WO2020015029A1 - 一种半导体材料及其制备方法与应用 - Google Patents

一种半导体材料及其制备方法与应用 Download PDF

Info

Publication number
WO2020015029A1
WO2020015029A1 PCT/CN2018/099487 CN2018099487W WO2020015029A1 WO 2020015029 A1 WO2020015029 A1 WO 2020015029A1 CN 2018099487 W CN2018099487 W CN 2018099487W WO 2020015029 A1 WO2020015029 A1 WO 2020015029A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzothiophene
mixed
reaction
molecular structure
mmol
Prior art date
Application number
PCT/CN2018/099487
Other languages
English (en)
French (fr)
Inventor
孟鸿
贺耀武
郭升晖
施明
张天
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810790026.9A external-priority patent/CN110734452A/zh
Priority claimed from CN201810806814.2A external-priority patent/CN110734453A/zh
Priority claimed from CN201810789867.8A external-priority patent/CN110734451B/zh
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Publication of WO2020015029A1 publication Critical patent/WO2020015029A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the invention relates to the field of organic semiconductor materials, in particular to a semiconductor material, a preparation method and application thereof.
  • OTFTs Organic thin-film transistors
  • BTBT Benzothiophene
  • BTBT Benzothiophene
  • Furan derivatives have potential application prospects in the field of light emission due to their unique properties.
  • Furan is one of the simplest heterocyclic aromatic compounds, and has similar chemical structure and electronic properties to thiophene.
  • thiophene contains a relatively heavy sulfur atom, which causes fluorescence quenching due to the internal conversion of the spin-orbit coupling caused by the heavy atom.
  • Furan semiconductor does not have the problem of fluorescence quenching caused by the spin-orbit coupling. Compared with thiophene semiconductor, it has more excellent fluorescence properties, so it can be used to prepare organic semiconductor light-emitting devices.
  • Thiophene derivatives have strong carrier mobility characteristics, while furan derivatives have strong fluorescence properties, both of which have different characteristics due to their different structures.
  • the prior art lacks a semiconductor material that has both high carrier mobility and high fluorescence performance.
  • an object of the present invention is to provide a semiconductor material, a method for preparing the same, and an application thereof.
  • a semiconductor material wherein the molecular structure of the semiconductor material is One of them, wherein Ar1 and Ar2 are all alkyl groups or aryl groups; Ar3, Ar4, Ar5, and Ar6 are all aryl groups; and R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, and R16 are all aryl groups, and R17, R18, R19, and R20 are all aryl or alkyl groups.
  • the semiconductor material, wherein the aryl group includes Among them, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35 and R36 are all aryl or alkyl groups.
  • the semiconductor material wherein the molecular structure of the semiconductor material is: wherein, Ar1 and Ar2 are both aromatic groups substituted with N-containing aromatic groups or electron-deficient groups.
  • the semiconductor material, wherein the electron-deficient group includes a cyano group, a nitro group, and a halo group.
  • the semiconductor material, wherein the N-containing aromatic group includes: Among them, M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, M13, M14, M15, M16, M17, M18, and M19 are independently selected from cyano, nitro, and One of a radical, an aryl group or a nitrogen-containing heterocyclic ring.
  • the semiconductor material wherein the molecular structural formula of the semiconductor material includes:
  • a method for preparing a semiconductor material comprising the steps of:
  • the first intermediate is mixed with diisobutylaluminum hydride, and the reaction produces a molecular structural formula:
  • the second intermediate is
  • the second intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added
  • the third intermediate is mixed with the catalyst PdCl 2 (PPh 3 ) 2 , and the molecular structure of the reaction is:
  • the fourth intermediate is:
  • the fourth intermediate and the molecular structural formula are The acid chloride is mixed and the reaction produces a molecular structure of The fifth intermediate;
  • the fifth intermediate is mixed with potassium hydroxide, a hydration well, and triethylene glycol, and a reduction reaction occurs under heating conditions to generate a molecular structure formula: A semiconductor material, wherein R is an alkyl group.
  • a method for preparing a semiconductor material comprising the steps of:
  • the first intermediate is mixed with diisobutylaluminum hydride, and the reaction produces a molecular structural formula:
  • the second intermediate is
  • the second intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added
  • the third intermediate is mixed with a PdCl 2 (PPh 3 ) 2 catalyst, and the molecular structure of the reaction is:
  • the fourth intermediate is:
  • the fourth intermediate is mixed with liquid bromine, and the reaction generates a molecular structure formula:
  • the fifth intermediate is mixed with liquid bromine, and the reaction generates a molecular structure formula:
  • the fifth intermediate is mixed with arylboronic acid or aryltin and catalyzed by a PdCl 2 (PPh 3 ) 2 catalyst, and the molecular structure is obtained by the reaction:
  • a method for preparing a semiconductor material comprising the steps of:
  • the first intermediate is mixed with diisobutylaluminum hydride, and the reaction produces a molecular structural formula:
  • the second intermediate is
  • the second intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added
  • the third intermediate is mixed with the catalyst PdCl 2 (PPh 3 ) 2 , and the molecular structure of the reaction is:
  • the fourth intermediate is:
  • the fourth intermediate is mixed with liquid bromine, and the reaction generates a molecular structure formula:
  • the fifth intermediate is mixed with liquid bromine, and the reaction generates a molecular structure formula:
  • the fifth intermediate is mixed with one of an N-containing boronic acid, an N-containing aryl tin, an electron-deficient group-substituted aromatic boronic acid or an electron-deficient group-substituted aromatic tin, and passed through PdCl 2 (PPh 3 ) 2 catalyst catalyzed coupling, the molecular structure formula obtained by the reaction is Of semiconductor materials, wherein Ar1 and Ar2 are both aromatic groups substituted with N-containing aromatic groups or electron-deficient groups.
  • a method for preparing a semiconductor material comprising the steps of:
  • the benzothiophene oxide is mixed with an aryl substituted phenol, and the molecular structure formula is First intermediate
  • the first intermediate is mixed with diisobutylaluminum hydride, and the reaction produces a molecular structural formula:
  • the second intermediate is
  • the second intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added
  • the third intermediate is mixed with a PdCl 2 (PPh 3 ) 2 catalyst, and the molecular structure of the reaction is: A semiconductor material, wherein Ar3 is an aryl group.
  • a method for preparing a semiconductor material comprising the steps of:
  • the first intermediate is mixed with diisobutylaluminum hydride, and the reaction produces a molecular structural formula:
  • the second intermediate is
  • the second intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added
  • the third intermediate is mixed with a PdCl 2 (PPh 3 ) 2 catalyst, and the molecular structure of the reaction is: A semiconductor material, wherein Ar4 is an aryl group.
  • a method for preparing a semiconductor material comprising the steps of:
  • the first intermediate is mixed with diisobutylaluminum hydride, and the reaction produces a molecular structural formula:
  • the second intermediate is
  • the second intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added
  • the third intermediate is mixed with the catalyst PdCl 2 (PPH 3 ) 2 to form a molecular structure of the reaction:
  • the fourth intermediate is mixed with the catalyst PdCl 2 (PPH 3 ) 2 to form a molecular structure of the reaction:
  • the fourth intermediate is mixed with the catalyst PdCl 2 (PPH 3 ) 2 to form a molecular structure of the reaction:
  • the fourth intermediate is mixed with the catalyst PdCl 2 (PPH 3 ) 2 to form a molecular structure of the reaction:
  • the fourth intermediate is mixed with liquid bromine, and the reaction generates a molecular structure formula:
  • the fifth intermediate is mixed with liquid bromine, and the reaction generates a molecular structure formula:
  • the fifth intermediate is mixed with a diarylamine, and Pd 2 (dba) 3 , HF 4 P (t-Bu) 3 and potassium tert-butoxide are added to carry out a catalytic reaction, and the general molecular structure is Amine derivatives, wherein R1, R2, R3 and R4 are all aryl groups;
  • the fifth intermediate is mixed with an aryl borate containing arylamine, and Pd (PPh 3 ) 4 is added to perform a catalytic reaction to generate a molecular structure of the general formula: or An amine derivative, wherein the Ar1, Ar2, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15 and R16 are all aryl groups;
  • the fifth intermediate is mixed with an aryl-substituted carbazole, and Pd 2 (dba) 3 , HF 4 P (t-Bu) 3 and potassium tert-butoxide are added for a catalytic reaction to generate a general molecular structure.
  • Pd 2 (dba) 3 , HF 4 P (t-Bu) 3 and potassium tert-butoxide are added for a catalytic reaction to generate a general molecular structure.
  • Amine derivatives in which R17, R18, R19 and R20 are all aryl groups.
  • An application of a semiconductor material wherein a semiconductor material is used for preparing an organic thin film transistor device and a light emitting device.
  • the present invention combines a thiophene derivative with higher carrier mobility and a furan derivative with higher fluorescence performance, and designs a semiconductor material containing both a thiophene functional group and a furan functional group.
  • the molecular structure is One of them, wherein Ar1 and Ar2 are all alkyl groups or aryl groups; Ar3, Ar4, Ar5, and Ar6 are all aryl groups; and R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, and R16 are all aryl groups, and R17, R18, R19, and R20 are all aryl or alkyl groups.
  • the semiconductor material provided by the present invention can effectively solve the problem that high carrier mobility and high fluorescence efficiency of the existing organic semiconductor materials are not compatible.
  • the present invention provides a semiconductor material, a preparation method and application thereof.
  • the present invention is further described in detail below. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention.
  • the present invention provides a semiconductor material whose molecular structure is One of them, wherein Ar1 and Ar2 are all alkyl groups or aryl groups; Ar3, Ar4, Ar5, and Ar6 are all aryl groups; and R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, and R16 are all aryl groups, and R17, R18, R19, and R20 are all aryl or alkyl groups.
  • Furan rings have been widely used to construct ⁇ -conjugated molecules.
  • Furan derivatives have the following advantages: (1) Substituting sulfur atoms with oxygen will reduce aromaticity on the one hand, and the molecule has more quinone structure characteristics, making ⁇ - The electrons are better delocalized; on the other hand, the oxidation potential can be lowered, causing the HOMO orbital level to increase, which is conducive to the injection and transport of holes.
  • Thiophene contains a relatively heavy sulfur atom, which causes fluorescence quenching due to internal conversion of the orbital coupling caused by the heavy atom, while furan semiconductors do not have the problem of fluorescence quenching due to the orbital coupling, compared with thiophene Semiconductors have more excellent fluorescent properties, so they can be used to prepare organic semiconductor light-emitting devices, including OLEDs and organic light-emitting transistors (OLETs).
  • Furan compounds have less aromaticity and smaller ⁇ - ⁇ interactions between molecules, so their solubility is relatively large.
  • Furan is a biodegradable material, which can be prepared from biorenewable raw materials, which makes it more suitable for large-scale applications.
  • a thiophene derivative has higher carrier mobility and a furan derivative has higher fluorescence performance.
  • a semiconductor material containing both a thiophene functional group and a furan functional group is designed.
  • the name of the semiconductor material is [ 1] benzothiophene [3,2-b] [1] benzofuran derivatives.
  • the semiconductor material provided by the invention has both high carrier mobility and high fluorescence efficiency, and can be used as an active layer of an organic thin film transistor and a light emitting layer in a light emitting device.
  • the semiconductor thin film is prepared by vacuum evaporation or spin coating, and further prepared. An organic thin film transistor or light emitting device with high carrier mobility and high fluorescence efficiency is produced.
  • the semiconductor material provided by the present invention includes one-side substituted [1] benzothiophene [3,2-b] [1] benzofuran derivative and two-side substituted [1] benzothiophene [3,2- b] [1] benzofuran derivative.
