WO2020015002A1 - 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法 - Google Patents

碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法 Download PDF

Info

Publication number
WO2020015002A1
WO2020015002A1 PCT/CN2018/097444 CN2018097444W WO2020015002A1 WO 2020015002 A1 WO2020015002 A1 WO 2020015002A1 CN 2018097444 W CN2018097444 W CN 2018097444W WO 2020015002 A1 WO2020015002 A1 WO 2020015002A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
substrate
polymer
film
aqueous solution
Prior art date
Application number
PCT/CN2018/097444
Other languages
English (en)
French (fr)
Inventor
谢华飞
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/079,031 priority Critical patent/US10930851B2/en
Publication of WO2020015002A1 publication Critical patent/WO2020015002A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/172Sorting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/761Biomolecules or bio-macromolecules, e.g. proteins, chlorophyl, lipids or enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of application of carbon nanomaterials, in particular to a method for preparing a carbon nanotube composite thin film, a carbon nanotube TFT (Thin Film Transistor, thin film transistor) and a preparation method thereof.
  • a method for preparing a carbon nanotube composite thin film a carbon nanotube TFT (Thin Film Transistor, thin film transistor) and a preparation method thereof.
  • Carbon element is currently one of the materials with the most abundant nanostructures and characteristics, such as fullerenes, carbon quantum dots, carbon nanotubes, graphene, etc., which have caused scientific researchers' Great research interest and experimental applications.
  • carbon nanotubes are a tubular one-dimensional carbon material composed of benzene ring structures (that is, hexagonal honeycomb structures) periodically and closely arranged carbon atoms. Due to their excellent and unique electrical and optical properties In recent years, its application research in the field of electronic devices has become more and more in-depth. Semiconductor-type single-walled carbon nanotubes are considered to be one of the most valuable electrical materials. Due to their excellent mechanical, thermal, electrical, and chemical stability, they can be used in high-frequency devices to increase the frequency response range of the device.
  • N-type or p-type transistors can be prepared without doping and then applied to integrated circuits, which may replace silicon-based semiconductor applications and receive attention.
  • Carbon nanotubes have great application prospects in electronic devices and flexible devices because of their advantages such as high mobility, adjustable band gap, good stability, good light transmission, and good flexibility. Since its discovery in 1997, carbon nanotubes have been extensively studied in single- and multi-wall controllable preparation, metal and semiconductor purification, performance, and applications. Among them, single-attribute carbon nanotubes are the focus and difficulty of current carbon nanotube research. At present, there is no effective method to efficiently produce high-quality semiconductor-type single-walled carbon nanotubes at home and abroad. For high-end applications, there is an urgent need to develop single-walled carbon nanotubes with single conductive properties.
  • the present invention provides a method for preparing a carbon nanotube composite film, a carbon nanotube TFT, and a method for preparing the same.
  • the semiconductor-type single-walled carbon nanotube has high film formation quality, simple manufacturing process, and manufacturing efficiency. High, is conducive to saving production costs and reducing environmental pollution.
  • the method for preparing a carbon nanotube composite film further includes: coating the substrate with a first aqueous solution in which a charged polymer is dissolved, and then drying the substrate with an air knife; After the semiconductor-type single-walled carbon nanotube aqueous solution is coated on the polymer film, the polymer film is dried by an air knife.
  • the charged polymer is polylysine, polyethyleneimine, or chitosan.
  • the step of dispersing the semiconductor-type single-walled carbon nanotubes in a second aqueous solution in which a charged compound is dissolved, to obtain a semiconductor-type single-walled carbon nanotube solution specifically includes:
  • the single-walled carbon nanotube powder prepared by the high-pressure carbon monoxide method is ultrasonically dispersed in a second aqueous solution in which amphiphilic charged small molecule compounds are dissolved.
  • the single-walled carbon nanotube powder is a metal-type single-walled carbon nanotube and a semiconductor-type A mixture of single-walled carbon nanotubes;
  • Amphiphilic charged small molecule compounds selectively encapsulate semiconductor single-walled carbon nanotubes
  • the metal single-walled carbon nanotubes are removed by centrifugation to obtain a semiconductor single-walled carbon nanotube aqueous solution.
  • the amphiphilic charged small molecule compound is sodium cholate or sodium deoxycholate.
  • Another object of the present invention is to provide a method for preparing a carbon nanotube TFT, including:
  • a source / drain is fabricated on the carbon nanotube active layer.
  • patterning the carbon nanotube film and the polymer film separately to obtain a patterned carbon nanotube active layer and a patterned polymer layer specifically include:
  • the photoresist pattern is exposed and developed, and carbon nanotube film and polymer film not covered by the photoresist are removed by oxygen plasma dry etching to obtain a carbon nanotube active layer and a polymer layer.
  • the method for preparing a carbon nanotube TFT further includes: before preparing a polymer film and a carbon nanotube film on the substrate, sequentially fabricating a patterned gate on the substrate, and A gate insulating layer covering the gate is deposited on the substrate.
