WO2020017098A1 - リチウム硫黄電池、及びリチウム硫黄電池の製造方法 - Google Patents

リチウム硫黄電池、及びリチウム硫黄電池の製造方法 Download PDF

Info

Publication number
WO2020017098A1
WO2020017098A1 PCT/JP2019/012033 JP2019012033W WO2020017098A1 WO 2020017098 A1 WO2020017098 A1 WO 2020017098A1 JP 2019012033 W JP2019012033 W JP 2019012033W WO 2020017098 A1 WO2020017098 A1 WO 2020017098A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
lithium
exchange membrane
current collector
sulfur battery
Prior art date
Application number
PCT/JP2019/012033
Other languages
English (en)
French (fr)
Inventor
雄治 坂野
飯島 竜太
孝仁 桜庭
卓 大田
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2020017098A1 publication Critical patent/WO2020017098A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium-sulfur battery and a method for manufacturing a lithium-sulfur battery.
  • a lithium-sulfur battery is a state in which a positive electrode material having a sulfur-containing active material and a current collector and a negative electrode material having a lithium-containing active material and a current collector face each other with a separator interposed therebetween. Are arranged side by side and housed in an exterior body. This lithium sulfur battery may be further housed in a case. Lithium ions pass through the separator.
  • lithium polysulfide In the positive electrode of the lithium-sulfur battery, lithium polysulfide is generated during the reaction of sulfur and lithium in multiple stages, but lithium polysulfide (Li 2 S x , 1 ⁇ x ⁇ 8) is easily eluted into the electrolyte, The eluted lithium polysulfide diffuses as an anion.
  • the separator is made of a polymer nonwoven fabric or a resin microporous film or the like, but anions of lithium polysulfide penetrate the separator and diffuse to the negative electrode. When polysulfide ions react with lithium of the negative electrode, the charge reaction is not promoted (a so-called redox shuttle phenomenon occurs), and the charge / discharge capacity and charge / discharge efficiency are reduced.
  • the present invention has been made in view of such circumstances, and a positive electrode and a negative electrode are satisfactorily separated from each other, and a lithium sulfur battery that suppresses a decrease in charge / discharge capacity and charge / discharge efficiency, and a method for manufacturing a lithium sulfur battery The purpose is to provide.
  • a lithium-sulfur battery includes a flat first current collector, two first electrodes provided on each plane of the first current collector and having the same polarity, and the first current collector. And a first electrode material having a bag-shaped cation exchange membrane accommodating the first electrode, a second flat current collector, and the first electrode facing the first electrode via the cation exchange membrane. And a second electrode material provided on a plane of the current collector and having a second electrode having a polarity different from that of the first electrode, wherein one of the first electrode and the second electrode includes an active material containing sulfur.
  • the positive electrode has a substance, and the other is a negative electrode having an active material containing lithium.
  • the method for manufacturing a lithium-sulfur battery according to the present invention is a method for manufacturing a lithium-sulfur battery including a positive electrode having a sulfur-containing active material and a negative electrode having a lithium-containing active material.
  • Two first electrodes having the same polarity are provided on each plane of the body, the first current collector provided with the first electrodes is covered with a cation exchange membrane, and an end of the cation exchange membrane is A first electrode material is produced by bonding, and a second electrode having a polarity different from that of the first electrode is provided on a plane surface of a second current collector having a plate shape to produce a second electrode material.
  • a material and the second electrode material are arranged so that the first electrode and the second electrode face each other, and the first electrode material and the second electrode material are covered with an exterior body.
  • the positive electrode and the negative electrode are satisfactorily separated from each other, and a decrease in charge / discharge capacity and charge / discharge efficiency can be suppressed. .
  • FIG. 1 is a schematic plan view showing a lithium-sulfur battery according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along the line II-II of FIG. 1. It is a schematic plan view of an electrode material.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 3.
  • FIG. 9 is a schematic sectional view showing a battery according to a second embodiment.
  • FIG. 9 is a schematic sectional view showing a battery according to a third embodiment.
  • FIG. 9 is a schematic sectional view showing a battery according to a fourth embodiment.
  • FIG. 13 is a schematic sectional view showing a battery according to a fifth embodiment.
  • a lithium-sulfur battery 1 (hereinafter referred to as a battery 1) according to the first embodiment includes an outer package 2, positive electrode materials 5 and 5, and negative electrode materials 6 and 7. , 7 are provided.
  • a positive electrode terminal 3 and a negative electrode terminal 4 protrude from a part of a peripheral portion of the exterior body 2.
  • the battery 1 alone or a combination of the battery 1 and another battery 1 may be housed in a case (not shown).
  • the positive electrode material 5 includes a current collector 51, an electrode 52, and a cation exchange membrane (hereinafter, referred to as an ion exchange membrane) 53.
  • the current collector 51 has a rectangular plate shape, and rectangular flat plate-shaped electrodes 52 are provided on both planes.
  • the ion exchange membrane 53 covers the side and the plane of the electrode 52 and the exposed part of the side and the plane of the current collector 51.
  • FIG. 3 is a schematic plan view of the electrode member 5, and FIG. 4 is a sectional view taken along line IV-IV of FIG.
  • the ion exchange membrane 53 has a bag shape, and accommodates the current collector 51 and the electrode 52 inside the bag.
  • the ion-exchange membrane 53 has a bag-like shape by bonding peripheral portions of two sheet-like ion-exchange membranes.
  • the ion exchange membrane 53 may be formed in a bag shape by bending a single rectangular ion exchange membrane at the center in the longitudinal direction and joining the ends.
  • a tab 51a protrudes from a part of the periphery of the current collector 51.
  • the tab 51a protrudes from a part of the periphery of the ion exchange membrane 53, and is bonded to the ion exchange membrane 53 via an adhesive layer.
  • the peripheral portion of the ion exchange membrane 53 other than the portion where the tab 51a protrudes is bonded by heat welding.
  • the current collector 51 and the tab 51a may be formed integrally or may be formed separately.
  • the electrode 52 has an active material containing sulfur or a sulfur compound, carbon, and a binder.
  • the sulfur include crystalline sulfur, insoluble sulfur, and sulfur compounded with carbon.
  • the active material may include lithium.
  • Examples of carbon include carbon black, graphitized carbon black, activated carbon, graphite, carbon nanotube (CNT), carbon fiber (CNF), and the like.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • PVDF polyvinylidene fluoride
  • PVDF-HEP polyvinylidene fluoride-hexafluoropropylene copolymer
  • PTFE polytetrafluoroethylene
  • a porous polyolefin film or a glass separator may be provided on the electrode 52 as a liquid retaining layer.
  • Examples of the current collector 51 include an aluminum foil, an aluminum foil coated with carbon, a stainless steel foil, and the like, an apertured foil having holes formed therein, an aluminum mesh, and a stainless steel mesh.
  • the electrodes 52, 52 and the current collector 51 are housed in a bag-like ion exchange membrane 53.
  • the ion exchange membrane 53 is preferably a fluorine-based cation exchange membrane.
  • fluorine-based cation exchange membrane examples include “Nafion” (registered trademark, perfluorocarbon sulfonic acid (PFSA) membrane, manufactured by DuPont), “F-1850” (manufactured by FuMA-Tech), and the like.
  • the thickness of the ion exchange membrane 53 is preferably 5 to 100 ⁇ m. When “Nafion” having a thickness of 50 ⁇ m is used as the ion exchange membrane 53, the ends of the ion exchange membrane 53 can be thermally welded at 180 ° C.
  • the adhesive layer 54 at the portion where the tab 51a of the ion exchange membrane 53 protrudes is made of a substance capable of adhering the tab 51a to the ion exchange membrane 53 by an anchor effect, physical interaction, chemical interaction, or the like.
  • an acrylic resin or an epoxy resin can be used.
  • An electrolytic solution is injected into the bag-like ion exchange membrane 53.
  • an organic solvent in which a lithium salt that conducts lithium ions is dissolved is used.
  • a solution in which lithium polysulfide is dissolved may be used.
  • the Li salt include lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (fluorosulfonyl) imide (LiFSI), lithium trifluoromethanesulfonate, lithium tetrafluoroborate (LiBF 4 ), and lithium hexafluorophosphate (LiPF4).
  • lithium bis (pentafluoroethanesulfonyl) imide LiBETI
  • lithium perchlorate lithium perchlorate
  • the organic solvent include glyme (ethylene glycol dimethyl ether (monoglyme), diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), tetraethylene glycol dimethyl ether (tetraglyme), diethylene glycol diethyl ether (ethyl diglyme), diethylene glycol dibutyl ether.
  • the negative electrode material 6 includes a current collector 61 having a rectangular plate shape, and rectangular flat electrodes 62 provided on both planes of the current collector 61.
  • the negative electrode material 7 includes a current collector 71 having a rectangular plate shape, and a rectangular flat electrode 72 provided on one plane of the current collector 71.
  • the electrodes 62 and 72 are made of metallic lithium.
  • the electrodes 62 and 72 include graphite, Si, SiO, a composite of Si and carbon, or a mixture of graphite and Si or SiO, a binder, and carbon. In this case, lithium may be pre-doped in advance.
  • binder examples include SBR, CMC, fluororesins (PVDF, PVDF-HEP, PTFE), polyimide, polyamideimide, sodium alginate, polyacrylic acid, polyethylene oxide and the like.
  • a porous polyolefin film or a glass separator may be provided as a liquid retaining layer on the electrodes 62 and 72.
  • the current collectors 61 and 71 include a copper foil, a copper foil coated with carbon, a stainless steel foil, and the like, and an apertured foil having holes formed therein. When the electrodes 62 and 72 are made of metallic lithium, stainless steel mesh may be used as the current collectors 61 and 71.
  • a tab 61a protrudes from a part of the periphery of the current collector 61.
  • the current collector 61 and the tab 61a may be formed integrally or may be formed separately.
  • a tab 71a protrudes from a part of the periphery of the current collector 71.
  • the current collector 71 and the tab 71a may be formed integrally or may be formed separately.
  • a porous separator 73 is interposed between the electrode 72 and the ion exchange membrane 53, and a porous separator 63 is interposed between the electrode 62 and the ion exchange membrane 53.
  • the separators 63 and 73 include a separator made of a synthetic resin such as PP (polypropylene) and PE (polyethylene), and a glass separator. From the viewpoint of good flexibility when expanding and contracting, a synthetic resin separator is preferable.
  • the plane area of the separators 63 and 73 is preferably larger than the plane area of the electrodes 62 and 72 and smaller than the plane area of the ion exchange membrane 53.
  • the ion exchange membrane 53 is made of PFSA
  • the PTFE skeleton in the PFSA is brought into contact with the electrodes 62 and 72 to reduce and decompose, thereby preventing defluorination.