  • the molecular structure of the double-side substituted [1] benzothiophene [3,2-b] [1] benzofuran derivative includes Wherein Ar1 and Ar2 are both alkyl or aryl groups, the Ar1 and Ar2 may be the same group or different groups.
  • Ar1 and Ar2 are preferably both N-containing aromatic groups or electron-deficient group-substituted aromatic groups.
  • the N-containing aromatic groups or electron-deficient group-substituted aromatic groups are introduced due to the introduction of electron-deficient groups.
  • the semiconductor material provided by the structural formula provided by the present invention can be used as organic light emitting
  • the electronic functional layer of the diode device is made of the semiconductor material into a semiconductor thin film by a vacuum evaporation method or a spin coating method to further prepare an organic light emitting diode device having high electron mobility and high fluorescence efficiency.
  • the electron-deficient group includes a cyano group, a nitro group, and a halo group.
  • the N-containing aromatic group includes Among them, M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, M13, M14, M15, M16, M17, M18, and M19 are independently selected from cyano, nitro, and alkane One of a radical, an aryl group or a nitrogen-containing heterocyclic ring.
  • the molecular structure of the double-substituted [1] benzothiophene [3,2-b] [1] benzofuran derivative further includes: One of them, wherein Ar5 and Ar6 are both aryl groups, and the R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, and R16 are all Aryl, said R17, R18, R19 and R20 are all aryl or alkyl.
  • the aromatic amine group on the [1] benzothiophene [3,2-b] [1] benzofuran can further strengthen the [1] benzothiophene [3,2-b] [ 1]
  • the hole mobility and luminous efficiency of benzofuran therefore, the amine derivatives based on [1] benzothiophene [3,2-b] [1] benzofuran provided by the present invention can be used as organic light emitting diodes
  • the amine derivative is made into a semiconductor thin film by vacuum evaporation or spin coating, and an organic light emitting diode device with high hole mobility and high fluorescence efficiency is further prepared.
  • the molecular structure of the unilaterally substituted [1] benzothiophene [3,2-b] [1] benzofuran derivative is:
  • Ar3 and Ar4 are both aryl groups, and preferably, the aryl group is an alkyl-substituted aryl group.
  • the aryl group is independently selected from the group consisting of One of them, but not limited to this.
  • R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35 and R36 are all aryl or alkyl groups.
  • the molecular structure formula of the semiconductor material provided by the present invention specifically includes:
  • the present invention provides a molecular structure with the general formula:
  • a method for preparing a semiconductor material including steps:
  • the first intermediate is mixed with diisobutylaluminum hydride, and the reaction produces a molecular structural formula:
  • the second intermediate is
  • the second intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added
  • the third intermediate is mixed with the catalyst PdCl 2 (PPh 3 ) 2 , and the molecular structure of the reaction is:
  • the fourth intermediate is:
  • the fourth intermediate and the molecular structural formula are The acid chloride is mixed and the reaction produces a molecular structure of The fifth intermediate;
  • the fifth intermediate is mixed with potassium hydroxide, a hydration well, and triethylene glycol, and a reduction reaction occurs under heating conditions to generate a molecular structure formula: A semiconductor material, wherein R is an alkyl group.
  • the present invention also provides a general molecular structure of A method for preparing a semiconductor material, including steps:
  • the first intermediate is mixed with diisobutylaluminum hydride, and the reaction produces a molecular structural formula:
  • the second intermediate is
  • the second intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added
  • the third intermediate is mixed with a PdCl 2 (PPh 3 ) 2 catalyst, and the molecular structure of the reaction is:
  • the fourth intermediate is:
  • the fourth intermediate is mixed with liquid bromine, and the reaction generates a molecular structure formula:
  • the fifth intermediate is mixed with liquid bromine, and the reaction generates a molecular structure formula:
  • the fifth intermediate is mixed with arylboronic acid or aryltin and catalyzed by a PdCl 2 (PPh 3 ) 2 catalyst, and the molecular structure is obtained by the reaction:
  • the present invention also provides a general molecular structure of A method for preparing a semiconductor material, including steps:
  • the benzothiophene oxide is mixed with an aryl substituted phenol, and the molecular structure formula is First intermediate
  • the first intermediate is mixed with diisobutylaluminum hydride, and the reaction produces a molecular structural formula:
  • the second intermediate is
  • the second intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added
  • the third intermediate is mixed with a PdCl 2 (PPh 3 ) 2 catalyst, and the molecular structure of the reaction is: A semiconductor material, wherein Ar3 is an aryl group.
  • the present invention also provides a general molecular structure of A method for preparing a semiconductor material, including steps:
  • the first intermediate is mixed with diisobutylaluminum hydride, and the reaction produces a molecular structural formula:
  • the second intermediate is
  • the second intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added
  • the third intermediate is mixed with a PdCl 2 (PPh 3 ) 2 catalyst, and the molecular structure of the reaction is: A semiconductor material, wherein Ar4 is an aryl group.
  • the present invention also provides a method for preparing a semiconductor material, which includes the following steps:
  • the first intermediate is mixed with diisobutylaluminum hydride, and the reaction produces a molecular structural formula:
  • the second intermediate is
  • the second intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added, and the mixed reaction generates a molecular structure formula:
  • the third intermediate is dissolved in glacial acetic acid and N-bromosuccinimide is added
  • the third intermediate is mixed with the catalyst PdCl 2 (PPH 3 ) 2 to form a molecular structure of the reaction:
  • the fourth intermediate is mixed with the catalyst PdCl 2 (PPH 3 ) 2 to form a molecular structure of the reaction:
  • the fourth intermediate is mixed with the catalyst PdCl 2 (PPH 3 ) 2 to form a molecular structure of the reaction:
  • the fourth intermediate is mixed with the catalyst PdCl 2 (PPH 3 ) 2 to form a molecular structure of the reaction:
  • the fourth intermediate is mixed with liquid bromine, and the reaction generates a molecular structure formula:
  • the fifth intermediate is mixed with liquid bromine, and the reaction generates a molecular structure formula:
  • the fifth intermediate is mixed with a diarylamine, and Pd 2 (dba) 3 , HF 4 P (t-Bu) 3 and potassium tert-butoxide are added to carry out a catalytic reaction, and the general molecular structure is Amine derivatives, wherein R1, R2, R3 and R4 are all aryl groups;
  • the fifth intermediate is mixed with an aryl borate containing arylamine, and Pd (PPh 3 ) 4 is added to perform a catalytic reaction to generate a molecular structure of the general formula: or An amine derivative, wherein the Ar1, Ar2, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15 and R16 are all aryl groups;
  • the fifth intermediate is mixed with an aryl-substituted carbazole, and Pd 2 (dba) 3 , HF 4 P (t-Bu) 3 and potassium tert-butoxide are added for a catalytic reaction to generate a general molecular structure.
  • Pd 2 (dba) 3 , HF 4 P (t-Bu) 3 and potassium tert-butoxide are added for a catalytic reaction to generate a general molecular structure.
  • Amine derivatives in which R17, R18, R19 and R20 are all aryl groups.
  • the present invention also provides an application of a semiconductor material, wherein the semiconductor material prepared by the present invention is used to prepare an organic thin film transistor or a light emitting device.
  • the semiconductor material may be made into a semiconductor thin film by a vacuum evaporation method or a spin coating method as an active layer of an organic thin film transistor or a light emitting layer in a light emitting device.
  • the silicon wafer substrate is ultrasonically cleaned with purified water, acetone, and isopropanol, and dried with nitrogen, and then irradiated with UV. Obtain clean silicon wafers. Then immerse it in a 0.1mol / L OTS toluene solution at 65 ° C for 20min; then wash the surface residue with toluene and blow dry with nitrogen to obtain an OTS-modified silicon wafer for use;
  • a semiconductor mask is used to mask the silicon wafer, a suitable substrate temperature is selected, and a thin film is prepared under high vacuum. The vapor deposition rate of the semiconductor material is controlled. After the thin film is prepared, the electrode is vapor-deposited with an electrode mask, and Au is used as the electrode material.
  • a semiconductor analyzer was used to test the performance of the prepared organic thin film transistor device. Test the Id-Vg and Id-Vd curves, using the following formula
  • I d (W / 2L) ⁇ TFT C i (V g -V th ) 2 performs calculation of mobility.
  • the specific preparation steps include:
  • the specific preparation steps include:
  • the specific preparation steps include:
  • the specific preparation steps include:
  • the specific preparation steps include:
  • the specific preparation steps include:
  • the specific preparation steps include:
  • the preparation method includes the following steps:
  • reaction mixture was poured into 100 mL of methanol, filtered, and the solid was washed with hydrochloric acid and water. High vacuum sublimation was used to obtain 2,7-bis (3,5-diphenylamino) phenyl-1-yl [1] benzothiophene [3,2-b] [1] benzofuran.
  • Its preparation method includes steps:
  • the specific preparation steps include:
  • the specific preparation steps include:
  • the specific preparation steps include:
  • the specific preparation steps include:
  • the present invention combines a thiophene derivative with a higher carrier mobility and a furan derivative with higher fluorescence performance.
  • a semiconductor material containing both a thiophene functional group and a furan functional group is designed.
  • the molecular structure of the material is the molecular structure of the semiconductor material.
  • Ar1 and Ar2 are all alkyl groups or aryl groups
  • Ar3, Ar4, Ar5, and Ar6 are all aryl groups
  • R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, and R16 are all aryl groups
  • R17, R18, R19, and R20 are all aryl or alkyl groups.
  • the semiconductor material provided by the present invention can be used as an active layer of an organic thin film transistor and a light emitting layer in a light emitting device.