  • the method for preparing a carbon nanotube TFT further includes: after the source / drain is fabricated, depositing on the substrate and simultaneously covering the carbon nanotube active layer and the source / drain A gate insulating layer, and a gate facing the carbon nanotube active layer is fabricated on the gate insulating layer.
  • Another object of the present invention is to provide a carbon nanotube TFT, which is prepared by using the method for preparing a carbon nanotube TFT, including: a substrate, a polymer layer provided on the substrate, and a polymer layer provided on the substrate. Carbon nanotube active layer, source / drain, gate insulating layer, and gate on the physical layer.
  • the charged polymer by first coating a layer of an aqueous polymer solution having an opposite charge property to an aqueous solution of carbon nanotubes on a substrate, and then coating the aqueous solution of carbon nanotubes, the charged polymer has good adsorption and flatness on the substrate Because the surface of the carbon nanotubes is surrounded by small molecules of charged compounds, they can be tiled to the substrate by charge attraction.
  • Example 1 is a schematic diagram of a method for preparing a carbon nanotube composite film according to Example 1 of the present invention
  • Example 2 is a schematic diagram of a process for preparing a carbon nanotube solution according to Example 1 of the present invention
  • FIG. 3 is a schematic diagram of a method for manufacturing a carbon nanotube TFT according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a carbon nanotube TFT according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a method for manufacturing a carbon nanotube TFT according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a manufacturing process of a carbon nanotube TFT according to Embodiment 2 of the present invention.
  • the method for preparing the carbon nanotube composite film of this embodiment mainly includes:
  • a substrate is provided;
  • the charge properties of the charged compound and the charged polymer are opposite;
  • the predetermined time for standing is 8-12 minutes, preferably 10 minutes;
  • Air-drying forming a carbon nanotube film on the polymer film, makes the carbon nanotube film adhere well to the substrate.
  • the charged polymer may be polylysine, polyethyleneimine, or chitosan.
  • the first aqueous solution is coated on the substrate by a solution method. For example, drip coating, spin coating, and extraction can be used. Apply by drawing or printing. After the first aqueous solution in which the charged polymer is dissolved is coated on the substrate, the substrate can also be blown to dryness by an air knife, so that the polymer film can be smoothly and well attached to the surface of the substrate.
  • FIG. 2 it is a preparation process of a semiconductor-type single-walled carbon nanotube aqueous solution, which specifically includes:
  • the single-walled carbon nanotubes prepared by the high-pressure carbon monoxide method are ultrasonically dispersed in a second aqueous solution C in which amphiphilic charged small molecule compounds are dissolved, so that the amphiphilic charged small molecules selectively encapsulate the semiconductor-type single-walled carbon.
  • Nanotubes A and metal single-walled carbon nanotubes B are separated and precipitated.
  • the amphiphilic charged small molecule compound may be sodium cholate or sodium deoxycholate;
  • the charged polymer has good adsorption and flattening properties on the substrate, and because the surface of the carbon nanotubes is surrounded by small molecules of charged compounds, they can be well tiled to the substrate through charge attraction.
  • the method for preparing the carbon nanotube TFT in this embodiment mainly includes:
  • carbon nanotube film 3 and the polymer film 2 when patterned, they specifically include:
  • a photoresist is coated on the surface of the carbon nanotube film 3;
  • the photoresist is exposed by using a photomask to form a photoresist reserved area and a photoresist non-reserved area, and then the photoresist non-reserved area is developed, and the photoresist in the photoresist non-reserved area is removed.
  • the carbon nanotube film 3 and the polymer film 2 not covered by the photoresist are sequentially removed by oxygen plasma dry etching, and the carbon nanotube active layer 30 and the polymer are obtained accordingly.
  • the object layer 20, the carbon nanotube film 3 and the polymer film 2 have the same pattern, and the same photomask can be used for exposure to save the photomask and improve the process efficiency.
  • a gate insulating layer 12 and a gate 11 are sequentially formed on the carbon nanotube active layer 30.
  • the gate 11 is a top gate and the gate insulating layer 12 is a source / drain S / D It is formed after the fabrication is completed, it is formed on the substrate 10 by a deposition method, and simultaneously covers the carbon nanotube active layer 30 and the source / drain S / D. After the gate insulation layer 12 is deposited, the gate insulation layer 12 is subsequently deposited. A gate 11 facing the carbon nanotube active layer 30 is fabricated. The gate 11 is deposited in a channel on the surface of the gate insulating layer 12 and is flush with the surface of the gate insulating layer 12.