  • the separator 63 facing one side of the ion exchange membrane 53 and the separator 73 facing the other side of the ion exchange membrane 53 may be integrated.
  • the tab 51a of one electrode member 5 extends upward, and the tab 51a of the other electrode member 5 extends upward, then bends and extends to the one electrode member 5 side. It is joined to the terminal 3.
  • the positive electrode terminal 3 protrudes from a part of the periphery of the exterior body 2, and the positive electrode terminal 3 is bonded to the exterior body 2 via an adhesive layer 30.
  • the positive electrode terminal 3 may be adhered to the exterior body 2 in a state where the center is covered with the sealant.
  • the tab 61a of the electrode material 6 extends downward, and the tabs 71a, 71a of the electrode materials 7, 7 extend downward and then bend to extend to the electrode material 6 side, with their respective ends overlapped. , And the negative electrode terminal 4.
  • the negative electrode terminal 4 protrudes from a part of the periphery of the outer package 2, and the negative electrode terminal 4 is bonded to the outer package 2 via an adhesive layer 40.
  • the negative electrode terminal 4 may be bonded to the exterior body 2 in a state where the central portion is covered with the sealant.
  • the outer package 2 is an insulating film impermeable to an electrolyte.
  • the exterior body 2 is preferably made of a laminate sheet having a three-layer structure of a synthetic resin layer, a metal layer, and a synthetic resin layer.
  • the exterior body 2 is formed by combining two laminate sheets. One laminate sheet may be bent at the center in the longitudinal direction to match the ends.
  • Examples of the material of the synthetic resin layer include polyamides such as polypropylene, polyethylene, nylon 6, and nylon 66.
  • Examples of the material of the metal layer include aluminum, aluminum alloy, copper, copper alloy, iron, stainless steel, titanium, and titanium alloy.
  • the thickness of the outer package 2 is not particularly limited, but is preferably 15 to 250 ⁇ m. When the thickness is 15 to 250 ⁇ m, the battery has sufficient strength and the volume energy density of the battery is improved. An electrolytic solution is injected into the exterior body 2.
  • a kneaded material is obtained by kneading the active material of the positive electrode, carbon, a binder, and, if necessary, a lubricant.
  • the kneaded material is provided on both planes of the current collector 51 at equal intervals in the direction in which the plane extends.
  • the current collector 51 is cut between adjacent kneaded materials and dried to obtain an electrode material having electrodes 52 on both planes.
  • the electrode material is sandwiched between two sheet-like ion exchange membranes in a state where the tabs 51a of the current collector 51 protrude from the peripheral edge, and portions other than the portions where the tabs 51a protrude are bonded by heat welding to form a bag. Is obtained.
  • the portions where the tabs 51a protrude are provided with an adhesive layer 54 with an adhesive and adhered.
  • the electrode material 5 in which the side surfaces and the flat surfaces of the electrodes 52 and the exposed portions of the side surfaces and the flat surfaces of the current collector 51 are covered with the ion exchange membrane 53 is obtained. Before bonding the entire periphery of the ion exchange membrane 53, an electrolytic solution is injected from this part except for a part.
  • the current collector 61 is cut and dried between the adjacent kneaded materials to obtain the electrode material 6 having the electrodes 62 on both planes.
  • the electrode member 7 in which the electrode 72 is provided on one plane of the current collector 71 is obtained.
  • the electrode materials 6 and 7 may be bonded to a metal lithium foil in advance.
  • the electrode material 7, the electrode material 5, the electrode material 6, and the electrode are arranged.
  • the electrode material 7, the electrode material 5, the electrode material 6, the electrode material 5, and the electrode material 7 are sandwiched between two sheet-like laminated films, and are adhered by heat welding while leaving a part of the peripheral portion, so that a bag-shaped exterior body is formed.
  • Form 2 The protruding portions of the positive electrode terminal 3 and the negative electrode terminal 4 are bonded via the bonding layers 30 and 40. After the electrolyte is injected from the remaining portion of the peripheral portion, the portion is sealed.
  • the battery 1 is manufactured as described above.
  • the electrode 52 of the electrode material 5 is covered with the ion exchange membrane 53, the electrode 52 and the electrode 72, and the electrode 52 and the electrode 62 are well separated, and the charge / discharge capacity is increased. In addition, it is possible to suppress a decrease in charge / discharge efficiency.
  • FIG. Battery 10 according to the second embodiment has the same configuration as battery 1 according to the first embodiment, except that the configuration of negative electrode material 8 is different from the configuration of negative electrode material 6.
  • FIG. 5 is a schematic sectional view showing the battery 10. 5, the same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description will be omitted.
  • the electrode member 8 includes a current collector 81 having a rectangular plate shape, rectangular flat electrodes 82 provided on both planes of the current collector 81, and a separator 83.
  • the materials of the current collector 81, the electrode 82, and the separator 83 are the same as the materials of the current collector 61, the electrode 62, and the separator 63.
  • the separator 83 covers the side surface and the flat surface of the electrode 82 and the exposed portion of the side surface and the flat surface of the current collector 81.
  • the separator 83 has a bag shape, and accommodates the current collector 81 and the electrode 82 inside the bag shape.
  • the separator 83 is formed in a bag shape by bonding peripheral portions of two sheet-shaped separators.
  • the separator 83 may be formed in a bag shape by bending a single rectangular separator at the center in the longitudinal direction and joining the ends.
  • a tab 81a protrudes from a part of the periphery of the current collector 81.
  • the tab 81a protrudes from a part of the peripheral edge of the separator 83, and is bonded to the separator 83 via an adhesive layer 84.
  • the ends of the separator 83 other than the portion where the tab 81a protrudes are adhered by an adhesive layer 84.
  • Examples of the material of the adhesive layer 84 include an acrylic resin and an epoxy resin.
  • the separator is a thermoplastic resin such as polypropylene or polyethylene, the separators may be welded to each other by heat. In this case, the adhesive layer 84 may not be provided.
  • the tab 81a of the electrode member 8 extends downward, and the tabs 71a, 71a of the electrode members 7, 7 extend downward and then bend to the electrode member 8 side, with their respective ends overlapped. , And the negative electrode terminal 4.
  • the negative electrode terminal 4 protrudes from a part of the periphery of the outer package 2, and the negative electrode terminal 4 is bonded to the outer package 2 via an adhesive layer 40.
  • the negative electrode terminal 4 may be bonded to the exterior body 2 in a state where the central portion is covered with the sealant.
  • the current collector 81 and the tab 81a may be formed integrally or may be formed separately.
  • the separator 83 may be covered with a cation exchange membrane. Then, the ion exchange membrane may be integrated with the separator 83. In this case, the plane area of the ion exchange membrane is made larger than the plane area of the separator 83, and the ends of the ion exchange membrane are heat-welded to form a bag.
  • FIG. 6 is a schematic sectional view showing the battery 12. 6, the same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description will be omitted.
  • the current collector 55 of the positive electrode material 5 has a plurality of through holes 55 a at a portion facing the electrode 52.
  • the current collectors 64 and 74 of the negative electrode materials 6 and 7 have a plurality of through holes 64 a and 74 a at portions facing the electrodes 62 and 72.
  • the tab 55b of one electrode member 5 extends upward, the tab 55b of the other electrode member 5 extends upward, and then bends and extends to the one electrode member 5 side. It is joined to the terminal 3.
  • the tab 64b of the electrode material 6 extends downward, and the tabs 74b, 74b of the electrode materials 7, 7 extend downward and then bend to extend to the electrode material 6 side, with their respective ends overlapped.
  • the negative electrode terminal 4 In the battery 12, the lithium supply member 9 is adjacent to the electrode material 7.
  • the lithium supply member 9 includes a conductive material 91 made of a copper foil or a stainless steel foil, a lithium foil 92, and a separator 93.
  • the terminal 91a protruding from a part of the peripheral edge of the conductive material 91 extends downward and protrudes from a part of the peripheral edge of the exterior body 2, and the end of the terminal 91a is bonded to the exterior body 2 via an adhesive layer 94. Have been. The end of the terminal 91a may be bonded to the exterior body 2 in a state where the center is covered with the sealant.
  • a separator 93 is interposed between the lithium foil 92 and the current collector 74 of the electrode material 7. As the material of the separator 93, the same material as the material of the separator 73 can be used.
  • the lithium foil 92 and the electrode 72 are short-circuited. Thereby, pre-doping of lithium can be easily performed. While electrons flow from the lithium foil 92 to the electrode 72, lithium ions are released into the electrolytic solution, and the lithium ions diffuse through the through holes 55a, 64a, 74a of the current collectors 55, 64, 74 to form a negative electrode. Electrodes 62 and 72 are doped.
  • the current collectors 55, 64, and 74 may have a mesh structure. Examples of the case where the current collectors 55, 64, and 74 have a mesh structure include expanded metal and wire mesh.
  • the lithium supply member 9 may be taken out at the time of resealing.
  • FIG. Battery 13 according to the fourth embodiment is different from battery 1 according to the first embodiment in the configuration of the stack of electrode materials.
  • FIG. 7 is a schematic sectional view showing the battery 13. 7, the same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description will be omitted.
  • the battery 13 includes a positive electrode material 5 and negative electrode materials 7, 7.
  • the configurations of the electrode materials 5 and 7 are the same as the configurations of the electrode materials 5 and 7 according to the first embodiment.
  • the electrode member 7, the electrode member 5, and the electrode member 7 are arranged in order from the left side of FIG.
  • the tab 51 a of the electrode material 5 extends upward and is joined to the positive electrode terminal 3.
  • the positive electrode terminal 3 protrudes from a part of the periphery of the exterior body 2, and the positive electrode terminal 3 is bonded to the exterior body 2 via an adhesive layer 30.
  • the positive electrode terminal 3 may be adhered to the exterior body 2 in a state where the center is covered with the sealant.
  • the tab 71a of one electrode member 7 extends downward, and the tab 71a of the other electrode member 7 extends downward and then bends toward one electrode member 7 so that the ends are overlapped.
  • the negative electrode terminal 4 protrudes from a part of the periphery of the outer package 2, and the negative electrode terminal 4 is bonded to the outer package 2 via an adhesive layer 40.
  • the negative electrode terminal 4 may be bonded to the exterior body 2 in a state where the central portion is covered with the sealant.
  • the electrode 52 of the positive electrode material 5 is covered with the ion exchange membrane 53, the electrode 52 and the electrode 72 are well separated, and the charge / discharge capacity and the charge / discharge efficiency are improved. Can be suppressed.