  • the semiconductor thin film can be made by vacuum evaporation or spin coating to further prepare an organic thin film transistor or light emitting device. The problem of high carrier mobility and high fluorescence efficiency of semiconductor materials is not achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种半导体材料及其制备方法与应用,其中,所述半导体材料的分子结构通式为aa-gg中的一种,其中,所述Ar1和Ar2均为烷基或芳基;所述Ar3、Ar4、Ar5和Ar6均为芳基,所述R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15和R16均为芳基,所述R17,R18,R19和R20均为芳基或烷基。结合噻吩衍生物具有较高的载流子迁移率以及呋喃衍生物具有较高荧光性能的特点,设计了一种同时含有噻吩官能团和呋喃官能团的半导体材料,有效解决了现有有机半导体材料不能同时具有高载流子迁移率与高荧光效率的问题。

Description

一种半导体材料及其制备方法与应用 技术领域
本发明涉及有机半导体材料领域,尤其涉及一种半导体材料及其制备方法与应用。
背景技术
有机薄膜晶体管(OTFTs)具有低生产成本和可大面积制造等优势,在柔性器件、智能卡及电子纸等领域将会有广泛的应用。因此,应用于OTFT的有机小分子半导体材料的研究引起了科研工作者的关注。然而,具有高迁移率、空气稳定性及可溶液加工等特征的有机半导体材料仍是这一领域的挑战。[1]苯并噻吩[3,2-b][1]苯并噻吩(BTBT)作为一个经典的半导体母核,因其优异的器件性能而引起了科研工作者广泛的兴趣。
呋喃衍生物因其独特的性质而在发光领域具有潜在的应用前景,呋喃是最简单的杂环芳香化合物之一,与噻吩具有十分相似的化学结构和电子性质。然而,噻吩含有相对重的硫原子,由于重原子产生旋轨偶合作用发生内转换,所以导致荧光淬灭。而呋喃半导体则不存在旋轨偶合作用导致荧光淬灭的问题,相比于噻吩半导体,具有更加出色的荧光性质,因此可以用来制备有机半导体发光器件。
噻吩衍生物具有较强的载流子迁移率特点,而呋喃衍生物具有较强的荧光性能,两者因其各自的结构不同而具有不同的特性。然而,现有技术缺少一种同时具有高载流子迁移率以及高荧光性能的半导体材料。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种半导体材料及其制备方法与应用,旨在解决现有有机半导体材料的高载流子迁移率与高荧光效率不可兼得的问题。
本发明的技术方案如下:
一种半导体材料,其中,所述半导体材料的分子结构通式为
Figure PCTCN2018099487-appb-000001
Figure PCTCN2018099487-appb-000002
中的一种,其中,所述Ar1和Ar2均为烷基或芳基;所述Ar3、Ar4、Ar5和Ar6均为 芳基,所述R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15和R16均为芳基,所述R17,R18,R19和R20均为芳基或烷基。
所述的半导体材料,其中,所述芳基包括
Figure PCTCN2018099487-appb-000003
Figure PCTCN2018099487-appb-000004
Figure PCTCN2018099487-appb-000005
其中,R21,R22,R23,R24,R25,R26,R27,R28,R29,R30,R31,R32,R33,R34,R35和R36均为芳基或烷基。
所述的半导体材料,其中,所述半导体材料的分子结构通式为
Figure PCTCN2018099487-appb-000006
其中,所述Ar1和Ar2均为含N的芳香基团或缺电子基团取代的芳香基团。
所述的半导体材料,其中,所述缺电子基团包括氰基、硝基和卤基。
所述的半导体材料,其中,所述含N的芳香基团包括:
Figure PCTCN2018099487-appb-000007
Figure PCTCN2018099487-appb-000008
Figure PCTCN2018099487-appb-000009
其中,M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15、M16、M17,M18和M19独立地选自氰基、硝基、烷基、芳基或含氮杂环中的一种。
所述的半导体材料,其中,所述半导体材料的分子结构式包括:
Figure PCTCN2018099487-appb-000010
Figure PCTCN2018099487-appb-000011
Figure PCTCN2018099487-appb-000012
Figure PCTCN2018099487-appb-000013
一种半导体材料的制备方法,其中,包括步骤:
将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
将所述苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000014
的第一中间体;
将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000015
的第二中间体;
将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
Figure PCTCN2018099487-appb-000016
的第三中间体;
将所述第三中间体与催化剂PdCl 2(PPh 3) 2混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000017
的第四中间体;
将所述第四中间体与分子结构式为
Figure PCTCN2018099487-appb-000018
的酰氯混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000019
的第五中间体;
将所述第五中间体与氢氧化钾、水合阱以及三缩乙二醇混合,在加热条件下发生还原反应,生成分子结构式为
Figure PCTCN2018099487-appb-000020
的半导体材料,其中,所述R为烷基。
一种半导体材料的制备方法,其中,包括步骤:
将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
将所述苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000021
的第一中间体;
将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000022
的第二中间体;
将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
Figure PCTCN2018099487-appb-000023
的第三中间体;
将所述第三中间体与PdCl 2(PPh 3) 2催化剂混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000024
的第四中间体;
将所述第四中间体与液溴混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000025
的第五中间体;
将所述第五中间体与芳基硼酸或芳基锡混合并通过PdCl 2(PPh 3) 2催化剂催化偶联,反应得到分子结构式为
Figure PCTCN2018099487-appb-000026
的半导体材料,其中,Ar1和Ar2均为芳基。
一种半导体材料的制备方法,其中,包括步骤:
将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
将所述苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000027
的第一中间体;
将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000028
的第二中间体;
将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
Figure PCTCN2018099487-appb-000029
的第三中间体;
将所述第三中间体与催化剂PdCl 2(PPh 3) 2混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000030
的第四中间体;
将所述第四中间体与液溴混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000031
的第五中间体;
将所述第五中间体与含N芳基硼酸、含N芳基锡、缺电子基团取代的芳香基硼酸或缺电子基团取代的芳香基锡中的一种混合并通过PdCl 2(PPh 3) 2催化剂催化偶联,反应得到分子结构式为
Figure PCTCN2018099487-appb-000032
的半导体材料,其中,Ar1和Ar2均为含N的芳香基团或缺电子基团取代的芳香基团。
一种半导体材料的制备方法,其中,包括步骤:
将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
将所述苯并噻吩氧化物与芳基取代的苯酚混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000033
的第一中间体;
将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000034
的第二中间体;
将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
Figure PCTCN2018099487-appb-000035
的第三中间体;
将所述第三中间体与PdCl 2(PPh 3) 2催化剂混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000036
的半导体材料,其中,Ar3为芳基。
一种半导体材料的制备方法,其中,包括步骤:
将芳基取代的苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴芳基取代苯并噻吩;
将所述3-溴芳基取代苯并噻吩与双氧水混合,反应生成芳基取代苯并噻吩氧化物;
将所述芳基取代苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000037
的第一中间体;
将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000038
的第二中间体;
将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
Figure PCTCN2018099487-appb-000039
的第三中间体;
将所述第三中间体与PdCl 2(PPh 3) 2催化剂混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000040
的半导体材料,其中,Ar4为芳基。
一种半导体材料的制备方法,其中,包括步骤:
将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
将所述苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000041
的第一中间体;
将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000042
的第二中间体;
将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
Figure PCTCN2018099487-appb-000043
的第三中间体;
将所述第三中间体与催化剂PdCl 2(PPH 3) 2混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000044
的第四中间体;
将所述第四中间体与液溴混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000045
的第五中间体;
将所述第五中间体与二芳基胺混合,并加入Pd 2(dba) 3,HF 4P(t-Bu) 3和叔丁醇钾进行催化反应,生成分子结构通式为
Figure PCTCN2018099487-appb-000046
的胺类衍生物,其中,R1,R2,R3和R4均为芳基;
或者,将所述第五中间体与含芳胺的芳基硼酸酯混合,并加入Pd(PPh 3) 4进行催化反应,生成分子结构通式为
Figure PCTCN2018099487-appb-000047
Figure PCTCN2018099487-appb-000048
的胺类衍生物,其中,所述Ar1,Ar2,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15和R16均为芳基;
或者,将所述第五中间体与芳基取代的咔唑混合,并加入Pd 2(dba) 3,HF 4P(t-Bu) 3和叔丁醇钾进行催化反应,生成分子结构通式为
Figure PCTCN2018099487-appb-000049
的胺类衍生物,其中,R17,R18,R19和R20均为芳基。
一种半导体材料的应用,其中,将一种半导体材料应用于制备有机薄膜晶体管器件和发光器件。
有益效果:本发明结合噻吩衍生物具有较高的载流子迁移率以及呋喃衍生物具有较高荧光性能的特点,设计了一种同时含有噻吩官能团和呋喃官能团的半导体材料,所述半导体材料的分子结构为
Figure PCTCN2018099487-appb-000050
Figure PCTCN2018099487-appb-000051
Figure PCTCN2018099487-appb-000052
中的一种,其中,所述Ar1和Ar2均为烷基或芳基;所述Ar3、Ar4、Ar5和Ar6均为芳基,所述R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15和R16均为芳基,所述R17,R18,R19和R20均为芳基或烷基。本发明提供的半导体材料能有效解决现有有机半导体材料高载流子迁移率与高荧光效率不兼得的问题。
具体实施方式
本发明提供一种半导体材料及其制备方法与应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为解决现有半导体材料高载流子迁移率以及高荧光效率不可兼得的问题,本发明提供了一种半导体材料,其分子结构通式为
Figure PCTCN2018099487-appb-000053
Figure PCTCN2018099487-appb-000054
Figure PCTCN2018099487-appb-000055
中的一种,其中,所述Ar1和Ar2均为烷基或芳基;所述Ar3、Ar4、Ar5和Ar6均为芳基,所述R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15和R16均为芳基,所述R17,R18,R19和R20均为芳基或烷基。
呋喃环已经广泛被用于构建π-共轭分子,呋喃衍生物具有以下的优势:(1)用氧取代硫原子一方面会降低芳香性,分子具有更多的醌式结构特征,使得π-电子更好地离域;另一方面可以降低氧化电位,使得HOMO轨道能级升高,因此有利于空穴的注入和传输。(2)噻吩含有相对重的硫原子,由于重原子产生旋轨偶合作用发生内转换,所以导致荧光淬灭,而呋喃半导体则不存在旋轨偶合作用导致荧光淬灭的问题,相比于噻吩半导体,具有更加出色的荧光性质,因此可以用来制备有机半导体发光器件,包括OLEDs和有机发光晶体管(OLETs)。(3)呋喃化合物具有较小的芳香性,分子间π-π相互作用较小,所以溶解度相对较大。(4)呋喃是生物可降解材料,可从生物可再生原料来制备,这使得它更适合大规模应用。
本发明结合噻吩衍生物具有较高的载流子迁移率以及呋喃衍生物具有较高荧光性能的特点,设计了一种同时含有噻吩官能团和呋喃官能团的半导体材料,所述半导体材料的名称为[1]苯并噻吩[3,2-b][1]苯并呋喃衍生物。本发明提供的半导体材料同时具有高载流子迁移率与高荧光效率,可作为有机薄膜晶体管的有源层及发光器件中的发光层,通过真空蒸镀或旋涂法制成半导体薄膜,进一步制备出具有高载流子迁移率和高荧光效率的有机薄膜晶体管或发光器件。
具体来讲,本发明提供的半导体材料包括单侧取代[1]苯并噻吩[3,2-b][1]苯并呋喃衍生物和双侧取代[1]苯并噻吩[3,2-b][1]苯并呋喃衍生物。所述双侧取代[1]苯并噻吩[3,2-b][1]苯并呋喃衍生物的分子结构通式包括
Figure PCTCN2018099487-appb-000056
其中Ar1和Ar2均为烷基或芳基,所述Ar1和Ar2可以为相同的基团或不同的基团。
进一步地,当所述半导体材料的分子结构通式为
Figure PCTCN2018099487-appb-000057
时,所述Ar1和Ar2优选均为含N的芳香基团或缺电子基团取代的芳香基团,所述含N的芳香基团或缺电子基团取代的芳香基团由于引入了缺电子官能团,从而能够促进[1]苯并噻吩[3,2-b][1]苯并呋喃具有更强的电子迁移率以及发光效率,因此,本发明提供的该结构式的半导体材料能够作为有机发光二极管器件的电子功能层,通过真空蒸镀或旋涂法将所述半导体材料制成半导体薄膜,进一步制备出具有高电子迁移率和高荧光效率的有机发光二极管器件。
优选地,所述缺电子基团包括氰基、硝基和卤基。
更优选地,所述半导体材料中,含N的芳香基团包括
Figure PCTCN2018099487-appb-000058
Figure PCTCN2018099487-appb-000059
Figure PCTCN2018099487-appb-000060
其中,M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15、M16、M17,M18和M19独立地选自氰基、硝基、烷基、芳基或含氮杂环中的一种。
进一步地,所述双侧取代[1]苯并噻吩[3,2-b][1]苯并呋喃衍生物的分子结构通式还包括:
Figure PCTCN2018099487-appb-000061
Figure PCTCN2018099487-appb-000062
中的一种,其中,Ar5和Ar6均为芳基,所述R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15和R16均为芳基,所述R17,R18,R19和R20均为芳基或烷基。
在本实施方式中,所述[1]苯并噻吩[3,2-b][1]苯并呋喃上的芳香胺基团能进一步加强[1]苯并噻吩[3,2-b][1]苯并呋喃的空穴迁移率以及发光效率,因此,本发明提供的基于[1]苯并噻吩[3,2-b][1]苯并呋喃的胺类衍生物能够作为有机发光二极管器件的空穴功能层,通过真空蒸镀或旋涂法将所述胺类衍生物制成半导体薄膜,进一步制备出具有高空穴迁移率和高荧光效率的有机发光二极管器件。
更进一步地,所述单侧取代[1]苯并噻吩[3,2-b][1]苯并呋喃衍生物的分子结构 通式为
Figure PCTCN2018099487-appb-000063
其中,所述Ar3和Ar4均为芳基,优选地,所述芳基为烷基取代的芳基。
优选地,在本发明中,所述芳基独立地选自芳基包括
Figure PCTCN2018099487-appb-000064
Figure PCTCN2018099487-appb-000065
Figure PCTCN2018099487-appb-000066
中的一种,但不限于此。其中,R21,R22,R23,R24,R25,R26,R27,R28,R29,R30,R31,R32,R33,R34,R35和R36均为芳基或烷基。
作为举例,本发明提供的半导体材料的分子结构式具体包括:
Figure PCTCN2018099487-appb-000067
Figure PCTCN2018099487-appb-000068
Figure PCTCN2018099487-appb-000069
Figure PCTCN2018099487-appb-000070
Figure PCTCN2018099487-appb-000071
但不限于此。
基于上述半导体材料,本发明提供一种分子结构通式为
Figure PCTCN2018099487-appb-000072
的半导体材料的制备方法,其中,包括步骤:
将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
将所述苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000073
的第一中间体;
将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000074
的第二中间体;
将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
Figure PCTCN2018099487-appb-000075
的第三中间体;
将所述第三中间体与催化剂PdCl 2(PPh 3) 2混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000076
的第四中间体;
将所述第四中间体与分子结构式为
Figure PCTCN2018099487-appb-000077
的酰氯混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000078
的第五中间体;
将所述第五中间体与氢氧化钾、水合阱以及三缩乙二醇混合,在加热条件下发生还原反应,生成分子结构式为
Figure PCTCN2018099487-appb-000079
的半导体材料,其中,所述R为烷基。
作为其中一实施方式,本发明还提供一种分子结构通式为
Figure PCTCN2018099487-appb-000080
的半导体材料的制备方法,其中,包括步骤:
将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
将所述苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000081
的第一中间体;
将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000082
的第二中间体;
将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
Figure PCTCN2018099487-appb-000083
的第三中间体;
将所述第三中间体与PdCl 2(PPh 3) 2催化剂混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000084
的第四中间体;
将所述第四中间体与液溴混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000085
的第五中间体;
将所述第五中间体与芳基硼酸或芳基锡混合并通过PdCl 2(PPh 3) 2催化剂催化偶联,反应得到分子结构式为
Figure PCTCN2018099487-appb-000086
的半导体材料,其中,Ar1和Ar2均为芳基。
作为其中一实施方式,本发明还提供一种分子结构通式为
Figure PCTCN2018099487-appb-000087
的半导体材料的制备方法,其中,包括步骤:
将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
将所述苯并噻吩氧化物与芳基取代的苯酚混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000088
的第一中间体;
将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000089
的第二中间体;
将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
Figure PCTCN2018099487-appb-000090
的第三中间体;
将所述第三中间体与PdCl 2(PPh 3) 2催化剂混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000091
的半导体材料,其中,Ar3为芳基。
作为其中一实施方式,本发明还提供一种分子结构通式为
Figure PCTCN2018099487-appb-000092
的半导体材料的制备方法,其中,包括步骤:
将芳基取代的苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴芳基取代苯并噻吩;
将所述3-溴芳基取代苯并噻吩与双氧水混合,反应生成芳基取代苯并噻吩氧化物;
将所述芳基取代苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000093
的第一中间体;
将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000094
的第二中间体;
将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
Figure PCTCN2018099487-appb-000095
的第三中间体;
将所述第三中间体与PdCl 2(PPh 3) 2催化剂混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000096
的半导体材料,其中,Ar4为芳基。
作为其中一实施方式,本发明还提供一种半导体材料的制备方法,其中,包括步骤:
将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
将所述苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000097
的第一中间体;
将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000098
的第二中间体;
将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
Figure PCTCN2018099487-appb-000099
的第三中间体;
将所述第三中间体与催化剂PdCl 2(PPH 3) 2混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000100
的第四中间体;
将所述第四中间体与液溴混合,反应生成分子结构式为
Figure PCTCN2018099487-appb-000101
的第五中间体;
将所述第五中间体与二芳基胺混合,并加入Pd 2(dba) 3,HF 4P(t-Bu) 3和叔丁醇钾进行催化反应,生成分子结构通式为
Figure PCTCN2018099487-appb-000102
的胺类衍生物,其中,R1,R2,R3和R4均为芳基;
或者,将所述第五中间体与含芳胺的芳基硼酸酯混合,并加入Pd(PPh 3) 4进行催化反应,生成分子结构通式为
Figure PCTCN2018099487-appb-000103
Figure PCTCN2018099487-appb-000104
的胺类衍生物,其中,所述Ar1,Ar2,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15和R16均为芳基;
或者,将所述第五中间体与芳基取代的咔唑混合,并加入Pd 2(dba) 3,HF 4P(t-Bu) 3和叔丁醇钾进行催化反应,生成分子结构通式为
Figure PCTCN2018099487-appb-000105
的胺类衍生物,其中,R17,R18,R19和R20均为芳基。
进一步地,本发明还提供一种半导体材料的应用,其中,将本发明制备的半导体材料用于制备有机薄膜晶体管或发光器件。具体地,可通过真空蒸镀或旋涂法将所述半导体材料制成半导体薄膜,作为有机薄膜晶体管的有源层或发光器件中的发光层。
作为其中一实施方式,以制备有机薄膜晶体管为例,首先分别采用纯净水,丙酮和异丙醇对硅片衬底进行超声清洗,氮气吹干之后,用UV辐射。获得洁净的硅片。然后在0.1mol/L OTS的甲苯溶液中,65℃下浸泡20min;然后用甲苯清洗除去表面的残渣,氮气吹干,获得OTS修饰的硅片,待用;
用半导体掩膜版对所述硅片进行掩膜,选取合适的衬底温度,在高真空下进行薄膜的制备。控制半导体材料蒸镀速率,薄膜制备还之后再用电极掩膜版进行电极的蒸镀,电极材料使用Au。用半导体分析仪对制备的有机薄膜晶体管器件性能进行测试。测试Id-Vg和Id-Vd曲线,利用公式下面公式
I d=(W/2L)μ TFTC i(V g-V th) 2进行迁移率的计算。
下面通过具体实施例对本发明一种半导体材料的制备方法做进一步的解释说明:
实施例1
2,7-二戊基[1]苯并噻吩[3,2-b][1]苯并呋喃(C5-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000106
其具体制备步骤包括:
将20g(150mmol)苯并噻吩溶解在150mL氯仿中,0℃下分批加入33.2g(186mmol)N-溴代丁二酰亚胺,加毕,在0℃下反应4h之后升至室温继续搅拌24h。加入60mL氯仿,分别用硫代硫酸钠水溶液,饱和碳酸钠和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得3-溴苯并噻吩。
将10g(46mmol)3-溴苯并噻吩溶解在80mL二氯甲烷和80mL三氟乙酸溶液中,在室温下搅拌5分钟之后,加入4mL,35%的双氧水,搅拌至原料反应完全,用饱和碳酸钠溶液中和至中性,分液,有机相用饱和碳酸氢钠和水洗涤,无水硫酸镁干燥,浓缩,柱层析的化合物3-溴苯并噻吩-1-氧。
将2.3g(10mmol)3-溴苯并噻吩-1-氧,3.4g(20mmol)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得到3-苯氧基苯并噻吩-1-氧。
将2.54g(8mmol)3-苯氧基苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中性,无水硫酸镁干燥,浓缩,柱层析得到3-苯氧基苯并噻吩。
将1.82g.6(6mmol)3-苯氧基苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-苯氧基苯并噻吩。
将1.51g(4mmol)2-溴-3-苯氧基苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析得到目标化合物[1]苯并噻吩[3,2-b][1]苯并呋喃。
将2.24g(10mmol)[1]苯并噻吩[3,2-b][1]苯并呋喃溶解在200mL干燥二氯甲烷中,冷冻至-20℃,加入5.3g(40mmol)无水三氯化铝,加毕,冷却至-70℃,加入1.44g(12mmol)戊酰氯,升至室温继续搅拌,TLC检测至反应完全,加入少量水;依次用NaHCO3和水洗涤,干燥,柱层析得到2,7-二戊酰基[1]苯并噻吩[3,2-b][1]苯并呋喃;
将1.96g(5mmol)2,7-二戊酰基[1]苯并噻吩[3,2-b][1]苯并呋喃,1.4g(25mmol)氢氧化钾和100mmol水合肼与50mL三缩乙二醇在100℃下加热1h之后,在210℃继续加热5h,冷却至室温,过滤,固体用水和甲醇洗涤,柱层析纯化得2,7-二戊基[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例2
2,7-二辛基[1]苯并噻吩[3,2-b][1]苯并呋喃(C8-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000107
其具体制备步骤包括:
采用与实施例1相同的步骤制备[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.24g(10mmol)[1]苯并噻吩[3,2-b][1]苯并呋喃溶解在200mL干燥二氯甲烷中,冷冻至-20℃,加入5.3g(40mmol)无水三氯化铝,加毕,冷却至-70℃,加入1.94g(12mmol)辛酰氯,升至室温继续搅拌,TLC检测至反应完全,加入少量水。依次用NaHCO 3和水洗涤,干燥,柱层析得到2,7-二戊酰基[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.38g(5mmol)2,7-二辛酰基[1]苯并噻吩[3,2-b][1]苯并呋喃,1.4g(25mmol)氢氧化钾和100mmol水合肼与50mL三缩乙二醇在100℃下加热1h之后,在210℃继续加热5h,冷却至室温,过滤,固体用水和甲醇洗涤,柱层析纯化得2,7-二辛基[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例3
2,7-二(十一烷基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C11-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000108
其具体制备步骤包括:
采用与实施例1相同的步骤制备[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.24g(10mmol)[1]苯并噻吩[3,2-b][1]苯并呋喃溶解在200mL干燥二氯甲烷中,冷冻至-20℃,加入5.3g(40mmol)无水三氯化铝,加毕,冷却至-70℃,加入2.62g(12mmol)十一酰氯,升至室温继续搅拌,TLC检测至反应完全,加入少量水。依次用NaHCO 3和水洗涤。干燥,柱层析得到2,7-二戊酰基[1]苯并噻吩[3,2-b][1]苯并呋喃。
将2.94g(5mmol)2,7-二(十一酰基)[1]苯并噻吩[3,2-b][1]苯并呋喃,1.4g(25mmol)氢氧化钾和100mmol水合肼与50mL三缩乙二醇在100℃下加热1h之后,在210℃继续加热5h,冷却至室温,过滤,固体用水和甲醇洗涤,柱层析纯化得2,7-二(十一烷基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例4
2,7-二(十三烷基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C13-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000109
其具体制备步骤包括:
采用与实施例1相同的步骤制备[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.24g(10mmol)[1]苯并噻吩[3,2-b][1]苯并呋喃溶解在200mL干燥二氯甲烷中,冷冻至-20℃,加入5.3g(40mmol)无水三氯化铝,加毕,冷却至-70℃,加入2.78g(12mmol)十三酰氯,升至室温继续搅拌,TLC检测至反应完全,加入少量水。依次用NaHCO 3和水洗涤。干燥,柱层析得到2,7-二戊酰基[1]苯并噻吩[3,2-b][1]苯并呋喃。
将3.08g(5mmol)2,7-二(十三酰基)[1]苯并噻吩[3,2-b][1]苯并呋喃,1.4g(25mmol)氢氧化钾和100mmol水合肼与50mL三缩乙二醇在100℃下加热1h之后,在210℃继续加热5h,冷却至室温,过滤,固体用水和甲醇洗涤,柱层析纯化得2,7-二(十三烷基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例5
2,7-二苯基[1]苯并噻吩[3,2-b][1]苯并呋喃的合成流程为:
Figure PCTCN2018099487-appb-000110
其具体制备步骤包括:
采用与实施例1相同的步骤制备[1]苯并噻吩[3,2-b][1]苯并呋喃;
将4.48g,20mmol[1]苯并噻吩[3,2-b][1]苯并呋喃溶解在0℃下每100mL含9.6g,60mmol液溴的氯仿溶液,继续滴加液溴的氯仿溶液,至原料反应完全,加入饱和的硫代硫酸钠水溶液还原过量的液溴。有机相用饱和碳酸氢钠水溶液、水洗涤之后干燥,用石油醚作为洗脱剂柱层析得到得2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃。
