ブリッジ内周側端、前記ブリッジ中心線、前記回転子鉄心の外接円、及び、前記第2磁石孔の内壁で囲まれた第2領域に存在する穴及び切欠をJnとし、前記穴Jnの稜線で囲まれた領域の面積及び前記切欠Jnの稜線と前記回転子鉄心の外接円とで囲まれた領域の面積をSjnとし、前記穴Jnの稜線で囲まれた領域及び前記切欠Jnの稜線と前記回転子鉄心の外接円とで囲まれた領域に実肉が存在する場合の重心をJgnとし、前記中心軸から重心Jgnまでの距離をRnとし、前記交点から重心Jgnまでの距離をRbnとし、前記中心軸と重心Jgnとを通る直線を第8直線とし、前記第8直線と前記ブリッジ中心線とのなす角をθjnとし、前記交点と前記重心Jgnとを通る直線を第9直線とし、前記第9直線と前記ブリッジ中心線とのなす角度をθbjnとしたとき(但し、前記のnはいずれも自然数である)、前記第1領域及び前記第2領域が前記d軸に関して非対称であり、前記回転子鉄心が次の式を満たす構造を有している、回転電機の回転子。
    Figure JPOXMLDOC01-appb-M000001
  2.  円柱状のシャフトと、
     前記シャフトが挿入される内孔を有する円環状の電磁鋼板を前記シャフトの中心軸方向に複数枚積層して構成され、それぞれ円筒状の外周面まで貫通した第1磁石孔及び第2磁石孔と、周方向において前記第1磁石孔と前記第2磁石孔との間に位置する空孔と、を有する回転子鉄心と、
     前記回転子鉄心において磁極を構成し、前記第1磁石孔に挿入された第1永久磁石及び前記第2磁石孔に挿入された第2永久磁石と、を備え、
     前記シャフトの中心軸と前記磁極の周方向の中心とを通る軸をd軸とし、前記第1永久磁石の前記d軸に最も近い第1角と前記第2永久磁石の前記d軸に最も近い第2角とを通る直線を第1直線とし、前記第1角と前記中心軸とを通る直線を第2直線とし、前記第2角と前記中心軸とを通る直線を第3直線とし、前記第1磁石孔の内壁上の点のうち前記第2直線と前記第3直線との間で最も内周側の点を第1点とし、前記第2磁石孔の内壁上の点のうち前記第2直線と前記第3直線との間で最も内周側の点を第2点とし、前記第1点と前記第2点とを通る直線を第4直線としたとき、前記第1直線、前記第2直線、前記第3直線、及び、前記第4直線で囲まれた領域内に前記回転子鉄心の実肉部である第1ブリッジ及び第2ブリッジが存在し、
     前記第1直線及び前記第4直線から等距離の直線を第5直線とし、前記第1磁石孔の内壁上の点のうち前記第5直線上の点を第3点とし、前記空孔の内壁上の点のうち前記第2直線と前記d軸との間で前記第5直線上の点を第4点とし、前記空孔の内壁上の点のうち前記d軸と前記第3直線との間で前記第5直線上の点を第5点とし、前記第2磁石孔の内壁上の点のうち前記第5直線上の点を第6点とし、前記第5直線上で前記第3点及び前記第4点から等距離の点を第1中間点とし、前記第5直線上で前記第5点及び前記第6点から等距離の点を第2中間点とし、前記第1中間点と前記中心軸とを通る直線を第1ブリッジ中心線とし、前記第2中間点と前記中心軸とを通る直線を第2ブリッジ中心線とし、前記第4直線上の前記第1点と前記第2点と結ぶ線分をブリッジ内周側端とし、前記回転子鉄心のうちの前記ブリッジ内周側端、前記第1ブリッジ中心線、前記回転子鉄心の外接円、及び、前記第1磁石孔の内壁で囲まれた第1領域に存在する穴及び切欠をKmとし、前記穴Kmの稜線で囲まれた領域の面積及び前記切欠Kmの稜線と前記回転子鉄心の外接円とで囲まれた領域の面積をSkmとし、前記穴Kmの稜線で囲まれた領域及び前記切欠Kmの稜線と前記回転子鉄心の外接円とで囲まれた領域に実肉が存在する場合の重心をKgmとし、前記中心軸から重心Kgmまでの距離をrmとし、前記第1ブリッジ中心線と前記第4直線との第1交点から重心Kgmまでの距離をrbmとし、前記中心軸と重心Kgmとを通る直線を第6直線とし、前記第6直線と前記第1ブリッジ中心線とのなす角をθkmとし、前記第1交点と前記重心Kgmとを通る直線を第7直線とし、前記第7直線と前記第1ブリッジ中心線とのなす角度をθbkmとし(但し、前記のmはいずれも自然数である)、前記回転子鉄心のうちの前記ブリッジ内周側端、前記第2ブリッジ中心線、前記回転子鉄心の外接円、及び、前記第2磁石孔の内壁で囲まれた第2領域に存在する穴及び切欠をJnとし、前記穴Jnの稜線で囲まれた領域の面積及び前記切欠Jnの稜線と前記回転子鉄心の外接円とで囲まれた領域の面積をSjnとし、前記穴Jnの稜線で囲まれた領域及び前記切欠Jnの稜線と前記回転子鉄心の外接円とで囲まれた領域に実肉が存在する場合の重心をJgnとし、前記中心軸から重心Jgnまでの距離をRnとし、前記第2ブリッジ中心線と前記第4直線との第2交点から重心Jgnまでの距離をRbnとし、前記中心軸と重心Jgnとを通る直線を第8直線とし、前記第8直線と前記第2ブリッジ中心線とのなす角をθjnとし、前記第2交点と前記重心Jgnとを通る直線を第9直線とし、前記第9直線と前記第2ブリッジ中心線とのなす角度をθbjnとしたとき(但し、前記のnはいずれも自然数である)、前記第1領域及び前記第2領域が前記d軸に関して非対称であり、前記回転子鉄心が次の式を満たす構造を有している、回転電機の回転子。
    Figure JPOXMLDOC01-appb-M000002
PCT/JP2021/042107 2021-11-16 2021-11-16 回転電機の回転子 WO2023089667A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022520567A JP7124247B1 (ja) 2021-11-16 2021-11-16 回転電機の回転子
PCT/JP2021/042107 WO2023089667A1 (ja) 2021-11-16 2021-11-16 回転電機の回転子
CN202180042601.7A CN116458033A (zh) 2021-11-16 2021-11-16 旋转电机的转子
US18/317,746 US20230291255A1 (en) 2021-11-16 2023-05-15 Rotor of rotary electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042107 WO2023089667A1 (ja) 2021-11-16 2021-11-16 回転電機の回転子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/317,746 Continuation US20230291255A1 (en) 2021-11-16 2023-05-15 Rotor of rotary electrical machine