  • FIG. Battery 16 according to the fifth embodiment has the same configuration as battery 1 according to the first embodiment, except that negative electrode material 11 has bag-shaped ion exchange membrane 113.
  • FIG. 8 is a schematic sectional view showing the battery 16. 8, the same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description will be omitted.
  • the positive electrode material 14, the negative electrode material 11, the positive electrode material 15, the electrode material 11, and the electrode material 14 are arranged in this order.
  • the negative electrode material 11 includes a current collector 111, an electrode 112, an ion exchange membrane 113, and a separator 114.
  • the current collector 111 has a rectangular plate shape, and rectangular flat plate-like electrodes 112 are provided on both planes.
  • the ion-exchange membrane 113 covers the side and the plane of the electrode 112 and the exposed part of the side and the plane of the current collector 111.
  • the ion-exchange membrane 113 is formed in a bag shape by bonding peripheral portions of two sheet-like ion-exchange membranes.
  • the ion-exchange membrane 113 may be formed in a bag shape by bending a single rectangular ion-exchange membrane at the center in the longitudinal direction and joining the ends.
  • a separator 114 is interposed between the outer surface of the electrode 112 and the ion exchange membrane 113.
  • the plane area of the separator 114 is larger than the plane area of the electrode 112 and smaller than the plane area of the ion exchange membrane 113.
  • the materials of the current collector 111, the electrode 112, the ion exchange membrane 113, and the separator 114 are the same as the materials of the current collector 61, the electrode 62, the ion exchange membrane 53, and the separator 63.
  • the ion exchange membrane 113 and the separator 114 may be integrated.
  • the positive electrode material 14 includes a current collector 141 having a rectangular plate shape, and a rectangular plate-shaped electrode 142 provided on one plane of the current collector 141.
  • the positive electrode material 15 includes a current collector 151 having a rectangular plate shape, and rectangular flat electrodes 152 provided on both planes of the current collector 151.
  • the material of the members of the electrode members 14 and 15 is the same as the material of the member of the electrode member 5.
  • a tab 111a protrudes from a part of the periphery of the current collector 111.
  • the tab 111a protrudes from a part of the periphery of the ion exchange membrane 113, and is bonded to the ion exchange membrane 113 via an adhesive layer 115.
  • the ends of the ion-exchange membrane 113 other than the portion where the tab 111a protrudes are bonded by heat welding.
  • Examples of the material of the adhesive layer 115 include an acrylic resin and an epoxy resin.
  • the current collector 111 and the tab 111a may be formed integrally, or may be formed separately.
  • the tab 111a of one electrode material 11 extends upward, the tab 111a of the other electrode material 11 extends upward, then bends and extends to the one electrode material 11 side.
  • the negative electrode terminal 4 protrudes from a part of the periphery of the outer package 2, and the negative electrode terminal 4 is bonded to the outer package 2 via an adhesive layer 40.
  • the negative electrode terminal 4 may be bonded to the exterior body 2 in a state where the central portion is covered with the sealant.
  • Tabs 141a and 151a protrude from a part of the periphery of the current collectors 141 and 151 of the electrode members 14 and 15.
  • the tab 151a of the electrode material 15 extends downward, and the tabs 141a, 141a of the electrode materials 14, 14 extend downward and then bend to extend to the electrode material 15 side, with their respective ends overlapped.
  • the positive electrode terminal 3 protrudes from a part of the periphery of the exterior body 2, and the positive electrode terminal 3 is bonded to the exterior body 2 via an adhesive layer 30.
  • the positive electrode terminal 3 may be adhered to the exterior body 2 in a state where the center is covered with the sealant.
  • the current collectors 141 and 151 and the tabs 141a and 151a may be formed integrally, or may be formed separately.
  • the electrode 112 of the negative electrode material 11 is covered with the ion exchange membrane 113, the electrode 112 and the electrode 142, and the electrode 112 and the electrode 152 are well separated and filled. A decrease in discharge capacity and charge / discharge efficiency can be suppressed. Since the separator 114 is arranged on the inner surface of the ion exchange membrane 113, the decomposition of the ion exchange membrane 113 due to the direct contact between the ion exchange membrane 113 and the electrode 112 is suppressed.
  • the plane area of the separator 114 is larger than the plane area of the electrode 112 and smaller than the plane area of the ion exchange membrane 113, the above-described decomposition can be suppressed well and the ends of the ion exchange membrane 113 can be thermally welded to each other. .
  • the battery according to the present invention can be laminated by combining an appropriate number of positive electrode materials and negative electrode materials.
  • As the electrode materials of the positive electrode and the negative electrode a material in which an electrode is provided on one surface of a current collector and a material in which electrodes are provided on both surfaces of the current collector can be combined. By stacking a plurality of positive electrode materials and a negative electrode material, the energy density of the battery can be improved.
  • the lithium-sulfur battery according to one embodiment of the present invention includes a flat first current collector and two first electrodes provided on each plane of the first current collector and having the same polarity. And a first electrode material having a bag-shaped cation exchange membrane accommodating the first current collector and the first electrode, a flat second current collector, and the cation exchange membrane. A second electrode material provided on a plane of the second current collector facing the first electrode and having a second electrode having a polarity different from that of the first electrode; One of them is a positive electrode having an active material containing sulfur, and the other is a negative electrode having an active material containing lithium.
  • the positive electrode and the negative electrode are satisfactorily separated from each other, and a decrease in charge / discharge capacity and charge / discharge efficiency can be suppressed. .
  • the second electrode material has two of the second electrodes on both surfaces of the second current collector, and the first electrode material and the second electrode material are laminated. May be.
  • the energy density can be increased by stacking a plurality of positive electrodes and negative electrodes.
  • a porous separator may be provided between the cation exchange membrane and the negative electrode adjacent to the cation exchange membrane.
  • the cation exchange membrane is prevented from being directly contacted with the negative electrode and decomposed.
  • the second electrode may be a negative electrode
  • the second electrode material may include the bag-shaped porous separator that houses the second current collector and the second electrode.
  • the separator may be made of a synthetic resin.
  • the plane area of the separator may be smaller than the plane area of the cation exchange membrane and larger than the plane area of the negative electrode.
  • the peripheral portion of the cation exchange membrane can be bonded by heat welding.
  • the cation exchange membrane can be easily and reliably bagged. Then, the contact between the cation exchange membrane and the negative electrode is favorably prevented.
  • the cation exchange membrane may be a fluorine-based cation exchange membrane.
  • the end of the cation exchange membrane may be sealed by heat welding, and the thickness of the cation exchange membrane may be 5 to 100 ⁇ m.
  • the ends of the cation exchange membrane can be easily bonded by heat welding.
  • the first current collector or the second current collector may have a plurality of through holes.
  • the negative electrode can be easily pre-doped with lithium.
  • the first current collector or the second current collector may have a mesh structure.
  • the negative electrode can be easily pre-doped with lithium.
  • a tab protruding from a part of a periphery of the first current collector protrudes from a part of a periphery of the cation exchange membrane. It may be adhered to the ion exchange membrane via an adhesive layer.
  • the cation exchange membrane and the tub cannot be directly bonded. According to the above configuration, the cation exchange membrane and the tab are adhered by the adhesive layer.
  • a method for manufacturing a lithium-sulfur battery is a method for manufacturing a lithium-sulfur battery including a positive electrode including a sulfur-containing active material and a negative electrode including a lithium-containing active material.
  • Two first electrodes having the same polarity are provided on each plane of one current collector, and the first current collector provided with the first electrodes is covered with a cation exchange membrane.
  • a first electrode material is produced by bonding the end portions, and a second electrode material having a polarity different from that of the first electrode is provided on a plane surface of a second current collector having a flat plate shape to produce a second electrode material.
  • the first electrode material and the second electrode material are arranged so that the first electrode and the second electrode face each other, and the first electrode material and the second electrode material are covered with an exterior body.
  • the positive electrode and the negative electrode can be satisfactorily separated by the ion exchange membrane without using an adhesive and a sealant, and a lithium sulfur battery having good charge / discharge capacity and charge / discharge efficiency can be obtained.
  • the present invention is not limited to the contents of the above-described embodiment, and various changes can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.
  • the material, configuration, and number of each electrode material, the polarity of the electrodes, and the method of bonding the ion exchange membrane and the package are not limited to those described in the first to fifth embodiments.
  • Electrode material and the second electrode material are stacked to form a battery.
  • a plurality of positive electrodes are provided intermittently on the plane of the current collector to obtain a positive electrode material
  • a plurality of negative electrodes are provided intermittently on the plane of the current collector to obtain a negative electrode material.
  • An ion exchange membrane is interposed in a state where the electrodes of the electrode material face each other, and the two electrode materials and the ends of the ion exchange membrane are bonded to obtain an electrode unit.
  • This electrode unit may be configured to be folded in a zigzag manner so that the electrodes are arranged in one direction, so that the two positive electrodes are opposed to each other with the current collector interposed therebetween so as to be covered in a bag shape by the ion exchange membrane. Similarly, the two negative electrodes face each other across the current collector, and are covered with the ion exchange membrane in a bag shape.
  • the above configuration may be obtained by winding the electrode unit instead of folding it in a zigzag manner.
  • Electrode material 51 55, 61, 64, 71, 74, 81, 111, 141, 151 Current collector 51a, 55b, 61a, 64b, 71a, 74b, 81a, 111a, 141a, 151a Tab 52, 62, 72, 82, 112, 142, 152 Electrode 53, 113 Ion exchange membrane 54, 84, 115 adhesive layer 63, 73, 83, 114 separator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

