WO2020015021A1 - 一种太阳能电池背面电极的制备方法与应用 - Google Patents

一种太阳能电池背面电极的制备方法与应用 Download PDF

Info

Publication number
WO2020015021A1
WO2020015021A1 PCT/CN2018/098232 CN2018098232W WO2020015021A1 WO 2020015021 A1 WO2020015021 A1 WO 2020015021A1 CN 2018098232 W CN2018098232 W CN 2018098232W WO 2020015021 A1 WO2020015021 A1 WO 2020015021A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
powder
back electrode
organic
silver
Prior art date
Application number
PCT/CN2018/098232
Other languages
English (en)
French (fr)
Inventor
朱鹏
Original Assignee
南通天盛新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通天盛新能源股份有限公司 filed Critical 南通天盛新能源股份有限公司
Priority to US17/279,105 priority Critical patent/US11791425B2/en
Publication of WO2020015021A1 publication Critical patent/WO2020015021A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the technical field of solar cells, and particularly relates to a method for preparing and applying a back electrode of a solar cell.
  • the main function of the silver paste on the back of the solar cell is to provide soldering points for the back of the solar cell, so it has higher requirements on its solderability, solder resistance, adhesion, efficiency improvement and cost reduction.
  • a good silver backing paste should have the following advantages: low activity, reducing the reaction between glass frit and passivation film, avoiding the formation of a large number of recombination centers between the silver paste and the silicon wafer or aluminum paste, and increasing the open circuit voltage of the battery. Process window, suitable for low temperature sintering process, excellent adhesion and aging tension. Good printing performance and low silver content.
  • the main function of the back silver paste is purely a bus and solder joint, and it does not bear contact with silicon.
  • Printing the back silver paste directly on the aluminum paste may cause two problems. First, the contact between the silver and aluminum will affect the welding performance of the back electrode. Second, the edge of the back electrode needs to be covered by the aluminum back field, which increases the back electrode. The width increases the cost of the back electrode paste.
  • the present invention provides a method for preparing a back electrode of a solar cell and its application.
  • a method for preparing a back electrode of a solar cell A conductive resistance barrier paste is printed or sprayed on the back aluminum paste, and the barrier paste is printed directly on the back aluminum electrode. After drying, printing and matching are performed thereon. The back silver paste used is dried and sintered to form a back electrode.
  • the barrier layer slurry includes the following according to parts by weight: metal nitride powder, nitrogen silicon compound powder, oxide powder or low melting point metal powder in total 20 to 80 parts, and lead-free glass powder 0.5 ⁇ 5 parts, organic binder 10 ⁇ 40 parts, organic assistant 0.1 ⁇ 1 part.
  • the back silver paste used in combination includes the following according to parts by weight: 5-60 parts of hollow spherical silver powder with special requirements of purity greater than 99.99%, 5-30 parts of flake silver powder, and 0.5-5 of lead-free glass powder 10-50 parts of organic binder, 0.1-1 part of organic auxiliary; wherein the particle diameter D50 of the hollow spherical silver powder is 5-20 ⁇ m, and the particle diameter D50 of the flake silver powder is 2-30 ⁇ m.
  • the metal nitride powder includes one or more of ZrN, TiN, TaN, MoN, and CaN, and the particle diameter D50 is 0.1 to 10 ⁇ m;
  • the nitrogen-silicon compound powder includes one or more of SiNx, BNx, and VNx with a particle diameter D50 of 0.3 to 15 ⁇ m;
  • the oxide powder includes one or more of Al 2 O 3 , SiO 2 , TiO 2 , ZrO, SnO 2 , MoO 2 , CaO, and NiO, and the particle diameter D50 is 0.3 to 15 ⁇ m.
  • the lead-free glass powder includes the following in parts by weight: Bi 2 O 3 , B 2 O 3 , ZnO, TeO 2 , SiO 2 , MnO 2 , CaO, Al 2 O 3 , CuO, SrO, BaO It is made by melting several kinds, the particle diameter D50 is controlled within 0.7 ⁇ 5 ⁇ m, and the softening point is adjustable within the range of 500 ⁇ 700 °C.
  • the organic binder includes the following according to parts by weight: 1 to 30 parts of organic resin, 50 to 90 parts of organic solvent, and 0.5 to 10 parts of organic auxiliary agent.
  • the lead-free glass powder is made of Bi 2 O 3 , B 2 O 3 , SiO 2 , Na 2 O, MnO 2 , CaO, Al 2 O 3 , CuO, ZnO, SrO, BaO, TeO 2 It is made by melting several kinds, the particle diameter D50 is controlled in 0.3 ⁇ 3 ⁇ m, and the softening point is adjustable in the range of 400 ⁇ 600 °C.
  • the organic binder includes the following in terms of parts by weight: 0.5 to 20 parts of organic resin, 40 to 90 parts of organic solvent, and 0.5 to 10 parts of organic auxiliary agent.
  • the barrier layer paste can be directly sprayed or printed on the aluminum paste, and the width of the back electrode and the printed pattern can be adjusted freely, the thickness is about 1 to 5 ⁇ m; the barrier layer has a bidirectional barrier function, which can Preventing the mutual diffusion of aluminum and silver can also prevent the mutual diffusion of silver and silicon.
  • An application of the preparation method of the barrier layer, the preparation method of the back electrode of the solar cell can be, but is not limited to, applied to the back electrode of a PERC cell, and is also applicable to a battery sheet with a high degree of back passivation in an all-aluminum field or on the back. It can be applied to the more sensitive, thin, and easily damaged passivation layer. It is tried on mainstream passivation layers such as SiNx, Al 2 O 3 , SiO 2 .
  • the width of the back electrode and the printed pattern can be adjusted at will, thereby reducing the cost of the back electrode paste.
  • the printed graphics of the back silver paste may be hollow, bar-shaped, or dot-shaped, and the shielding ratio is 25-50%.
  • the present invention realizes the barrier between silver aluminum and silver silicon by two or more printings.
  • the method for preparing the back electrode is suitable for solar cells with strong back passivation or back passivation.
  • the application of the barrier layer can reduce the formation of silver-aluminum alloy, thereby improving the solderability and soldering resistance of the paste, and improving the welding tension of the back electrode.
  • silver powders of different particle sizes and shapes are selected to be used in cooperation with each other to increase the bulk density of the conductive film, increase the contact area between the silver particles, reduce the shrinkage force of the conductive film, and improve the conductive ability of the slurry.
  • the back silver paste and barrier layer paste of the present invention use lead-free glass powder, avoiding the use of lead-containing glass powder, and more in line with environmental protection requirements. At the same time, adjust the glass powder to an appropriate activity, so that the glass powder and the silver powder have suitable properties.
  • the wettability of the slurry enables the slurry to have a suitable sintering temperature, thereby improving the performance of the slurry as a whole.
  • the preparation method of the back electrode of the present invention ensures that it has considerable welding tension and aging tension, and at the same time avoids serious leakage problems caused by metal defects caused by direct contact between silver and silicon wafers or aluminum paste, thereby improving the photoelectricity of crystalline silicon cells. Conversion efficiency.
  • FIG. 1 is a schematic diagram of the flake silver powder of the present invention
  • FIG. 2 is a schematic view of a micron-sized hollow spherical silver powder according to the present invention.
  • FIG. 3 is a schematic diagram of a micron-sized spherical nitrogen silicide powder according to the present invention.
  • FIG. 5 is a schematic diagram of a battery structure according to the present invention; 1, PERC back-field aluminum paste, 22, anti-reflection film passivation layer (SiNx / Al 2 O 3, etc.), 4, P-type silicon semiconductor substrate, 5, N-type Impurity layer, 6, anti-reflection film passivation layer, 7, grid-type positive electrode, 8, barrier layer, 9, back silver.