  • the carbon nanotube TFT prepared according to the above preparation method in this embodiment includes a substrate 10, a polymer layer 20 provided on the substrate 10, and a carbon nanotube active layer 30 provided on the polymer layer 20. And source / drain S / D, gate insulating layer 12, and gate 11, wherein the source / drain S / D is formed on the substrate 10 and the carbon nanotube active layer 30, and the gate insulating layer 12 is formed on the substrate 10, the carbon nanotube active layer 30 and the source / drain S / D are covered at the same time, and the gate electrode 11 is located in the surface channel of the gate insulation layer 12 and is flush with the surface of the gate insulation layer 12.
  • the carbon nanotube TFT of this embodiment is a bottom-gate TFT.
  • the carbon nanotube TFT still includes a substrate 10, a polymer layer 20, and a polymer layer.
  • the carbon nanotube active layer 30, the source / drain S / D, and the gate insulating layer 12 and the gate 11 on 20 are different.
  • the difference is that the gate insulating layer 12 and the gate 11 are located on the polymer layer 20 and the substrate 10.
  • the gate insulating layer 12 and the gate 11 are both formed on the substrate 10, the gate insulating layer 12 covers the gate 11, and the polymer layer 20 is formed on the surface of the gate insulating layer 12.
  • the source / drain S / D is fabricated on the carbon nanotube active layer 30. Specifically, a metal layer is first deposited on the carbon nanotube active layer 30, and then the surface of the metal layer is etched through to the carbon. The channel of the nanotube active layer 30.
  • the present invention starts from material purification for device preparation, which is beneficial for building green and low-cost devices. It also uses self-assembly technology and solution coating method for active layer film formation, and does not need to be in special environments such as vacuum, high temperature and high pressure. It is simple and easy to perform; by first coating a layer of an aqueous solution of a polymer having an opposite charge property to that of a carbon nanotube aqueous solution on the substrate, and then coating the carbon nanotube aqueous solution, the charged polymer has good adsorption on the substrate The carbon nanotubes are coated with small molecules of charged compounds, and can be tiled to the substrate through charge attraction with the polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Composite Materials (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供一种碳纳米管复合薄膜的制备方法,包括:提供一衬底;在衬底上涂覆溶有带电聚合物的第一水溶液以形成聚合物层;将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液,带电化合物与带电聚合物的电荷性质相反;将半导体型单壁碳纳米管水溶液涂覆在聚合物层上;静置预定时间后,去除未吸附的半导体型单壁碳纳米管和多余的带电聚合物;风干,在聚合物层上形成碳纳米管薄膜。还提供了一种碳纳米管TFT及其制备方法。在涂覆碳纳米管水溶液前在衬底上涂覆有一层与碳纳米管水溶液的电荷性质相反的聚合物水溶液,带电聚合物在衬底上具有良好的吸附性和延平性,因此表面包裹有带电荷小分子的碳纳米管可很好地平铺到衬底上。