正極と負極とが良好に分離され、良好な充放電容量及び充放電効率を有するリチウム硫黄電池、及びリチウム硫黄電池の製造方法を提供する。リチウム硫黄電池1の第1電極材5は、平板状の第1集電体51、第1集電体51の各平面上に設けられ、同一の極性を有する2つの第1電極52、並びに第1集電体51及び第1電極52を収容する袋状の陽イオン交換膜53を有する。第2電極材6,7は平板状の第2集電体61,71、及び陽イオン交換膜53を介して第1電極52に対向する第2集電体61,71の平面上に設けられ、第1電極52とは極性が異なる第2電極62,72を有する。第1電極52及び第2電極62,72のうちの一方は硫黄を含む活物質を有する正極であり、他方はリチウムを含む活物質を有する負極である。

Description

リチウム硫黄電池、及びリチウム硫黄電池の製造方法
 本発明は、リチウム硫黄電池、及びリチウム硫黄電池の製造方法に関する。
 二次電池は、デジタル家電製品、電気自動車、ハイブリッド自動車及び太陽光発電設備等に広く用いられている。この二次電池としてリチウム二次電池が挙げられ、リチウム二次電池の中で、近年リチウム硫黄電池(例えば特許文献1等)が注目されている。リチウム硫黄電池は、硫黄を含む活物質及び集電体を有する正極の電極材と、リチウムを含む活物質及び集電体を有する負極の電極材を、正極及び負極がセパレータを介して対向する状態で複数並設し、外装体に収容することにより構成される。このリチウム硫黄電池は、さらにケースに収容されることもある。セパレータをリチウムイオンが通過する。
特開2013-114920号公報
 リチウム硫黄電池の正極では、硫黄とリチウムとが多段階で反応する途中で多硫化リチウムが生成するが、多硫化リチウム(Li2 Sx 、1≦x≦8)は電解液に溶出し易く、溶出した多硫化リチウムは陰イオンとして拡散する。特許文献1においては、セパレータを高分子不織布又は樹脂製微多孔フィルム等で構成しているが、多硫化リチウムの陰イオンがセパレータを透過して負極へ拡散する。多硫化物イオンが負極のリチウムと反応すると、充電反応が促進されず(所謂レドックス・シャトル現象が生じ)、充放電容量及び充放電効率が低下する。
 本発明は、斯かる事情に鑑みてなされたものであり、正極と負極とが良好に分離され、充放電容量及び充放電効率の低下を抑制するリチウム硫黄電池、及びリチウム硫黄電池の製造方法を提供することを目的とする。
 本発明に係るリチウム硫黄電池は、平板状の第1集電体、該第1集電体の各平面上に設けられ、同一の極性を有する2つの第1電極、並びに前記第1集電体及び前記第1電極を収容する袋状の陽イオン交換膜を有する第1電極材と、平板状の第2集電体、及び前記陽イオン交換膜を介して前記第1電極に対向する前記第2集電体の平面上に設けられ、前記第1電極とは極性が異なる第2電極を有する第2電極材と備え、前記第1電極及び前記第2電極のうちの一方は硫黄を含む活物質を有する正極であり、他方はリチウムを含む活物質を有する負極である。
 本発明に係るリチウム硫黄電池の製造方法は、硫黄を含む活物質を有する正極と、リチウムを含む活物質を有する負極とを有するリチウム硫黄電池の製造方法であって、平板状の第1集電体の各平面上に同一の極性を有する2つの第1電極を設け、前記第1電極が設けられた前記第1集電体を陽イオン交換膜により覆い、該陽イオン交換膜の端部を接着して第1電極材を作製し、平板状の第2集電体の平面上に前記第1電極とは極性が異なる第2電極を設けて第2電極材を作製し、前記第1電極材及び前記第2電極材を、前記第1電極と前記第2電極とが対向するように配置し、前記第1電極材及び前記第2電極材を外装体により覆う。
 本発明によれば、第1電極材の第1電極がイオン交換膜により覆われているので、正極と負極とが良好に分離され、充放電容量及び充放電効率の低下を抑制することができる。
本発明の実施の形態1に係るリチウム硫黄電池を示す模式的平面図である。 図1のII-II線模式的断面図である。 電極材の模式的平面図である。 図3のIV-IV線断面図である。 実施の形態2に係る電池を示す模式的断面図である。 実施の形態3に係る電池を示す模式的断面図である。 実施の形態4に係る電池を示す模式的断面図である。 実施の形態5に係る電池を示す模式的断面図である。
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
実施の形態1.
 図1及び図2に示すように、実施の形態1に係るリチウム硫黄電池1(以下、電池1という)は、外装体2と、正の電極材5,5と、負の電極材6,7,7とを備える。外装体2の周縁部の一部から正極端子3及び負極端子4が突出している。この電池1単体、又は該電池1と他の電池1とを組み合わせてケース(不図示)に収容してもよい。
 正極の電極材5は、集電体51、電極52、及び陽イオン交換膜(以下、イオン交換膜という)53を有する。
 集電体51は矩形板状をなし、両平面には角型平板状の電極52が設けられている。イオン交換膜53は、電極52の側面及び平面、並びに集電体51の側面及び平面の露出部分を覆う。
 図3は電極材5の模式的平面図、図4は図3のIV-IV線断面図である。
 図2~図4に示すように、イオン交換膜53は袋状をなし、袋の内部に集電体51、電極52を収容する。イオン交換膜53は、シート状の2枚のイオン交換膜の周縁部を接着することで袋状をなす。イオン交換膜53は、一枚の矩形状のイオン交換膜を長手方向の中央部で折り曲げて端部を合わせることで袋状をなしてもよい。
 集電体51の周縁の一部からタブ51aが突出している。タブ51aはイオン交換膜53の周縁の一部から突出し、イオン交換膜53に接着層54を介して接着されている。イオン交換膜53のタブ51aが突出している部分以外の周縁部は熱溶着により接着されている。集電体51とタブ51aとは一体で形成されていてもよいし、別体で形成されていてもよい。
 電極52は、硫黄又は硫黄化合物を含む活物質、カーボン、及びバインダを有する。
 硫黄としては、結晶性硫黄、不溶性硫黄、カーボンと複合化しているもの等が挙げられる。活物質はリチウムを含んでもよい。
 カーボンとしては、カーボンブラック、黒鉛化カーボンブラック、活性炭、黒鉛、カーボンナノチューブ(CNT)、カーボンファイバー(CNF)等が挙げられる。
 バインダとしては、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、フッ素系樹脂(ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HEP)、ポリテトラフルオロエチレン(PTFE))、ポリイミド、ポリアミドイミド、アルギン酸ナトリウム、ポリアクリル酸、ポリエチレンオキシド等が挙げられる。
 電極52上に保液層として多孔質ポリオレフィンフィルム又はガラスセパレータを設けてもよい。
 集電体51としては、アルミニウム箔、カーボンでコートされたアルミ箔、ステンレス箔等やそれらに孔が開いた開孔箔、アルミメッシュ、ステンレスメッシュが挙げられる。
 電極52,52及び集電体51は、袋状のイオン交換膜53内に収容されている。
 イオン交換膜53はフッ素系の陽イオン交換膜であるのが好ましい。フッ素系の陽イオン交換膜として、「ナフィオン」(登録商標、パーフルオロカーボンスルホン酸(PFSA)膜、デュポン社製)、「F―1850」(FuMA-Tech社製)等が挙げられる。イオン交換膜53の厚みは、5~100μmであるのが好ましい。イオン交換膜53として厚み50μmの「ナフィオン」を用いた場合、180℃で、イオン交換膜53の端部同士を熱溶着できる。イオン交換膜53として厚み50μmの「F―1850」を用いた場合、200℃で、イオン交換膜53の端部同士を熱溶着できる。
 イオン交換膜53のタブ51aが突出している部分の接着層54は、アンカー効果、物理的相互作用、化学的相互作用等により、タブ51aをイオン交換膜53に接着可能な物質からなる。例えばアクリル系樹脂、エポキシ系樹脂を用いることができる。