  • a method for preparing a back electrode of a solar cell A conductive resistance barrier paste is printed or sprayed on the back aluminum paste. The barrier paste is directly printed on the back aluminum electrode. After drying, a matching back sheet is printed on the back electrode. The silver paste is dried and sintered to form a back electrode.
  • the barrier layer paste according to parts by weight includes the following: metal nitride powder, nitrogen silicon compound powder, metal oxide powder or low melting point metal powder total 67 parts, lead-free glass powder 3 parts, organic viscosity
  • the binding agent is 29.8 parts, and the organic auxiliary agent is 0.2 parts.
  • the back silver paste used in combination includes the following according to parts by weight: 42 parts of hollow spherical silver powder with special requirements of purity greater than 99.99%, 15 parts of flake silver powder, 2.5 parts of lead-free glass powder, and 40.1 parts of organic binder. Organic auxiliary 0.4 parts; wherein, the particle diameter D50 of the hollow spherical silver powder is 1 ⁇ m, and the particle diameter D50 of the flaky silver powder is 6 ⁇ m.
  • the metal nitride powder includes one or more of ZrN, TiN, TaN, MoN, and CaN, and the particle diameter D50 is 0.1 ⁇ m.
  • the nitrogen-silicon compound powder includes one or more of SiNx, BNx, and VNx, and the particle diameter D50 is 0.3 ⁇ m.
  • the oxide powder includes one or more of Al 2 O 3 , SiO 2 , TiO 2 , ZrO, SnO 2 , MoO 2 , CaO, and NiO, and the particle diameter D50 is 0.3 ⁇ m.
  • the lead-free glass powder includes the following parts by weight: Bi 2 O 3 , B 2 O 3 , ZnO, TeO 2 , SiO 2 , MnO 2 , CaO, Al 2 O 3 , CuO, SrO, and BaO. It is made by melting, the particle diameter D50 is controlled at 0.7 ⁇ m, and the softening point is adjustable within the range of 500 ° C.
  • the organic binder includes the following in parts by weight: 17 parts of organic resin, 80 parts of organic solvent, and 3 parts of organic auxiliary agent.
  • the lead-free glass powder is made of Bi 2 O 3 , B 2 O 3 , SiO 2 , Na 2 O, MnO 2 , CaO, Al 2 O 3 , CuO, ZnO, SrO, BaO, TeO 2 Made by melting, the particle size D50 is controlled at 0.3 ⁇ m, and the softening point is adjustable within the range of 400 ° C.
  • the organic binder includes the following according to parts by weight: 21 parts of organic resin, 75 parts of organic solvent, and 4 parts of organic auxiliary agent.
  • the barrier layer paste can be directly sprayed or printed on the aluminum paste, and the width of the back electrode and the printed pattern can be adjusted freely, the thickness is about 4.5 ⁇ m; the barrier layer has a bidirectional barrier function, which can prevent aluminum and silver Interdiffusion can also prevent the interdiffusion of silver and silicon.
  • An application of the preparation method of the barrier layer, the preparation method of the back electrode of the solar cell can be, but is not limited to, applied to the back electrode of a PERC cell, and is also applicable to a battery sheet with a high degree of back passivation in an all-aluminum field or on the back. It can be applied to the more sensitive, thin, and easily damaged passivation layer. It is tried on mainstream passivation layers such as SiNx, Al 2 O 3 , SiO 2 .
  • barrier layer paste The specific operations of the barrier layer paste and the back silver paste used are as follows:
  • organic resin and organic auxiliary agent are respectively soaked with an organic solvent, the organic resin is soaked under heating and stirring, the temperature is about 90 ° C, and the time is 1 hour, and the thixotropic agent is soaked under heating and stirring , The temperature is about 40 ° C, and the time is 1 hour; then, it is mixed with other organic auxiliaries and organic solvents in a certain ratio to obtain a transparent and uniform organic binder.
  • inorganic binder After weighing various raw materials in mass percentage, dry mix them in a V-type mixer, and after mixing, dry them in a constant temperature drying box at about 200 ° C for 2 hours; Sintering and smelting in a 900 ° C muffle furnace for 1 hour. High-temperature nitrogen vacuum protection and sintering technology is used during melting. The use of this technology can overcome the technical problems of preparing low-melting-point and valence-stable glass powder. It is then ball milled and dried. After screening, it is the inorganic binder for back silver paste.
  • the preparation method of the back silver paste silver powder, organic binder, inorganic binder, and organic auxiliary agent are dispersed and mixed in a certain ratio, and then milled 6 times using a three-roll mill to make it uniformly dispersed. , To a fineness of ⁇ 15 ⁇ m, that is, the prepared back silver paste for use in combination.
  • the preparation method of the barrier layer slurry disperse and mix the metal nitride and oxide powder, organic binder, inorganic binder, and organic auxiliary agent dispersed in advance in a certain proportion, and then use three The roller mill grinds 6 times to make it dispersed uniformly to a fineness of ⁇ 15 ⁇ m, which is the prepared barrier layer slurry.
  • a method for preparing a back electrode of a solar cell A conductive resistance barrier paste is printed or sprayed on the back aluminum paste. The barrier paste is directly printed on the back aluminum electrode. After drying, a matching back sheet is printed on the back electrode. The silver paste is dried and sintered to form a back electrode.
  • the barrier layer paste according to parts by weight includes the following: metal nitride powder, nitrogen silicon compound powder, oxide powder or low melting point metal powder in total 60 parts, lead-free glass powder 5 parts, organic bonding 34 parts of agent, 1 part of organic assistant.
  • the back silver paste used in combination includes the following by weight parts: 40 parts of hollow spherical silver powder with special requirements of purity greater than 99.99%, 20 parts of flake silver powder, 4 parts of lead-free glass powder, 35 parts of organic binder, 1 part of an organic auxiliary; wherein the particle diameter D50 of the hollow spherical silver powder is 3 ⁇ m, and the particle diameter D50 of the flaky silver powder is 5 ⁇ m.
  • the metal nitride powder includes one or more of ZrN, TiN, TaN, MoN, and CaN, and the particle diameter D50 is 0.5 ⁇ m.
  • the nitrogen-silicon compound powder includes one or more of SiNx, BNx, and VNx, and the particle diameter D50 is 0.7 ⁇ m.
  • the metal oxide powder includes one or more of Al 2 O 3 , SiO 2 , TiO 2 , ZrO, SnO 2 , MoO 2 , CaO, and NiO, and the particle diameter D50 is 0.6 ⁇ m.
  • the lead-free glass powder includes the following parts by weight: Bi 2 O 3 , B 2 O 3 , ZnO, TeO 2 , SiO 2 , MnO 2 , CaO, Al 2 O 3 , CuO, SrO, and BaO. It is made by melting, the particle size D50 is controlled at 1 ⁇ m, and the softening point is adjustable within the range of 700 ° C.
  • the organic binder includes the following according to parts by weight: 20 parts of an organic resin, 70 parts of an organic solvent, and 10 parts of an organic auxiliary agent.
  • the lead-free glass powder is made of Bi 2 O 3 , B 2 O 3 , SiO 2 , Na 2 O, MnO 2 , CaO, Al 2 O 3 , CuO, ZnO, SrO, BaO, TeO 2 It is made by melting, the particle diameter D50 is controlled at 3 ⁇ m, and the softening point is adjustable within the range of 600 ° C.
  • the organic binder includes the following in terms of parts by weight: 15 parts of organic resin, 75 parts of organic solvent, and 10 parts of organic auxiliary agent.
  • the barrier layer paste can be directly sprayed or printed on the aluminum paste, and the width of the back electrode and the printed pattern can be adjusted freely, the thickness is about 5 ⁇ m; the barrier layer has a bidirectional barrier function, which can prevent aluminum and silver Interdiffusion can also prevent the interdiffusion of silver and silicon.
  • An application of the preparation method of the barrier layer, the preparation method of the back electrode of the solar cell can be, but is not limited to, applied to the back electrode of a PERC cell, and is also applicable to a battery sheet with a high degree of back passivation in an all-aluminum field or on the back. It can be applied to the more sensitive, thin, and easily damaged passivation layer. It is tried on mainstream passivation layers such as SiNx, Al 2 O 3 , SiO 2 .
  • barrier layer paste The specific operations of the barrier layer paste and the back silver paste used are as follows:
  • organic resin and organic auxiliaries are respectively soaked with an organic solvent, the organic resin is soaked under heating and stirring, the temperature is about 90 ° C, and the time is 3 hours, and the thixotropic agent is soaked under heating and stirring , The temperature is about 40 ° C, and the time is 2 hours; then, it is mixed with other organic auxiliaries and organic solvents in a certain ratio to obtain a transparent and uniform organic binder.
  • the preparation method of the back silver paste silver powder, organic binder, inorganic binder, and organic auxiliary agent are dispersed and mixed in a certain proportion, and then milled 8 times using a three-roll mill to make it uniformly dispersed. , To a fineness of ⁇ 15 ⁇ m, that is, the prepared back silver paste for use in combination.
  • the preparation method of the barrier layer slurry disperse and mix the metal nitride and oxide powder, organic binder, inorganic binder, and organic auxiliary agent dispersed in advance in a certain proportion, and then use three The roller mill grinds 8 times to make it uniformly dispersed to a fineness of ⁇ 15 ⁇ m, which is the prepared barrier layer slurry.
  • a method for preparing a back electrode of a solar cell A conductive resistance barrier paste is printed or sprayed on the back aluminum paste. The barrier paste is directly printed on the back aluminum electrode. After drying, a matching back sheet is printed on the back electrode. The silver paste is dried and sintered to form a back electrode.
  • the barrier layer paste according to parts by weight includes the following: metal nitride powder, nitrogen silicon compound powder, metal oxide powder or low melting point metal powder in total 58 parts, lead-free glass powder 3.5 parts, organic viscosity 37.8 parts of binding agent, 0.7 parts of organic additives.
  • the back silver paste used in combination includes the following by weight parts: 45 parts of hollow spherical silver powder with special requirements of purity greater than 99.99%, 18 parts of flake silver powder, 3 parts of lead-free glass powder, and 33.4 parts of organic binder.
  • the metal nitride powder includes one or more of ZrN, TiN, TaN, MoN, and CaN, and the particle diameter D50 is 0.6 ⁇ m.
  • the nitrogen-silicon compound powder includes one or more of SiNx, BNx, and VNx, and the particle diameter D50 is 0.2 ⁇ m.
  • the metal oxide powder includes one or more of Al 2 O 3 , SiO 2 , TiO 2 , ZrO, SnO 2 , MoO 2 , CaO, and NiO, and the particle diameter D50 is 0.9 ⁇ m.
  • the lead-free glass powder includes the following parts by weight: Bi 2 O 3 , B 2 O 3 , ZnO, TeO 2 , SiO 2 , MnO 2 , CaO, Al 2 O 3 , CuO, SrO, and BaO. It is made by melting, the particle diameter D50 is controlled at 2.7 ⁇ m, and the softening point is adjustable within the range of 600 ° C.
  • the organic binder includes the following according to parts by weight: 20 parts of an organic resin, 75 parts of an organic solvent, and 5 parts of an organic auxiliary agent.
  • the lead-free glass powder is made of Bi 2 O 3 , B 2 O 3 , SiO 2 , Na 2 O, MnO 2 , CaO, Al 2 O 3 , CuO, ZnO, SrO, BaO, TeO 2 Made by melting, the particle size D50 is controlled at 2.2 ⁇ m, and the softening point is adjustable within the range of 500 ° C.
  • the organic binder includes the following according to parts by weight: 16 parts of an organic resin, 80 parts of an organic solvent, and 4 parts of an organic auxiliary agent.
  • the barrier layer paste can be directly sprayed or printed on the aluminum paste, and the width of the back electrode and the printed pattern can be adjusted freely, the thickness is about 3 ⁇ m; the barrier layer has a bidirectional barrier function, which can prevent aluminum and silver Interdiffusion can also prevent the interdiffusion of silver and silicon.
  • An application of the preparation method of the barrier layer, the preparation method of the back electrode of the solar cell can be, but is not limited to, applied to the back electrode of a PERC cell, and is also applicable to a battery sheet with a high degree of back passivation in an all-aluminum field or on the back. It can be applied to the more sensitive, thin, and easily damaged passivation layer. It is tried on mainstream passivation layers such as SiNx, Al 2 O 3 , SiO 2 .
  • barrier layer paste The specific operations of the barrier layer paste and the back silver paste used are as follows:
  • organic resin and organic auxiliary agent are respectively soaked with an organic solvent, the organic resin is soaked under heating and stirring, the temperature is about 90 ° C, and the time is 2 hours, and the thixotropic agent is soaked under heating and stirring , The temperature is about 40 ° C, and the time is 1.5 hours; and then mixed with other organic auxiliaries and organic solvents in a certain ratio to obtain a transparent and uniform organic binder.
  • inorganic binder After weighing various raw materials in mass percentage, dry mix them in a V-type mixer, and after mixing, dry in a constant temperature drying oven at about 200 ° C for 3 hours; Sintering and melting for 1.5 hours in a 1000 °C muffle furnace. High temperature nitrogen vacuum protection and sintering technology is used during smelting. The use of this technology can overcome the technical problems of preparing low-melting-point and stable valence glass powder. The glass taken out of the muffle furnace is cooled by a cold roll. Ball milling, drying, and sieving are all inorganic binders for back-to-field silver backing.
  • the preparation method of the back silver paste silver powder, organic binder, inorganic binder, and organic auxiliary agent are dispersed and mixed in a certain proportion, and then milled 7 times using a three-roll mill to make it uniformly dispersed. , To a fineness of ⁇ 15 ⁇ m, that is, the prepared back silver paste for use in combination.
  • the preparation method of the barrier layer slurry disperse and mix the metal nitride and oxide powder, organic binder, inorganic binder, and organic auxiliary agent dispersed in advance in a certain proportion, and then use three
  • the roller mill grinds 6 to 8 times to make it uniformly dispersed to a fineness ⁇ 15 ⁇ m, which is the prepared barrier layer slurry.
  • the present invention has carried out specific experimental tests.
  • the test results are shown in Table 1 for the back electrode electrical performance test results and Table 2 for the back electrode reliability test results.
  • the electron micrograph is shown in Figure 1-4, and the schematic diagram of the battery structure of the present invention is shown in Figure 5. Show.
  • the width of the back electrode and the printing pattern can be adjusted at will, thereby reducing the cost of the back electrode paste.
  • the printed graphics of the back silver paste may be hollow, bar-shaped, or dot-shaped, and the shielding ratio is 25-50%.
  • the invention realizes the barrier between silver aluminum and silver silicon by two or more printings.
  • the method for preparing the back electrode is suitable for a solar cell with full aluminum back field or strong back passivation.
  • the application of the barrier layer can reduce the formation of silver-aluminum alloy, thereby improving the solderability and soldering resistance of the paste, and improving the welding tension of the back electrode.
  • silver powders of different particle sizes and shapes are selected to be used in cooperation with each other to increase the bulk density of the conductive film, increase the contact area between the silver particles, reduce the shrinkage force of the conductive film, and improve the conductivity of the slurry.
  • the back silver paste and the barrier layer paste of the present invention use lead-free glass powder, avoiding the use of lead-containing glass powder, and more in line with the requirements of environmental protection.
  • the glass powder is adjusted to an appropriate activity, so that the glass powder and the silver powder have proper wetting Properties, so that the slurry has a suitable sintering temperature, thereby improving the performance of the slurry as a whole.
  • the preparation method of the back electrode of the invention ensures that it has considerable welding tension and aging tension, and at the same time avoids serious leakage problems caused by metal defects caused by direct contact between silver and silicon wafers or aluminum paste, thereby improving the photoelectric conversion efficiency of crystalline silicon cells. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

