CN108987576A - 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法 - Google Patents

碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法 Download PDF

Info

Publication number
CN108987576A
CN108987576A CN201810788180.2A CN201810788180A CN108987576A CN 108987576 A CN108987576 A CN 108987576A CN 201810788180 A CN201810788180 A CN 201810788180A CN 108987576 A CN108987576 A CN 108987576A
Authority
CN
China
Prior art keywords
carbon nano
tube
carbon nanotube
substrate
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810788180.2A
Other languages
English (en)
Other versions
CN108987576B (zh
Inventor
谢华飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd
Original Assignee
Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd filed Critical Shenzhen China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority to CN201810788180.2A priority Critical patent/CN108987576B/zh
Priority to US16/079,031 priority patent/US10930851B2/en
Priority to PCT/CN2018/097444 priority patent/WO2020015002A1/zh
Publication of CN108987576A publication Critical patent/CN108987576A/zh
Application granted granted Critical
Publication of CN108987576B publication Critical patent/CN108987576B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/172Sorting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/761Biomolecules or bio-macromolecules, e.g. proteins, chlorophyl, lipids or enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种碳纳米管复合薄膜的制备方法,包括:提供一衬底;在衬底上涂覆溶有带电聚合物的第一水溶液以形成聚合物层;将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液,带电化合物与带电聚合物的电荷性质相反;将半导体型单壁碳纳米管水溶液涂覆在聚合物层上;静置预定时间后,去除未吸附的半导体型单壁碳纳米管和多余的带电聚合物;风干,在聚合物层上形成碳纳米管薄膜。本发明还提供了一种碳纳米管TFT及其制备方法。本发明在涂覆碳纳米管水溶液前在衬底上涂覆有一层与碳纳米管水溶液的电荷性质相反的聚合物水溶液,带电聚合物在衬底上具有良好的吸附性和延平性,因此表面包裹有带电荷小分子的碳纳米管可很好地平铺到衬底上。