Description

碳纳米管复合薄膜的制备方法、碳纳米管TFT及其制备方法 技术领域
本发明涉及碳纳米材料应用技术领域,尤其涉及一种碳纳米管复合薄膜的制备方法、碳纳米管TFT(Thin Film Transistor,薄膜晶体管)及其制备方法。
背景技术
碳元素是目前拥有纳米结构和特性最为丰富的材料之一,如富勒烯、碳量子点、碳纳米管、石墨烯等由于具有优异的化学、物理、机械和电子性能而引起了科研人员的极大研究兴趣和实验应用。
在众多碳纳米材料中,碳纳米管是一种以苯环结构(即六角形蜂巢结构)周期性紧密排列的碳原子所构成的管状一维碳材料,由于其优异和独特的电学和光学性能,近年来对其在电子器件领域的应用研究越来越深入。半导体型单壁碳纳米管被认为是最有应用价值的电学材料之一,因优良的力学、热学、电学性能和化学稳定性,可以用于高频器件,提高器件的频率响应范围;另外随着传统Si半导体器件的尺寸不断缩小,一些不可避免的制约因素不断显现出来,如短沟道效应、小尺寸下掺杂浓度的统计涨落造成器件性质不均匀性,而单壁碳纳米管由于免掺杂即可制备出n型或p型晶体管进而应用与集成电路,有可能取代硅基半导体应用而受到重视。
结合纯碳形式或者杂化结构的纳米碳材料的维度和量子限制效应所产生的独特的性质,能够产生前所未有的物理性能和机械性能,为碳基器件的构建都提供了一个潜在的途径。
碳纳米管因具有高迁移率、带隙可调、稳定性好、透光性好、柔韧性好等优点,在电子器件及柔性器件方面具有极大的应用前景。自1997年被发现以来,碳纳米管在单壁与多壁的可控制备、金属性与半导体性的纯化、性能及应用等方面进行了大量研究。其中单一属性碳纳米管是当前碳纳米管研究的重点和难点,目前国内外尚无可高效制备高质量半导体型单壁碳纳米管的有效方法,为实现碳纳米管在薄膜晶体管及柔性电子器件中的高端应用,亟需发展单一导电属性单壁碳纳米管的制备技术。
发明内容
鉴于现有技术存在的不足,本发明提供了一种碳纳米管复合薄膜的制备方法、碳纳米管TFT及其制备方法,半导体型单壁碳纳米管成膜质量较高且制程简单、制作效率高,有利于节约生产成本、减少环境污染。
为了实现上述的目的,本发明采用了如下的技术方案:
提供一衬底;
在所述衬底上涂覆溶有带电聚合物的第一水溶液,以形成聚合物薄膜;
将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液,所述带电化合物与所述带电聚合物的电荷性质相反;
将所述半导体型单壁碳纳米管水溶液涂覆在所述聚合物薄膜上;
静置预定时间后,用去离子水冲洗以去除未吸附的半导体型单壁碳纳米管和多余的带电聚合物;
风干,在所述聚合物薄膜上形成碳纳米管薄膜。
作为其中一种实施方式,所述的碳纳米管复合薄膜的制备方法还包括:在所述衬底上涂覆溶有带电聚合物的第一水溶液后,通过气刀吹干所述衬底;在将所述半导体型单壁碳纳米管水溶液涂覆在所述聚合物薄膜后,通过气刀吹干所述聚合物薄膜。
作为其中一种实施方式,所述带电聚合物为聚赖氨酸、聚乙烯亚胺或壳聚糖。
作为其中一种实施方式,将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液的步骤,具体包括:
将高压一氧化碳法制备的单壁碳纳米管粉末通过超声分散于溶有双亲性带电荷小分子化合物的第二水溶液中,所述单壁碳纳米管粉末为金属型单壁碳纳米管与半导体型单壁碳纳米管的混合物;
双亲性带电荷小分子化合物选择性的包裹半导体型单壁碳纳米管;
离心去除金属型单壁碳纳米管,得到半导体型单壁碳纳米管水溶液。
作为其中一种实施方式,所述双亲性带电荷小分子化合物为胆酸钠或脱氧胆酸钠。
本发明的另一目的在于提供一种碳纳米管TFT的制备方法,包括:
提供一基板作为衬底;
采用所述的碳纳米管复合薄膜的制备方法,在所述基板上制备聚合物薄膜和碳纳米管薄膜;
分别对所述碳纳米管薄膜和所述聚合物薄膜图形化处理,得到图形化的碳纳米管有源层和图形化的聚合物层;
在所述碳纳米管有源层上制作源/漏极。
作为其中一种实施方式,分别对所述碳纳米管薄膜和所述聚合物薄膜图形化处理,得到图形化的碳纳米管有源层和图形化的聚合物层具体包括:
在所述碳纳米管薄膜表面涂布光刻胶;
对所述光刻胶图案进行曝光、显影,并通过氧气等离子干刻蚀去除未被所述光刻胶覆盖的碳纳米管薄膜和聚合物薄膜,得到碳纳米管有源层和聚合物层。
作为其中一种实施方式,所述的碳纳米管TFT的制备方法还包括:在所述基板上制备聚合物薄膜和碳纳米管薄膜前,在所述基板上依次制作图形化的栅极、在所述基板上沉积覆盖所述栅极的栅极绝缘层。
或者,所述的碳纳米管TFT的制备方法还包括:在所述源/漏极制作完成后,在所述基板上沉积同时覆盖所述碳纳米管有源层、所述源/漏极的栅极绝缘层,并在所述栅极绝缘层上制作与所述碳纳米管有源层正对的栅极。
本发明的又一目的在于提供一种碳纳米管TFT,使用所述的碳纳米管TFT的制备方法制备而成,包括:基板、设于所述基板上的聚合物层、设于所述聚合物层上的碳纳米管有源层、源/漏极、栅极绝缘层、栅极。