太阳能电池背面电极的制备方法与应用,该方法包括两部分,背电极阻隔层的设置以及搭配使用背银浆料。背电极阻隔层按照重量份数包括如下组分:金属氮化物粉体、氮硅化合物粉体、氧化物粉体或低熔点金属粉体共20~80份,无铅玻璃粉0.5~5份,有机粘结剂10~40份,有机助剂0.1~1份;背银浆料按照重量份数包括如下组分:空心球形银粉5~60份,片状银粉5~30份,无铅玻璃粉0.5~5份,有机粘结剂10~50份,有机助剂0.1~1份。

Description

一种太阳能电池背面电极的制备方法与应用 技术领域
本发明属于太阳能电池技术领域,具体涉及一种太阳能电池背面电极的制备方法与应用。
背景技术
目前太阳能电池背面银浆主要作用是为太阳能电池背面提供焊接点,因此对它的可焊性、耐焊性、附着力、提效以及降低成本等方面具有较高要求。好的背银浆料,应当具备以下优点,低活性,减少玻璃粉与钝化膜的反应,避免银浆与硅片或铝浆接触部分形成大量复合中心,提高电池片开路电压,较宽的工艺窗口,适应低温烧结工艺,优秀的附着力及老化拉力。良好的印刷性能及较低的银含量。
在PERC电池中,背银浆料主要作用是单纯的汇流及焊接点,并不承担与硅的接触。将背银浆料直接印刷在铝浆上,可能会造成两种问题,首先,银铝的互相接触会影响背电极的焊接性能;其次,背电极边缘需要被铝背场覆盖,增加了背电极宽度,增加了背电极浆料成本。
因此,在制作背电极时,减少银铝合金的形成及银与硅片的接触成为研究课题。
发明内容
发明目的:为了解决现有技术的不足,本发明提供了一种太阳能电池背面电极的制备方法及其应用。
技术方案:一种太阳能电池背面电极的制备方法,在背面铝浆上印刷或喷涂一层导电阻隔层浆料,阻隔层浆料直接印刷在背铝电极上,烘干后,在其上 印刷搭配使用的背银浆料,经过烘干,烧结后形成背电极。
作为优化:所述的阻隔层浆料按照重量份数包括如下:金属氮化物粉体、氮硅化合物粉体、氧化物粉体或低熔点金属粉体共20~80份,无铅玻璃粉0.5~5份,有机粘结剂10~40份,有机助剂0.1~1份。
作为优化:所述搭配使用的背银浆料按照重量份数包括如下:纯度大于99.99%的特殊要求的空心球形银粉5-60份,片状银粉5~30份,无铅玻璃粉0.5~5份,有机粘结剂10~50份,有机助剂0.1~1份;其中,所述的空心球形银粉粒径D50为5~20μm,片状银粉粒径D50为2~30μm。
作为优化:所述的金属氮化物粉体包括ZrN、TiN、TaN、MoN、CaN中的一种或几种,粒径D50为0.1~10μm;
所述的氮硅化合物粉体包括SiNx、BNx、VNx中的一种或几种粒径D50为0.3~15μm;
所述的氧化物粉体包括Al 2O 3、SiO 2、TiO 2、ZrO、SnO 2、MoO 2、CaO、NiO中的一种或几种,粒径D50为0.3~15μm。
作为优化:所述的无铅玻璃粉按照重量份数包括如下:Bi 2O 3、B 2O 3、ZnO、TeO 2、SiO 2、MnO 2、CaO、Al 2O 3、CuO、SrO、BaO中的几种熔制而成,粒径D50控制在0.7~5μm,软化点在500~700℃范围内可调。
作为优化:所述的有机粘结剂按照重量份数包括如下:有机树脂1~30份,有机溶剂50~90份,有机助剂0.5~10份。
作为优化:所述的无铅玻璃粉由Bi 2O 3、B 2O 3、SiO 2、Na 2O、MnO 2、CaO、、Al 2O 3、CuO、ZnO、SrO、BaO、TeO 2中的几种熔制而成,粒径D50控制在0.3~3μm,软化点在400~600℃范围内可调。
作为优化:所述的有机粘结剂按照重量份数包括如下:有机树脂0.5~20份, 有机溶剂40~90份,有机助剂0.5~10份。
作为优化:所述的阻隔层浆料可以直接喷涂或印刷在铝浆上,并且可以随意调节背电极宽度及印刷图形,厚度约为1~5μm;所述阻隔层具有双向阻隔的作用,既可以阻止铝与银的互相扩散,也可以阻止银与硅的互相扩散。
一种所述的阻隔层的制备方法的应用,所述太阳能电池背面电极的制备方法可以但不限于应用在PERC电池背电极,对全铝背场或背面钝化程度较高的电池片同样适用,可以应用于比较敏感且较薄,容易被破坏的的钝化层,对SiNx、Al 2O 3、SiO 2等主流钝化层均试用。
有益效果:本发明的具体优势如下:
1、本发明的太阳能电池背电极的应用中,可以随意调节背电极宽度及印刷图形,从而降低背电极浆料成本。为降低单耗,减小复合,所述背银浆料的印刷图形可以为镂空状、条形镂空或点状镂空,遮挡比例为25~50%。
2、本发明通过二次或多次印刷的方式实现银铝与银硅的阻隔,该背电极制备方法适用于全铝背场或背面钝化程度较强的太阳能电池中。该阻隔层的应用,可以减少银铝合金的形成,从而提高浆料的可焊性与耐焊性,提高背电极焊接拉力。
3、本发明中选取不同粒径与形状的银粉互相配合使用,提高导电膜的堆积密度,增加银颗粒间的接触面积,降低导电膜的收缩力,提高浆料的导电能力。
4、本发明的背银浆料及阻隔层浆料使用无铅玻璃粉,避免含铅玻璃粉的使用,更符合环保的要求,同时调整玻璃粉为适当的活性,使玻璃粉与银粉具有合适的浸润性,使浆料具有合适的烧结温度,从而整体提高浆料的性能。
5、本发明的背电极的制备方法,保证其具有可观的焊接拉力及老化拉力,同时避免银与硅片或铝浆直接接触产生金属缺陷而引起的严重漏电问题,从而 提高晶硅电池的光电转换效率。
附图说明
图1是本发明的片状银粉示意图;
图2是本发明的微米级空心球形银粉示意图;
图3是本发明的微米级球形氮硅化物粉体示意图;
图4是印刷了阻隔层的背电极截面SEM图;
图5是本发明的电池结构示意图;其中①、PERC背场铝浆,②②、防反射膜钝化层(SiNx/Al 2O 3等),④、P-型硅半导体基底,⑤、N型杂质层,⑥、防反射膜钝化层,⑦、栅型正电极,⑧、阻隔层,⑨、背银。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,以使本领域的技术人员能够更好的理解本发明的优点和特征,从而对本发明的保护范围做出更为清楚的界定。本发明所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体实施例1