将1.9g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和1.83g(15mmol,3当量)苯硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二苯基[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例6
2,7-二萘基[1]苯并噻吩[3,2-b][1]苯并呋喃(DNa-BTBF)的合成流程为
Figure PCTCN2018099487-appb-000111
,其具体制备步骤包括:
采用与实施例1相同的步骤制备[1]苯并噻吩[3,2-b][1]苯并呋喃;
将4.48g,20mmol[1]苯并噻吩[3,2-b][1]苯并呋喃溶解在0℃下100mL含9.6g,60mmol液溴的氯仿溶液,继续滴加液溴的氯仿溶液,至原料反应完全,加入饱和的硫代硫酸钠水溶液还原过量的液溴。有机相用饱和碳酸氢钠水溶液、水洗涤之后干燥,用石油醚作为洗脱剂柱层析得到得2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将1.9g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和2.58g(15mmol,3当量)2-萘硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二萘基[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例7
2,7-二(4-丁基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(D-C4-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000112
其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将1.9g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和2.67g(15mmol,3当量)4-丁基苯基溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二萘基[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例8
2,7-二(4-戊基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(D-C5-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000113
其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将1.9g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和2.88g(15mmol,3当量)4-戊基苯基硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(4-戊基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例9
2,7-二(4-庚基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(D-C7-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000114
,其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将1.9g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和3.30g(15mmol,3当量)4-庚基苯基硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(4-庚基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例10
2,7-二(4-辛基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(D-C8-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000115
其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将1.9g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和3.48g(15mmol,3当量)4-辛基苯基硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反 应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(4-辛基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例11
2,7-二(4-癸基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(D-C10-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000116
其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将1.9g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和3.69g(15mmol,3当量)4-癸基苯基硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(4-癸基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例12
2,7-二(4-十二烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(D-C12-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000117
其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将1.9g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和4.35g(15mmol,3当量)4-十二烷基苯基硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(4-十二烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例13
2,7-二(4-十三烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(D-C13-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000118
,其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将1.9g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和4.53g(15mmol,3当量)4-十三烷基苯基硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(4-十三烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例14
7-苯基[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Ph)的合成流程为:
Figure PCTCN2018099487-appb-000119
其具体制备步骤包括:
将20g(150mmol)苯并噻吩溶解在150mL氯仿中,0℃下分批加入33.2g(186mmol)N-溴代丁二酰亚胺,加毕,在0℃下反应4h之后升至室温继续搅拌24h。加入60mL氯仿,分别用硫代硫酸钠水溶液,饱和碳酸钠和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得3-溴苯并噻吩。
将10g(46mmol)3-溴苯并噻吩溶解在80mL二氯甲烷和80mL三氟乙酸溶液中,在室温下搅拌5分钟之后,加入4mL,35%的双氧水,搅拌至原料反应完全,用饱和碳酸钠溶液中和至中性,分液,有机相用饱和碳酸氢钠和水洗涤,无水硫酸镁干燥,浓缩,柱层析的化合物3-溴苯并噻吩-1-氧。
将2.3g(10mmol)3-溴苯并噻吩-1-氧,3.4g(20mmol)3-苯基苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-苯氧基苯并噻吩-1-氧。
将2.54g(8mmol)3-苯氧基苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中性,无水硫酸镁干燥,浓缩,柱层析的3-苯氧基苯并噻吩。
将1.82g.6(6mmol)3-苯氧基苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-苯氧基苯并噻吩。
将1.51g(4mmol)2-溴-3-苯氧基苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物7-苯基[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Ph)。
实施例15
7-萘基[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Na)的合成流程为:
Figure PCTCN2018099487-appb-000120
其具体制备步骤包括:
将2.3g(10mmol)3-溴苯并噻吩-1-氧,4.4g(20mmol)3-萘基苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-萘氧基苯并噻吩-1-氧。
将2.94g(8mmol)3-萘氧基苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中性,无水硫酸镁干燥,浓缩,柱层析的3-萘氧基苯并噻吩。
将2.11g.6(6mmol)3-萘氧基苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-萘氧基苯并噻吩。
将1.72g(4mmol)2-溴-3-萘氧基苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物7-萘基[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Ph)。
实施例16
7-(4-辛基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Ph-C8)的合成流程为:
Figure PCTCN2018099487-appb-000121
,其具体制备步骤包括:
将2.3g(10mmol)3-溴苯并噻吩-1-氧,5.64g(20mmol)3-(4-辛基苯基)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-(4-辛基苯氧基)苯并噻吩-1-氧。
将3.44g(8mmol)3-(4-辛基苯氧基)苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中性,无水硫酸镁干燥,浓缩,柱层析的3-(4-辛基苯氧基)苯并噻吩。
将2.48g(6mmol)3-(4-辛基苯氧基)苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-(4-辛基苯氧基)苯并噻吩。
将1.97g(4mmol)2-溴-3-(4-辛基苯氧基)苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物7-(4-辛基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Ph-C8)。
实施例17
7-(4-癸基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Ph-C10)的合成流程为:
Figure PCTCN2018099487-appb-000122
,其具体制备步骤包括:
将2.3g(10mmol)3-溴苯并噻吩-1-氧,6.2g(20mmol)3-(4-癸基苯基)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-(4-癸基苯氧基)苯并噻吩-1-氧。
将3.66g(8mmol)3-(4-癸基苯氧基)苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中心,无水硫酸镁干燥,浓缩,柱层析的3-(4-癸基苯氧基)苯并噻吩。
将2.65g(6mmol)3-(4-癸基苯氧基)苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-(4-癸基苯氧基)苯并噻吩。
将2.08g(4mmol)2-溴-3-(4-癸基苯氧基)苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物7-(4-癸基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Ph-C10)。
实施例18
7-(4-十二烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Ph-C12)的合成流程为:
Figure PCTCN2018099487-appb-000123
,其具体制备步骤包括:
将2.3g(10mmol)3-溴苯并噻吩-1-氧,6.76g(20mmol)3-(4-十二烷基苯基)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-(4-十二烷基苯氧基)苯并噻吩-1-氧。
将3.88g(8mmol)3-(4-十二烷基苯氧基)苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中心,无水硫酸镁干燥,浓缩,柱层析的3-(4-十二烷基苯氧基)苯并噻吩。
将2.82g(6mmol)3-(4-十二烷基苯氧基)苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-(4-十二烷基苯氧基)苯并噻吩。
将2.19g(4mmol)2-溴-3-(4-十二烷基苯氧基)苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物7-(4-十二烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Ph-C12)。
实施例19
7-(4-十三烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Ph-C13)的合成流程为:
Figure PCTCN2018099487-appb-000124
,其具体制备步骤包括:
将2.3g(10mmol)3-溴苯并噻吩-1-氧,7.04g(20mmol)3-(4-十三烷基苯基)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-(4-十三烷基苯氧基)苯并噻吩-1-氧。
将4.0g(8mmol)3-(4-十三烷基苯氧基)苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中性,无水硫酸镁干燥,浓缩,柱层析的3-(4-十三烷基苯氧基)苯并噻吩。
将2.9g(6mmol)3-(4-十三烷基苯氧基)苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-(4-十三烷基苯氧基)苯并噻吩。
将2.25g(4mmol)2-溴-3-(4-十三烷基苯氧基)苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物7-(4-十三烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(BTBF-Ph-C13)。
实施例20
2-苯基[1]苯并噻吩[3,2-b][1]苯并呋喃(Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000125
其具体制备步骤包括:
将4.2g(20mmol)6-苯基苯并噻吩溶解在30mL氯仿中,0℃下分批加入4.45g(25mmol)N-溴代丁二酰亚胺,加毕,在0℃下反应4h之后升至室温继续搅拌反应至原料消失。分别用硫代硫酸钠水溶液,饱和碳酸钠和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得3-溴-6-苯基苯并噻吩。
将4.32g(15mmol)3-溴苯并噻吩溶解在30mL二氯甲烷和30mL三氟乙酸溶液中,在室温下搅拌5分钟之后,加入1.0mL,35%的双氧水,搅拌至原料反应完全,用饱和碳酸钠溶液中和至中性,分液,有机相用饱和碳酸氢钠和水洗涤,无水硫酸镁干燥,浓缩,柱层析的化合物3-溴-6-苯基苯并噻吩-1-氧。
将2.87g(10mmol)3-溴-6-苯基苯并噻吩-1-氧,1.88g(20mmol)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-苯基苯并噻吩-1-氧。
将2.54g(8mmol)3-苯氧基-6-苯基苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中心,无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-苯基苯并噻吩。
将1.81g(6mmol)3-苯氧基-6-苯基苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-苯氧基-6-苯基苯并噻吩。
将1.52g(4mmol)2-溴-3-苯氧基-6-苯基苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物2-苯基[1]苯并噻吩[3,2-b][1]苯并呋喃(Ph-BTBF)。