 袋状のイオン交換膜53内には電解液が注入されている。電解液として、リチウムイオンを伝導させるリチウム塩を溶解させた有機溶媒を使用する。正極側の電解液には、多硫化リチウムを溶解させた溶液を用いてもよい。Li塩としては、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウム ビス(フルオロスルホニル)イミド(LiFSI)、トリフルオロメタンスルホン酸リチウム、テトラフルオロほう酸リチウム(LiBF4)、ヘキサフルオロリン酸リチウム(LiPF6 ) 、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)、過塩素酸リチウム等が挙げられる。有機溶媒としては、グライム系(エチレングリコールジメチルエーテル(モノグライム)、ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラエチレングリコールジメチルエーテル(テトラグライム)、ジエチレングリコールジエチルエーテル(エチルジグライム)、ジエチレングリコールジブチルエーテル(ブチルジグライム))、テトラヒドロフラン(THF)、N,N-ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、炭酸エチレン(EC)、炭酸ジエチル(DEC)、炭酸ジメチル(DMC)、炭酸エチルメチル(EMC)、炭酸プロピレン(PC)、1,3-ジオキソラン(DOL)、炭酸フルオロエチレン(FEC)、炭酸ビニレン(VC)若しくはそれらいずれかの混合液等が挙げられる。
 負極の電極材6は、矩形板状の集電体61と、集電体61の両平面に設けられた角型平板状の電極62とを備える。
 負極の電極材7は、矩形板状の集電体71と、集電体71の一平面に設けられた角型平板状の電極72とを備える。
 電極62,72は金属リチウムからなる。
 又は、電極62,72は、グラファイト、Si、SiO、Siと炭素との複合物、又はグラファイトとSi若しくはSiOとの混合物と、バインダと、カーボンとを有する。この場合、事前にリチウムをプレドープしてもよい。バインダとしては、SBR、CMC、フッ素系樹脂(PVDF、PVDF-HEP、PTFE)、ポリイミド、ポリアミドイミド、アルギン酸ナトリウム、ポリアクリル酸、ポリエチレンオキシド等が挙げられる。
 電極62,72上に保液層として多孔質ポリオレフィンフィルム又はガラスセパレータを設けてもよい。
 集電体61,71としては、銅箔、カーボンでコートされた銅箔やステンレス箔等やそれらに孔が開いた開孔箔が挙げられる。電極62,72が金属リチウムからなる場合、集電体61,71として、ステンレスメッシュを用いてもよい。
 集電体61の周縁の一部からタブ61aが突出している。集電体61とタブ61aとは一体で形成されていてもよいし、別体で形成されていてもよい。集電体71の周縁の一部からタブ71aが突出している。集電体71とタブ71aとは一体で形成されていてもよいし、別体で形成されていてもよい。
 図2に示すように、図2の左側から順に電極材7、電極材5、電極材6、電極材5、電極材7が配置されている。電極72とイオン交換膜53との間には多孔質のセパレータ73が介在し、電極62とイオン交換膜53との間には多孔質のセパレータ63が介在する。セパレータ63,73としては、PP(ポリプロピレン),PE(ポリエチレン)等の合成樹脂製のセパレータ、及びガラスセパレータ等が挙げられる。膨張及び収縮するときの柔軟性が良好であるという観点から合成樹脂製のセパレータが好ましい。
 セパレータ63,73の平面面積は電極62,72の平面面積より大きく、イオン交換膜53の平面面積より小さいのが好ましい。これにより、例えばイオン交換膜53がPFSAからなる場合、PFSA内のPTFE骨格が電極62,72と接触して還元分解し、脱フッ素化が生じるのが防止される。
 イオン交換膜53と一側面に対向するセパレータ63、イオン交換膜53と他側面に対向するセパレータ73は、一体化されていてもよい。
 一方の電極材5のタブ51aは上側に延び、他方の電極材5のタブ51aは上側に延びた後、屈曲して一方の電極材5側に延び、端部が重ね合わされた状態で、正極端子3に接合されている。正極端子3は外装体2の周縁の一部から突出しており、正極端子3は外装体2に接着層30を介して接着されている。正極端子3は、中央部がシーラントに覆われた状態で、外装体2に接着されてもよい。
 電極材6のタブ61aは下側に延び、電極材7,7のタブ71a,71aは下側に延びた後、屈曲して電極材6側に延び、それぞれの端部が重ね合わされた状態で、負極端子4に接合されている。負極端子4は外装体2の周縁の一部から突出しており、負極端子4は外装体2に接着層40を介して接着されている。負極端子4は、中央部がシーラントに覆われた状態で、外装体2に接着されてもよい。
 外装体2は電解液非透過性の絶縁フィルムである。外装体2は、合成樹脂層、金属層、及び合成樹脂層の3層構造からなるラミネートシートからなるのが好ましい。外装体2は、2枚のラミネートシートを合わせてなる。一枚のラミネートシートを長手方向の中央部で折り曲げて端部を合わせることにしてもよい。
 合成樹脂層の材料としては、ポリプロピレン、ポリエチレン、ナイロン6,ナイロン66等のポリアミド等が挙げられる。金属層の材料としては、アルミニウム、アルミニウム合金、銅、銅合金、鉄、ステンレス、チタン、チタン合金等が挙げられる。
 外装体2の厚みは特に限定されないが、15~250μmであるのが好ましい。厚みが15~250μmである場合、十分な強度を有するとともに、電池の体積エネルギー密度が向上する。
 外装体2内には、電解液が注入されている。
 以下、本実施の形態に係る電池1の製造方法について説明する。
 正極の活物質、カーボン、バインダ、必要に応じ潤滑剤を混練して混練物を得る。該混練物を集電体51の両平面に、平面の延びる方向に等間隔に設ける。隣り合う混練物の間で集電体51を切断して乾燥させ、両平面に電極52を有する電極材を得る。電極材を、集電体51のタブ51aが周縁部から突出する状態で、2枚のシート状のイオン交換膜により挟み、タブ51aが突出した部分以外の部分を熱溶着により接着して袋状のイオン交換膜53を得る。タブ51aが突出した部分は接着剤により接着層54を設けて接着する。これにより、電極52の側面及び平面、並びに集電体51の側面及び平面の露出部分がイオン交換膜53により覆われた電極材5が得られる。イオン交換膜53の全周を接着する前に、一部を残して、この部分から電解液を注入する。
 集電体61の両平面に、平面の延びる方向に等間隔で金属リチウム、又はグラファイト、Si、SiO、Siと炭素との複合物、又はグラファイトとSi若しくはSiOの混合物と、バインダと、カーボンとを有する混練物を等間隔に設ける。隣り合う混練物の間で集電体61を切断して乾燥させ、両平面に電極62を有する電極材6を得る。同様に、集電体71の一平面に電極72が設けられた電極材7を得る。リチウムが含まれていない電極材を用いる場合は、事前に電極材6、7と金属リチウム箔を貼り合わせもよい。
 電極72とイオン交換膜53との間にセパレータ73が介在し、電極62とイオン交換膜53との間にはセパレータ63が介在する状態で、電極材7、電極材5、電極材6、電極材5、電極材7を配置する。
 電極材7、電極材5、電極材6、電極材5、電極材7をシート状の2枚のラミネートフィルムで挟み、周縁部の一部を残して熱溶着により接着し、袋状の外装体2を形成する。正極端子3及び負極端子4の突出部分は接着層30,40を介して接着する。前記周縁部の残した部分から電解液を注入した後、該部分を封止する。
 以上のようにして電池1が製造される。
 以上のように構成された電池1は、電極材5の電極52がイオン交換膜53により覆われているので、電極52と電極72、電極52と電極62とが良好に分離され、充放電容量及び充放電効率の低下を抑制することができる。
実施の形態2.
 実施の形態2に係る電池10は、負極の電極材8の構成が負極の電極材6の構成と異なること以外は、実施の形態1に係る電池1と同様の構成を有する。
 図5は、電池10を示す模式的断面図である。図5中、図2と同一部分は同一符号を付して詳細な説明を省略する。