一种太阳能电池背面电极的制备方法,在背面铝浆上印刷或喷涂一层导电阻隔层浆料,阻隔层浆料直接印刷在背铝电极上,烘干后,在其上印刷搭配使用的背银浆料,经过烘干,烧结后形成背电极。
所述的阻隔层浆料按照重量份数包括如下:金属氮化物粉体、氮硅化合物粉体、金属氧化物粉体或低熔点金属粉体共67份,无铅玻璃粉3份,有机粘结剂29.8份,有机助剂0.2份。
所述搭配使用的背银浆料按照重量份数包括如下:纯度大于99.99%的特殊 要求的空心球形银粉42份,片状银粉15份,无铅玻璃粉2.5份,有机粘结剂40.1份,有机助剂0.4份;其中,所述的空心球形银粉粒径D50为1μm,片状银粉粒径D50为6μm。
所述的金属氮化物粉体包括ZrN、TiN、TaN、MoN、CaN中的一种或几种,粒径D50为0.1μm。
所述的氮硅化合物粉体包括SiNx、BNx、VNx中的一种或几种粒径D50为0.3μm。
所述的氧化物粉体包括Al 2O 3、SiO 2、TiO 2、ZrO、SnO 2、MoO 2、CaO、NiO中的一种或几种,粒径D50为0.3μm。
所述的无铅玻璃粉按照重量份数包括如下:Bi 2O 3、B 2O 3、ZnO、TeO 2、SiO 2、MnO 2、CaO、Al 2O 3、CuO、SrO、BaO中的几种熔制而成,粒径D50控制在0.7μm,软化点在500℃范围内可调。
所述的有机粘结剂按照重量份数包括如下:有机树脂17份,有机溶剂80份,有机助剂3份。
所述的无铅玻璃粉由Bi 2O 3、B 2O 3、SiO 2、Na 2O、MnO 2、CaO、、Al 2O 3、CuO、ZnO、SrO、BaO、TeO 2中的几种熔制而成,粒径D50控制在0.3μm,软化点在400℃范围内可调。
所述的有机粘结剂按照重量份数包括如下:有机树脂21份,有机溶剂75份,有机助剂4份。
所述的阻隔层浆料可以直接喷涂或印刷在铝浆上,并且可以随意调节背电极宽度及印刷图形,厚度约为4.5μm;所述阻隔层具有双向阻隔的作用,既可以阻止铝与银的互相扩散,也可以阻止银与硅的互相扩散。
一种所述的阻隔层的制备方法的应用,所述太阳能电池背面电极的制备方 法可以但不限于应用在PERC电池背电极,对全铝背场或背面钝化程度较高的电池片同样适用,可以应用于比较敏感且较薄,容易被破坏的的钝化层,对SiNx、Al 2O 3、SiO 2等主流钝化层均试用。
其中,所述的阻隔层浆料及搭配使用的背银浆料的具体操作如下:
(1)将粉体使用分散剂单独分散均匀备用。
(2)有机粘结剂的制备:将有机树脂与有机助剂分别用有机溶剂浸泡,有机树脂在加热搅拌下浸泡,温度约为90℃,时间为1小时,触变剂在加热搅拌下浸泡,温度约为40℃,时间为1小时;随后与其他有机助剂和有机溶剂按一定比例混合,得到透明均一的有机粘结剂。
(3)无机粘结剂的制备:将各种原材料按质量百分比称重后,在V型混料机干混,混合均匀后,在200℃左右的恒温干燥箱内干燥2小时;取出后在900℃马弗炉中烧结熔炼1小时,熔炼时采用高温氮气真空保护烧结技术,该技术的使用可以克服低熔点、价态稳定玻璃粉制备技术难题;将马弗炉取出的玻璃经过冷辊冷却后进行球磨,烘干,筛取后即为背银浆料用无机粘结剂。
(4)所述背银浆料的制备方法:将银粉,有机粘结剂、无机粘结剂、有机助剂,按一定比例分散混合后,使用三辊研磨机研磨6遍,使之分散均匀,至细度<15μm,即为制备的搭配使用的背银浆料。
(5)所述阻隔层浆料的制备方法:将预先分散好的金属氮化物及氧化物粉体,有机粘结剂、无机粘结剂、有机助剂,按一定比例分散混合后,使用三辊研磨机研磨6遍,使之分散均匀,至细度<15μm,即为制备的阻隔层浆料。
具体实施例2
一种太阳能电池背面电极的制备方法,在背面铝浆上印刷或喷涂一层导电阻隔层浆料,阻隔层浆料直接印刷在背铝电极上,烘干后,在其上印刷搭配使 用的背银浆料,经过烘干,烧结后形成背电极。
所述的阻隔层浆料按照重量份数包括如下:金属氮化物粉体、氮硅化合物粉体、氧化物粉体或低熔点金属粉体共60份,无铅玻璃粉5份,有机粘结剂34份,有机助剂1份。
所述搭配使用的背银浆料按照重量份数包括如下:纯度大于99.99%的特殊要求的空心球形银粉40份,片状银粉20份,无铅玻璃粉4份,有机粘结剂35份,有机助剂1份;其中,所述的空心球形银粉粒径D50为3μm,片状银粉粒径D50为5μm。
所述的金属氮化物粉体包括ZrN、TiN、TaN、MoN、CaN中的一种或几种,粒径D50为0.5μm。
所述的氮硅化合物粉体包括SiNx、BNx、VNx中的一种或几种粒径D50为0.7μm。
所述的金属氧化物粉体包括Al 2O 3、SiO 2、TiO 2、ZrO、SnO 2、MoO 2、CaO、NiO中的一种或几种,粒径D50为0.6μm。
所述的无铅玻璃粉按照重量份数包括如下:Bi 2O 3、B 2O 3、ZnO、TeO 2、SiO 2、MnO 2、CaO、Al 2O 3、CuO、SrO、BaO中的几种熔制而成,粒径D50控制在1μm,软化点在700℃范围内可调。
所述的有机粘结剂按照重量份数包括如下:有机树脂20份,有机溶剂70份,有机助剂10份。
所述的无铅玻璃粉由Bi 2O 3、B 2O 3、SiO 2、Na 2O、MnO 2、CaO、、Al 2O 3、CuO、ZnO、SrO、BaO、TeO 2中的几种熔制而成,粒径D50控制在3μm,软化点在600℃范围内可调。
所述的有机粘结剂按照重量份数包括如下:有机树脂15份,有机溶剂75 份,有机助剂10份。
所述的阻隔层浆料可以直接喷涂或印刷在铝浆上,并且可以随意调节背电极宽度及印刷图形,厚度约为5μm;所述阻隔层具有双向阻隔的作用,既可以阻止铝与银的互相扩散,也可以阻止银与硅的互相扩散。
一种所述的阻隔层的制备方法的应用,所述太阳能电池背面电极的制备方法可以但不限于应用在PERC电池背电极,对全铝背场或背面钝化程度较高的电池片同样适用,可以应用于比较敏感且较薄,容易被破坏的的钝化层,对SiNx、Al 2O 3、SiO 2等主流钝化层均试用。
其中,所述的阻隔层浆料及搭配使用的背银浆料的具体操作如下:
(1)将金属粉体使用分散剂单独分散均匀备用。