Description

碳纳米管复合薄膜的制备方法、碳纳米管TFT及其制备方法
技术领域
本发明涉及碳纳米材料应用技术领域,尤其涉及一种碳纳米管复合薄膜的制备方法、碳纳米管TFT(Thin Film Transistor,薄膜晶体管)及其制备方法。
背景技术
碳元素是目前拥有纳米结构和特性最为丰富的材料之一,如富勒烯、碳量子点、碳纳米管、石墨烯等由于具有优异的化学、物理、机械和电子性能而引起了科研人员的极大研究兴趣和实验应用。
在众多碳纳米材料中,碳纳米管是一种以苯环结构(即六角形蜂巢结构)周期性紧密排列的碳原子所构成的管状一维碳材料,由于其优异和独特的电学和光学性能,近年来对其在电子器件领域的应用研究越来越深入。半导体型单壁碳纳米管被认为是最有应用价值的电学材料之一,因优良的力学、热学、电学性能和化学稳定性,可以用于高频器件,提高器件的频率响应范围;另外随着传统Si半导体器件的尺寸不断缩小,一些不可避免的制约因素不断显现出来,如短沟道效应、小尺寸下掺杂浓度的统计涨落造成器件性质不均匀性,而单壁碳纳米管由于免掺杂即可制备出n型或p型晶体管进而应用与集成电路,有可能取代硅基半导体应用而受到重视。
结合纯碳形式或者杂化结构的纳米碳材料的维度和量子限制效应所产生的独特的性质,能够产生前所未有的物理性能和机械性能,为碳基器件的构建都提供了一个潜在的途径。
碳纳米管因具有高迁移率、带隙可调、稳定性好、透光性好、柔韧性好等优点,在电子器件及柔性器件方面具有极大的应用前景。自1997年被发现以来,碳纳米管在单壁与多壁的可控制备、金属性与半导体性的纯化、性能及应用等方面进行了大量研究。其中单一属性碳纳米管是当前碳纳米管研究的重点和难点,目前国内外尚无可高效制备高质量半导体型单壁碳纳米管的有效方法,为实现碳纳米管在薄膜晶体管及柔性电子器件中的高端应用,亟需发展单一导电属性单壁碳纳米管的制备技术。
发明内容
鉴于现有技术存在的不足,本发明提供了一种碳纳米管复合薄膜的制备方法、碳纳米管TFT及其制备方法,半导体型单壁碳纳米管成膜质量较高且制程简单、制作效率高,有利于节约生产成本、减少环境污染。
为了实现上述的目的,本发明采用了如下的技术方案:
提供一衬底;
在所述衬底上涂覆溶有带电聚合物的第一水溶液,以形成聚合物薄膜;
将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液,所述带电化合物与所述带电聚合物的电荷性质相反;
将所述半导体型单壁碳纳米管水溶液涂覆在所述聚合物薄膜上;
静置预定时间后,用去离子水冲洗以去除未吸附的半导体型单壁碳纳米管和多余的带电聚合物;
风干,在所述聚合物薄膜上形成碳纳米管薄膜。
作为其中一种实施方式,所述的碳纳米管复合薄膜的制备方法还包括:在所述衬底上涂覆溶有带电聚合物的第一水溶液后,通过气刀吹干所述衬底;在将所述半导体型单壁碳纳米管水溶液涂覆在所述聚合物薄膜后,通过气刀吹干所述聚合物薄膜。
作为其中一种实施方式,所述带电聚合物为聚赖氨酸、聚乙烯亚胺或壳聚糖。
作为其中一种实施方式,将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液的步骤,具体包括:
将高压一氧化碳法制备的单壁碳纳米管粉末通过超声分散于溶有双亲性带电荷小分子化合物的第二水溶液中,所述单壁碳纳米管粉末为金属型单壁碳纳米管与半导体型单壁碳纳米管的混合物;
双亲性带电荷小分子化合物选择性的包裹半导体型单壁碳纳米管;
离心去除金属型单壁碳纳米管,得到半导体型单壁碳纳米管水溶液。
作为其中一种实施方式,所述双亲性带电荷小分子化合物为胆酸钠或脱氧胆酸钠。
本发明的另一目的在于提供一种碳纳米管TFT的制备方法,包括:
提供一基板作为衬底;