实施例21
2-萘基[1]苯并噻吩[3,2-b][1]苯并呋喃(Na-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000126
其具体制备步骤包括:
将5.2g(20mmol)6-萘基苯并噻吩溶解在30mL氯仿中,0℃下分批加入4.45g(25mmol)N-溴代丁二酰亚胺,加毕,在0℃下反应4h之后升至室温继续搅拌反应至原料消失。分别用硫代硫酸钠水溶液,饱和碳酸钠和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得3-溴-6-萘基苯并噻吩。
将5.05g(15mmol)3-溴-6-萘基苯并噻吩溶解在30mL二氯甲烷和30mL三氟乙酸溶液中,在室温下搅拌5分钟之后,加入1.0mL,35%的双氧水,搅拌至原料反应完全,用饱和碳酸钠溶液中和至中性,分液,有机相用饱和碳酸氢钠和水洗涤,无水硫酸镁干燥,浓缩,柱层析的化合物3-溴-6-萘基苯并噻吩-1-氧。
将3.53g(10mmol)3-溴-6-萘基苯并噻吩-1-氧,1.88g(20mmol)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-萘基苯并噻吩-1-氧。
将2.94g(8mmol)3-苯氧基-6-萘基苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中心,无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-萘基苯并噻吩。
将2.11g(6mmol)3-苯氧基-6-萘基苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-苯氧基-6-萘基苯并噻吩。
将1.72g(4mmol)2-溴-3-苯氧基-6-萘基苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物2-萘基[1]苯并噻吩[3,2-b][1]苯并呋喃(Na-BTBF)。
实施例22
2-(4-乙基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C2-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000127
其具体制备步骤包括:
将4.76g(20mmol)6-(4-乙基苯基)苯并噻吩溶解在30mL氯仿中,0℃下分批加入4.45g(25mmol)N-溴代丁二酰亚胺,加毕,在0℃下反应4h之后升至室温继续搅拌反应至原料消失。分别用硫代硫酸钠水溶液,饱和碳酸钠和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得3-溴-6-(4-乙基苯基)苯并噻吩。
将4.73g(15mmol)3-溴-6-(4-乙基苯基)苯并噻吩溶解在30mL二氯甲烷和30mL三氟乙酸溶液中,在室温下搅拌5分钟之后,加入1.0mL,35%的双氧水,搅拌至原料反应完全,用饱和碳酸钠溶液中和至中性,分液,有机相用饱和碳酸氢钠和水洗涤,无水硫酸镁干燥,浓缩,柱层析的化合物3-溴-6-(4-乙基苯基)苯并噻吩-1-氧。
将3.31g(10mmol)3-溴-6-(4-乙基苯基)苯并噻吩-1-氧,1.88g(20mmol)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-乙基苯基)苯并噻吩-1-氧。
将2.77g(8mmol)3-苯氧基-6-(4-乙基苯基)苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中心,无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-乙基苯基)苯并噻吩。
将1.98g(6mmol)3-苯氧基-6-(4-乙基苯基)苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-苯氧基-6-(4-乙基苯基)苯并噻吩。
将1.63g(4mmol)2-溴-3-苯氧基-6-(4-乙基苯基)苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物2-(4-乙基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C2-Ph-BTBF)。
实施例23
2-(4-戊基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C5-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000128
其具体制备步骤包括:
将5.6g(20mmol)6-(4-戊基苯基)苯并噻吩溶解在30mL氯仿中,0℃下分批加入4.45g(25mmol)N-溴代丁二酰亚胺,加毕,在0℃下反应4h之后升至室温继续搅拌反应至原料消失。分别用硫代硫酸钠水溶液,饱和碳酸钠和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得3-溴-6-(4-戊基苯基)苯并噻吩。
将5.37g(15mmol)3-溴-6-(4-戊基苯基)苯并噻吩溶解在30mL二氯甲烷和30mL三氟乙酸溶液中,在室温下搅拌5分钟之后,加入1.0mL,35%的双氧水,搅拌至原料反应完全,用饱和碳酸钠溶液中和至中性,分液,有机相用饱和碳酸氢钠和水洗涤,无水硫酸镁干燥,浓缩,柱层析的化合物3-溴-6-(4-戊基苯基)苯并噻吩-1-氧。
将3.74g(10mmol)3-溴-6-(4-戊基苯基)苯并噻吩-1-氧,1.88g(20mmol)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-戊基苯基)苯并噻吩-1-氧。
将3.10g(8mmol)3-苯氧基-6-(4-戊基苯基)苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中心,无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-戊基苯基)苯并噻吩。
将2.23g(6mmol)3-苯氧基-6-(4-戊基苯基)苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-苯氧基-6-(4-戊基苯基)苯并噻吩。
将1.80g(4mmol)2-溴-3-苯氧基-6-(4-戊基苯基)苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤, 无水硫酸镁干燥,浓缩,柱层析的目标化合物2-(4-戊基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C5-Ph-BTBF)。
实施例24
2-(4-庚基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C7-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000129
其具体制备步骤包括:
将6.16g(20mmol)6-(4-庚基苯基)苯并噻吩溶解在30mL氯仿中,0℃下分批加入4.45g(25mmol)N-溴代丁二酰亚胺,加毕,在0℃下反应4h之后升至室温继续搅拌反应至原料消失。分别用硫代硫酸钠水溶液,饱和碳酸钠和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得3-溴-6-(4-庚基苯基)苯并噻吩。
将5.79g(15mmol)3-溴-6-(4-庚基苯基)苯并噻吩溶解在30mL二氯甲烷和30mL三氟乙酸溶液中,在室温下搅拌5分钟之后,加入1.0mL,35%的双氧水,搅拌至原料反应完全,用饱和碳酸钠溶液中和至中性,分液,有机相用饱和碳酸氢钠和水洗涤,无水硫酸镁干燥,浓缩,柱层析的化合物3-溴-6-(4-庚基苯基)苯并噻吩-1-氧。
将4.02g(10mmol)3-溴-6-(4-庚基苯基)苯并噻吩-1-氧,1.88g(20mmol)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-庚基苯基)苯并噻吩-1-氧。
将3.33g(8mmol)3-苯氧基-6-(4-庚基苯基)苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中心,无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-庚基苯基)苯并噻吩。
将2.40g(6mmol)3-苯氧基-6-(4-庚基苯基)苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-苯氧基-6-(4-庚基苯基)苯并噻吩。
将1.91g(4mmol)2-溴-3-苯氧基-6-(4-庚基苯基)苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸, 用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物2-(4-庚基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C7-Ph-BTBF)。
实施例25
2-(4-辛基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C8-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000130
其具体制备步骤包括:
将6.44g(20mmol)6-(4-辛基苯基)苯并噻吩溶解在30mL氯仿中,0℃下分批加入4.45g(25mmol)N-溴代丁二酰亚胺,加毕,在0℃下反应4h之后升至室温继续搅拌反应至原料消失。分别用硫代硫酸钠水溶液,饱和碳酸钠和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得3-溴-6-(4-辛基苯基)苯并噻吩。
将6.00g(15mmol)3-溴-6-(4-辛基苯基)苯并噻吩溶解在30mL二氯甲烷和30mL三氟乙酸溶液中,在室温下搅拌5分钟之后,加入1.0mL,35%的双氧水,搅拌至原料反应完全,用饱和碳酸钠溶液中和至中性,分液,有机相用饱和碳酸氢钠和水洗涤,无水硫酸镁干燥,浓缩,柱层析的化合物3-溴-6-(4-辛基苯基)苯并噻吩-1-氧。
将4.16g(10mmol)3-溴-6-(4-辛基苯基)苯并噻吩-1-氧,1.88g(20mmol)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-辛基苯基)苯并噻吩-1-氧。
将3.44g(8mmol)3-苯氧基-6-(4-辛基苯基)苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中心,无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-辛基苯基)苯并噻吩。
将2.48g(6mmol)3-苯氧基-6-(4-辛基苯基)苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-苯氧基-6-(4-乙基苯基)苯并噻吩。
将1.97g(4mmol)2-溴-3-苯氧基-6-(4-辛基苯基)苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mL N,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物2-(4-乙基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C8-Ph-BTBF)。
实施例26
2-(4-癸基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C10-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000131
其具体制备步骤包括:
将7.0g(20mmol)6-(4-癸基苯基)苯并噻吩溶解在30mL氯仿中,0℃下分批加入4.45g(25mmol)N-溴代丁二酰亚胺,加毕,在0℃下反应4h之后升至室温继续搅拌反应至原料消失。分别用硫代硫酸钠水溶液,饱和碳酸钠和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得3-溴-6-(4-癸基苯基)苯并噻吩。
将6.42g(15mmol)3-溴-6-(4-癸基苯基)苯并噻吩溶解在30mL二氯甲烷和30mL三氟乙酸溶液中,在室温下搅拌5分钟之后,加入1.0mL,35%的双氧水,搅拌至原料反应完全,用饱和碳酸钠溶液中和至中性,分液,有机相用饱和碳酸氢钠和水洗涤,无水硫酸镁干燥,浓缩,柱层析的化合物3-溴-6-(4-癸基苯基)苯并噻吩-1-氧。
将4.44g(10mmol)3-溴-6-(4-癸基苯基)苯并噻吩-1-氧,1.88g(20mmol)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-癸基苯基)苯并噻吩-1-氧。
将3.66g(8mmol)3-苯氧基-6-(4-癸基苯基)苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中心,无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-癸基苯基)苯并噻吩。
将2.65g(6mmol)3-苯氧基-6-(4-癸基苯基)苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温, 加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-苯氧基-6-(4-癸基苯基)苯并噻吩。
将2.08g(4mmol)2-溴-3-苯氧基-6-(4-癸基苯基)苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物2-(4-癸基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C10-Ph-BTBF)。
实施例27
2-(4-十二烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C12-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000132
其具体制备步骤包括:
将7.56g(20mmol)6-(4-十二烷基苯基)苯并噻吩溶解在30mL氯仿中,0℃下分批加入4.45g(25mmol)N-溴代丁二酰亚胺,加毕,在0℃下反应4h之后升至室温继续搅拌反应至原料消失。分别用硫代硫酸钠水溶液,饱和碳酸钠和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得3-溴-6-(4-十二烷基苯基)苯并噻吩。
将6.84g(15mmol)3-溴-6-(4-十二烷基苯基)苯并噻吩溶解在30mL二氯甲烷和30mL三氟乙酸溶液中,在室温下搅拌5分钟之后,加入1.0mL,35%的双氧水,搅拌至原料反应完全,用饱和碳酸钠溶液中和至中性,分液,有机相用饱和碳酸氢钠和水洗涤,无水硫酸镁干燥,浓缩,柱层析的化合物3-溴-6-(4-十二烷基苯基)苯并噻吩-1-氧。
将4.72g(10mmol)3-溴-6-(4-十二烷基苯基)苯并噻吩-1-氧,1.88g(20mmol)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-十二烷基苯基)苯并噻吩-1-氧。
将3.89g(8mmol)3-苯氧基-6-(4-十二烷基苯基)苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水 溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中心,无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-十二烷基苯基)苯并噻吩。
将2.82g(6mmol)3-苯氧基-6-(4-十二烷基苯基)苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-苯氧基-6-(4-十二烷基苯基)苯并噻吩。
将2.19g(4mmol)2-溴-3-苯氧基-6-(4-十二烷基苯基)苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物2-(4-十二烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C12-Ph-BTBF)。
实施例28
2-(4-十三烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C13-Ph-BTBF)的合成流程为:
Figure PCTCN2018099487-appb-000133
其具体制备步骤为:
将7.84g(20mmol)6-(4-十三烷基苯基)苯并噻吩溶解在30mL氯仿中,0℃下分批加入4.45g(25mmol)N-溴代丁二酰亚胺,加毕,在0℃下反应4h之后升至室温继续搅拌反应至原料消失。分别用硫代硫酸钠水溶液,饱和碳酸钠和水洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析得3-溴-6-(4-十三烷基苯基)苯并噻吩。
将7.05g(15mmol)3-溴-6-(4-十三烷基苯基)苯并噻吩溶解在30mL二氯甲烷和30mL三氟乙酸溶液中,在室温下搅拌5分钟之后,加入1.0mL,35%的双氧水,搅拌至原料反应完全,用饱和碳酸钠溶液中和至中性,分液,有机相用饱和碳酸氢钠和水洗涤,无水硫酸镁干燥,浓缩,柱层析的化合物3-溴-6-(4-十三烷基苯基)苯并噻吩-1-氧。
将4.86g(10mmol)3-溴-6-(4-十三烷基苯基)苯并噻吩-1-氧,1.88g(20mmol)苯酚,2.76g(20mmol)碳酸钾与30mL无水DMF在70℃条件下搅拌反应过夜,降至室温,浓缩,残留物溶解在50mL二氯甲烷中,用饱和食盐水和水 洗涤,有机相用无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-十三烷基苯基)苯并噻吩-1-氧。