(2)有机粘结剂的制备:将有机树脂与有机助剂分别用有机溶剂浸泡,有机树脂在加热搅拌下浸泡,温度约为90℃,时间为3小时,触变剂在加热搅拌下浸泡,温度约为40℃,时间为2小时;随后与其他有机助剂和有机溶剂按一定比例混合,得到透明均一的有机粘结剂。
(3)无机粘结剂的制备:将各种原材料按质量百分比称重后,在V型混料机干混,混合均匀后,在200℃左右的恒温干燥箱内干燥5小时;取出后在1100℃马弗炉中烧结熔炼2小时,熔炼时采用高温氮气真空保护烧结技术,该技术的使用可以克服低熔点、价态稳定玻璃粉制备技术难题;将马弗炉取出的玻璃经过冷辊冷却后进行球磨,烘干,筛取后即为全铝背场背银用无机粘结剂。
(4)所述背银浆料的制备方法:将银粉,有机粘结剂、无机粘结剂、有机助剂,按一定比例分散混合后,使用三辊研磨机研磨8遍,使之分散均匀,至细度<15μm,即为制备的搭配使用的背银浆料。
(5)所述阻隔层浆料的制备方法:将预先分散好的金属氮化物及氧化物粉体, 有机粘结剂、无机粘结剂、有机助剂,按一定比例分散混合后,使用三辊研磨机研磨8遍,使之分散均匀,至细度<15μm,即为制备的阻隔层浆料。
具体实施例3
一种太阳能电池背面电极的制备方法,在背面铝浆上印刷或喷涂一层导电阻隔层浆料,阻隔层浆料直接印刷在背铝电极上,烘干后,在其上印刷搭配使用的背银浆料,经过烘干,烧结后形成背电极。
所述的阻隔层浆料按照重量份数包括如下:金属氮化物粉体、氮硅化合物粉体、金属氧化物粉体或低熔点金属粉体共58份,无铅玻璃粉3.5份,有机粘结剂37.8份,有机助剂0.7份。
所述搭配使用的背银浆料按照重量份数包括如下:纯度大于99.99%的特殊要求的空心球形银粉45份,片状银粉18份,无铅玻璃粉3份,有机粘结剂33.4份,有机助剂0.6份;其中,所述的空心球形银粉粒径D50为1.2μm,片状银粉粒径D50为4.5μm。
所述的金属氮化物粉体包括ZrN、TiN、TaN、MoN、CaN中的一种或几种,粒径D50为0.6μm。
所述的氮硅化合物粉体包括SiNx、BNx、VNx中的一种或几种粒径D50为0.2μm。
所述的金属氧化物粉体包括Al 2O 3、SiO 2、TiO 2、ZrO、SnO 2、MoO 2、CaO、NiO中的一种或几种,粒径D50为0.9μm。
所述的无铅玻璃粉按照重量份数包括如下:Bi 2O 3、B 2O 3、ZnO、TeO 2、SiO 2、MnO 2、CaO、Al 2O 3、CuO、SrO、BaO中的几种熔制而成,粒径D50控制在2.7μm,软化点在600℃范围内可调。
所述的有机粘结剂按照重量份数包括如下:有机树脂20份,有机溶剂75 份,有机助剂5份。
所述的无铅玻璃粉由Bi 2O 3、B 2O 3、SiO 2、Na 2O、MnO 2、CaO、、Al 2O 3、CuO、ZnO、SrO、BaO、TeO 2中的几种熔制而成,粒径D50控制在2.2μm,软化点在500℃范围内可调。
所述的有机粘结剂按照重量份数包括如下:有机树脂16份,有机溶剂80份,有机助剂4份。
所述的阻隔层浆料可以直接喷涂或印刷在铝浆上,并且可以随意调节背电极宽度及印刷图形,厚度约为3μm;所述阻隔层具有双向阻隔的作用,既可以阻止铝与银的互相扩散,也可以阻止银与硅的互相扩散。
一种所述的阻隔层的制备方法的应用,所述太阳能电池背面电极的制备方法可以但不限于应用在PERC电池背电极,对全铝背场或背面钝化程度较高的电池片同样适用,可以应用于比较敏感且较薄,容易被破坏的的钝化层,对SiNx、Al 2O 3、SiO 2等主流钝化层均试用。
其中,所述的阻隔层浆料及搭配使用的背银浆料的具体操作如下:
(1)将纳米低熔点金属粉体使用分散剂单独分散均匀备用。
(2)有机粘结剂的制备:将有机树脂与有机助剂分别用有机溶剂浸泡,有机树脂在加热搅拌下浸泡,温度约为90℃,时间为2小时,触变剂在加热搅拌下浸泡,温度约为40℃,时间为1.5小时;随后与其他有机助剂和有机溶剂按一定比例混合,得到透明均一的有机粘结剂。
(3)无机粘结剂的制备:将各种原材料按质量百分比称重后,在V型混料机干混,混合均匀后,在200℃左右的恒温干燥箱内干燥3小时;取出后在1000℃马弗炉中烧结熔炼1.5小时,熔炼时采用高温氮气真空保护烧结技术,该技术的使用可以克服低熔点、价态稳定玻璃粉制备技术难题;将马弗炉取出的玻璃经 过冷辊冷却后进行球磨,烘干,筛取后即为全铝背场背银用无机粘结剂。
(4)所述背银浆料的制备方法:将银粉,有机粘结剂、无机粘结剂、有机助剂,按一定比例分散混合后,使用三辊研磨机研磨7遍,使之分散均匀,至细度<15μm,即为制备的搭配使用的背银浆料。
(5)所述阻隔层浆料的制备方法:将预先分散好的金属氮化物及氧化物粉体,有机粘结剂、无机粘结剂、有机助剂,按一定比例分散混合后,使用三辊研磨机研磨6~8遍,使之分散均匀,至细度<15μm,即为制备的阻隔层浆料。
本发明进行了具体的实验测试,测试结果:表1背电极电性能测试结果、表2背电极可靠性测试结果,电镜图如图1-4所示,本发明的电池结构示意图如图5所示。
表1背电极电性能测试结果(PERC电池)
Figure PCTCN2018098232-appb-000001
表2背电极可靠性测试结果(PERC电池)
Figure PCTCN2018098232-appb-000002
本发明的太阳能电池背电极的应用中,可以随意调节背电极宽度及印刷图形,从而降低背电极浆料成本。为降低单耗,减小复合,所述背银浆料的印刷图形可以为镂空状、条形镂空或点状镂空,遮挡比例为25~50%。
本发明通过二次或多次印刷的方式实现银铝与银硅的阻隔,该背电极制备方法适用于全铝背场或背面钝化程度较强的太阳能电池中。该阻隔层的应用,可以减少银铝合金的形成,从而提高浆料的可焊性与耐焊性,提高背电极焊接拉力。
本发明中选取不同粒径与形状的银粉互相配合使用,提高导电膜的堆积密度,增加银颗粒间的接触面积,降低导电膜的收缩力,提高浆料的导电能力。
本发明的背银浆料及阻隔层浆料使用无铅玻璃粉,避免含铅玻璃粉的使用,更符合环保的要求,同时调整玻璃粉为适当的活性,使玻璃粉与银粉具有合适的浸润性,使浆料具有合适的烧结温度,从而整体提高浆料的性能。
本发明的背电极的制备方法,保证其具有可观的焊接拉力及老化拉力,同时避免银与硅片或铝浆直接接触产生金属缺陷而引起的严重漏电问题,从而提高晶硅电池的光电转换效率。