本发明通过在衬底上首先涂覆一层与碳纳米管水溶液的电荷性质相反的聚合物水溶液,然后再涂覆碳纳米管水溶液,带电聚合物在衬底上具有良好的吸附性和延平性,而碳纳米管由于表面包裹了带电荷的化合物小分子,可与聚合物通过电荷吸引而平铺到衬底上。
附图说明
图1为本发明实施例1的碳纳米管复合薄膜的制备方法示意图;
图2为本发明实施例1的碳纳米管溶液的制备过程示意图;
图3为本发明实施例1的碳纳米管TFT的制作方法示意图;
图4为本发明实施例1的一种碳纳米管TFT的结构示意图;
图5为本发明实施例2的一种碳纳米管TFT的制作方法示意图;
图6为本发明实施例2的一种碳纳米管TFT的制程工艺示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
参阅图1,本实施例的碳纳米管复合薄膜的制备方法主要包括:
首先,提供一衬底;
在衬底上涂覆溶有带电聚合物的第一水溶液,以形成聚合物薄膜;
将单壁碳纳米管粉末分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液,带电化合物与带电聚合物的电荷性质相反;
将半导体型单壁碳纳米管水溶液涂覆在聚合物薄膜上,并通过气刀吹干聚合物薄膜;
静置预定时间后,用去离子水冲洗以去除未吸附的半导体型单壁碳纳米管和多余的带电聚合物,该静置的预定时间为8~12min,最好是10min;
风干,在聚合物薄膜上形成碳纳米管薄膜,使得碳纳米管薄膜很好地粘附在衬底上。
其中,第一水溶液中,带电聚合物可以是聚赖氨酸、聚乙烯亚胺或壳聚糖,第一水溶液通过溶液法涂覆在衬底上,例如,可以采用滴涂、旋涂、提拉或打印等方式进行涂覆。在衬底上涂覆溶有带电聚合物的第一水溶液后,还可通过气刀吹干衬底,使得聚合物薄膜可以平整良好地贴附在衬底表面。
如图2所示,为半导体型单壁碳纳米管水溶液的制备过程,其具体包括:
(1)利用高压一氧化碳法制备单壁碳纳米管,形成金属型单壁碳纳米管B、半导体型单壁碳纳米管A的混合粉末;
(2)将高压一氧化碳法制备的单壁碳纳米管通过超声分散于溶有双亲性带电荷小分子化合物的第二水溶液C中,使得双亲性带电荷小分子选择性地包裹半导体型单壁碳纳米管A,而金属型单壁碳纳米管B被分离而沉淀出,该双亲性带电荷小分子化合物可以为胆酸钠或脱氧胆酸钠;
(3)超高速离心去除金属型单壁碳纳米管,得到半导体型单壁碳纳米管水溶液,该半导体型单壁碳纳米管水溶液中,半导体型单壁碳纳米管分散在水中。
由于带电聚合物在衬底上具有良好的吸附性和延平性,而碳纳米管由于表面包裹了带电荷的化合物小分子,因此可与聚合物通过电荷吸引而很好地平铺到衬底上。
如图3和图4所示,为本实施例的碳纳米管TFT的制备方法,主要包括:
S01、提供一基板10作为衬底;
S02、采用上述的碳纳米管复合薄膜的制备方法,在基板10上依次制备聚合物薄膜2和碳纳米管薄膜3;
S03、分别对碳纳米管薄膜3、聚合物薄膜2图形化处理,得到图形化的碳纳米管有源层30和图形化的聚合物层20;
其中,在分别对碳纳米管薄膜3、聚合物薄膜2图形化处理时,具体包括:
首先,在碳纳米管薄膜3表面涂布光刻胶;
然后,利用光罩对光刻胶进行曝光,形成光刻胶保留区域和光刻胶不保留区域,再对该光刻胶不保留区域进行显影,并去除光刻胶不保留区域的光刻胶,以露出需要蚀刻的碳纳米管薄膜,最后,通过氧气等离子干刻蚀依次去除未被光刻胶覆盖的碳纳米管薄膜3和聚合物薄膜2,相应得到碳纳米管有源层30和聚合物层20,碳纳米管薄膜3和聚合物薄膜2具有相同的图案,可以采用同一道光罩进行曝光,节省光罩,提高制程效率。
S04、在碳纳米管有源层30上制作源/漏极S/D;
S05、依次在碳纳米管有源层30上制作栅极绝缘层12和栅极11,本实施例中,栅极11为顶栅极,栅极绝缘层12为在源/漏极S/D制作完成后形成,其通 过沉积的方式形成在基板10上,同时覆盖碳纳米管有源层30、源/漏极S/D,栅极绝缘层12沉积完成后,随后在栅极绝缘层12上制作与碳纳米管有源层30正对的栅极11,该栅极11沉积在栅极绝缘层12表面沟道内,与栅极绝缘层12表面平齐。
如图4所示,本实施例按照上述制备方法制备的碳纳米管TFT包括:基板10、设于基板10上的聚合物层20、设于聚合物层20上的碳纳米管有源层30以及源/漏极S/D、栅极绝缘层12、栅极11,其中,源/漏极S/D形成在基板10和碳纳米管有源层30上,栅极绝缘层12形成在基板10上,同时覆盖碳纳米管有源层30、源/漏极S/D,栅极11位于栅极绝缘层12表面沟道内,与栅极绝缘层12表面平齐。
实施例2
如图5和图6所示,与实施例1不同,本实施例的碳纳米管TFT为底栅极型TFT,该碳纳米管TFT仍包括基板10、聚合物层20、设于聚合物层20上的碳纳米管有源层30、源/漏极S/D以及栅极绝缘层12、栅极11,不同的是,栅极绝缘层12、栅极11位于聚合物层20与基板10之间,栅极绝缘层12、栅极11均形成在基板10上,且栅极绝缘层12覆盖栅极11,聚合物层20形成在栅极绝缘层12表面。
本实施例的碳纳米管TFT的制备方法主要包括:
S01'、提供一基板10;
S02'、在基板10上依次制作图形化的栅极11、覆盖栅极11的栅极绝缘层12;
S03'、采用上述的碳纳米管复合薄膜的制备方法,在基板10上的栅极绝缘层12表面依次制备聚合物薄膜2和碳纳米管薄膜3;
S04'、分别对碳纳米管薄膜3和聚合物薄膜2图形化处理,得到图形化的碳纳米管有源层30和图形化的聚合物层20;
S05'、在碳纳米管有源层30上制作源/漏极S/D,具体是先在碳纳米管有源层30上沉积一层金属层,然后在金属层表面刻蚀出贯穿至碳纳米管有源层30的沟道。
综上所述,本发明从材料提纯着手器件制备,有利于构建绿色、低成本的 器件,并以自组装技术结合溶液涂布法进行有源层成膜,无需在真空高温高压等特殊环境下进行,简单易行;通过在衬底上首先涂覆一层与碳纳米管水溶液的电荷性质相反的聚合物水溶液,然后再涂覆碳纳米管水溶液,带电聚合物在衬底上具有良好的吸附性和延平性,而碳纳米管由于表面包裹了带电荷的化合物小分子,可与聚合物通过电荷吸引而平铺到衬底上。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (20)