将4.0g(8mmol)3-苯氧基-6-(4-十三烷基苯基)苯并噻吩-1-氧溶解在50mL无水甲苯中,在0℃条件下缓慢滴加二异丁基氢化铝(16mmol,13mL,20%的甲苯溶液),加毕,在65℃下搅拌反应至原料消失,冷却至0℃,用2M的氢氧化钠水溶液中和,二氯甲烷萃取三次,合并有机相,有机相用水洗至中心,无水硫酸镁干燥,浓缩,柱层析的3-苯氧基-6-(4-十三烷基苯基)苯并噻吩。
将2.90g(6mmol)3-苯氧基-6-(4-十三烷基苯基)苯并噻吩溶解在30mL冰乙酸中,加入1.2g(6.6mmol)NBS,搅拌10分钟,继续在55℃下搅拌反应2h。冷却至室温,加入80mL冰水,用乙酸乙酯萃取三次,合并有机相,有机相用饱和碳酸钠,饱和食盐水和水洗涤,无水硫酸镁干燥,柱层析得2-溴-3-苯氧基-6-(4-十三烷基苯基)苯并噻吩。
将2.25g(4mmol)2-溴-3-苯氧基-6-(4-十三烷基苯基)苯并噻吩,0.67g(8mmol)醋酸钠溶解在80mLN,N-二甲基乙酰胺中,氮气条件下加入0.14g(0.2mmol)PdCl 2(PPh 3) 2,在140℃条件下搅拌过夜,冷却至室温,加入200mL 1mol/L盐酸,用500mL乙酸乙酯和正己烷(体积比1:1)萃取,有机相用饱和食盐水和水洗涤,无水硫酸镁干燥,浓缩,柱层析的目标化合物2-(4-十三烷基苯基)[1]苯并噻吩[3,2-b][1]苯并呋喃(C13-Ph-BTBF)。
实施例29
N 2,N 2,N 7,N 7-四苯基[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺的合成流程为:
Figure PCTCN2018099487-appb-000134
其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃。
将2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃(1.9g,5mmol)、二苯胺(2.63g,15mmol)溶解于100mL甲苯中,除去体系中的氧之后,加入催化量的Pd 2(dba) 3,HF 4P(t-Bu) 3和叔丁醇钾(1.68g,15mmol),在惰性气体保护下加热反应至原料反应完毕;然后冷却至室温,用饱和食盐水和水洗涤,无水硫酸钠干燥,浓缩,残留物用石油醚和二氯甲烷为洗脱液柱层析得到N 2,N 2,N 7,N 7-四苯基[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺。
实施例30
N 2,N 7-二苯基-N 2,N 7-二(1-萘基)[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺的 合成流程为:
Figure PCTCN2018099487-appb-000135
其制备方法包括步骤:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃。
将2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃(1.9g,5mmol)、苯基-1-萘胺(3.28g,15mmol)溶解于100mL甲苯中,除去体系中的氧之后,加入催化量的Pd 2(dba) 3,HF 4P(t-Bu) 3和叔丁醇钾(1.68g,15mmol),在惰性气体保护下加热反应至原料反应完毕;然后冷却至室温,用饱和食盐水和水洗涤,无水硫酸钠干燥,浓缩,残留物用石油醚和二氯甲烷为洗脱液柱层析得N 2,N 7-二苯基-N 2,N 7-二(1-萘基)[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺。
实施例31
2,7-二(3,5-二苯氨基)苯基-1-基[1]苯并噻吩[3,2-b][1]苯并呋喃的合成流程为:
Figure PCTCN2018099487-appb-000136
,其制备方法包括步骤:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃。
将1.9g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和8.07g(15mmol,3当量)3,5-二苯氨基苯-1-基硼酸频哪醇酯溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(3,5-二苯氨基)苯基-1-基[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例32
2,7-二(9H-咔唑基)[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺的合成流程为:
Figure PCTCN2018099487-appb-000137
其制备方法包括步骤:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃。
将2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃(1.9g,5mmol)、咔唑(2.5g,15mmol)溶解于100mL甲苯中,除去体系中的氧之后,加入催化量的Pd 2(dba) 3,HF 4P(t-Bu) 3和叔丁醇钾(1.68g,15mmol),在惰性气体保护下加热反应至原料反应完毕;然后冷却至室温,用饱和食盐水和水洗涤,无水硫酸钠干燥,浓缩,残留物用石油醚和二氯甲烷为洗脱液柱层析得2,7-二(9H-咔唑基)[1]苯并噻吩[3,2-b][1]苯并呋喃-2,7-二胺。
实施例33
2,7-二(吡啶-2-基)[1]苯并噻吩[3,2-b][1]苯并呋喃的合成流程为:
Figure PCTCN2018099487-appb-000138
其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃。
将2.0g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和1.84g(15mmol,3当量)吡啶-2-硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(吡啶-2-基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例34
2,7-二(吡啶-3-基)[1]苯并噻吩[3,2-b][1]苯并呋喃的合成流程为:
Figure PCTCN2018099487-appb-000139
其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.0g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并噻吩和1.84g(15mmol,3当量)吡啶-3-硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(吡啶-3-基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例35
2,7-二(吡啶-4-基)[1]苯并噻吩[3,2-b][1]苯并呋喃的合成流程为:
Figure PCTCN2018099487-appb-000140
其 具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.0g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和1.84g(15mmol,3当量)吡啶-4-硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(吡啶-4-基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例36
2,7-二(喹啉-3-基)[1]苯并噻吩[3,2-b][1]苯并呋喃的合成流程为:
Figure PCTCN2018099487-appb-000141
,其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.0g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和2.60g(15mmol,3当量)喹啉-3-硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(喹啉-3-基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例37
2,7-二(喹啉-8-基)[1]苯并噻吩[3,2-b][1]苯并呋喃的合成流程为:
Figure PCTCN2018099487-appb-000142
,其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.0g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和2.60g(15mmol,3当量)喹啉-8-硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(喹啉-8-基)[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例38
2,7-二(1,10-邻菲咯啉-3-基)-4-基[1]苯并噻吩[3,2-b][1]苯并呋喃的合成流程为:
Figure PCTCN2018099487-appb-000143
,其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.0g(5mmol)2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃和3.36g(15mmol,3当量)1,10-邻菲咯啉-3-硼酸溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二(1,10-邻菲咯啉-3-基)-4-基[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例39
2,7-二-苯并噻唑-4-基[1]苯并噻吩[3,2-b][1]苯并呋喃的合成流程为:
Figure PCTCN2018099487-appb-000144
其具体制备步骤包括:
采用与实施例6相同的步骤制备2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃;
氮气保护下,将2,7-二溴[1]苯并噻吩[3,2-b][1]苯并呋喃(3.8g,10mmol),双联频哪醇硼酸酯(7.62g,30mmol),乙酸钾(3.92g,40mmol)和[1,1′-双(二苯基膦)二茂铁]二氯化钯(II)二氯甲烷络合物(0.3mmol,0.25g)溶解在100mL二甲基亚砜,用氮气吹洗15分钟,80℃下加热10h,冷却至室温,倒入冰水中,用二氯甲烷萃取三次,合并有机相,有机相用水洗三次,硫酸镁干燥,浓缩,柱层析纯化得2,7-二频哪醇硼酸酯基[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.38g(5mmol)2,7-二频哪醇硼酸酯基[1]苯并噻吩[3,2-b][1]苯并呋喃和3.23g(15mmol,3当量)4-溴苯并噻二唑溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二-苯并噻唑-4-基[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例40
2,7-二苯并噻唑-5-基[1]苯并噻吩[3,2-b][1]苯并呋喃的合成流程为:
Figure PCTCN2018099487-appb-000145
其 具体制备步骤包括:
采用与实施例39相同的步骤制备2,7-二频哪醇硼酸酯基[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.38g(5mmol)2,7-二频哪醇硼酸酯基[1]苯并噻吩[3,2-b][1]苯并呋喃和3.23g(15mmol,3当量)5-溴苯并噻二唑溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二-苯并噻唑-5-基[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例41
2,7-二-(2,4-二苯基-1,3,5-三嗪-6-基)[1]苯并噻吩[3,2-b][1]苯并呋喃的合成流程为:
Figure PCTCN2018099487-appb-000146
,其具体制备步骤包括:
采用与实施例39相同的步骤制备2,7-二频哪醇硼酸酯基[1]苯并噻吩[3,2-b][1]苯并呋喃;
将2.38g(5mmol)2,7-二频哪醇硼酸酯基[1]苯并噻吩[3,2-b][1]苯并呋喃和4.00g(15mmol,3当量)2,4-二苯基-6-氯-1,3,5-三嗪溶解在50mL甲苯中,加入10mL 2M的碳酸钾水溶液,用氮气吹吸30min,加入Pd(PPh 3) 4(2%当量),在氮气环境下110℃下搅拌24h,反应混合物倒入100mL甲醇中,过滤,固体用盐酸和水洗涤。用高真空升华的方式得到2,7-二-苯并噻唑-5-基[1]苯并噻吩[3,2-b][1]苯并呋喃。
实施例42
器件制备及性能测试:
分别采用现有材料DPh-BTBT以及本发明实施例中的DPh-BTBF、BTBF-Ph-C12、D-C12-Ph-BTBF材料来制备同样的有机薄膜晶体管器件,分别测试其载流子迁移率以及荧光量子效率,结果如下所示:
化合物 载流子迁移率 荧光量子产率
DPh-BTBT 0.36-0.46cm 2V -1s -1 18%
DPh-BTBF 0.38-0.45cm 2V -1s -1 51%
BTBF-Ph-C12 0.33-0.50cm 2V -1s -1 42%
D-C12-Ph-BTBF 0.40-0.49cm 2V -1s -1 52%
通过上述实验结果可知,本发明制备的[1]苯并噻吩[3,2-b][1]苯并呋喃衍生物与现有
Figure PCTCN2018099487-appb-000147
(DPh-BTBT)材料均具有较高的载流子迁移率,但是本发明提供的材料相较于现有DPh-BTBT材料具有更高的荧光效率。
综上所述,本发明结合噻吩衍生物具有较高的载流子迁移率以及呋喃衍生物具有较高荧光性能的特点,设计了一种同时含有噻吩官能团和呋喃官能团的半导体材料,所述半导体材料的分子结构为所述半导体材料的分子结构通式为
Figure PCTCN2018099487-appb-000148
Figure PCTCN2018099487-appb-000149
中的一种,其中,所述Ar1和Ar2均为烷基或芳基;所述Ar3、Ar4、Ar5和Ar6均为芳基,所述R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15和R16均为芳基,所述R17,R18,R19和R20均为芳基或烷基。本发明提供的半导体材料可作为有机薄膜晶体管的有源层及发光器件中的发光层,通过真空蒸镀或旋涂法制成半导体薄膜,进一步制备有机薄膜晶体管或发光器件,旨在解决现有有机半导体材料高载流子迁移率与高荧光效率不兼得的问题。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (13)

  1. 一种半导体材料,其特征在于,所述半导体材料的分子结构通式为
    Figure PCTCN2018099487-appb-100001
    Figure PCTCN2018099487-appb-100002
    中的一种,其中,所述Ar1和Ar2均为烷基或芳基;所述Ar3、Ar4、Ar5和Ar6均为芳基,所述R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15和R16均为芳基,所述R17,R18,R19和R20均为芳基或烷基。
  2. 根据权利要求1所述的半导体材料,其特征在于,所述芳基包括
    Figure PCTCN2018099487-appb-100003
    Figure PCTCN2018099487-appb-100004
    Figure PCTCN2018099487-appb-100005
    其中,R21,R22,R23,R24,R25,R26,R27,R28,R29,R30,R31,R32,R33,R34,R35和R36均为芳基或烷基。
  3. 根据权利要求1所述的半导体材料,其特征在于,所述半导体材料的分子结构通式为
    Figure PCTCN2018099487-appb-100006
    其中,所述Ar1和Ar2均为含N的芳香基团或缺电子基团取代的芳香基团。
  4. 根据权利要求3所述的半导体材料,其特征在于,所述缺电子基团包括氰基、硝基和卤基。
  5. 根据权利要求3所述的半导体材料,其特征在于,所述含N的芳香基团 包括:
    Figure PCTCN2018099487-appb-100007
    Figure PCTCN2018099487-appb-100008
    Figure PCTCN2018099487-appb-100009
    其中,M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12,M13,M14,M15、M16、M17,M18和M19独立地选自氰基、硝基、烷基、芳基或含氮杂环中的一种。
  6. 根据权利要求1所述的半导体材料,其特征在于,所述半导体材料的分子结构式包括:
    Figure PCTCN2018099487-appb-100010
    Figure PCTCN2018099487-appb-100011
    Figure PCTCN2018099487-appb-100012
    Figure PCTCN2018099487-appb-100013
    Figure PCTCN2018099487-appb-100014
  7. 一种半导体材料的制备方法,其特征在于,包括步骤:
    将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
    将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