Claims (10)

  1. 一种太阳能电池背面电极的制备方法,其特征在于:在背面铝浆上印刷或喷涂一层导电阻隔层浆料,阻隔层浆料直接印刷在背铝电极上,烘干后,在其上印刷搭配使用的背银浆料,经过烘干,烧结后形成背电极。
  2. 根据权利要求1所述的太阳能电池背面电极的制备方法,其特征在于:所述的阻隔层浆料按照重量份数包括如下:金属氮化物粉体、氮硅化合物粉体、氧化物粉体或低熔点金属粉体共20~80份,无铅玻璃粉0.5~5份,有机粘结剂10~40份,有机助剂0.1~1份。
  3. 根据权利要求1所述的太阳能电池背面电极的制备方法,其特征在于:所述搭配使用的背银浆料按照重量份数包括如下:纯度大于99.99%的特殊要求的空心球形银粉5-60份,片状银粉5~30份,无铅玻璃粉0.5~5份,有机粘结剂10~50份,有机助剂0.1~1份;其中,所述的空心球形银粉粒径D50为5~20μm,片状银粉粒径D50为2~30μm。
  4. 根据权利要求2所述的太阳能电池背面电极的制备方法,其特征在于:
    所述的金属氮化物粉体包括ZrN、TiN、TaN、MoN、CaN中的一种或几种,粒径D50为0.1~10μm;
    所述的氮硅化合物粉体包括SiNx、BNx、VNx中的一种或几种粒径D50为0.3~15μm;
    所述的氧化物粉体包括Al 2O 3、SiO 2、TiO 2、ZrO、SnO 2、MoO 2、CaO、NiO中的一种或几种,粒径D50为0.3~15μm。
  5. 根据权利要求2的太阳能电池背面电极的制备方法,其特征在于:所述的无铅玻璃粉按照重量份数包括如下:Bi 2O 3、B 2O 3、ZnO、TeO 2、SiO 2、MnO 2、CaO、Al 2O 3、CuO、SrO、BaO中的几种熔制而成,粒径D50控制在0.7~5μm,软化点在500~700℃范围内可调。
  6. 根据权利要求2的太阳能电池背面电极的制备方法,其特征在于:所述的有机粘结剂按照重量份数包括如下:有机树脂1~30份,有机溶剂50~90份,有机助剂0.5~10份。
  7. 根据权利要求3的太阳能电池背面电极的制备方法,其特征在于:所述的无铅玻璃粉由Bi 2O 3、B 2O 3、SiO 2、Na 2O、MnO 2、CaO、、Al 2O 3、CuO、ZnO、SrO、BaO、TeO 2中的几种熔制而成,粒径D50控制在0.3~3μm,软化点在400~600℃范围内可调。
  8. 根据权利要求3的太阳能电池背面电极的制备方法,其特征在于:所述的有机粘结剂按照重量份数包括如下:有机树脂0.5~20份,有机溶剂40~90份,有机助剂0.5~10份。
  9. 根据权利要求1所述的阻隔层的制备方法,其特征在于:所述的阻隔层浆料可以直接喷涂或印刷在铝浆上,并且可以随意调节背电极宽度及印刷图形,厚度约为1~5μm;所述阻隔层具有双向阻隔的作用,既可以阻止铝与银的互相扩散,也可以阻止银与硅的互相扩散。
  10. 一种根据权利要求1所述的阻隔层的制备方法的应用,其特征在于:所述太阳能电池背面电极的制备方法可以但不限于应用在PERC电池背电极,对全铝背场或背面钝化程度较高的电池片同样适用,可以应用于比较敏感且较薄,容易被破坏的的钝化层,对SiNx、Al2O3、SiO2等主流钝化层均试用。
PCT/CN2018/098232 2018-07-16 2018-08-02 一种太阳能电池背面电极的制备方法与应用 WO2020015021A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/279,105 US11791425B2 (en) 2018-07-16 2018-08-02 Preparation method for solar cell back electrode and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810774371.3 2018-07-16
CN201810774371.3A CN109004043B (zh) 2018-07-16 2018-07-16 一种太阳能电池背面电极的制备方法与应用

Publications (1)

Publication Number Publication Date
WO2020015021A1 true WO2020015021A1 (zh) 2020-01-23

Family

ID=64599947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098232 WO2020015021A1 (zh) 2018-07-16 2018-08-02 一种太阳能电池背面电极的制备方法与应用

Country Status (3)

Country Link
US (1) US11791425B2 (zh)
CN (1) CN109004043B (zh)
WO (1) WO2020015021A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111675490A (zh) * 2020-06-20 2020-09-18 厦门翰森达电子科技有限公司 一种无铅镉玻璃粉及其制备方法及导电银浆及其制备方法
CN112812673A (zh) * 2021-01-07 2021-05-18 湖南松井新材料股份有限公司 导电银浆及其制备方法、印刷方法和制品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277459B (zh) * 2019-06-19 2021-07-27 南通天盛新能源股份有限公司 一种p型晶体硅背面电极的制备方法
CN110400651B (zh) * 2019-06-28 2021-07-30 云南大学 一种导电银浆料及其制备方法
CN115411148B (zh) * 2022-09-26 2024-05-10 通威太阳能(成都)有限公司 太阳电池电极的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472764A (ja) * 1990-07-13 1992-03-06 Sharp Corp 半導体装置の裏面電極
US5118362A (en) * 1990-09-24 1992-06-02 Mobil Solar Energy Corporation Electrical contacts and methods of manufacturing same
CN101236997A (zh) * 2007-01-29 2008-08-06 北京行者多媒体科技有限公司 薄膜硅太阳能电池的背接触层
CN107591218A (zh) * 2017-09-08 2018-01-16 江苏正能电子科技有限公司 全铝背场晶体硅太阳能电池背面银浆、其制备方法及用途

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130061918A1 (en) * 2011-03-03 2013-03-14 E. I. Dupont De Nemours And Company Process for the formation of a silver back electrode of a passivated emitter and rear contact silicon solar cell
CN102779566B (zh) * 2012-05-14 2014-08-27 乐凯胶片股份有限公司 晶体硅太阳能电池正面用无铅导电银浆
CN104704639B (zh) * 2012-10-04 2017-02-22 信越化学工业株式会社 太阳能电池单元的制造方法
CN102903765B (zh) * 2012-10-19 2015-04-22 湖南红太阳光电科技有限公司 一种全铝背场晶体硅电池及其制备方法
US9349883B2 (en) * 2014-06-19 2016-05-24 E I Du Pont De Nemours And Company Conductor for a solar cell
CN104637568B (zh) * 2015-02-02 2017-02-01 南通天盛新能源股份有限公司 一种全铝背场晶体硅太阳能电池用铝浆及其制备方法
WO2016165811A1 (de) * 2015-04-15 2016-10-20 Merck Patent Gmbh Verfahren zur herstellung von solarzellen unter verwendung von phosphor-diffusionshemmenden, druckbaren dotiermedien
CN105826411B (zh) * 2016-05-17 2017-12-08 常州天合光能有限公司 单晶硅双面太阳电池及其制备方法
JP6644884B2 (ja) * 2016-06-10 2020-02-12 信越化学工業株式会社 太陽電池、太陽電池の製造システムおよび太陽電池の製造方法
CN107546298A (zh) * 2017-07-28 2018-01-05 润峰电力有限公司 一种晶硅电池背面银浆印刷方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472764A (ja) * 1990-07-13 1992-03-06 Sharp Corp 半導体装置の裏面電極
US5118362A (en) * 1990-09-24 1992-06-02 Mobil Solar Energy Corporation Electrical contacts and methods of manufacturing same
CN101236997A (zh) * 2007-01-29 2008-08-06 北京行者多媒体科技有限公司 薄膜硅太阳能电池的背接触层
CN107591218A (zh) * 2017-09-08 2018-01-16 江苏正能电子科技有限公司 全铝背场晶体硅太阳能电池背面银浆、其制备方法及用途

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111675490A (zh) * 2020-06-20 2020-09-18 厦门翰森达电子科技有限公司 一种无铅镉玻璃粉及其制备方法及导电银浆及其制备方法
CN112812673A (zh) * 2021-01-07 2021-05-18 湖南松井新材料股份有限公司 导电银浆及其制备方法、印刷方法和制品
CN112812673B (zh) * 2021-01-07 2022-05-24 湖南松井新材料股份有限公司 导电银浆及其制备方法、印刷方法和制品

Also Published As

Publication number Publication date
CN109004043B (zh) 2021-03-16
US11791425B2 (en) 2023-10-17
CN109004043A (zh) 2018-12-14
US20210391482A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2020015021A1 (zh) 一种太阳能电池背面电极的制备方法与应用
WO2020006797A1 (zh) 一种全铝背场背银浆料及其制备方法与应用
KR101190612B1 (ko) 태양전지용 후면 전극 조성물
US7494607B2 (en) Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
JP6110311B2 (ja) 導電性ペースト組成物ならびにそれらから形成される太陽電池電極および接点
CN106477897A (zh) 玻璃粉及应用该玻璃粉制得的正电极银浆、太阳能电池
CN102779566B (zh) 晶体硅太阳能电池正面用无铅导电银浆
CN112777938B (zh) 一种晶硅太阳能正银浆料用玻璃粉及其制备方法和用途
WO2016124005A1 (zh) 一种全铝背场晶体硅太阳能电池用铝浆及其制备方法
WO2020024253A1 (zh) 用于perc电池的浆料及该浆料的制备方法
SG190520A1 (en) Thick film conductive composition and use thereof
CN109961871B (zh) 一种用于丝印烧结形成透明导体的浆料和应用
WO2012165167A1 (ja) 太陽電池ならびに太陽電池のアルミニウム電極形成用ペースト組成物
CN110289121B (zh) 一种用于perc太阳能电池背面的合金铝浆
WO2018040570A1 (zh) 两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法
TWI655784B (zh) 用於太陽能電池的前電極和包括其的太陽能電池
CN109166646B (zh) 一种用于背钝化硅太阳能电池的环保型铝电极浆料
RU2496166C1 (ru) Токопроводящая серебряная паста для тыльного электрода солнечного элемента
CN114530277A (zh) 背电极银浆组合物及其制备方法、以及太阳能电池片
CN109020244A (zh) 背钝化晶体硅太阳能电池用正面银浆玻璃粉及其制备方法
CN111180106B (zh) 玻璃、玻璃粉末、导电糊剂和太阳能电池
KR20230099683A (ko) 유리, 도전 페이스트 및 태양 전지
CN115521064A (zh) 玻璃、玻璃粉末、导电浆料和太阳能电池
CN118471578A (zh) 一种n型太阳能电池正面银铝浆及其制备方法和电池
TW202411362A (zh) 導電性膏、太陽能電池及太陽能電池的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927100

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18927100

Country of ref document: EP

Kind code of ref document: A1