  1. 一种碳纳米管复合薄膜的制备方法,其中,包括:
    提供一衬底;
    在所述衬底上涂覆溶有带电聚合物的第一水溶液,以形成聚合物薄膜;
    将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液,所述带电化合物与所述带电聚合物的电荷性质相反;
    将所述半导体型单壁碳纳米管水溶液涂覆在所述聚合物薄膜上;
    静置预定时间后,用去离子水冲洗以去除未吸附的半导体型单壁碳纳米管和多余的带电聚合物;
    风干,在所述聚合物薄膜上形成碳纳米管薄膜。
  2. 根据权利要求1所述的碳纳米管复合薄膜的制备方法,其中,还包括:在所述衬底上涂覆溶有带电聚合物的第一水溶液后,通过气刀吹干所述衬底;在将所述半导体型单壁碳纳米管水溶液涂覆在所述聚合物薄膜后,通过气刀吹干所述聚合物薄膜。
  3. 根据权利要求2所述的碳纳米管复合薄膜的制备方法,其中,所述带电聚合物为聚赖氨酸、聚乙烯亚胺或壳聚糖。
  4. 根据权利要求1所述的碳纳米管复合薄膜的制备方法,其中,将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液的步骤,具体包括:
    将高压一氧化碳法制备的单壁碳纳米管粉末通过超声分散于溶有双亲性带电荷小分子化合物的第二水溶液中,所述单壁碳纳米管粉末为金属型单壁碳纳米管与半导体型单壁碳纳米管的混合物;
    双亲性带电荷小分子化合物选择性的包裹半导体型单壁碳纳米管;
    离心去除金属型单壁碳纳米管,得到半导体型单壁碳纳米管水溶液。
  5. 根据权利要求4所述的碳纳米管复合薄膜的制备方法,其中,所述双亲性带电荷小分子化合物为胆酸钠或脱氧胆酸钠。
  6. 根据权利要求2所述的碳纳米管复合薄膜的制备方法,其中,将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液的步骤,具体包括:
    将高压一氧化碳法制备的单壁碳纳米管粉末通过超声分散于溶有双亲性带电荷小分子化合物的第二水溶液中,所述单壁碳纳米管粉末为金属型单壁碳纳米管与半导体型单壁碳纳米管的混合物;
    双亲性带电荷小分子化合物选择性的包裹半导体型单壁碳纳米管;
    离心去除金属型单壁碳纳米管,得到半导体型单壁碳纳米管水溶液。
  7. 根据权利要求6所述的碳纳米管复合薄膜的制备方法,其中,所述双亲性带电荷小分子化合物为胆酸钠或脱氧胆酸钠。
  8. 一种碳纳米管TFT的制备方法,其中,包括:
    提供一基板作为衬底;
    采用权利要求1所述的碳纳米管复合薄膜的制备方法,在所述基板上制备聚合物薄膜和碳纳米管薄膜;
    分别对所述碳纳米管薄膜和所述聚合物薄膜图形化处理,得到图形化的碳纳米管有源层和图形化的聚合物层;
    在所述碳纳米管有源层上制作源/漏极。
  9. 根据权利要求8所述的碳纳米管TFT的制备方法,其中,分别对所述碳纳米管薄膜和所述聚合物薄膜图形化处理,得到图形化的碳纳米管有源层和图形化的聚合物层具体包括:
    在所述碳纳米管薄膜表面涂布光刻胶;
    对所述光刻胶进行曝光、显影,并通过氧气等离子干刻蚀去除未被所述光刻胶覆盖的碳纳米管薄膜和聚合物薄膜,得到碳纳米管有源层和聚合物层。
  10. 根据权利要求8所述的碳纳米管TFT的制备方法,其中,还包括:在所述基板上制备聚合物薄膜和碳纳米管薄膜前,在所述基板上依次制作图形化的栅极、在所述基板上沉积覆盖所述栅极的栅极绝缘层。
  11. 根据权利要求8所述的碳纳米管TFT的制备方法,其中,还包括:在所述源/漏极制作完成后,在所述基板上沉积同时覆盖所述碳纳米管有源层、所 述源/漏极的栅极绝缘层,并在所述栅极绝缘层上制作与所述碳纳米管有源层正对的栅极。
  12. 根据权利要求9所述的碳纳米管TFT的制备方法,其中,所述的碳纳米管TFT的制备方法还包括:在所述基板上制备聚合物薄膜和碳纳米管薄膜前,在所述基板上依次制作图形化的栅极、在所述基板上沉积覆盖所述栅极的栅极绝缘层。
  13. 根据权利要求9所述的碳纳米管TFT的制备方法,其中,所述的碳纳米管TFT的制备方法还包括:在所述源/漏极制作完成后,在所述基板上沉积同时覆盖所述碳纳米管有源层、所述源/漏极的栅极绝缘层,并在所述栅极绝缘层上制作与所述碳纳米管有源层正对的栅极。
  14. 根据权利要求8所述的碳纳米管TFT的制备方法,其中,所述的碳纳米管TFT的制备方法还包括:在所述衬底上涂覆溶有带电聚合物的第一水溶液后,通过气刀吹干所述衬底;在将所述半导体型单壁碳纳米管水溶液涂覆在所述聚合物薄膜后,通过气刀吹干所述聚合物薄膜。
  15. 根据权利要求9所述的碳纳米管TFT的制备方法,其中,所述带电聚合物为聚赖氨酸、聚乙烯亚胺或壳聚糖。
  16. 根据权利要求8所述的碳纳米管TFT的制备方法,其中,将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液的步骤,具体包括:
    将高压一氧化碳法制备的单壁碳纳米管粉末通过超声分散于溶有双亲性带电荷小分子化合物的第二水溶液中,所述单壁碳纳米管粉末为金属型单壁碳纳米管与半导体型单壁碳纳米管的混合物;
    双亲性带电荷小分子化合物选择性的包裹半导体型单壁碳纳米管;
    离心去除金属型单壁碳纳米管,得到半导体型单壁碳纳米管水溶液。
  17. 根据权利要求16所述的碳纳米管TFT的制备方法,其中,所述双亲性带电荷小分子化合物为胆酸钠或脱氧胆酸钠。
  18. 一种碳纳米管TFT,其中,使用权利要求8所述的碳纳米管TFT的制备方法制备而成,包括:基板、设于所述基板上的聚合物层、设于所述聚合物层上的碳纳米管有源层以及源/漏极、栅极绝缘层、栅极。