    将所述苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100015
    的第一中间体;
    将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100016
    的第二中间体;
    将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
    Figure PCTCN2018099487-appb-100017
    的第三中间体;
    将所述第三中间体与催化剂PdCl 2(PPh 3) 2混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100018
    的第四中间体;
    将所述第四中间体与分子结构式为
    Figure PCTCN2018099487-appb-100019
    的酰氯混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100020
    的第五中间体;
    将所述第五中间体与氢氧化钾、水合阱以及三缩乙二醇混合,在加热条件下发生还原反应,生成分子结构式为
    Figure PCTCN2018099487-appb-100021
    的半导体材料,其中,所述R为烷基。
  8. 一种半导体材料的制备方法,其特征在于,包括步骤:
    将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
    将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
    将所述苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100022
    的第一中间体;
    将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100023
    的第二中间体;
    将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
    Figure PCTCN2018099487-appb-100024
    的第三中间体;
    将所述第三中间体与PdCl 2(PPh 3) 2催化剂混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100025
    的第四中间体;
    将所述第四中间体与液溴混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100026
    的第五中间体;
    将所述第五中间体与芳基硼酸或芳基锡混合并通过PdCl 2(PPh 3) 2催化剂催化偶联,反应得到分子结构式为
    Figure PCTCN2018099487-appb-100027
    的半导体材料,其中,Ar1和Ar2均为芳基。
  9. 一种半导体材料的制备方法,其特征在于,包括步骤:
    将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
    将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
    将所述苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100028
    的第一中间体;
    将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100029
    的第二中间体;
    将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
    Figure PCTCN2018099487-appb-100030
    的第三中间体;
    将所述第三中间体与催化剂PdCl 2(PPh 3) 2混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100031
    的第四中间体;
    将所述第四中间体与液溴混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100032
    的第五中间体;
    将所述第五中间体与含N芳基硼酸、含N芳基锡、缺电子基团取代的芳香基硼酸或缺电子基团取代的芳香基锡中的一种混合并通过PdCl 2(PPh 3) 2催化剂催化偶联,反应得到分子结构式为
    Figure PCTCN2018099487-appb-100033
    的半导体材料,其中,Ar1和Ar2均为含N的芳香基团或缺电子基团取代的芳香基团。
  10. 一种半导体材料的制备方法,其特征在于,包括步骤:
    将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
    将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
    将所述苯并噻吩氧化物与芳基取代的苯酚混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100034
    的第一中间体;
    将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100035
    的第二中间体;
    将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
    Figure PCTCN2018099487-appb-100036
    的第三中间体;
    将所述第三中间体与PdCl 2(PPh 3) 2催化剂混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100037
    的半导体材料,其中,Ar3为芳基。
  11. 一种半导体材料的制备方法,其特征在于,包括步骤:
    将芳基取代的苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴芳基取代苯并噻吩;
    将所述3-溴芳基取代苯并噻吩与双氧水混合,反应生成芳基取代苯并噻吩氧化物;
    将所述芳基取代苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100038
    的第一中间体;
    将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100039
    的第二中间体;
    将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
    Figure PCTCN2018099487-appb-100040
    的第三中间体;
    将所述第三中间体与PdCl 2(PPh 3) 2催化剂混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100041
    的半导体材料,其中,Ar4为芳基。
  12. 一种半导体材料的制备方法,其特征在于,包括步骤:
    将苯并噻吩与N-溴代丁二酰亚胺混合,反应生成3-溴苯并噻吩;
    将所述3-溴苯并噻吩与双氧水混合,反应生成苯并噻吩氧化物;
    将所述苯并噻吩氧化物与苯酚混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100042
    的第一中间体;
    将所述第一中间体与二异丁基氢化铝混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100043
    的第二中间体;
    将所述第二中间体溶解在冰乙酸中并加入N-溴代丁二酰亚胺,混合反应生成分子结构式为
    Figure PCTCN2018099487-appb-100044
    的第三中间体;
    将所述第三中间体与催化剂PdCl 2(PPH 3) 2混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100045
    的第四中间体;
    将所述第四中间体与液溴混合,反应生成分子结构式为
    Figure PCTCN2018099487-appb-100046
    的第五中间体;
    将所述第五中间体与二芳基胺混合,并加入Pd 2(dba) 3,HF 4P(t-Bu) 3和叔丁醇钾进行催化反应,生成分子结构通式为
    Figure PCTCN2018099487-appb-100047
    的胺类衍生物,其中,R1,R2,R3和R4均为芳基;
    或者,将所述第五中间体与含芳胺的芳基硼酸酯混合,并加入Pd(PPh 3) 4进行催化反应,生成分子结构通式为
    Figure PCTCN2018099487-appb-100048
    Figure PCTCN2018099487-appb-100049
    的胺类衍生物,其中,所述Ar1,Ar2,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15和R16均为芳基;
    或者,将所述第五中间体与芳基取代的咔唑混合,并加入Pd 2(dba) 3,HF 4P(t-Bu) 3和叔丁醇钾进行催化反应,生成分子结构通式为
    Figure PCTCN2018099487-appb-100050
    的胺类衍生物,其中,R17,R18,R19和R20均为芳基。
  13. 一种半导体材料的应用,其特征在于,将权利要求1-6中任意一种半导体材料应用于制备有机薄膜晶体管器件和发光器件。
PCT/CN2018/099487 2018-07-18 2018-08-09 一种半导体材料及其制备方法与应用 WO2020015029A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810790026.9A CN110734452A (zh) 2018-07-18 2018-07-18 一种半导体材料及其制备方法与应用
CN201810806814.2 2018-07-18
CN201810789867.8 2018-07-18
CN201810806814.2A CN110734453A (zh) 2018-07-18 2018-07-18 一种胺类衍生物及其制备方法、有机发光二极管
CN201810789867.8A CN110734451B (zh) 2018-07-18 2018-07-18 一种半导体材料及其制备方法、有机发光二极管
CN201810790026.9 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020015029A1 true WO2020015029A1 (zh) 2020-01-23

Family

ID=69164191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099487 WO2020015029A1 (zh) 2018-07-18 2018-08-09 一种半导体材料及其制备方法与应用

Country Status (1)

Country Link
WO (1) WO2020015029A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024579A (zh) * 2021-03-03 2021-06-25 北京大学深圳研究生院 类苯并噻吩并[3,2-b]苯并噻吩的空穴传输材料及其制备方法和应用
CN113121560A (zh) * 2021-03-29 2021-07-16 北京大学深圳研究生院 一种苯并噻吩并苯并五元杂环材料及其制备方法与应用
CN113735876A (zh) * 2021-02-03 2021-12-03 中国科学院化学研究所 一种不对称结构的苯并噻吩并噻吩并苯(btbt)衍生物及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412721A (zh) * 2007-10-18 2009-04-22 北京化工大学 6,13-取代并五苯及其衍生物和制备
CN103154187A (zh) * 2010-10-04 2013-06-12 株式会社半导体能源研究所 复合材料、发光元件、发光装置、电子装置以及照明装置
CN104045819A (zh) * 2014-05-21 2014-09-17 合肥工业大学 一种超低能带隙给体-受体共轭聚合物及其制备方法
CN104193971A (zh) * 2014-07-24 2014-12-10 合肥工业大学 一种新型半导体共轭聚合物及其合成方法
CN105330641A (zh) * 2010-04-28 2016-02-17 通用显示公司 具有结合形成稠合环的取代基的苯并菲-苯并呋喃/苯并噻吩/苯并硒吩化合物
CN108117543A (zh) * 2016-11-29 2018-06-05 东进世美肯株式会社 新颖化合物及包含其的有机电致发光器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412721A (zh) * 2007-10-18 2009-04-22 北京化工大学 6,13-取代并五苯及其衍生物和制备
CN105330641A (zh) * 2010-04-28 2016-02-17 通用显示公司 具有结合形成稠合环的取代基的苯并菲-苯并呋喃/苯并噻吩/苯并硒吩化合物
CN103154187A (zh) * 2010-10-04 2013-06-12 株式会社半导体能源研究所 复合材料、发光元件、发光装置、电子装置以及照明装置
CN104045819A (zh) * 2014-05-21 2014-09-17 合肥工业大学 一种超低能带隙给体-受体共轭聚合物及其制备方法
CN104193971A (zh) * 2014-07-24 2014-12-10 合肥工业大学 一种新型半导体共轭聚合物及其合成方法
CN108117543A (zh) * 2016-11-29 2018-06-05 东进世美肯株式会社 新颖化合物及包含其的有机电致发光器件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735876A (zh) * 2021-02-03 2021-12-03 中国科学院化学研究所 一种不对称结构的苯并噻吩并噻吩并苯(btbt)衍生物及其制备方法与应用
CN113024579A (zh) * 2021-03-03 2021-06-25 北京大学深圳研究生院 类苯并噻吩并[3,2-b]苯并噻吩的空穴传输材料及其制备方法和应用
CN113121560A (zh) * 2021-03-29 2021-07-16 北京大学深圳研究生院 一种苯并噻吩并苯并五元杂环材料及其制备方法与应用
WO2022205592A1 (zh) * 2021-03-29 2022-10-06 北京大学深圳研究生院 一种苯并噻吩并苯并五元杂环材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN110734453A (zh) 一种胺类衍生物及其制备方法、有机发光二极管
CN110734451B (zh) 一种半导体材料及其制备方法、有机发光二极管
WO2020015029A1 (zh) 一种半导体材料及其制备方法与应用
CN113773290A (zh) 一种有机化合物以及使用其的电子元件和电子装置
CN111138418B (zh) 有机杂环化合物及其应用和一种有机电致发光器件
CN114057775A (zh) 一种超级碱材料及其制备方法与有机发光二极管
CN115667248A (zh) 新型化合物及包含其的有机发光器件
CN115605469A (zh) 新型化合物及包含其的有机发光器件
KR102639105B1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102641909B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
JP7427318B2 (ja) 新規な化合物およびこれを利用した有機発光素子
CN110734452A (zh) 一种半导体材料及其制备方法与应用
JP2023548179A (ja) 新規な化合物およびこれを利用した有機発光素子
JP2023548166A (ja) 新規な化合物およびこれを利用した有機発光素子
JP2023547680A (ja) 新規な化合物およびこれを利用した有機発光素子
KR102589892B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102625755B1 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
CN109134418B (zh) 一类二苯并吡喃七元稠环单元及其衍生物和制备方法与应用
CN107602553B (zh) 有机小分子电子传输材料及其制备方法与应用
CN114380850A (zh) 含金的金属配合物、混合物、组合物及有机电子器件
KR20200043755A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
CN112321585B (zh) 不对称取代的二苯基吡啶类化合物及其制备与应用
KR102654810B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
EP4092033A1 (en) Novel compound and organic light-emitting device using same
JP7214290B2 (ja) 新規な化合物、これを含むコーティング組成物およびこれを利用した有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926690

Country of ref document: EP

Kind code of ref document: A1