 電極材8は、矩形板状の集電体81と、集電体81の両平面に設けられた角型平板状の電極82と、セパレータ83とを備える。集電体81、電極82、セパレータ83の材質は、集電体61、電極62、セパレータ63の材質と同様である。
 セパレータ83は、電極82の側面及び平面、並びに集電体81の側面及び平面の露出部分を覆う。セパレータ83は袋状をなし、袋状の内部に集電体81、電極82を収容する。セパレータ83は、シート状の2枚のセパレータの周縁部を接着することで袋状をなす。セパレータ83は、一枚の矩形状のセパレータを長手方向の中央部で折り曲げて端部を合わせることで袋状をなしてもよい。
 集電体81の周縁の一部からタブ81aが突出している。タブ81aはセパレータ83の周縁の一部から突出しており、セパレータ83に接着層84を介して接着されている。セパレータ83のタブ81aが突出している部分以外の端部同士は接着層84により接着されている。接着層84の材質としては、アクリル系樹脂、エポキシ系樹脂等が挙げられる。セパレータがポリプロピレン、ポリエチレン等の熱可塑性樹脂の場合、セパレータ同士を熱溶着してもよい。この場合、接着層84はなくてもよい。
 電極材8のタブ81aは下側に延び、電極材7,7のタブ71a,71aは下側に延びた後、屈曲して電極材8側に延び、それぞれの端部が重ね合わされた状態で、負極端子4に接合されている。負極端子4は外装体2の周縁の一部から突出しており、負極端子4は外装体2に接着層40を介して接着されている。負極端子4は、中央部がシーラントに覆われた状態で、外装体2に接着されてもよい。集電体81とタブ81aとは一体で形成されていてもよいし、別体で形成されていてもよい。
 本実施の形態においては、正極の電極材5とともに、負極の電極材8も袋化されているので、電極材5,8,5を積層するときの組み立て性が良好である。
 なお、セパレータ83を陽イオン交換膜で覆うことにしてもよい。そして、イオン交換膜をセパレータ83と一体化してもよい。この場合、イオン交換膜の平面面積をセパレータ83の平面面積より大きくし、イオン交換膜の端部同士を熱溶着して袋化する。
実施の形態3.
 実施の形態3に係る電池12は、集電体の構成が異なり、プレドープ用のリチウム供給部材9を有すること以外は、実施の形態1に係る電池1と同様の構成を有する。
 図6は、電池12を示す模式的断面図である。図6中、図2と同一部分は同一符号を付して詳細な説明を省略する。
 正極の電極材5の集電体55は電極52に対向する部分において複数の貫通孔55aを有する。負極の電極材6,7の集電体64,74は電極62,72に対向する部分において複数の貫通孔64a,74aを有する。
 一方の電極材5のタブ55bは上側に延び、他方の電極材5のタブ55bは上側に延びた後、屈曲して一方の電極材5側に延び、端部が重ね合わされた状態で、正極端子3に接合されている。電極材6のタブ64bは下側に延び、電極材7,7のタブ74b,74bは下側に延びた後、屈曲して電極材6側に延び、それぞれの端部が重ね合わされた状態で、負極端子4に接合されている。
 電池12においては、電極材7にリチウム供給部材9を隣接させている。リチウム供給部材9は、銅箔又はステンレス箔からなる導電材91と、リチウム箔92と、セパレータ93とを有する。導電材91の周縁の一部から突出した端子91aは、下側に延び、外装体2の周縁の一部から突出しており、端子91aの端部は外装体2に接着層94を介して接着されている。端子91aの端部は、中央部がシーラントに覆われた状態で、外装体2に接着されてもよい。
 リチウム箔92と、電極材7の集電体74との間にセパレータ93が介在する。セパレータ93の材質としては、セパレータ73の材質と同様のものを用いることができる。
 本実施の形態によれば、負極の活物質がグラファイト、Si、SiO、Siと炭素との複合物、又はグラファイトとSi若しくはSiOの混合物等からなる場合、リチウム箔92と電極72とを短絡させることによりリチウムのプレドープを容易に行うことができる。リチウム箔92から電子が電極72へ流れるとともに、リチウムイオンが電解液中に放出され、リチウムイオンが、集電体55,64,74の貫通孔55a,64a,74aを通過して拡散し、負極の電極62,72にドープされる。
 なお、集電体55,64,74は網目構造を有するものであってもよい。集電体55,64,74が網目構造を有する場合として、エキスパンドメタル及び金網状のものが挙げられる。リチウム供給部材9は再封止時に、取り出してもよい。
実施の形態4.
 実施の形態4に係る電池13は、電極材の積層の構成が実施の形態1に係る電池1と異なる。
 図7は、電池13を示す模式的断面図である。図7中、図2と同一部分は同一符号を付して詳細な説明を省略する。
 電池13は、正極の電極材5と、負極の電極材7,7,とを備える。電極材5及び電極材7の構成は実施の形態1に係る電極材5及び電極材7の構成と同様である。
 電池13において、図7の左側から順に電極材7、電極材5、電極材7が配置されている。
 電極材5のタブ51aは上側に延び、正極端子3に接合されている。正極端子3は外装体2の周縁の一部から突出しており、正極端子3は外装体2に接着層30を介して接着されている。正極端子3は、中央部がシーラントに覆われた状態で、外装体2に接着されてもよい。
 一方の電極材7のタブ71aは下側に延び、他方の電極材7のタブ71aは下側に延びた後、屈曲して一方の電極材7側に延び、端部が重ね合わされた状態で、負極端子4に接合されている。負極端子4は外装体2の周縁の一部から突出しており、負極端子4は外装体2に接着層40を介して接着されている。負極端子4は、中央部がシーラントに覆われた状態で、外装体2に接着されてもよい。
 以上のように構成された電池13は、正極の電極材5の電極52がイオン交換膜53により覆われているので、電極52と電極72とが良好に分離され、充放電容量及び充放電効率の低下を抑制することができる。
実施の形態5.
 実施の形態5に係る電池16は、負極の電極材11が袋状のイオン交換膜113を有すること以外は、実施の形態1に係る電池1と同様の構成を有する。
 図8は、電池16を示す模式的断面図である。図8中、図2と同一部分は同一符号を付して詳細な説明を省略する。電池16においては、正極の電極材14、負極の電極材11、正極の電極材15、電極材11、及び電極材14が、この順に配置されている。
 負極の電極材11は、集電体111、電極112、イオン交換膜113、及びセパレータ114を有する。
 集電体111は矩形板状をなし、両平面に角型平板状の電極112が設けられている。イオン交換膜113は、電極112の側面及び平面、並びに集電体111の側面及び平面の露出部分を覆う。イオン交換膜113は、シート状の2枚のイオン交換膜の周縁部を接着することで袋状をなす。イオン交換膜113は、一枚の矩形状のイオン交換膜を長手方向の中央部で折り曲げて端部を合わせることで袋状をなしてもよい。電極112の外面とイオン交換膜113との間にセパレータ114が介在する。セパレータ114の平面面積は電極112の平面面積より大きく、イオン交換膜113の平面面積より小さい。集電体111、電極112、イオン交換膜113、及びセパレータ114の材質は、集電体61、電極62、イオン交換膜53、及びセパレータ63の材質と同様である。イオン交換膜113とセパレータ114とは一体化されていてもよい。
 正極の電極材14は、矩形板状の集電体141と、集電体141の一平面に設けられた角型平板状の電極142とを備える。
 正極の電極材15は、矩形板状の集電体151と、集電体151の両平面に設けられた角型平板状の電極152とを備える。
 電極材14,15の部材の材質は、電極材5の部材の材質と同様である。
 集電体111の周縁の一部からタブ111aが突出している。タブ111aはイオン交換膜113の周縁の一部から突出しており、イオン交換膜113に接着層115を介して接着されている。イオン交換膜113のタブ111aが突出している部分以外の端部同士は熱溶着により接着されている。接着層115の材質としては、アクリル系樹脂、エポキシ系樹脂等が挙げられる。集電体111とタブ111aとは一体で形成されていてもよいし、別体で形成されていてもよい。