采用所述的碳纳米管复合薄膜的制备方法,在所述基板上制备聚合物薄膜和碳纳米管薄膜;
分别对所述碳纳米管薄膜和所述聚合物薄膜图形化处理,得到图形化的碳纳米管有源层和图形化的聚合物层;
在所述碳纳米管有源层上制作源/漏极。
作为其中一种实施方式,分别对所述碳纳米管薄膜和所述聚合物薄膜图形化处理,得到图形化的碳纳米管有源层和图形化的聚合物层具体包括:
在所述碳纳米管薄膜表面涂布光刻胶;
对所述光刻胶图案进行曝光、显影,并通过氧气等离子干刻蚀去除未被所述光刻胶覆盖的碳纳米管薄膜和聚合物薄膜,得到碳纳米管有源层和聚合物层。
作为其中一种实施方式,所述的碳纳米管TFT的制备方法还包括:在所述基板上制备聚合物薄膜和碳纳米管薄膜前,在所述基板上依次制作图形化的栅极、在所述基板上沉积覆盖所述栅极的栅极绝缘层。
或者,所述的碳纳米管TFT的制备方法还包括:在所述源/漏极制作完成后,在所述基板上沉积同时覆盖所述碳纳米管有源层、所述源/漏极的栅极绝缘层,并在所述栅极绝缘层上制作与所述碳纳米管有源层正对的栅极。
本发明的又一目的在于提供一种碳纳米管TFT,使用所述的碳纳米管TFT的制备方法制备而成,包括:基板、设于所述基板上的聚合物层、设于所述聚合物层上的碳纳米管有源层、源/漏极、栅极绝缘层、栅极。
本发明通过在衬底上首先涂覆一层与碳纳米管水溶液的电荷性质相反的聚合物水溶液,然后再涂覆碳纳米管水溶液,带电聚合物在衬底上具有良好的吸附性和延平性,而碳纳米管由于表面包裹了带电荷的化合物小分子,可与聚合物通过电荷吸引而平铺到衬底上。
附图说明
图1为本发明实施例1的碳纳米管复合薄膜的制备方法示意图;
图2为本发明实施例1的碳纳米管溶液的制备过程示意图;
图3为本发明实施例1的碳纳米管TFT的制作方法示意图;
图4为本发明实施例1的一种碳纳米管TFT的结构示意图;
图5为本发明实施例2的一种碳纳米管TFT的制作方法示意图;
图6为本发明实施例2的一种碳纳米管TFT的制程工艺示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
参阅图1,本实施例的碳纳米管复合薄膜的制备方法主要包括:
首先,提供一衬底;
在衬底上涂覆溶有带电聚合物的第一水溶液,以形成聚合物薄膜;
将单壁碳纳米管粉末分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液,带电化合物与带电聚合物的电荷性质相反;
将半导体型单壁碳纳米管水溶液涂覆在聚合物薄膜上,并通过气刀吹干聚合物薄膜;
静置预定时间后,用去离子水冲洗以去除未吸附的半导体型单壁碳纳米管和多余的带电聚合物,该静置的预定时间为8~12min,最好是10min;
风干,在聚合物薄膜上形成碳纳米管薄膜,使得碳纳米管薄膜很好地粘附在衬底上。
其中,第一水溶液中,带电聚合物可以是聚赖氨酸、聚乙烯亚胺或壳聚糖,第一水溶液通过溶液法涂覆在衬底上,例如,可以采用滴涂、旋涂、提拉或打印等方式进行涂覆。在衬底上涂覆溶有带电聚合物的第一水溶液后,还可通过气刀吹干衬底,使得聚合物薄膜可以平整良好地贴附在衬底表面。
如图2所示,为半导体型单壁碳纳米管水溶液的制备过程,其具体包括:
(1)利用高压一氧化碳法制备单壁碳纳米管,形成金属型单壁碳纳米管B、半导体型单壁碳纳米管A的混合粉末;
(2)将高压一氧化碳法制备的单壁碳纳米管通过超声分散于溶有双亲性带电荷小分子化合物的第二水溶液C中,使得双亲性带电荷小分子选择性地包裹半导体型单壁碳纳米管A,而金属型单壁碳纳米管B被分离而沉淀出,该双亲性带电荷小分子化合物可以为胆酸钠或脱氧胆酸钠;
(3)超高速离心去除金属型单壁碳纳米管,得到半导体型单壁碳纳米管水溶液,该半导体型单壁碳纳米管水溶液中,半导体型单壁碳纳米管分散在水中。