  19. 根据权利要求18所述的碳纳米管TFT,其中,分别对所述碳纳米管薄膜和所述聚合物薄膜图形化处理,得到图形化的碳纳米管有源层和图形化的聚合物层具体包括:
    在所述碳纳米管薄膜表面涂布光刻胶;
    对所述光刻胶进行曝光、显影,并通过氧气等离子干刻蚀去除未被所述光刻胶覆盖的碳纳米管薄膜和聚合物薄膜,得到碳纳米管有源层和聚合物层。
  20. 根据权利要求18所述的碳纳米管TFT,其中,所述的碳纳米管TFT的制备方法还包括:在所述基板上制备聚合物薄膜和碳纳米管薄膜前,在所述基板上依次制作图形化的栅极、在所述基板上沉积覆盖所述栅极的栅极绝缘层。
PCT/CN2018/097444 2018-07-18 2018-07-27 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法 WO2020015002A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/079,031 US10930851B2 (en) 2018-07-18 2018-07-27 Manufacturing method for carbon nanotube composite film, carbon nanotube TFT and manufacturing method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810788180.2A CN108987576B (zh) 2018-07-18 2018-07-18 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法
CN201810788180.2 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020015002A1 true WO2020015002A1 (zh) 2020-01-23

Family

ID=64548727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097444 WO2020015002A1 (zh) 2018-07-18 2018-07-27 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法

Country Status (3)

Country Link
US (1) US10930851B2 (zh)
CN (1) CN108987576B (zh)
WO (1) WO2020015002A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081639B (zh) * 2019-12-05 2022-05-31 深圳市华星光电半导体显示技术有限公司 Cmos薄膜晶体管及其制备方法、显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759177A (zh) * 2010-01-08 2010-06-30 中国科学院苏州纳米技术与纳米仿生研究所 半导体性碳纳米管薄膜的制备方法
CN102791808A (zh) * 2010-03-04 2012-11-21 格尔德殿工业公司 包括掺杂的cnt和纳米线复合材料的大面积透明导电涂层及其制备方法
CN103236494A (zh) * 2013-04-18 2013-08-07 武汉大学 一种碳基纳米电源的制备方法
CN103897183A (zh) * 2014-04-02 2014-07-02 电子科技大学 二元碳材料-导电聚合物复合纳米气敏薄膜及其制备方法
CN104103812A (zh) * 2014-07-21 2014-10-15 国家纳米科学中心 一种复合柔性电极材料及其制备方法和用途
CN106298815A (zh) * 2016-10-31 2017-01-04 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、阵列基板和显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528254A (ja) * 2006-03-03 2009-08-06 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ 空間的に配列したナノチューブ及びナノチューブアレイの作製方法
US9502152B2 (en) * 2010-11-01 2016-11-22 Samsung Electronics Co., Ltd. Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
KR101487443B1 (ko) * 2013-06-21 2015-01-29 (주) 파루 유전막 표면 개질용 트랜지스터 및 이의 제조 방법
US10541374B2 (en) * 2016-01-04 2020-01-21 Carbon Nanotube Technologies, Llc Electronically pure single chirality semiconducting single-walled carbon nanotube for large scale electronic devices
CN107706307B (zh) * 2017-10-13 2020-05-19 深圳市华星光电半导体显示技术有限公司 碳纳米管薄膜晶体管及其制作方法
CN108163840B (zh) * 2017-12-27 2020-02-07 深圳市华星光电半导体显示技术有限公司 碳纳米管提纯方法、薄膜晶体管及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759177A (zh) * 2010-01-08 2010-06-30 中国科学院苏州纳米技术与纳米仿生研究所 半导体性碳纳米管薄膜的制备方法
CN102791808A (zh) * 2010-03-04 2012-11-21 格尔德殿工业公司 包括掺杂的cnt和纳米线复合材料的大面积透明导电涂层及其制备方法
CN103236494A (zh) * 2013-04-18 2013-08-07 武汉大学 一种碳基纳米电源的制备方法
CN103897183A (zh) * 2014-04-02 2014-07-02 电子科技大学 二元碳材料-导电聚合物复合纳米气敏薄膜及其制备方法
CN104103812A (zh) * 2014-07-21 2014-10-15 国家纳米科学中心 一种复合柔性电极材料及其制备方法和用途
CN106298815A (zh) * 2016-10-31 2017-01-04 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、阵列基板和显示装置

Also Published As

Publication number Publication date
CN108987576A (zh) 2018-12-11
CN108987576B (zh) 2020-12-25
US20200357999A1 (en) 2020-11-12
US10930851B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
Ye et al. Graphene-based Schottky junction solar cells
WO2019080467A1 (zh) 一种有机小分子晶体图案化阵列的制备方法
Cui et al. Low-temperature synthesis of multilayer graphene/amorphous carbon hybrid films and their potential application in solar cells
Zhang et al. Graphene-CdSe nanobelt solar cells with tunable configurations
Hirotani et al. Carbon nanotube thin films for high-performance flexible electronics applications
US20180358569A1 (en) Carbon nanotube thin film transistor and manufacturing method thereof
CN105493256B (zh) 一种薄膜晶体管及其制备方法、显示装置
Shi et al. Improvement of graphene–Si solar cells by embroidering graphene with a carbon nanotube spider-web
TW201442245A (zh) 薄膜電晶體及其製備方法
CN114242780A (zh) 氧化铟锡垂直型环栅场效应晶体管及其制备方法
KR101371289B1 (ko) 탄소 나노박막의 제조방법
WO2020015002A1 (zh) 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法
Timmermans et al. Lithography-free fabrication of carbon nanotube network transistors
WO2017152500A1 (zh) 一种半导体层和tft的制备方法、tft、阵列基板
JP4501339B2 (ja) pn接合素子の製造方法
KR101168667B1 (ko) 단일벽 탄소나노튜브의 선택적 조립 방법 및 이를 이용한 단일벽 탄소나노튜브 다중 채널을 갖는 전계 효과 트랜지스터의 제조 방법
CN113193115B (zh) 一种悬空碳纳米管场效应晶体管及其制备方法
Li et al. Large area roll-to-roll printed semiconducting carbon nanotube thin films for flexible carbon-based electronics
Zheng et al. A general route towards two-dimensional organic crystal-based functional fibriform transistors for wearable electronic textiles
WO2018176995A1 (zh) 一种制备复合物场效应晶体管的方法
Yao et al. pn heterojunctions composed of two-dimensional molecular crystals for high-performance ambipolar organic field-effect transistors
CN111293035B (zh) 一种碳纳米管薄膜的制备方法
KR20110032466A (ko) 포토리소그래피 공정만을 이용한 나노 물질의 선택적 조립 방법 및 이를 이용한 나노구조 다중채널 fet 소자 제조 방법
CN105609561A (zh) 一种石墨烯射频晶体管及其制作方法
CN108767049A (zh) 一种基于碳纳米管/石墨烯肖特基结的高性能光电器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926433

Country of ref document: EP

Kind code of ref document: A1