Publications (1)

Publication Number Publication Date
WO2023089667A1 true WO2023089667A1 (ja) 2023-05-25

Family

ID=82942197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042107 WO2023089667A1 (ja) 2021-11-16 2021-11-16 回転電機の回転子

Country Status (4)

Country Link
US (1) US20230291255A1 (ja)
JP (1) JP7124247B1 (ja)
CN (1) CN116458033A (ja)
WO (1) WO2023089667A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312591A (ja) * 2006-04-20 2007-11-29 Toyota Industries Corp 永久磁石埋設型回転電機及びカーエアコン用モータ並びに密閉型電動圧縮機
US20110291515A1 (en) * 2010-05-31 2011-12-01 Yue Li Brushless motor
JP2013099193A (ja) * 2011-11-04 2013-05-20 Suzuki Motor Corp 電動回転機
JP2020014322A (ja) 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 回転電機のロータおよび回転電機
WO2021205713A1 (ja) * 2020-04-07 2021-10-14 三菱電機株式会社 回転電機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312591A (ja) * 2006-04-20 2007-11-29 Toyota Industries Corp 永久磁石埋設型回転電機及びカーエアコン用モータ並びに密閉型電動圧縮機
US20110291515A1 (en) * 2010-05-31 2011-12-01 Yue Li Brushless motor
JP2013099193A (ja) * 2011-11-04 2013-05-20 Suzuki Motor Corp 電動回転機
JP2020014322A (ja) 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 回転電機のロータおよび回転電機
WO2020017262A1 (ja) * 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 回転電機のロータおよび回転電機
WO2021205713A1 (ja) * 2020-04-07 2021-10-14 三菱電機株式会社 回転電機

Also Published As

Publication number Publication date
JP7124247B1 (ja) 2022-08-23
JPWO2023089667A1 (ja) 2023-05-25
CN116458033A (zh) 2023-07-18
US20230291255A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
CN112838693B (zh) 旋转电机
US9172279B2 (en) Automotive embedded permanent magnet rotary electric machine
CN112055931B (zh) 旋转电机的转子
US7405504B2 (en) Rotor for rotary electric machine
JP7293371B2 (ja) 回転電機の回転子
WO2014155438A1 (ja) 永久磁石式リラクタンス型回転電機
JP7112340B2 (ja) 回転電機のロータおよび回転電機
US11837919B2 (en) Rotary electric machine
WO2018037529A1 (ja) 回転電機
WO2017195498A1 (ja) 回転子および回転電機
JPWO2020194390A1 (ja) 回転電機
WO2020100675A1 (ja) 回転子およびそれを備えた回転電気機械
WO2023089667A1 (ja) 回転電機の回転子
US20230412018A1 (en) Rotor core
WO2018070430A1 (ja) 同期リラクタンス型回転電機
JP6929603B2 (ja) 回転機
JP2020182358A (ja) 回転電機の回転子
WO2022044090A1 (ja) ロータ
WO2013111335A1 (ja) 回転電機
WO2023105701A1 (ja) 回転電機の回転子
WO2023132011A1 (ja) 回転子
JP7455994B2 (ja) 回転電機
WO2024029449A1 (ja) 埋込磁石形回転子および回転電機
WO2023195258A1 (ja) ロータ、および回転電機
WO2022172479A1 (ja) 回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022520567

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180042601.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021964683

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021964683

Country of ref document: EP

Effective date: 20240617