由于带电聚合物在衬底上具有良好的吸附性和延平性,而碳纳米管由于表面包裹了带电荷的化合物小分子,因此可与聚合物通过电荷吸引而很好地平铺到衬底上。
如图3和图4所示,为本实施例的碳纳米管TFT的制备方法,主要包括:
S01、提供一基板10作为衬底;
S02、采用上述的碳纳米管复合薄膜的制备方法,在基板10上依次制备聚合物薄膜2和碳纳米管薄膜3;
S03、分别对碳纳米管薄膜3、聚合物薄膜2图形化处理,得到图形化的碳纳米管有源层30和图形化的聚合物层20;
其中,在分别对碳纳米管薄膜3、聚合物薄膜2图形化处理时,具体包括:
首先,在碳纳米管薄膜3表面涂布光刻胶;
然后,利用光罩对光刻胶进行曝光,形成光刻胶保留区域和光刻胶不保留区域,再对该光刻胶不保留区域进行显影,并去除光刻胶不保留区域的光刻胶,以露出需要蚀刻的碳纳米管薄膜,最后,通过氧气等离子干刻蚀依次去除未被光刻胶覆盖的碳纳米管薄膜3和聚合物薄膜2,相应得到碳纳米管有源层30和聚合物层20,碳纳米管薄膜3和聚合物薄膜2具有相同的图案,可以采用同一道光罩进行曝光,节省光罩,提高制程效率。
S04、在碳纳米管有源层30上制作源/漏极S/D;
S05、依次在碳纳米管有源层30上制作栅极绝缘层12和栅极11,本实施例中,栅极11为顶栅极,栅极绝缘层12为在源/漏极S/D制作完成后形成,其通过沉积的方式形成在基板10上,同时覆盖碳纳米管有源层30、源/漏极S/D,栅极绝缘层12沉积完成后,随后在栅极绝缘层12上制作与碳纳米管有源层30正对的栅极11,该栅极11沉积在栅极绝缘层12表面沟道内,与栅极绝缘层12表面平齐。
如图4所示,本实施例按照上述制备方法制备的碳纳米管TFT包括:基板10、设于基板10上的聚合物层20、设于聚合物层20上的碳纳米管有源层30以及源/漏极S/D、栅极绝缘层12、栅极11,其中,源/漏极S/D形成在基板10和碳纳米管有源层30上,栅极绝缘层12形成在基板10上,同时覆盖碳纳米管有源层30、源/漏极S/D,栅极11位于栅极绝缘层12表面沟道内,与栅极绝缘层12表面平齐。
实施例2
如图5和图6所示,与实施例1不同,本实施例的碳纳米管TFT为底栅极型TFT,该碳纳米管TFT仍包括基板10、聚合物层20、设于聚合物层20上的碳纳米管有源层30、源/漏极S/D以及栅极绝缘层12、栅极11,不同的是,栅极绝缘层12、栅极11位于聚合物层20与基板10之间,栅极绝缘层12、栅极11均形成在基板10上,且栅极绝缘层12覆盖栅极11,聚合物层20形成在栅极绝缘层12表面。
本实施例的碳纳米管TFT的制备方法主要包括:
S01'、提供一基板10;
S02'、在基板10上依次制作图形化的栅极11、覆盖栅极11的栅极绝缘层12;
S03'、采用上述的碳纳米管复合薄膜的制备方法,在基板10上的栅极绝缘层12表面依次制备聚合物薄膜2和碳纳米管薄膜3;
S04'、分别对碳纳米管薄膜3和聚合物薄膜2图形化处理,得到图形化的碳纳米管有源层30和图形化的聚合物层20;
S05'、在碳纳米管有源层30上制作源/漏极S/D,具体是先在碳纳米管有源层30上沉积一层金属层,然后在金属层表面刻蚀出贯穿至碳纳米管有源层30的沟道。
综上所述,本发明从材料提纯着手器件制备,有利于构建绿色、低成本的器件,并以自组装技术结合溶液涂布法进行有源层成膜,无需在真空高温高压等特殊环境下进行,简单易行;通过在衬底上首先涂覆一层与碳纳米管水溶液的电荷性质相反的聚合物水溶液,然后再涂覆碳纳米管水溶液,带电聚合物在衬底上具有良好的吸附性和延平性,而碳纳米管由于表面包裹了带电荷的化合物小分子,可与聚合物通过电荷吸引而平铺到衬底上。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