 一方の電極材11のタブ111aは上側に延び、他方の電極材11のタブ111aは上側に延びた後、屈曲して一方の電極材11側に延び、端部が重ね合わされた状態で、負極端子4に接合されている。負極端子4は外装体2の周縁の一部から突出しており、負極端子4は外装体2に接着層40を介して接着されている。負極端子4は、中央部がシーラントに覆われた状態で、外装体2に接着されてもよい。
 電極材14、15の集電体141,151の周縁の一部からタブ141a,151aが突出している。電極材15のタブ151aは下側に延び、電極材14,14のタブ141a,141aは下側に延びた後、屈曲して電極材15側に延び、それぞれの端部が重ね合わされた状態で、正極端子3に接合されている。正極端子3は外装体2の周縁の一部から突出しており、正極端子3は外装体2に接着層30を介して接着されている。正極端子3は、中央部がシーラントに覆われた状態で、外装体2に接着されてもよい。集電体141,151とタブ141a,151aとは一体で形成されていてもよいし、別体で形成されていてもよい。
 以上のように構成された電池16は、負極の電極材11の電極112がイオン交換膜113により覆われているので、電極112と電極142、電極112と電極152とが良好に分離され、充放電容量及び充放電効率の低下を抑制することができる。
 イオン交換膜113の内面にセパレータ114を配置しているので、イオン交換膜113と電極112とが直接接触してイオン交換膜113が分解するのが抑制されている。セパレータ114の平面面積は電極112の平面面積より大きく、イオン交換膜113の平面面積より小さいので、上述の分解を良好に抑制するとともに、イオン交換膜113の端部同士を熱溶着することができる。
 本発明に係る電池は、適宜の数の正極の電極材と、負極の電極材とを組みあわせて積層することができる。正極及び負極の電極材は、集電体の一平面に電極が設けられているものと、集電体の両平面に電極が設けられているものとを組み合わせることができる。複数の正極の電極材と、負極の電極材とを積層して、電池のエネルギー密度を向上させることができる。
 以上のように、本発明の一態様に係るリチウム硫黄電池は、平板状の第1集電体、該第1集電体の各平面上に設けられ、同一の極性を有する2つの第1電極、並びに前記第1集電体及び前記第1電極を収容する袋状の陽イオン交換膜を有する第1電極材と、平板状の第2集電体、及び前記陽イオン交換膜を介して前記第1電極に対向する前記第2集電体の平面上に設けられ、前記第1電極とは極性が異なる第2電極を有する第2電極材と備え、前記第1電極及び前記第2電極のうちの一方は硫黄を含む活物質を有する正極であり、他方はリチウムを含む活物質を有する負極である。
 上記構成によれば、第1電極材の第1電極がイオン交換膜により覆われているので、正極と負極とが良好に分離され、充放電容量及び充放電効率の低下を抑制することができる。
 上述のリチウム硫黄電池において、前記第2電極材は、前記第2集電体の両平面上に2つの前記第2電極を有し、前記第1電極材と前記第2電極材とが積層されていてもよい。
 上記構成によれば、複数の正極及び負極を積層して、エネルギー密度を高めることができる。
 上述のリチウム硫黄電池において、前記陽イオン交換膜と、該陽イオン交換膜と隣り合う前記負極との間に多孔質のセパレータを有してもよい。
 上記構成によれば、陽イオン交換膜と負極とが直接接触して、陽イオン交換膜が分解するのが防止される。
 上述のリチウム硫黄電池において、前記第2電極は負極であり、前記第2電極材は、前記第2集電体及び前記第2電極を収容する袋状の前記多孔質のセパレータを備えてもよい。
 上記構成によれば、陽イオン交換膜と負極とが直接接触して、陽イオン交換膜が分解するのが良好に防止される。そして、第1電極材と第2電極材とを積層するときの組み立て性が良好である。
 上述のリチウム硫黄電池において、前記セパレータは、合成樹脂製であってもよい。
 上記構成によれば、膨張又は収縮するときの柔軟性が良好である。
 上述のリチウム硫黄電池において、前記セパレータの平面面積は、前記陽イオン交換膜の平面面積よりも小さく、前記負極の平面面積よりも大きくてもよい。
 上記構成によれば、陽イオン交換膜の周縁部を熱溶着により接着することができる。容易に確実に陽イオン交換膜を袋化できる。そして、陽イオン交換膜と負極との接触が良好に防止される。
 上述のリチウム硫黄電池において、陽イオン交換膜は、フッ素系陽イオン交換膜であってもよい。
 上記構成によれば、物理的、化学的に安定である。
 上述のリチウム硫黄電池において、前記陽イオン交換膜の端部は熱溶着により封止され、前記陽イオン交換膜の厚みは、5~100μmであってもよい。
 上記構成によれば、陽イオン交換膜の端部同士を熱溶着により容易に接着することができる。
 上述のリチウム硫黄電池において、前記第1集電体又は前記第2集電体は、複数の貫通孔を有してもよい。
 上記構成によれば、容易に負極にリチウムのプレドープを行うことができる。
 上述のリチウム硫黄電池において、前記第1集電体又は前記第2集電体は、網目構造を有してもよい。
 上記構成によれば、容易に負極にリチウムのプレドープを行うことができる。
 上述のリチウム硫黄電池において、前記第1電極材は、前記第1集電体の周縁の一部から突出したタブが前記陽イオン交換膜の周縁の一部から突出しており、該タブは前記陽イオン交換膜に接着層を介して接着されてもよい。
 陽イオン交換膜とタブとは直接接着することはできない。上記構成によれば、陽イオン交換膜とタブとは接着層により接着される。
 本発明の一態様に係るリチウム硫黄電池の製造方法は、硫黄を含む活物質を有する正極と、リチウムを含む活物質を有する負極とを有するリチウム硫黄電池の製造方法であって、平板状の第1集電体の各平面上に同一の極性を有する2つの第1電極を設け、前記第1電極が設けられた前記第1集電体を陽イオン交換膜により覆い、該陽イオン交換膜の端部を接着して第1電極材を作製し、平板状の第2集電体の平面上に前記第1電極とは極性が異なる第2電極を設けて第2電極材を作製し、前記第1電極材及び前記第2電極材を、前記第1電極と前記第2電極とが対向するように配置し、前記第1電極材及び前記第2電極材を外装体により覆う。
 上記構成によれば、粘着剤及びシーラントを用いることなく、イオン交換膜により正極と負極とを良好に分離することができ、良好な充放電容量及び充放電効率を有するリチウム硫黄電池が得られる。
 本発明は上述した実施の形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
 各電極材の材質、構成、及び個数、電極の極性、並びにイオン交換膜及び外装体の接着方法等も実施の形態1~5において説明した場合に限定されるものではない。
 第1電極材と第2電極材とを積層して電池を構成する場合には限定されない。集電体の平面に間欠的に正極を複数設けて正極の電極材を得、集電体の平面に間欠的に負極を複数設けて負極の電極材を得、2つの電極材間に、各電極材の各電極が対向する状態でイオン交換膜を介在させ、2つの電極材及びイオン交換膜の端部を接着して電極ユニットを得る。この電極ユニットを、電極が一方向に並ぶように、つづら折りに折り畳むことにより、集電体を挟んで2つの正極が対向した状態でイオン交換膜により袋状に覆われる構成にしてもよい。同様に、集電体を挟んで2つの負極が対向した状態でイオン交換膜により袋状に覆われる。電極ユニットをつづら折りに折り畳む代わりに、巻回することにより、上述の構成を得ることにしてもよい。
 1、10、12、13、16 リチウム硫黄電池
 2 外装体
 3 正極端子
 4 負極端子
 5、6、7、8、11、14,15 電極材
 51、55、61、64、71、74、81、111、141、151 集電体
 51a、55b、61a、64b、71a、74b、81a、111a、141a、151a タブ
 52、62、72、82、112、142、152 電極
 53、113 イオン交換膜
 54、84、115 接着層
 63、73、83、114 セパレータ

Claims (12)

  1.  平板状の第1集電体、
     該第1集電体の各平面上に設けられ、同一の極性を有する2つの第1電極、並びに
     前記第1集電体及び前記第1電極を収容する袋状の陽イオン交換膜
     を有する第1電極材と、
     平板状の第2集電体、及び
     前記陽イオン交換膜を介して前記第1電極に対向する前記第2集電体の平面上に設けられ、前記第1電極とは極性が異なる第2電極
     を有する第2電極材と
     備え、
     前記第1電極及び前記第2電極のうちの一方は硫黄を含む活物質を有する正極であり、他方はリチウムを含む活物質を有する負極であるリチウム硫黄電池。
  2.  前記第2電極材は、前記第2集電体の両平面上に2つの前記第2電極を有し、
     前記第1電極材と前記第2電極材とが積層されている請求項1に記載のリチウム硫黄電池。
  3.  前記陽イオン交換膜と、該陽イオン交換膜と隣り合う前記負極との間に多孔質のセパレータを有する請求項1又は2に記載のリチウム硫黄電池。
  4.  前記第2電極は負極であり、
     前記第2電極材は、前記第2集電体及び前記第2電極を収容する袋状の前記多孔質のセパレータを備える請求項3に記載のリチウム硫黄電池。
  5.  前記セパレータは、合成樹脂製である請求項3又は4に記載のリチウム硫黄電池。
  6.  前記セパレータの平面面積は、前記陽イオン交換膜の平面面積よりも小さく、前記負極の平面面積よりも大きい請求項3から5までのいずれか1項に記載のリチウム硫黄電池。
  7.  陽イオン交換膜は、フッ素系陽イオン交換膜である請求項1から6までのいずれか1項に記載のリチウム硫黄電池。
  8.  前記陽イオン交換膜の端部は熱溶着により封止され、
     前記陽イオン交換膜の厚みは、5~100μmである請求項1から7までのいずれか1項に記載のリチウム硫黄電池。
  9.  前記第1集電体又は前記第2集電体は、複数の貫通孔を有する請求項1から8までのいずれか1項に記載のリチウム硫黄電池。
  10.  前記第1集電体又は前記第2集電体は、網目構造を有する請求項1から9までのいずれか1項に記載のリチウム硫黄電池。
  11.  前記第1電極材は、前記第1集電体の周縁の一部から突出したタブが前記陽イオン交換膜の周縁の一部から突出しており、該タブは前記陽イオン交換膜に接着層を介して接着されている請求項1から10までのいずれか1項に記載のリチウム硫黄電池。
  12.  硫黄を含む活物質を有する正極と、リチウムを含む活物質を有する負極とを有するリチウム硫黄電池の製造方法であって、
     平板状の第1集電体の各平面上に同一の極性を有する2つの第1電極を設け、
     前記第1電極が設けられた前記第1集電体を陽イオン交換膜により覆い、該陽イオン交換膜の端部を接着して第1電極材を作製し、
     平板状の第2集電体の平面上に前記第1電極とは極性が異なる第2電極を設けて第2電極材を作製し、
     前記第1電極材及び前記第2電極材を、前記第1電極と前記第2電極とが対向するように配置し、
     前記第1電極材及び前記第2電極材を外装体により覆うリチウム硫黄電池の製造方法。
     
PCT/JP2019/012033 2018-07-19 2019-03-22 リチウム硫黄電池、及びリチウム硫黄電池の製造方法 WO2020017098A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-136110 2018-07-19
JP2018136110A JP6992692B2 (ja) 2018-07-19 2018-07-19 リチウム硫黄電池、及びリチウム硫黄電池の製造方法

Publications (1)

Publication Number Publication Date
WO2020017098A1 true WO2020017098A1 (ja) 2020-01-23

Family

ID=69164295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012033 WO2020017098A1 (ja) 2018-07-19 2019-03-22 リチウム硫黄電池、及びリチウム硫黄電池の製造方法

Country Status (2)

Country Link
JP (1) JP6992692B2 (ja)
WO (1) WO2020017098A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123279A1 (en) * 2020-10-15 2022-04-21 GM Global Technology Operations LLC Self-lithiating battery cells and methods for pre-lithiating the same
KR20220163101A (ko) 2021-06-02 2022-12-09 주식회사 엘지에너지솔루션 리튬 전극 및 이를 포함하는 리튬 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083314A1 (ja) * 2013-12-03 2015-06-11 株式会社アルバック リチウム硫黄二次電池
JP2015531978A (ja) * 2012-09-14 2015-11-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ 低自己放電及び高サイクル寿命並びに高性能を有するアルカリ金属−カルコゲンバッテリー
WO2017064842A1 (ja) * 2015-10-14 2017-04-20 株式会社Gsユアサ 非水電解質二次電池
JP2017535036A (ja) * 2014-10-29 2017-11-24 エルジー・ケム・リミテッド リチウム硫黄電池
JP2018518026A (ja) * 2015-06-18 2018-07-05 ユニヴァーシティ オブ サザン カリフォルニアUniversity of Southern California リチウムイオン混合導体膜がリチウム−硫黄バッテリーおよびその他のエネルギー蓄積装置の性能を改良する

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015060626A (ja) * 2013-09-17 2015-03-30 日立マクセル株式会社 リチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531978A (ja) * 2012-09-14 2015-11-05 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ 低自己放電及び高サイクル寿命並びに高性能を有するアルカリ金属−カルコゲンバッテリー
WO2015083314A1 (ja) * 2013-12-03 2015-06-11 株式会社アルバック リチウム硫黄二次電池
JP2017535036A (ja) * 2014-10-29 2017-11-24 エルジー・ケム・リミテッド リチウム硫黄電池
JP2018518026A (ja) * 2015-06-18 2018-07-05 ユニヴァーシティ オブ サザン カリフォルニアUniversity of Southern California リチウムイオン混合導体膜がリチウム−硫黄バッテリーおよびその他のエネルギー蓄積装置の性能を改良する
WO2017064842A1 (ja) * 2015-10-14 2017-04-20 株式会社Gsユアサ 非水電解質二次電池

Also Published As

Publication number Publication date
JP6992692B2 (ja) 2022-01-13
JP2020013731A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
CN101304104B (zh) 电化学装置及其制造方法
JP4964350B2 (ja) 電気化学デバイスおよびその製造方法
JP5226332B2 (ja) ラミネート外装材を用いたリチウム二次電池
JP6315269B2 (ja) 密閉型電池モジュール及びその製造方法
JP2005293950A (ja) リチウムイオン二次電池、及び、リチウムイオン二次電池の充電方法
JP4096664B2 (ja) ラミネート電池
JP4135474B2 (ja) ラミネート二次電池、複数のラミネート二次電池からなる組電池モジュール、複数の組電池モジュールからなる組電池ならびにこれらいずれかの電池を搭載した電気自動車
WO2020017098A1 (ja) リチウム硫黄電池、及びリチウム硫黄電池の製造方法
WO2018163295A1 (ja) 二次電池および二次電池の製造方法
JP5201557B2 (ja) 非水電解質電池及び非水電解質電池モジュール
JP4060549B2 (ja) 電気化学素子の外装体
WO2017187888A1 (ja) リチウム空気電池の負極複合体構造
JP3869668B2 (ja) 電気化学デバイスおよびその製造方法
JP2004171954A (ja) ラミネート二次電池、複数のラミネート二次電池からなる組電池モジュール、複数の組電池モジュールからなる組電池ならびにこれらいずれかの電池を搭載した電気自動車
JP4377475B2 (ja) 薄形電池
JP2020149935A (ja) 電池モジュール
JP2005166353A (ja) 二次電池、組電池、複合組電池、車輌、及び、二次電池の製造方法
JP3980757B2 (ja) 薄型電池
JP5601289B2 (ja) 空気電池
JP2014212304A (ja) 蓄電デバイスおよび蓄電モジュールの作製方法
CN116964815A (zh) 电解液及其制造方法以及二次电池
WO2020017099A1 (ja) リチウム硫黄電池
JP6665729B2 (ja) リチウム空気電池の正極構造
JP4609353B2 (ja) 充電システム
JP2016181457A (ja) 平板状ラミネート電池およびその組電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838806

Country of ref document: EP

Kind code of ref document: A1