1.一种碳纳米管复合薄膜的制备方法,其特征在于,包括:
提供一衬底;
在所述衬底上涂覆溶有带电聚合物的第一水溶液,以形成聚合物薄膜;
将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液,所述带电化合物与所述带电聚合物的电荷性质相反;
将所述半导体型单壁碳纳米管水溶液涂覆在所述聚合物薄膜上;
静置预定时间后,用去离子水冲洗以去除未吸附的半导体型单壁碳纳米管和多余的带电聚合物;
风干,在所述聚合物薄膜上形成碳纳米管薄膜。
2.根据权利要求1所述的碳纳米管复合薄膜的制备方法,其特征在于,还包括:在所述衬底上涂覆溶有带电聚合物的第一水溶液后,通过气刀吹干所述衬底;在将所述半导体型单壁碳纳米管水溶液涂覆在所述聚合物薄膜后,通过气刀吹干所述聚合物薄膜。
3.根据权利要求2所述的碳纳米管复合薄膜的制备方法,其特征在于,所述带电聚合物为聚赖氨酸、聚乙烯亚胺或壳聚糖。
4.根据权利要求1-3任一所述的碳纳米管复合薄膜的制备方法,其特征在于,将半导体型单壁碳纳米管分散至溶有带电化合物的第二水溶液中,得到半导体型单壁碳纳米管水溶液的步骤,具体包括:
将高压一氧化碳法制备的单壁碳纳米管粉末通过超声分散于溶有双亲性带电荷小分子化合物的第二水溶液中,所述单壁碳纳米管粉末为金属型单壁碳纳米管与半导体型单壁碳纳米管的混合物;
双亲性带电荷小分子化合物选择性的包裹半导体型单壁碳纳米管;
离心去除金属型单壁碳纳米管,得到半导体型单壁碳纳米管水溶液。
5.根据权利要求4所述的碳纳米管复合薄膜的制备方法,其特征在于,所述双亲性带电荷小分子化合物为胆酸钠或脱氧胆酸钠。
6.一种碳纳米管TFT的制备方法,其特征在于,包括:
提供一基板(10)作为衬底;
采用权利要求1-5任一所述的碳纳米管复合薄膜的制备方法,在所述基板(10)上制备聚合物薄膜(2)和碳纳米管薄膜(3);
分别对所述碳纳米管薄膜(3)和所述聚合物薄膜(2)图形化处理,得到图形化的碳纳米管有源层(30)和图形化的聚合物层(20);
在所述碳纳米管有源层(30)上制作源/漏极(S/D)。
7.根据权利要求6所述的碳纳米管TFT的制备方法,其特征在于,分别对所述碳纳米管薄膜(3)和所述聚合物薄膜(2)图形化处理,得到图形化的碳纳米管有源层(30)和图形化的聚合物层(20)具体包括:
在所述碳纳米管薄膜(3)表面涂布光刻胶;
对所述光刻胶进行曝光、显影,并通过氧气等离子干刻蚀去除未被所述光刻胶覆盖的碳纳米管薄膜(3)和聚合物薄膜(2),得到碳纳米管有源层(30)和聚合物层(20)。
8.根据权利要求6或7所述的碳纳米管TFT的制备方法,其特征在于,还包括:在所述基板(10)上制备聚合物薄膜(2)和碳纳米管薄膜(3)前,在所述基板(10)上依次制作图形化的栅极(11)、在所述基板(10)上沉积覆盖所述栅极(11)的栅极绝缘层(12)。
9.根据权利要求6或7所述的碳纳米管TFT的制备方法,其特征在于,还包括:在所述源/漏极(S/D)制作完成后,在所述基板(10)上沉积同时覆盖所述碳纳米管有源层(30)、所述源/漏极(S/D)的栅极绝缘层(12),并在所述栅极绝缘层(12)上制作与所述碳纳米管有源层(30)正对的栅极(11)。
10.一种碳纳米管TFT,其特征在于,使用权利要求6-9任一所述的碳纳米管TFT的制备方法制备而成,包括:基板(10)、设于所述基板(10)上的聚合物层(20)、设于所述聚合物层(20)上的碳纳米管有源层(30)以及源/漏极(S/D)、栅极绝缘层(12)、栅极(11)。
CN201810788180.2A 2018-07-18 2018-07-18 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法 Active CN108987576B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810788180.2A CN108987576B (zh) 2018-07-18 2018-07-18 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法
US16/079,031 US10930851B2 (en) 2018-07-18 2018-07-27 Manufacturing method for carbon nanotube composite film, carbon nanotube TFT and manufacturing method for the same
PCT/CN2018/097444 WO2020015002A1 (zh) 2018-07-18 2018-07-27 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810788180.2A CN108987576B (zh) 2018-07-18 2018-07-18 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法

Publications (2)

Publication Number Publication Date
CN108987576A true CN108987576A (zh) 2018-12-11
CN108987576B CN108987576B (zh) 2020-12-25

Family

ID=64548727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810788180.2A Active CN108987576B (zh) 2018-07-18 2018-07-18 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法

Country Status (3)

Country Link
US (1) US10930851B2 (zh)
CN (1) CN108987576B (zh)
WO (1) WO2020015002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081639A (zh) * 2019-12-05 2020-04-28 深圳市华星光电半导体显示技术有限公司 Cmos薄膜晶体管及其制备方法、显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126412A2 (en) * 2006-03-03 2007-11-08 The Board Of Trustees Of The University Of Illinois Methods of making spatially aligned nanotubes and nanotube arrays
CN103236494A (zh) * 2013-04-18 2013-08-07 武汉大学 一种碳基纳米电源的制备方法
CN103897183A (zh) * 2014-04-02 2014-07-02 电子科技大学 二元碳材料-导电聚合物复合纳米气敏薄膜及其制备方法
CN106298815A (zh) * 2016-10-31 2017-01-04 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、阵列基板和显示装置
US20170033292A1 (en) * 2010-11-01 2017-02-02 Samsung Electronics Co., Ltd. Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
CN107706307A (zh) * 2017-10-13 2018-02-16 深圳市华星光电半导体显示技术有限公司 碳纳米管薄膜晶体管及其制作方法
CN108163840A (zh) * 2017-12-27 2018-06-15 深圳市华星光电半导体显示技术有限公司 碳纳米管提纯方法、薄膜晶体管及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101759177A (zh) * 2010-01-08 2010-06-30 中国科学院苏州纳米技术与纳米仿生研究所 半导体性碳纳米管薄膜的制备方法
US8518472B2 (en) * 2010-03-04 2013-08-27 Guardian Industries Corp. Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same
KR101487443B1 (ko) * 2013-06-21 2015-01-29 (주) 파루 유전막 표면 개질용 트랜지스터 및 이의 제조 방법
CN104103812B (zh) * 2014-07-21 2016-08-24 国家纳米科学中心 一种复合柔性电极材料及其制备方法和用途
US10541374B2 (en) * 2016-01-04 2020-01-21 Carbon Nanotube Technologies, Llc Electronically pure single chirality semiconducting single-walled carbon nanotube for large scale electronic devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126412A2 (en) * 2006-03-03 2007-11-08 The Board Of Trustees Of The University Of Illinois Methods of making spatially aligned nanotubes and nanotube arrays
US20170033292A1 (en) * 2010-11-01 2017-02-02 Samsung Electronics Co., Ltd. Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
CN103236494A (zh) * 2013-04-18 2013-08-07 武汉大学 一种碳基纳米电源的制备方法
CN103897183A (zh) * 2014-04-02 2014-07-02 电子科技大学 二元碳材料-导电聚合物复合纳米气敏薄膜及其制备方法
CN106298815A (zh) * 2016-10-31 2017-01-04 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、阵列基板和显示装置
CN107706307A (zh) * 2017-10-13 2018-02-16 深圳市华星光电半导体显示技术有限公司 碳纳米管薄膜晶体管及其制作方法
CN108163840A (zh) * 2017-12-27 2018-06-15 深圳市华星光电半导体显示技术有限公司 碳纳米管提纯方法、薄膜晶体管及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAK HENG LAU等: ""Fully Printed, High Performance Carbon Nanotube Thin-Film Transistors on Flexible Substrates"", 《NANO LETTERS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081639A (zh) * 2019-12-05 2020-04-28 深圳市华星光电半导体显示技术有限公司 Cmos薄膜晶体管及其制备方法、显示面板
CN111081639B (zh) * 2019-12-05 2022-05-31 深圳市华星光电半导体显示技术有限公司 Cmos薄膜晶体管及其制备方法、显示面板

Also Published As

Publication number Publication date
US20200357999A1 (en) 2020-11-12
CN108987576B (zh) 2020-12-25
US10930851B2 (en) 2021-02-23
WO2020015002A1 (zh) 2020-01-23

Similar Documents

Publication Publication Date Title
Parvez et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics
US8221884B2 (en) Incorporation of functionalizing molecules in nano-patterned epitaxial graphene electronics
US6891227B2 (en) Self-aligned nanotube field effect transistor and method of fabricating same
He et al. Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscopy nanolithography
US20090117741A1 (en) Method for fabricating monolithic two-dimensional nanostructures
CN104112777B (zh) 薄膜晶体管及其制备方法
EP2313915B1 (en) A lithographic process using a nanowire mask, and nanoscale devices fabricated using the process
US8274072B2 (en) Ultrathin spacer formation for carbon-based FET
US8859439B1 (en) Solution-assisted carbon nanotube placement with graphene electrodes
CN105493256B (zh) 一种薄膜晶体管及其制备方法、显示装置
Gao et al. Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film
CN103531482B (zh) 石墨烯场效应管的制作方法
Zhang et al. Optical lithography technique for the fabrication of devices from mechanically exfoliated two-dimensional materials
CN108987576A (zh) 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法
US10418490B2 (en) Field effect transistor and manufacturing method thereof
WO2017152500A1 (zh) 一种半导体层和tft的制备方法、tft、阵列基板
CN105679676A (zh) 薄膜晶体管及其制备方法、阵列基板
CN106952949A (zh) 石墨烯场效应晶体管及其形成方法
CN103745994A (zh) 采用石墨烯的场效应晶体管及其制备方法
KR20100133600A (ko) 전기화학반응을 이용한 탄소 패턴 형성방법
CN105609561A (zh) 一种石墨烯射频晶体管及其制作方法
CN102903747B (zh) 一种全单壁碳纳米管场效应晶体管及其制备方法
Lim et al. Assembly of suspended graphene on carbon nanotube scaffolds with improved functionalities
KR100924489B1 (ko) 탄소나노튜브를 이용한 투명 전자 소자 및 그 제조 방법
Chen et al. Novel method of converting metallic-type carbon nanotubes to semiconducting-type carbon nanotube field-effect transistors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant