WO2020013254A1 - 電解水生成装置 - Google Patents

電解水生成装置 Download PDF

Info

Publication number
WO2020013254A1
WO2020013254A1 PCT/JP2019/027432 JP2019027432W WO2020013254A1 WO 2020013254 A1 WO2020013254 A1 WO 2020013254A1 JP 2019027432 W JP2019027432 W JP 2019027432W WO 2020013254 A1 WO2020013254 A1 WO 2020013254A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
anode
cathode
power supply
hole
Prior art date
Application number
PCT/JP2019/027432
Other languages
English (en)
French (fr)
Inventor
山口 友宏
賢一郎 稲垣
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018133654A external-priority patent/JP7289077B2/ja
Priority claimed from JP2018133652A external-priority patent/JP7122558B2/ja
Priority claimed from JP2018133656A external-priority patent/JP7022918B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP19834025.9A priority Critical patent/EP3822229A4/en
Priority to CN201980040390.6A priority patent/CN112313178A/zh
Publication of WO2020013254A1 publication Critical patent/WO2020013254A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present disclosure relates to an electrolyzed water generation device.
  • a conventional electrolyzed water generating apparatus includes an anode, a cathode, and a cation exchange membrane provided between the anode and the cathode. Further, the conventional electrolyzed water generating apparatus has an inlet through which water flows in, an outlet through which water flows out, and includes a housing including an anode, a cathode, and a cation exchange membrane.
  • the conventional electrolyzed water generating apparatus includes two power supply shafts electrically connected to the anode and the cathode, respectively, and extending in a predetermined direction so as to penetrate through the two through holes of the housing, respectively (for example, see Patent Document 1). 1).
  • the electrolyzed water can be satisfactorily generated.
  • the positional relationship between the anode, the cathode, and the cation exchange membrane shifts, the generation performance of the electrolyzed water may be deteriorated. Therefore, it is required to maintain the anode, the cathode, and the cation exchange membrane in an appropriate positional relationship.
  • An object of the present disclosure is to provide an electrolyzed water generation device that can reduce the possibility of misalignment of an anode, a cathode, and a cation exchange membrane.
  • the electrolyzed water generation device of the present disclosure has an anode, a cathode, a cation exchange membrane provided between the anode and the cathode, an inlet into which water flows, and an outlet from which water flows out,
  • a housing including an anode, a cathode, and a cation exchange membrane, provided with a first through-hole and a second through-hole, and a predetermined electrically connected to the anode and penetrating through the first through-hole;
  • a first power supply shaft extending in the direction, and a second power supply shaft electrically connected to the cathode and extending in a predetermined direction so as to penetrate through the second through hole.
  • Each of the first power supply shaft and the second power supply shaft has an engaging portion.
  • Each of the first through hole and the second through hole has an engaged portion.
  • the engaging portion and the engaged portion are configured to detect a positional deviation of the first power supply shaft with respect to the first through hole in a predetermined direction and a positional deviation of the second power supply shaft with respect to the second through hole in a predetermined direction. Engage each other to suppress.
  • the electrolyzed water generation device of the present disclosure has an anode, a cathode, a cation exchange membrane provided between the anode and the cathode, an inlet into which water flows, and an outlet from which water flows out,
  • a housing including an anode, a cathode, and a cation exchange membrane, provided with a first through-hole and a second through-hole, and a predetermined electrically connected to the anode and penetrating through the first through-hole;
  • a first power supply shaft extending in the direction, and a second power supply shaft electrically connected to the cathode and extending in a predetermined direction so as to penetrate through the second through hole.
  • Each of the first power supply shaft and the second power supply shaft has a fitting portion.
  • Each of the first through hole and the second through hole has a fitted portion.
  • the fitting portion and the fitted portion rotate with respect to the first through-hole of the first power supply shaft having the predetermined direction as the rotation axis, and the second power supply shaft having the second direction with the predetermined direction as the rotation axis.
  • the electrolyzed water generation device of the present disclosure has an anode, a cathode, a cation exchange membrane provided between the anode and the cathode, an inlet into which water flows, and an outlet from which water flows out,
  • a housing including an anode, a cathode, and a cation exchange membrane, provided with a first through-hole and a second through-hole, and a predetermined electrically connected to the anode and penetrating through the first through-hole;
  • a first power supply shaft extending in the direction, a second power supply shaft electrically connected to the cathode and extending in a predetermined direction so as to penetrate through the second through hole, and an anode connected to the first power supply shaft.
  • the electrolyzed water generation device of the present disclosure has an anode, a cathode, a cation exchange membrane provided between the anode and the cathode, an inlet into which water flows, and an outlet from which water flows out,
  • the housing includes a positioning fitting portion that fits with an external fitting portion.
  • the electrolyzed water generation device of the present disclosure has an anode, a cathode, a cation exchange membrane provided between the anode and the cathode, an inlet into which water flows, and an outlet from which water flows out,
  • a housing containing an anode, a cathode, and a cation exchange membrane.
  • the housing includes a container for receiving the anode, the cathode, and the cation exchange membrane, and a lid for closing an opening of the container.
  • the lid includes a laser-transmissive resin having a color that easily transmits laser light.
  • the container portion contains a laser-absorbing resin of a color that relatively easily absorbs laser light. The lid and the container are fixed to each other by laser resin welding.
  • the electrolyzed water generation device of the present disclosure has an anode, a cathode, a cation exchange membrane provided between the anode and the cathode, an inlet into which water flows, and an outlet from which water flows out,
  • the housing includes a container for receiving the anode, the cathode, and the cation exchange membrane, and a lid for closing an opening of the container.
  • the anode, cation exchange membrane, and cathode constitute a laminated structure.
  • the lid portion includes a pressing protrusion provided on the inner side so as to press the stacked structure in the stacking direction.
  • the electrolyzed water generation device of the present disclosure has an anode, a cathode, a cation exchange membrane provided between the anode and the cathode, an inlet into which water flows, and an outlet from which water flows out,
  • a housing containing an anode, a cathode, and a cation exchange membrane.
  • the housing includes a container for receiving the anode, the cathode, and the cation exchange membrane, and a lid for closing an opening of the container.
  • the electrolyzed water generation device further includes an elastic body provided between the bottom surface of the container, the anode, the cathode, and the cation exchange membrane.
  • the lid is configured to press the anode, the cathode, and the cation exchange membrane toward the elastic body.
  • the elastic body includes a hollow portion that suppresses the elastic body from deforming toward the side wall of the container.
  • the electrolyzed water generation device of the present disclosure has an anode, a cathode, a cation exchange membrane provided between the anode and the cathode, an inlet into which water flows, and an outlet from which water flows out,
  • a housing containing an anode, a cathode, and a cation exchange membrane.
  • the housing includes a container for receiving the anode, the cathode, and the cation exchange membrane, and a lid for closing an opening of the container.
  • the electrolyzed water generation device further includes an elastic body provided between the bottom surface of the container, the anode, the cathode, and the cation exchange membrane.
  • the container portion includes an arc-shaped corner portion that connects the bottom surface of the container portion and the inner surface of the container portion in a continuous manner.
  • the elastic body includes an arc-shaped chamfer that connects the lower surface of the elastic body and the side surface of the elastic body so as to be continuous, and is in close contact with the arc-shaped corner.
  • the container portion includes a container fitted portion on the inner side surface of the container portion.
  • the elastic body includes an elastic body fitting portion that fits on the side surface of the elastic body with the container fitted portion.
  • the elastic body fitting portion and the container fitting portion constitute a structure for preventing the elastic body from being inserted into the housing upside down in the stacking direction of the anode, the cation exchange membrane, and the cathode.
  • the spring portion absorbs a positional shift of the power supply shaft based on the load. For this reason, it is suppressed that the positional shift adversely affects at least one of the anode and the cathode.
  • the electrolyzed water generation device can be used more favorably.
  • the lid and the container are easily fixed.
  • the displacement of the anode, the cation exchange membrane, and the cathode constituting the laminated structure is suppressed.
  • the deformation of the elastic body does not adversely affect the container.
  • the elastic body can be easily prevented from being turned upside down into the housing in the laminating direction of the cathode, the anode, and the cation exchange membrane.
  • FIG. 1 is an exploded perspective view of the electrolyzed water generation device according to the embodiment.
  • FIG. 2 is a vertical cross-sectional view of the electrolyzed water generation device according to the embodiment, taken along a width direction.
  • FIG. 3 is a partial plan view illustrating a positional relationship among a cathode, a spring portion, and a power supply shaft of the electrolyzed water generation device according to the embodiment.
  • FIG. 4 is an enlarged view of a first perspective cross section of a power supply shaft of the electrolyzed water generation device according to the embodiment.
  • FIG. 5 is an enlarged view of a second perspective cross section of the power supply shaft of the electrolytic water generation device according to the embodiment.
  • FIG. 6 is a partial perspective view illustrating a positional relationship between an anode, a spring portion, and a power supply shaft of another example of the electrolyzed water generation device of the embodiment.
  • FIG. 7 is a longitudinal sectional view cut along the length direction of the electrolyzed water generation device of the embodiment.
  • FIG. 8 is an enlarged perspective view of the structure for preventing the elastic body from being turned upside down in the electrolyzed water generation device of the embodiment.
  • the electrolyzed water generator 100 is an ozone water generator that generates ozone water as electrolyzed water. Since ozone water is effective for sterilization or organic matter decomposition, it is used in the field of water treatment, food, or medicine, has low residual properties, and has an advantage that by-products are not generated. ing.
  • the X direction in FIG. 1 is a direction along the flow path of water and is called a water flow direction.
  • the electrolyzed water generation device 100 has a rectangular parallelepiped shape in which the X direction is the longitudinal direction.
  • the Y direction in FIG. 1 is a direction crossing the flow path of water and is called a width direction.
  • the Y direction is a direction along a horizontal plane.
  • the Z direction in FIG. 1 is a direction in which the power supply F, the anode A, the cation exchange membrane I, and the cathode C are stacked, and is called a stacking direction.
  • FIG. 1 the power supply F, the anode A, the cation exchange membrane I, and the cathode C are stacked, and is called a stacking direction.
  • a vertical direction (vertical direction) is shown as a Z direction in a state where the lid 2 of the electrolyzed water generation device 100 is positioned on the upper side.
  • the X direction, the Y direction, and the Z direction are not limited to the combination of the directions illustrated in FIG. 1, and the electrolyzed water generation device 100 may be provided in any posture.
  • the electrolyzed water generating apparatus 100 of the embodiment be incorporated into another apparatus in such a manner that the flow path of water extends along the vertical direction. More specifically, it is preferable that the electrolyzed water generating apparatus 100 be incorporated into another device in such a manner that the inlet Fin faces downward and the outlet Fout faces upward. In other words, the posture of the electrolyzed water generation device 100 is preferably set so that water flows upward from below. The reason is that it is preferable that ozone generated on the surface of the anode A be quickly separated from the surface of the anode A before bubble growth.
  • the electrolyzed water generation device 100 may be incorporated in another device in any posture other than the posture in which the water flow path extends along the vertical direction.
  • the electrolyzed water generator 100 includes an anode A including a power supply F and an anode body AM, a cathode C, and a cation exchange membrane I provided between the anode A and the cathode C. , Is provided.
  • anode A includes the anode main body AM and the power supply F.
  • the anode A may be made of one material.
  • the anode A may be made of three or more materials.
  • the power supply F, the anode main body AM, the cation exchange membrane I, and the cathode C constitute a laminated structure 4.
  • Each of the power supply F, the anode body AM, the cation exchange membrane I, and the cathode C has a flat plate shape.
  • the flat plate shape has a rectangular flat shape with the X direction, that is, the water flow direction as the longitudinal direction, and the Y direction, that is, the width direction as the short direction, and has a thickness in the Z direction, that is, the stacking direction.
  • the power supply F, the anode main body AM, the cation exchange membrane I, and the cathode C are stacked in this order from the bottom to the top in the Z direction.
  • the cathode C has a V-shaped through hole in plan view.
  • the cation exchange membrane I is provided with a plurality of through holes in a direction crossing the water flow direction. Ozone is generated in the through-hole of the cathode C and the through-hole of the cation exchange membrane I, and is dissolved in water in the container 1. Thereby, ozone water is generated.
  • the electrolyzed water generation device 100 of the present embodiment includes a housing 5.
  • the housing 5 has an inflow port Fin into which water flows, and an outflow port Fout from which water flows out, and includes a power supply F, an anode A, a cathode C, and a cation exchange membrane I.
  • the housing 5 includes a container unit 1 that receives the power supply F, the anode A, the cathode C, and the cation exchange membrane I, and a lid unit 2 that closes an opening of the container unit 1.
  • an elastic body 3 is placed on the bottom of the container 1.
  • the laminated structure 4 is placed on the elastic body 3.
  • the lid 2 is fixed to the upper surface of the container 1 so as to press the laminated structure 4.
  • the housing 5 includes a positioning fitting portion T fitted to the fitted portion P of the external device 200. Therefore, the electrolyzed water generation device 100 can be easily positioned with respect to the external device 200.
  • the fitted portion P is a convex portion
  • the positioning fitting portion T is a concave portion.
  • the fitted portion P may be a concave portion
  • the positioning fitting portion T may be a convex portion. That is, the positioning fitting portion T and the fitted portion P may have any shape as long as they are fitted to each other.
  • the positioning fitting portion T is a plurality of linear grooves extending along the longitudinal direction.
  • the positioning fitting portion T may have any shape as long as the positioning fitting portion T fits into a fitting portion of a mounting object existing outside the external device 200.
  • the positioning fitting portion T is provided on the lid portion 2. Therefore, it is possible to form the container portion 1 having the positioning fitting portion T while suppressing a decrease in strength caused by the positioning fitting portion T.
  • the positioning fitting part T may be provided in the container part 1.
  • the external device 200 has a claw portion 201 hanging down from the outer edge of the external device 200.
  • the electrolyzed water generator 100 is inserted between the claws 201 of the external device 200 such that the claws 201 of the external device 200 are hooked below the flanges 12 extending outward from the upper end of the container 1. Thereby, the electrolyzed water generation device 100 is fixed to the external device 200.
  • the external device 200 is a device that uses the electrolyzed water generated by the electrolyzed water generation device 100, for example, ozone water.
  • the lid 2 includes a thin portion 21 having a relatively small thickness and a thick portion 22 having a relatively large thickness.
  • the positioning fitting portion T is provided in the thick portion 22. Therefore, a decrease in the strength of the lid 2 is suppressed.
  • the positioning fitting portion T is a groove extending along the longitudinal direction of the lid 2. Therefore, the electrolyzed water generation device 100 can be stably positioned with respect to the fitted portion P of the external device 200.
  • the lid 2 includes a laser-transmissive resin having a color that relatively easily transmits laser light.
  • the container section 1 contains a laser-absorbing resin of a color that relatively easily absorbs laser light.
  • the thin portion 21 is irradiated with laser light from above the lid 2 in the Z direction.
  • the laser beam transmitted through the thin portion 21 heats the lower surface of the thin portion 21 of the lid 2 and the upper surface of the container 1.
  • the thin portion 21 of the lid 2 and the container 1 are fixed to each other by laser resin welding. According to this, the lid part 2 and the container part 1 are easily fixed.
  • the container 1 has a black color or a color close thereto, and the lid 2 has a transparent, white or similar color. That is, the container portion 1 and the lid portion 2 have different laser beam transmittances. Therefore, laser welding can be performed very easily.
  • the colors of the container portion 1 and the lid portion 2 may be any colors as long as they can achieve laser resin welding with each other.
  • the thin portion 21 of the lid 2 forms the bottom of a groove formed in the lid 2, and the container protrusion 11 formed on the flange 12 of the container 1 of the container 1 is inserted into the groove. I have. Therefore, the lid 2 and the container 1 are firmly fixed. Further, both positioning of the lid 2 and the container 1 and formation of the thin portion 21 for laser resin welding can be realized by one groove.
  • a power supply shaft AS for the anode A is electrically connected to the power supply body F of the anode A.
  • the power supply F of the anode A and the power supply shaft AS for the anode A are connected via a spring B for the anode A.
  • the power supply shaft AS for the anode A is inserted into a through hole 1 ⁇ / b> A provided on the bottom surface of the container unit 1.
  • a portion of the power supply shaft AS for the anode A protruding outside the container portion 1 is electrically connected to a positive electrode of the power supply portion.
  • a power supply shaft CS for the cathode C is electrically connected to the cathode C.
  • the cathode C and the power supply shaft CS for the cathode C are connected via a spring portion B for the cathode C.
  • the power supply shaft CS for the cathode C is inserted into a through hole 1C provided on the bottom surface of the container 1.
  • a portion of the power supply shaft CS for the cathode C that protrudes outside the container 1 is electrically connected to a negative electrode of the power supply unit.
  • the part of the power supply shaft AS for the anode A that protrudes outside the container part 1 and the part of the power supply shaft CS for the cathode C that protrudes outside the container part 1 are respectively O-ring O, washer W, washer S, and It is inserted into the hexagon nut N.
  • the feeder F, the anode A, the cation exchange membrane I, and the cathode C, which constitute the laminated structure 4 are pressed and fixed to the bottom surface of the container unit 1 by tightening the hexagon nut N.
  • the electrolyzed water generating apparatus 100 is electrically connected to the anode A and the cathode C, respectively, and extends in predetermined directions so as to penetrate the two through holes 1A and 1C of the housing 5, respectively. It comprises two extending power supply shafts AS, CS. That is, the housing 5 is provided with two through holes 1A and 1C.
  • the power supply shaft AS is electrically connected to the anode A, and extends in a predetermined direction so as to penetrate through the through hole 1A.
  • the power supply shaft CS is electrically connected to the cathode C, and extends in a predetermined direction so as to penetrate through the through hole 1C.
  • the power supply shafts AS and CS and the through-holes 1A and 1C are respectively engaged with the engaging portion SE and the engaged portion so as to suppress a positional shift of the power supply shafts AS and CS with respect to the through-holes 1A and 1C in a predetermined direction.
  • Each of the through holes 1A and 1C has an engaged portion 1E.
  • the engaging portion SE and the engaged portion 1E engage with each other so as to suppress a positional deviation of the power supply shaft AS with respect to the through hole 1A and a positional deviation of the power supply shaft CS with respect to the through hole 1C in a predetermined direction. According to this, the displacement in the predetermined direction in which the power supply shafts AS and CS extend, that is, the axial direction is suppressed.
  • the engaging portion SE is a stepped portion in which the diameter of the power supply shafts AS and CS is smaller outside the housing 5 than inside the housing 5.
  • each of the power supply shaft AS and the power supply shaft CS has a relatively large diameter, a first shaft portion extending along a predetermined direction, and a relatively smaller diameter than the first shaft portion.
  • a second shaft portion extending along a predetermined direction.
  • the first shaft portion extends inward from the bottom surface of the housing 5.
  • the second shaft portion extends outward from the bottom surface of the housing 5.
  • the engagement portion SE is constituted by a step difference between the first shaft portion and the second shaft portion.
  • the engaged portion 1E is a stepped through hole in which the diameter of the through holes 1A and 1C is smaller outside the housing 5 than inside the housing 5.
  • each of the through hole 1A and the through hole 1C has a relatively large diameter, and a first through hole portion extending along a predetermined direction and a first through hole portion relatively.
  • a second through-hole portion having a small diameter and extending along a predetermined direction.
  • the first through-hole portion is provided inside the bottom surface of the housing 5.
  • the second through-hole portion is provided outside the bottom surface of the housing 5.
  • the engaged portion 1E is constituted by a stepped through hole between the first through hole portion and the second through hole portion.
  • each of the power supply shafts AS and CS and the through holes 1A and 1C includes a fitting portion SF and a fitted portion 1F that are fitted to each other. That is, each of the power supply shafts AS and CS has the fitting portion SF. Each of the through holes 1A and 1C has a fitted portion 1F.
  • rotation of the power supply shaft AS with respect to the through hole 1A having the predetermined direction as the rotation axis and rotation with respect to the through hole 1C of the power supply shaft CS having the predetermined direction as the rotation axis are suppressed. That is, rotation of the power supply shafts AS and CS around the respective predetermined directions is suppressed.
  • the fitting portion SF is an outer flat surface of each of the power supply shafts AS and CS extending along a predetermined direction.
  • the fitted portion 1F is an inner plane portion of each of the through holes 1A and 1C extending along a predetermined direction. Therefore, each of the fitting portion SF and the fitted portion 1F can be easily formed.
  • the fitting portion SF and the fitted portion 1F may have any shape as long as the fitting portion SF and the fitted portion 1F are fitted to each other so as to prevent the power supply shaft AS and the power supply shaft CS from rotating around a predetermined direction. You may have.
  • the electrolyzed water generating apparatus 100 includes a spring portion B that connects the anode A to the power supply shaft AS, and a spring portion B that connects the cathode C to the power supply shaft CS.
  • the spring portion B absorbs a positional deviation between the anode A and the power supply shaft AS for the anode A, and a positional deviation between the cathode C and the power supply shaft CS for the cathode C. Therefore, even if a load is applied to the power supply shafts AS and CS, the spring portion B absorbs the positional deviation of the power supply shafts AS and CS based on the load. Therefore, it is possible to prevent the positional deviation from affecting the at least one of the anode body AM and the cathode C.
  • the spring portion B has a spiral shape that turns around a predetermined direction as a rotation center axis. Therefore, the spring portion B more effectively absorbs the positional deviation between the anode A and the power supply shaft AS for the anode A, and the positional deviation between the cathode C and the power supply shaft CS for the cathode C. As a result, it is possible to more effectively prevent the position shift from adversely affecting at least one of the anode A and the cathode C.
  • the spring portion B may have any shape, for example, a shape as shown in FIG. Further, in the present embodiment, the two spring portions B are formed integrally with the cathode C and the anode A, respectively. However, spring parts formed separately and independently may be fixed to each of the cathode C and the anode A.
  • the lid 2 includes a holding protrusion R provided on the inner side so as to hold the laminated structure 4 in the laminating direction. According to this, only by fixing the lid portion 2 to the container portion 1, displacement, deformation, and the like of the power supply body F, the anode A, the cation exchange membrane I, and the cathode C constituting the laminated structure 4 are suppressed. .
  • two holding projections R provided on both sides in the width direction (Y direction) have a convex shape extending linearly along the water flow direction (X direction). It is. Further, among the three holding protrusions R in FIG. 2, one holding protrusion R provided at the center in the width direction is, as shown in FIG. 7, a plurality of holding protrusions arranged along the water flow direction. The projections RA and RC. For this reason, the extent to which the holding projection R obstructs the flow of water in the electrolyzed water generator 100 is reduced as much as possible.
  • the lower end surface of the central holding projection R in FIG. 2 is positioned slightly above the lower end surface of each holding projection R on both sides in FIG.
  • the pressing protrusions R at the center in FIG. 2 press the laminated structure 4 on both sides in FIG. 2, the pressing protrusions R at the center in the width direction of the laminated structure 4 (Z direction). Suppress lifting.
  • the pressing protrusion R at the center in the width direction in FIG. 2 includes a pressing protrusion RA for the anode A for pressing the anode A and a pressing protrusion RA for the cathode C for pressing the cathode C. And a plurality of holding projections RC. Therefore, displacement of each of the cathode C and the anode A is more reliably suppressed.
  • the pressing protrusion RC for the cathode C at one end in the longitudinal direction shown in FIG. 7 suppresses the axial displacement of the power feeding shaft CS for the cathode C.
  • the holding projections RA for the anode A shown in FIG. 7 suppress the axial displacement of the power supply shaft AS for the anode A.
  • the holding protrusions R are arranged in a plurality of rows, for example, three rows, but are not limited thereto.
  • the pressing protrusion R may have any shape as long as displacement and deformation of the anode A and the cathode C can be suppressed.
  • the housing 5 includes the container 1 for receiving the power supply F, the anode A, the cathode C, and the cation exchange membrane I, and the lid 2 for closing the opening of the container 1.
  • the electrolyzed water generator 100 includes an elastic body 3 between the bottom surface of the container unit 1 and the laminated structure 4 including the power supply F, the anode A, the cathode C, and the cation exchange membrane I.
  • the elastic body 3 is arranged so as to be in contact with the bottom surface of the container 1.
  • the container 1 has a shape corresponding to the shape of the elastic body 3.
  • the laminated structure 4 is provided so as to be in contact with the upper surface of the elastic body 3.
  • the lid 2 is configured to press the power supply F, the anode A, the cathode C, and the cation exchange membrane I toward the elastic body 3. Specifically, on the lower side of the lid 2, a protruding portion that protrudes downward from the lid 2 presses the upper surface of the cathode C. Thereby, the laminated structure 4 is pushed down. At this time, the elastic body 3 absorbs the force applied from the lid 2 to the laminated structure 4 below the laminated structure 4.
  • the elastic body 3 is deformed so as to expand to the side by the force of pressing the lid 2 downward from above through the laminated structure 4.
  • the elastic body 3 of the present embodiment includes a hollow portion H that suppresses the elastic body 3 from being deformed toward the side wall of the container 1. Therefore, the elastic body 3 is deformed by the force of the lid 2 pressing down from above through the laminated structure 4 so that the inner surface of the hollow portion H as a through hole of the elastic body 3 faces inward.
  • the deformation of the elastic body 3 has an adverse effect on the inner wall of the container part 1, specifically, the deformation and damage of the container part 1 are suppressed. Further, the deformation of the elastic body 3 is prevented from adversely affecting the container section 1, the power supply F, the anode A, the cathode C, and the cation exchange membrane I.
  • the hollow portion H is a plurality of through holes extending in a direction from the lid portion 2 to the bottom surface of the container portion 1.
  • the plurality of through holes extend parallel to each other in the up-down direction. Therefore, the hollow portion H can be easily formed. If the deformation of the elastic body 3 can be prevented from adversely affecting the container portion 1 and the laminated structure 4, the hollow portion H is replaced with a concave portion on each of the upper surface and the lower surface of the elastic body 3 instead of the through hole. May be provided.
  • the elastic body 3 has a substantially rectangular parallelepiped shape extending along a certain direction.
  • the shape of a substantially rectangular parallelepiped does not mean a strict rectangular parallelepiped in a mathematical sense, but may have some irregularities as long as the shape is entirely pronounced of a rectangular parallelepiped.
  • the hollow portions H are arranged in a line along the longitudinal direction of the rectangular parallelepiped. Specifically, the hollow portion H is provided so that the elastic body 3 has a shape similar to a building concrete block or a lattice shape. Further, the hollow portion H is configured by a shape in which a plurality of through holes are arranged in a line along the water flow direction.
  • the container portion 1 includes an arc-shaped corner portion R1 that connects the bottom surface of the container portion 1 and the inner side surface of the container portion 1 continuously.
  • the elastic body 3 includes an arc-shaped chamfer R2 that connects the lower surface of the elastic body 3 and the side surface of the elastic body 3 so as to be continuous.
  • the arc-shaped chamfered portion R2 has a shape corresponding to the arc-shaped corner portion R1, that is, a shape that fits into the arc-shaped corner portion R1, and is in close contact with the arc-shaped corner portion R1. Therefore, the elastic body 3 is sufficiently tightly adhered to the container 1, that is, sufficiently in contact with the container 1, and is stably fixed to the container 1.
  • the surface of the elastic body 3 on the side of the laminated structure 4 is a flat surface. Therefore, the elastic body 3 is in close contact with the lower surface of the laminated structure 4 and stably supports the laminated structure 4.
  • the elastic body 3 includes an elastic body fitting portion PR that protrudes to the outside from each of both longitudinal side surfaces of the elastic body 3.
  • the container part 1 includes two container fitted parts RE that receive the respective two elastic body fitting parts PR.
  • the elastic body fitting portion PR is a convex portion, but may be a concave portion.
  • the container fitting portion RE is a concave portion, but may be a convex portion.
  • the elastic body fitting part PR and the container fitting part RE may have any shape as long as they fit into each other.
  • the elastic body 3 has a mirror-symmetrical shape with respect to the central axis along each of the X-axis direction and the Y-axis direction when viewed along the Z-axis direction.
  • the elastic body 3 has an asymmetric structure in the Z-axis direction.
  • the elastic body 3 is mirror-symmetric with respect to a virtual plane perpendicular to the direction of water flow. Therefore, the elastic body 3 can fit the two elastic body fitting portions PR into any of the two container fitted portions RE.
  • the container portion 1 is provided regardless of which direction the two ends in the longitudinal direction face. It can be properly fitted into. Therefore, the elastic body 3 can be easily fitted into the container 1.
  • the elastic body 3 is inserted into the container part 1 upside down in the laminating direction, a gap remains between the container part 1 and the elastic body 3, so that the elastic body 3 may be deformed and the anode A ,
  • the cathode C and the cation exchange membrane I are not stable.
  • the elastic body 3 is attached to the housing 5 in the stacking direction of the elastic body fitting section PR and the container fitting section RE, that is, in FIG. It has a structure that prevents it from being inserted upside down.
  • the elastic body fitting portion PR is a convex portion, and protrudes only at a part of the upper end side of the side surface of the elastic body 3.
  • the container fitting part RE has a concave shape that fits into a convex part as the elastic body fitting part PR. Therefore, insertion of the elastic body 3 into the housing 5 in a state where the up-down direction is reversed, that is, upside down is easily prevented. As a result, the problem that the arc-shaped corner portion R1 and the arc-shaped chamfered portion R2 do not adhere to each other due to the reversal of the elastic body 3 in the stacking direction is easily prevented. Therefore, the elastic body 3 can stably support the laminated structure 4.
  • the electrolyzed water generator 100 of the embodiment is an ozone water generator that generates ozone water, but the substance to be generated is not limited to ozone.
  • the electrolyzed water generating apparatus 100 may exhibit a bactericidal action by generating hypochlorous acid.
  • the electrolyzed water generator 100 may generate oxygen water, hydrogen water, chlorine-containing water, hydrogen peroxide water, or the like.
  • the anode A of the electrolyzed water generating apparatus 100 can generate electrolyzed water such as conductive silicon, conductive diamond, titanium, platinum, lead oxide, or tantalum oxide, thereby improving conductivity and durability. If it has, it may be composed of any substance.
  • anode body AM is made of conductive diamond
  • power supply F is made of titanium.
  • the method for manufacturing the anode A is not limited to the manufacturing method by film formation, and a material other than metal may be used.
  • the cathode C may be any electrode having conductivity and durability, and may be made of, for example, platinum, titanium, stainless steel, or conductive silicon.
  • Electrolyzed water generation apparatus 100 of the present embodiment can be used by being attached to an apparatus capable of increasing the concentration of electrolyzed water generation in a liquid subjected to electrolysis treatment.
  • the device is, for example, a water treatment device such as a water purification device, a washing machine, a dishwasher, a hot water flush toilet seat, a refrigerator, a hot water supply / water supply device, a sterilization device, a medical device, an air conditioner, or a kitchen device.
  • the electrolyzed water generator 100 includes an anode A, a cathode C, and a cation exchange membrane I provided between the anode A and the cathode C.
  • the electrolyzed water generator 100 has an inlet Fin through which water flows in and an outlet Fout through which water flows out, includes an anode A, a cathode C, and a cation exchange membrane I, and has a first through hole 1A.
  • a housing 5 provided with a second through hole 1C.
  • the electrolyzed water generator 100 includes a first power supply shaft AS that is electrically connected to the anode A and extends in a predetermined direction so as to penetrate the first through hole 1A.
  • the electrolyzed water generation device 100 includes a second power supply shaft CS that is electrically connected to the cathode C and extends in a predetermined direction so as to penetrate the second through hole 1C.
  • Each of the first power supply shaft AS and the second power supply shaft CS has an engaging portion SE.
  • Each of the first through-hole 1A and the second through-hole 1C has an engaged portion 1E.
  • the engagement portion SE and the engaged portion 1E are displaced from the first through-hole 1A of the first power supply shaft AS in a predetermined direction, and the second penetration of the second power supply shaft CS in a predetermined direction.
  • the holes are engaged with each other so as to suppress the positional deviation from the hole 1C.
  • Each of the first power supply shaft AS and the second power supply shaft CS has a relatively large diameter, and extends from a first shaft portion extending along a predetermined direction to a first shaft portion.
  • a second shaft portion having a relatively small diameter and extending along a predetermined direction.
  • the engaging portion SE may be constituted by a stepped portion between the first shaft portion and the second shaft portion.
  • the first through-hole 1A and the second through-hole 1C each have a relatively large diameter, and extend along a predetermined direction with a first through-hole portion and a first through-hole portion that are relatively larger than the first through-hole portion.
  • a second through-hole portion extending along a predetermined direction.
  • the engaged portion 1E may be configured by a stepped through hole between the first through hole portion and the second through hole portion.
  • the power supply shafts AS and CS and the through holes 1A and 1C can be easily formed.
  • the electrolyzed water generator 100 includes an anode A, a cathode C, and a cation exchange membrane I provided between the anode A and the cathode C.
  • the electrolyzed water generator 100 has an inlet Fin through which water flows in and an outlet Fout through which water flows out, includes an anode A, a cathode C, and a cation exchange membrane I, and has a first through hole 1A.
  • a housing 5 provided with a second through hole 1C.
  • the electrolyzed water generator 100 includes a first power supply shaft AS that is electrically connected to the anode A and extends in a predetermined direction so as to penetrate the first through hole 1A.
  • the electrolyzed water generation device 100 includes a second power supply shaft CS that is electrically connected to the cathode C and extends in a predetermined direction so as to penetrate the second through hole 1C.
  • Each of the first power supply shaft AS and the second power supply shaft CS has a fitting portion SF.
  • Each of the first through hole 1A and the second through hole 1C has a fitted portion 1F.
  • the fitting portion SF and the fitted portion 1F rotate the first power supply shaft AS with respect to the first through-hole 1A with the predetermined direction as the rotation axis and the second power supply with the predetermined direction as the rotation axis.
  • the shafts CS are fitted to each other so as to suppress the rotation of the shaft CS with respect to the second through hole 1C.
  • the fitting portion SF may be an outer flat portion of each of the first power supply shaft AS and the second power supply shaft CS extending along a predetermined direction.
  • the fitted portion 1F may be an inner plane portion of each of the first through hole 1A and the second through hole 1C extending along a predetermined direction.
  • the fitting portion SF and the fitted portion 1F can be easily formed.
  • the electrolyzed water generator 100 includes an anode A, a cathode C, and a cation exchange membrane I provided between the anode A and the cathode C.
  • the electrolyzed water generator 100 has an inlet Fin through which water flows in and an outlet Fout through which water flows out, includes an anode A, a cathode C, and a cation exchange membrane I, and has a first through hole 1A.
  • a housing 5 provided with a second through hole 1C.
  • the electrolyzed water generator 100 includes a first power supply shaft AS that is electrically connected to the anode A and extends in a predetermined direction so as to penetrate the first through hole 1A.
  • the electrolyzed water generation device 100 includes a second power supply shaft CS that is electrically connected to the cathode C and extends in a predetermined direction so as to penetrate the second through hole 1C.
  • the electrolyzed water generation device 100 includes a first spring portion B that connects the anode A and the first power supply shaft AS, and a second spring portion B that connects the cathode C and the second power supply shaft CS. Prepare.
  • the spring portion B absorbs the positional deviation of the power supply shafts AS and CS based on the load. For this reason, it is possible to suppress the positional deviation from adversely affecting at least one of the anode A and the cathode C.
  • the first spring portion B and the second spring portion B may have a spiral shape that turns around a predetermined direction as a rotation center axis.
  • the electrolyzed water generator 100 includes an anode A, a cathode C, and a cation exchange membrane I provided between the anode A and the cathode C. Further, the electrolyzed water generator 100 includes a housing 5 that has an inlet Fin through which water flows in, an outlet Fout through which water flows out, and includes an anode A, a cathode C, and a cation exchange membrane I.
  • the housing 5 includes a positioning fitting portion T that fits with the external fitting portion P.
  • the electrolyzed water generation device 100 can be easily positioned with respect to the external device 200. Therefore, the electrolyzed water generator 100 can be used more favorably.
  • the housing 5 may include the container 1 for receiving the anode A, the cathode C, and the cation exchange membrane I, and the lid 2 for closing the opening of the container 1.
  • the positioning fitting portion T may be provided on the lid 2.
  • the container portion 1 having the positioning fitting portion T can be formed while suppressing a decrease in strength caused by the positioning fitting portion T.
  • the lid 2 may include a thin portion 21 having a relatively small thickness and a thick portion 22 having a relatively large thickness.
  • the positioning fitting part T may be provided in the thick part 22.
  • the positioning fitting portion T may be a groove extending along the longitudinal direction of the lid 2.
  • the electrolyzed water generation device 100 can be stably positioned with respect to the external fitted portion P.
  • the electrolyzed water generating apparatus 100 includes an anode A, a cathode C, and a cation exchange membrane I provided between the anode A and the cathode C. Further, the electrolyzed water generator 100 includes a housing 5 that has an inlet Fin through which water flows in, an outlet Fout through which water flows out, and includes an anode A, a cathode C, and a cation exchange membrane I.
  • the housing 5 includes a container 1 for receiving the anode A, the cathode C, and the cation exchange membrane I, and a lid 2 for closing an opening of the container 1.
  • the cover 2 includes a laser-transmissive resin having a color that easily transmits laser light.
  • the container section 1 contains a laser-absorbing resin of a color that relatively easily absorbs laser light.
  • the lid 2 and the container 1 are fixed to each other by laser resin welding.
  • the lid 2 and the container 1 are easily fixed.
  • the lid 2 may include a thin portion 21 having a relatively small thickness and a thick portion 22 having a relatively large thickness.
  • the container part 1 may include a container convex part 11 protruding toward the thin part 21 of the lid part 2.
  • the thin portion 21 and the container protrusion 11 may be fixed to each other by laser resin welding.
  • the lid 2 and the container 1 are firmly fixed.
  • the electrolyzed water generating apparatus 100 includes an anode A, a cathode C, and a cation exchange membrane I provided between the anode A and the cathode C. Further, the electrolyzed water generator 100 includes a housing 5 that has an inlet Fin through which water flows in, an outlet Fout through which water flows out, and includes an anode A, a cathode C, and a cation exchange membrane I.
  • the housing 5 includes a container 1 for receiving the anode A, the cathode C, and the cation exchange membrane I, and a lid 2 for closing an opening of the container 1.
  • the anode A, the cation exchange membrane I, and the cathode C constitute a laminated structure 4.
  • the lid part 2 includes a pressing convex part R provided inside the lid part 2 so as to press the laminated structure 4 in the laminating direction.
  • the positional displacement of the anode A, the cation exchange membrane I, and the cathode C constituting the laminated structure 4 is suppressed only by fixing the lid 2 to the container 1.
  • the holding protrusion R may be a convex shape extending along the water passage direction or a plurality of holding protrusions RA and RC arranged along the water passage direction.
  • the holding projection R may include a holding projection RA for the anode A that holds down the anode A and a holding projection RC for the cathode C that holds down the cathode C.
  • the electrolyzed water generator 100 includes an anode A, a cathode C, and a cation exchange membrane I provided between the anode A and the cathode C.
  • the electrolyzed water generator 100 has a housing 5 having an inflow port Fin into which water flows in, an outflow port Fout from which water flows out, and including an anode A, a cathode C, and a cation exchange membrane I.
  • the housing 5 includes a container 1 for receiving the anode A, the cathode C, and the cation exchange membrane I, and a lid 2 for closing an opening of the container 1.
  • the electrolyzed water generator 100 further includes an elastic body 3 provided between the bottom surface of the container 1 and the anode A, the cathode C, and the cation exchange membrane I.
  • the lid 2 is configured to press the anode A, the cathode C, and the cation exchange membrane I toward the elastic body 3.
  • the elastic body 3 includes a hollow portion H that suppresses the deformation of the elastic body 3 toward the side wall of the container 1.
  • the deformation of the elastic body 3 is prevented from adversely affecting the anode A, the cathode C, and the cation exchange membrane I.
  • the hollow portion H may be a through-hole extending from the lid portion 2 to the bottom surface of the container portion 1.
  • the hollow portion H is easily formed.
  • the elastic body 3 may have a substantially rectangular parallelepiped shape extending along a certain direction.
  • the hollow portions H may be arranged in a line along the longitudinal direction of the rectangular parallelepiped.
  • the through holes can be arranged in a line along the water flow direction.
  • the electrolyzed water generator 100 includes an anode A, a cathode C, and a cation exchange membrane I provided between the anode A and the cathode C.
  • the electrolyzed water generator 100 has a housing 5 having an inflow port Fin into which water flows in, an outflow port Fout from which water flows out, and including an anode A, a cathode C, and a cation exchange membrane I.
  • the housing 5 includes a container 1 for receiving the anode A, the cathode C, and the cation exchange membrane I, and a lid 2 for closing an opening of the container 1.
  • the electrolyzed water generator 100 further includes an elastic body 3 provided between the bottom surface of the container 1 and the anode A, the cathode C, and the cation exchange membrane I.
  • the container portion 1 includes an arc-shaped corner portion R1 that connects the bottom surface of the container portion 1 and the inner side surface of the container portion 1 so as to be continuous.
  • the elastic body 3 connects the lower surface of the elastic body 3 and the side surface of the elastic body 3 so as to be continuous, and includes an arc-shaped chamfered portion R2 which is in close contact with the arc-shaped corner portion R1.
  • the container part 1 includes a container fitting part RE on the inner side surface of the container part 1.
  • the elastic body 3 includes an elastic body fitting part PR that fits on the side surface of the elastic body 3 with the container fitting part RE.
  • the elastic body fitting part PR and the container fitting part RE have a structure for preventing the elastic body 3 from being inserted into the housing 5 upside down in the stacking direction of the anode A, the cation exchange membrane I, and the cathode C. Constitute.
  • the elastic body 3 can be easily prevented from being turned upside down into the housing 5 in the laminating direction of the anode A, the cation exchange membrane I, and the cathode C.
  • the elastic body 3 may be mirror-symmetric with respect to a virtual plane perpendicular to the direction of water flow.
  • the elastic body 3 can be appropriately fitted into the container section 1 regardless of which direction the two ends face. Therefore, the elastic body 3 can be easily fitted into the container 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

電解水生成装置は、陽極(A)と、陰極(C)と、陽イオン交換膜(I)と、第1の貫通孔(1A)および第2の貫通孔(1C)が設けられたハウジング(5)と、第1の給電シャフト(AS)と、第2の給電シャフト(CS)と、を備える。第1の給電シャフト(AS)および第2の給電シャフト(CS)は、それぞれ、係合部を有する。第1の貫通孔(1A)および第2の貫通孔(1C)は、それぞれ、被係合部を有する。係合部および被係合部は、所定の方向における第1の給電シャフト(AS)の第1の貫通孔(1A)に対する位置ズレ、および、所定の方向における第2の給電シャフト(CS)の第2の貫通孔(1C)に対する位置ズレを抑制するように互いに係合する。

Description

電解水生成装置
 本開示は、電解水生成装置に関する。
 従来から、原水を受け入れ、オゾン水等の電解水を生成する電解水生成装置の開発が行われている。従来の電解水生成装置は、陽極と、陰極と、陽極と陰極との間に設けられた陽イオン交換膜と、を備える。また、従来の電解水生成装置は、水が流入する流入口と、水が流出する流出口とを有し、陽極、陰極、および陽イオン交換膜を内包するハウジングを備える。さらに、従来の電解水生成装置は、陽極および陰極にそれぞれ電気的に接続され、ハウジングの2つの貫通孔をそれぞれ突き抜けるように所定の方向に延びる2つの給電シャフトと、を備える(例えば、特許文献1)。
特開2017-176993号公報
 従来の電解水生成装置においては、陽極、陰極、および陽イオン交換膜を適切な位置関係に配置することにより、電解水を良好に生成することができる。しかし、陽極、陰極、および陽イオン交換膜の位置関係にズレが生じた場合、電解水の生成性能が劣化するおそれがある。したがって、陽極、陰極、および陽イオン交換膜を適切な位置関係に維持することが求められる。
 本開示は、このような従来技術の有する課題に鑑みてなされたものである。本開示の目的は、陽極、陰極、および陽イオン交換膜が位置ズレする可能性を低減することができる電解水生成装置を提供することである。
 本開示の電解水生成装置は、陽極と、陰極と、陽極と陰極との間に設けられた陽イオン交換膜と、水が流入する流入口と、水が流出する流出口とを有し、陽極、陰極、および陽イオン交換膜を内包し、第1の貫通孔および第2の貫通孔が設けられたハウジングと、陽極に電気的に接続され、第1の貫通孔を突き抜けるように所定の方向に延びる第1の給電シャフトと、陰極に電気的に接続され、第2の貫通孔を突き抜けるように所定の方向に延びる第2の給電シャフトと、を備える。第1の給電シャフトおよび第2の給電シャフトは、それぞれ、係合部を有する。第1の貫通孔および第2の貫通孔は、それぞれ、被係合部を有する。係合部および被係合部は、所定の方向における第1の給電シャフトの第1の貫通孔に対する位置ズレ、および、所定の方向における第2の給電シャフトの第2の貫通孔に対する位置ズレを抑制するように互いに係合する。
 本開示の電解水生成装置は、陽極と、陰極と、陽極と陰極との間に設けられた陽イオン交換膜と、水が流入する流入口と、水が流出する流出口とを有し、陽極、陰極、および陽イオン交換膜を内包し、第1の貫通孔および第2の貫通孔が設けられたハウジングと、陽極に電気的に接続され、第1の貫通孔を突き抜けるように所定の方向に延びる第1の給電シャフトと、陰極に電気的に接続され、第2の貫通孔を突き抜けるように所定の方向に延びる第2の給電シャフトと、を備える。第1の給電シャフトおよび第2の給電シャフトは、それぞれ、嵌合部を有する。第1の貫通孔および前記第2の貫通孔は、それぞれ、被嵌合部を有する。嵌合部および被嵌合部は、所定の方向を回転軸とする第1の給電シャフトの第1の貫通孔に対する回転、および、所定の方向を回転軸とする第2の給電シャフトの第2の貫通孔に対する回転を抑制するように互いに嵌り合う。
 本開示の電解水生成装置は、陽極と、陰極と、陽極と陰極との間に設けられた陽イオン交換膜と、水が流入する流入口と、水が流出する流出口とを有し、陽極、陰極、および陽イオン交換膜を内包し、第1の貫通孔および第2の貫通孔が設けられたハウジングと、陽極に電気的に接続され、第1の貫通孔を突き抜けるように所定の方向に延びる第1の給電シャフトと、陰極に電気的に接続され、第2の貫通孔を突き抜けるように所定の方向に延びる第2の給電シャフトと、陽極と第1の給電シャフトとを接続する第1のバネ部と、陰極と第2の給電シャフトとを接続する第2のバネ部と、を備える。
 本開示の電解水生成装置は、陽極と、陰極と、陽極と陰極との間に設けられた陽イオン交換膜と、水が流入する流入口と、水が流出する流出口とを有し、陽極、陰極、および陽イオン交換膜を内包するハウジングと、を備える。ハウジングは、外部の被嵌合部と嵌合する位置決め用嵌合部を含む。
 本開示の電解水生成装置は、陽極と、陰極と、陽極と陰極との間に設けられた陽イオン交換膜と、水が流入する流入口と、水が流出する流出口とを有し、陽極、陰極、および陽イオン交換膜を内包するハウジングと、を備える。ハウジングは、陽極、陰極、および陽イオン交換膜を受け入れる容器部と、容器部の開口を閉塞する蓋部と、を含む。蓋部は、相対的にレーザ光を透過し易い色を有するレーザ透過性樹脂を含む。容器部は、相対的にレーザ光を吸収し易い色のレーザ吸収性樹脂を含む。蓋部と容器部とは、レーザ樹脂溶着によって互いに固定されている。
 本開示の電解水生成装置は、陽極と、陰極と、陽極と陰極との間に設けられた陽イオン交換膜と、水が流入する流入口と、水が流出する流出口とを有し、陽極、陰極、および陽イオン交換膜を内包するハウジングと、を備える。ハウジングは、陽極、陰極、および陽イオン交換膜を受け入れる容器部と、容器部の開口を閉塞する蓋部と、を含む。陽極、陽イオン交換膜、および陰極は、積層構造を構成する。蓋部は、積層構造を積層方向において押さえ付けるように内側に設けられた押さえ凸部を含む。
 本開示の電解水生成装置は、陽極と、陰極と、陽極と陰極との間に設けられた陽イオン交換膜と、水が流入する流入口と、水が流出する流出口とを有し、陽極、陰極、および陽イオン交換膜を内包するハウジングと、を備える。ハウジングは、陽極、陰極、および陽イオン交換膜を受け入れる容器部と、容器部の開口を閉塞する蓋部と、を含む。電解水生成装置は、容器部の底面と陽極、陰極、および陽イオン交換膜との間に設けられた弾性体をさらに備える。蓋部は、陽極、陰極、および陽イオン交換膜を弾性体に向かって押さえ付けるように構成される。弾性体は、弾性体が容器部の側壁に向かって変形することを抑制する中空部を含む。
 本開示の電解水生成装置は、陽極と、陰極と、陽極と陰極との間に設けられた陽イオン交換膜と、水が流入する流入口と、水が流出する流出口とを有し、陽極、陰極、および陽イオン交換膜を内包するハウジングと、を備える。ハウジングは、陽極、陰極、および陽イオン交換膜を受け入れる容器部と、容器部の開口を閉塞する蓋部と、を含む。電解水生成装置は、容器部の底面と陽極、陰極、および陽イオン交換膜との間に設けられた弾性体をさらに備える。容器部は、容器部の底面と容器部の内側面とを連続するように接続する円弧状コーナー部を含む。弾性体は、弾性体の下面と弾性体の側面とを連続するように接続し、円弧状コーナー部に密着する円弧状面取り部を含む。容器部は、容器部の内側の側面に容器被嵌合部を含む。弾性体は、弾性体の側面に容器被嵌合部と嵌合する弾性体嵌合部を含む。弾性体嵌合部および容器被嵌合部は、陽極、陽イオン交換膜、および陰極の積層方向において弾性体がハウジングへ裏表逆向きに入れられることを防止する構造を構成する。
 本開示の電解水生成装置によれば、給電シャフトが延びる所定の方向における陽極、陰極、および陽イオン交換膜の位置ズレが抑制される。
 本開示の電解水生成装置によれば、給電シャフトが延びる所定の方向を回転中心軸とする回転方向の陽極、陰極、および陽イオン交換膜の位置ズレが抑制される。
 本開示の電解水生成装置によれば、給電シャフトに負荷が生じても、バネ部がその負荷に基づく給電シャフトの位置ズレを吸収する。そのため、その位置ズレが陽極および陰極の少なくともいずれか一方へ悪影響を与えることが抑制される。
 本開示の電解水生成装置によれば、電解水生成装置をより良好に使用することができる。
 本開示の電解水生成装置によれば、蓋部と容器部とが容易に固定される。
 本開示の電解水生成装置によれば、積層構造を構成する陽極、陽イオン交換膜、および陰極の位置ズレが抑制される。
 本開示の電解水生成装置によれば、弾性体の変形が容器部に悪影響を及ぼすことが抑制される。
 本開示の電解水生成装置によれば、陰極、陽極、および陽イオン交換膜の積層方向における弾性体のハウジングへの裏表逆入れが容易に防止される。
図1は、実施の形態の電解水生成装置の分解斜視図である。 図2は、実施の形態の電解水生成装置の幅方向に沿って切った縦断面図である。 図3は、実施の形態の電解水生成装置の陰極、バネ部、および給電シャフトの位置関係を示す部分平面図である。 図4は、実施の形態の電解水生成装置の給電シャフトの第1の斜視断面の拡大図である。 図5は、実施の形態の電解水生成装置の給電シャフトの第2の斜視断面の拡大図である。 図6は、実施の形態の電解水生成装置の他の例の陽極、バネ部、および給電シャフトの位置関係を示す部分斜視図である。 図7は、実施の形態の電解水生成装置の長さ方向に沿って切った縦断面図である。 図8は、実施の形態の電解水生成装置の弾性体の裏表逆入れ防止構造の拡大斜視図である。
 以下、図面を参照しながら、各実施の形態の電解水生成システムおよびそれに用いられている電解水生成装置を説明する。以下の複数の実施の形態においては、同一の参照符号が付された部分同士は、図面上における形状に多少の相違があっても、特段の記載がない限り、互いに同一の機能を有するものとする。
 本実施の形態においては、電解水生成装置100は、電解水としてオゾン水を生成するオゾン水生成装置である。なお、オゾン水は、殺菌または有機物分解に有効であるため、水処理分野、食品、または医学分野において利用されており、残留性が低いこと、および、副生成物が生成されないという利点を有している。
 本明細書において、図1のX方向は、水の流路に沿った方向であり、通水方向と呼ばれる。図1に示されるように、電解水生成装置100は、X方向が長手方向となる直方体形状を有する。図1のY方向は、水の流路を横切る方向であり、幅方向と呼ばれる。Y方向は、水平面に沿った方向である。図1のZ方向は、給電体F、陽極A、陽イオン交換膜I、および陰極Cが積層される方向であり、積層方向と呼ばれる。図1では、電解水生成装置100の蓋部2が上側に位置付けられる状態で、上下方向(鉛直方向)をZ方向として示す。なお、X方向、Y方向、Z方向は、図1に示される方向の組合せに限定されず、電解水生成装置100は、どのような姿勢で設けられていてもよい。
 ただし、実施の形態の電解水生成装置100は、水の流路が鉛直方向に沿って延びるような姿勢で他の装置に組み込まれることが好ましい。より具体的には、電解水生成装置100は、流入口Finが下を向き、かつ、流出口Foutが上を向くような姿勢で他の装置へ組み込むことが好ましい。言い換えると、電解水生成装置100の姿勢は、水が下方から上方へ流れるように設定されることが好ましい。その理由は、陽極Aの表面で発生したオゾンが、気泡成長する前に速やかに陽極Aの表面から引き離されることが好ましいためである。
 流入口Finが下を向き、かつ、流出口が上を向いていると、浮力によって、オゾンが速やかに陽極Aの表面から離れる。これによれば、オゾンが気泡の状態で残存することが抑制され、水に溶け込み易くなる。これにより、オゾン水の生成効率が向上する。ただし、電解水生成装置100は、水の流路が鉛直方向に沿って延びるような姿勢以外のいかなる姿勢で他の装置に組み込まれてもよい。
 図1に示されるように、電解水生成装置100は、給電体Fおよび陽極本体AMからなる陽極Aと、陰極Cと、陽極Aと陰極Cとの間に設けられた陽イオン交換膜Iと、を備えている。本実施の形態においては、陽極Aが陽極本体AMと給電体Fとからなる例が示されている。しかし、陽極Aは、1つの材料によって構成されていてもよい。また、陽極Aは、3以上の材料によって構成されていてもよい。
 給電体F、陽極本体AM、陽イオン交換膜I、および陰極Cは、積層構造4を構成している。給電体F、陽極本体AM、陽イオン交換膜I、および陰極Cは、いずれも、平板形状を有する。平板形状は、X方向、すなわち通水方向を長手方向とし、Y方向、すなわち幅方向を短手方向とする長方形の平面形状を有し、Z方向、すなわち積層方向に厚さを有する。給電体F、陽極本体AM、陽イオン交換膜I、および陰極Cは、この順番で下から上へ向かって、Z方向に積層されている。
 陰極Cは、平面視においてV字状の貫通孔を有する。陽イオン交換膜Iは、通水方向を横切る方向に複数の貫通孔が設けられている。陰極Cの貫通孔および陽イオン交換膜Iの貫通孔の中でオゾンが発生し、容器部1内の水に溶解する。これにより、オゾン水が生成される。
 図1に示されるように、本実施の形態の電解水生成装置100は、ハウジング5を備える。ハウジング5は、水が流入する流入口Finと、水が流出する流出口Foutとを有し、給電体F、陽極A、陰極C、および陽イオン交換膜Iを内包する。ハウジング5は、給電体F、陽極A、陰極C、および陽イオン交換膜Iを受け入れる容器部1と、容器部1の開口を閉塞する蓋部2と、を含む。
 図1および図2に示されるように、容器部1の底には、弾性体3が置かれる。弾性体3の上には、積層構造4が置かれる。蓋部2は、積層構造4を押さえ付けるように、容器部1の上面に固定される。
 図1および図2に示されるように、ハウジング5は、外部装置200の被嵌合部Pに嵌合する位置決め用勘合部Tを含む。そのため、電解水生成装置100を外部装置200に対して容易に位置決めすることができる。本実施の形態においては、被嵌合部Pは、凸部であり、位置決め用嵌合部Tは、凹部である。しかし、被嵌合部Pは、凹部であり、位置決め用嵌合部Tは、凸部であってもよい。つまり、位置決め用勘合部Tおよび被嵌合部Pは、互いに嵌合する形状であれば、いかなる形状を有していてもよい。
 本実施の形態においては、位置決め用嵌合部Tは、長手方向に沿って延びる複数の線状の溝である。ただし、位置決め用嵌合部Tは、外部装置200以外に外部に存在する被装着物の被嵌合部に嵌合するものであれば、いなかる形状を有していてもよい。
 本実施の形態においては、位置決め用勘合部Tは、蓋部2に設けられている。そのため、位置決め用勘合部Tに起因した強度の低下を抑制しながら、位置決め用勘合部Tを有する容器部1を形成することができる。ただし、位置決め用勘合部Tは、容器部1に設けられていてもよい。
 外部装置200は、外部装置200の外縁から垂れ下がる爪部201を有する。外部装置200の爪部201が容器部1の上端から外方へ延びる鍔部12の下側に引っ掛けられるように、電解水生成装置100が外部装置200の爪部201の間に挿入される。それにより、電解水生成装置100が外部装置200に固定される。なお、外部装置200は、電解水生成装置100で生成された電解水、たとえば、オゾン水を利用する装置である。
 蓋部2は、相対的に肉厚が小さい薄肉部21と、相対的に肉厚が大きい厚肉部22とを含む。位置決め用勘合部Tは、厚肉部22に設けられている。そのため、蓋部2の強度が低下することが抑制される。位置決め用勘合部Tは、蓋部2の長手方向に沿って延びる溝部である。そのため、電解水生成装置100を外部装置200の被嵌合部Pに対して安定的に位置決めすることができる。
 蓋部2は、相対的にレーザ光を透過し易い色を有するレーザ透過性樹脂を含む。容器部1は、相対的にレーザ光を吸収し易い色のレーザ吸収性樹脂を含む。電解水生成装置100の製造時においては、蓋部2のZ方向の上側からレーザ光が薄肉部21に照射される。それにより、薄肉部21を透過したレーザ光が、蓋部2の薄肉部21の下面と容器部1の上面とを加熱する。その結果、本実施の形態においては、蓋部2の薄肉部21と容器部1とがレーザ樹脂溶着によって互いに固定される。これによれば、蓋部2と容器部1とが容易に固定される。
 なお、本実施の形態においては、容器部1は、黒色またはそれに近い色を有し、蓋部2は、透明、白色、またはそれらに近い色を有する。つまり、容器部1と蓋部2とは、レーザ光の透過度が互いに異なる。そのため、レーザ溶着を極めて容易に実行することができる。ただし、容器部1および蓋部2の色は、それぞれ、互いのレーザ樹脂溶着を実現できる色であれば、いかなる色であってもよい。
 また、蓋部2の薄肉部21は、蓋部2に形成された溝の底部を構成し、溝に容器部1の容器部1の鍔部12に形成された容器凸部11が挿入されている。そのため、蓋部2と容器部1とが強固に固定される。また、蓋部2と容器部1との位置決めとレーザ樹脂溶着のための薄肉部21の形成との双方を1つの溝部によって実現することができる。
 図1に示されるように、陽極Aの給電体Fには、陽極A用の給電シャフトASが電気的に接続されている。陽極Aの給電体Fと陽極A用の給電シャフトASとは、陽極A用のバネ部Bを介して接続されている。陽極A用の給電シャフトASは、容器部1の底面に設けられた貫通孔1Aに挿入される。陽極A用の給電シャフトASの容器部1の外部に突出する部分は、電力供給部の正極に電気的に接続される。
 図1に示されるように、陰極Cには、陰極C用の給電シャフトCSが電気的に接続されている。陰極Cと陰極C用の給電シャフトCSとは陰極C用のバネ部Bを介して接続されている。陰極C用の給電シャフトCSは、容器部1の底面に設けられた貫通孔1Cに挿入される。陰極C用の給電シャフトCSの容器部1の外部に突出する部分は、電力供給部の負極に電気的に接続される。
 陽極A用の給電シャフトASの容器部1の外部に突出する部分および陰極C用の給電シャフトCSの容器部1の外部に突出する部分は、それぞれ、オーリングO、ワッシャW、座金S、および六角ナットNに挿入される。その結果、積層構造4を構成する給電体F、陽極A、陽イオン交換膜I、および陰極Cは、六角ナットNの締め付けにより容器部1の底面に押さえ付けられて固定される。
 図3~図5に示されるように、電解水生成装置100は、陽極Aおよび陰極Cにそれぞれ電気的に接続され、ハウジング5の2つの貫通孔1A,1Cをそれぞれ突き抜けるように所定の方向に延びる2つの給電シャフトAS,CSを備える。すなわち、ハウジング5には、2つの貫通孔1A,1Cが設けられている。給電シャフトASは、陽極Aに電気的に接続され、貫通孔1Aを突き抜けるように所定の方向に延びている。給電シャフトCSは、陰極Cに電気的に接続され、貫通孔1Cを突き抜けるように所定の方向に延びている。
 給電シャフトAS,CSおよび貫通孔1A,1Cは、それぞれ、所定の方向における給電シャフトAS,CSの貫通孔1A,1Cに対する位置ズレを抑制するように互いに係合する係合部SEおよび被係合部1Eを含む。すなわち、給電シャフトAS,CSは、それぞれ、係合部SEを有する。貫通孔1A,1Cは、それぞれ、被係合部1Eを有する。係合部SEおよび被係合部1Eは、所定の方向における給電シャフトASの貫通孔1Aに対する位置ズレ、および、給電シャフトCSの貫通孔1Cに対する位置ズレを抑制するように互いに係合する。これによれば、給電シャフトAS,CS延びる所定の方向、すなわち軸方向におけるズレが抑制される。
 図3~図5に示されるように、係合部SEは、ハウジング5の外側のほうがハウジング5の内側よりも給電シャフトAS,CSの径が小さい段差凸部である。具体的には、給電シャフトASおよび給電シャフトCSのそれぞれは、相対的に大きな径を有し、所定の方向に沿って延びる第1のシャフト部分と、第1のシャフト部分より相対的に小さな径を有し、所定の方向に沿って延びる第2のシャフト部分とを有する。第1のシャフト部分は、ハウジング5の底面部から内側に延びている。第2のシャフト部分は、ハウジング5の底面部から外側に延びている。係合部SEは、第1のシャフト部分と第2のシャフト部分との間の段差凸部によって構成される。
 被係合部1Eは、ハウジング5の外側のほうがハウジング5の内側よりも貫通孔1A,1Cの径が小さい段差貫通孔である。具体的には、貫通孔1Aおよび貫通孔1Cのそれぞれは、相対的に大きな径を有し、所定の方向に沿って延びる第1の貫通孔部分と、第1の貫通孔部分より相対的に小さな径を有し、所定の方向に沿って延びる第2の貫通孔部分とを有する。第1の貫通孔部分は、ハウジング5の底面部において内側に設けられる。第2の貫通孔部分は、ハウジング5の底面部において外側に設けられる。被係合部1Eは、第1の貫通孔部分と第2の貫通孔部分との間の段差貫通孔によって構成される。
 図3~図5に示されるように、給電シャフトAS,CSおよび貫通孔1A,1Cは、それぞれ、互いに嵌り合う嵌合部SFおよび被嵌合部1Fを含む。すなわち、給電シャフトAS,CSは、それぞれ、嵌合部SFを有する。貫通孔1A,1Cは、それぞれ、被嵌合部1Fを有する。それにより、所定の方向を回転軸とする給電シャフトASの貫通孔1Aに対する回転、および、所定の方向を回転軸とする給電シャフトCSの貫通孔1Cに対する回転が抑制される。つまり、給電シャフトAS,CSのそれぞれの所定の方向の回りの回転が抑制される。
 本実施の形態においては、嵌合部SFは、所定の方向に沿って延びる給電シャフトAS,CSのそれぞれの外側平面部である。被嵌合部1Fは、所定の方向に沿って延びる貫通孔1A,1Cのそれぞれの内側平面部である。そのため、嵌合部SFおよび被嵌合部1Fのそれぞれを容易に形成することができる。ただし、嵌合部SFおよび被嵌合部1Fは、互いに嵌り合うことによって、給電シャフトASおよび給電シャフトCSのそれぞれが所定の方向のまわりに回転することを抑制するものであれば、いかなる形状を有していてもよい。
 電解水生成装置100は、陽極Aと給電シャフトASとを接続するバネ部B、および、陰極Cと給電シャフトCSとを接続するバネ部Bを備える。バネ部Bは、陽極Aと陽極A用の給電シャフトASとの間の位置ズレ、および、陰極Cと陰極C用の給電シャフトCSとの間の位置ズレを吸収する。そのため、給電シャフトAS,CSに負荷が生じても、バネ部Bがその負荷に基づく給電シャフトAS,CSの位置ズレを吸収する。したがって、位置ズレが陽極本体AMおよび陰極Cの少なくともいずれか一方へ悪影響が生じることが抑制される。
 図3~図5に示されるように、バネ部Bは、所定の方向を回転中心軸として旋回するような渦巻き状である。そのため、バネ部Bは、陽極Aと陽極A用の給電シャフトASとの間の位置ズレ、および、陰極Cと陰極C用の給電シャフトCSとの間の位置ズレをより効果的に吸収する。その結果、位置ズレが陽極Aおよび陰極Cの少なくともいずれか一方へ悪影響を及ぼすことがより効果的に抑制される。
 バネ部Bは、いかなる形状を有していてもよく、たとえば、図6に示されるような形状であってもよい。また、本実施の形態においては、2つのバネ部Bは、それぞれ、陰極Cおよび陽極Aと一体的に形成されている。しかし、別個独立して形成されたバネ部品が、陰極Cおよび陽極Aのそれぞれに固定されたものであってもよい。
 次に、蓋部2の構成の一例について説明する。
 図2および図7に示されるように、蓋部2は、積層構造4を積層方向において押さえ付けるように内側に設けられた押さえ凸部Rを含む。これによれば、蓋部2を容器部1に固定するだけで、積層構造4を構成する給電体F、陽極A、陽イオン交換膜I、および陰極Cの位置ズレおよび変形等が抑制される。
 図2における3つの押さえ凸部Rのうち、幅方向(Y方向)の両側のそれぞれに設けられた2つの押さえ凸部Rは、通水方向(X方向)に沿って直線状に延びる凸形状である。また、図2における3つの押さえ凸部Rのうち、幅方向の中央に設けられた1つの押さえ凸部Rは、図7に示されるように、通水方向に沿って並べられた複数の押さえ突起RA,RCである。そのため、押さえ凸部Rが電解水生成装置100内での水の流れを阻害する程度が極力小さくなる。
 ただし、図2における中央の押さえ凸部Rの下端面は、図2における両側のそれぞれの押さえ凸部Rの下端面に比較して、わずかに上側に位置付けられている。図2における中央の押さえ凸部Rは、図2における両側のそれぞれの押さえ凸部Rが積層構造4を押さえ付けたときに、積層構造4の幅方向における中央部の積層方向(Z方向)における浮き上がりを抑制する。
 具体的には、図2における幅方向の中央部の押さえ凸部Rは、図7に示されるように、陽極Aを押さえ付ける陽極A用の押さえ突起RAと、陰極Cを押さえ付ける陰極C用の複数の押さえ突起RCとを含む。そのため、陰極Cおよび陽極Aのそれぞれの位置ズレがより確実に抑制される。具体的には、図7に示される長手方向の一端の陰極C用の押さえ突起RCは、陰極C用の給電シャフトCSの軸方向の位置ズレを抑制する。一方、図7に示される陽極A用の押さえ突起RAは、陽極A用の給電シャフトASの軸方向の位置ズレを抑制する。
 本実施の形態においては、押さえ凸部Rは、複数列、たとえば、3列に並べられているが、これに限定されない。押さえ凸部Rは、陽極Aおよび陰極Cの位置ズレおよび変形を抑制できるのであれば、いかなる形状を有していてよい。
 次に、ハウジング5の構成の一例について説明する。
 ハウジング5は、給電体F、陽極A、陰極C、および陽イオン交換膜Iを受け入れる容器部1と、容器部1の開口を閉塞する蓋部2と、を含む。電解水生成装置100は、容器部1の底面と、給電体F、陽極A、陰極C、および陽イオン交換膜Iからなる積層構造4との間に、弾性体3を備える。
 弾性体3は、容器部1の底面に接するように配置される。容器部1は、弾性体3の形状に対応する形状を有する。弾性体3の上面に接するように、積層構造4が設けられる。
 蓋部2は、給電体F、陽極A、陰極C、および陽イオン交換膜Iを弾性体3に向かって押さえ付けるように構成される。具体的には、蓋部2の下側において、蓋部2から下方へ突出している突出部は、陰極Cの上面を押さえ付ける。それにより、積層構造4は、下方へ押し下げられる。このとき、弾性体3は、積層構造4の下側で、蓋部2から積層構造4へ加えられる力を吸収する。
 弾性体3は、一般に、蓋部2が積層構造4を介して上方から下方へ押さえ付ける力によって、側方へ膨らむように変形する。しかし、本実施の形態の弾性体3は、弾性体3が容器部1の側壁に向かって変形することを抑制する中空部Hを含む。そのため、弾性体3は、蓋部2が積層構造4を介して上方から下方へ押さえ付ける力によって、弾性体3の貫通孔としての中空部Hの内面が内側へ向かうように変形する。これにより、弾性体3の変形が容器部1の内壁へ悪影響を与えること、具体的には、容器部1の変形および損傷等が抑制される。また、弾性体3の変形が、容器部1、ならびに、給電体F、陽極A、陰極C、および陽イオン交換膜Iに悪影響を与えることが抑制される。
 中空部Hは、蓋部2から容器部1の底面に向かう方向に延びる複数の貫通孔である。複数の貫通孔は、上下方向に互いに平行に延びている。そのため、簡単に中空部Hを形成することができる。なお、弾性体3の変形が容器部1、および積層構造4に悪影響を与えることを抑制できるのであれば、中空部Hとして、貫通孔の代わりに、弾性体3の上面および下面のそれぞれに凹部が設けられていてもよい。
 弾性体3は、ある方向に沿って延びる実質的に直方体の形状を有している。実質的に直方体の形状とは、数学的な意味での厳密な直方体を意味するのではなく、全体として直方体を想起させる形状であれば、多少の凹凸を有していてもよい。
 中空部Hは、直方体の長手方向に沿って一列に並べられる。具体的には、中空部Hは、弾性体3が建築用コンクリートブロックまたは格子形状に類似した形状になるように設けられる。また、中空部Hは、通水方向に沿って複数の貫通孔が一列に並べられた形状によって構成される。
 図2および図8に示されるように、容器部1は、容器部1の底面と容器部1の内側面とを連続するように接続する円弧状コーナー部R1を含む。弾性体3は、弾性体3の下面と弾性体3の側面とを連続するように接続する円弧状面取り部R2を含む。円弧状面取り部R2は、円弧状コーナー部R1に対応する形状、すなわち、円弧状コーナー部R1に嵌り合う形状を有し、円弧状コーナー部R1に密着する。そのため、弾性体3は、容器部1に十分にしっかりと密着、すなわち十分に接触し、安定的に容器部1に固定される。
 弾性体3の積層構造4側の面は、面一の平面である。したがって、弾性体3は、積層構造4の下面に密着し、積層構造4を安定的に支持する。
 弾性体3は、弾性体3の長手方向の両側面のそれぞれから外部へ突出する弾性体嵌合部PRを含む。容器部1は、2つの弾性体嵌合部PRのそれぞれを受け入れる2つの容器被嵌合部REを含む。本実施の形態においては、弾性体嵌合部PRは、凸部であるが、凹部であってもよい。また、容器被嵌合部REは、凹部であるが、凸部であってもよい。弾性体嵌合部PRおよび容器被嵌合部REは、互いに嵌合する形状であれば、いかなる形状を有していてもよい。
 また、弾性体3は、Z軸方向に沿って見たとき、X軸の方向およびY軸の方向のそれぞれに沿った中心軸に対して、鏡面対称の形状を有する。一方、弾性体3は、Z軸方向においては、非対称な構造である。また、弾性体3は、水の通水方向に垂直な仮想平面に対して鏡面対称である。そのため、弾性体3は、2つの弾性体嵌合部PRを2つの容器被嵌合部REのいずれにも嵌め込むことができる。つまり、長手方向を有する弾性体3は、その長手方向が通水方向に沿って延びるように配置さえしていれば、その長手方向の両端部がどちらの向きを向いていても、容器部1に適切に嵌め込まれ得る。そのため、弾性体3の容器部1への嵌め込みが容易になる。
 仮に、弾性体3が容器部1に積層方向において裏表逆向きで入れられると、容器部1と弾性体3との間に隙間が残存するため、弾性体3が変形するおそれがあり、陽極A、陰極C、および陽イオン交換膜Iの位置が安定しない。しかし、弾性体嵌合部PRおよび容器被嵌合部REは、陽極A、陽イオン交換膜I、および陰極Cの積層方向において、弾性体3がハウジング5へ裏表、すなわち図2および図8における上下逆向きに入れられることを防止する構造を有する。具体的には、弾性体嵌合部PRは、凸部であり、弾性体3の側面の上端側の一部においてのみ突出している。容器被嵌合部REは、弾性体嵌合部PRとしての凸部に嵌合する凹部形状を有する。そのため、弾性体3のハウジング5への上下方向が逆向きになった状態での挿入、すなわち裏表逆入れが容易に防止される。その結果、積層方向における弾性体3の裏表逆入れによって円弧状コーナー部R1と円弧状面取り部R2とが密着しないという不具合が容易に防止される。したがって、弾性体3は、積層構造4を安定的に支持することができる。
 実施の形態の電解水生成装置100は、オゾン水を生成するオゾン水生成装置であるが、生成させる物質はオゾンに限定されない。たとえば、電解水生成装置100は、次亜塩素酸を生成することにより、殺菌作用を発揮するものであってもよい。また、電解水生成装置100は、酸素水、水素水、塩素含有水、または過酸化水素水等を生成するものであってもよい。
 本実施の形態の電解水生成装置100の陽極Aは、導電性シリコン、導電性ダイヤモンド、チタン、白金、酸化鉛、または酸化タンタル等の電解水を生成することができ、導電性および耐久性を有するのであれば、いかなる物質により構成されていてもよい。本実施の形態においては、たとえば、陽極本体AMが導電性ダイヤモンドで構成されており、給電体Fがチタンで構成されている。陽極Aがダイヤモンド電極である場合、陽極Aの製造方法は、成膜による製造方法に限定されず、また、金属以外の材料を用いるものであってもよい。
 陰極Cは、導電性と耐久性を備えた電極であればよく、例えば、白金、チタン、ステンレス、または導電性シリコンなどで構成することも可能である。
 本実施の形態の電解水生成装置100は、電解処理した液中の電解水生成濃度を高めることを可能にする装置に取り付けることによって使用することができる。その装置は、たとえば、浄水装置等の水処理機器、洗濯機、食洗機、温水洗浄便座、冷蔵庫、給湯給水装置、殺菌装置、医療用機器、空調機器、または厨房機器等である。
 以下、実施の形態の電解水生成装置100の特徴的構成およびそれにより得られる効果が述べられる。
 (1)電解水生成装置100は、陽極Aと、陰極Cと、陽極Aと陰極Cとの間に設けられた陽イオン交換膜Iと、を備える。電解水生成装置100は、水が流入する流入口Finと、水が流出する流出口Foutとを有し、陽極A、陰極C、および陽イオン交換膜Iを内包し、第1の貫通孔1Aおよび第2の貫通孔1Cが設けられたハウジング5を備える。電解水生成装置100は、陽極Aに電気的に接続され、第1の貫通孔1Aを突き抜けるように所定の方向に延びる第1の給電シャフトASを備える。電解水生成装置100は、陰極Cに電気的に接続され、第2の貫通孔1Cを突き抜けるように所定の方向に延びる第2の給電シャフトCSを備える。第1の給電シャフトASおよび第2の給電シャフトCSは、それぞれ、係合部SEを有する。第1の貫通孔1Aおよび第2の貫通孔1Cは、それぞれ、被係合部1Eを有する。係合部SEおよび被係合部1Eは、所定の方向における第1の給電シャフトASの第1の貫通孔1Aに対する位置ズレ、および、所定の方向における第2の給電シャフトCSの第2の貫通孔1Cに対する位置ズレを抑制するように互いに係合する。
 これによれば、給電シャフトAS,CSが延びる所定の方向における陽極A、陰極C、および陽イオン交換膜Iの位置ズレを抑制することができる。
 (2)第1の給電シャフトASおよび第2の給電シャフトCSは、それぞれ、相対的に大きな径を有し、所定の方向に沿って延びる第1のシャフト部分と、第1のシャフト部分より相対的に小さな径を有し、所定の方向に沿って延びる第2のシャフト部分と、を有してもよい。第1のシャフト部分と第2のシャフト部分との間の段差凸部によって係合部SEが構成されてもよい。第1の貫通孔1Aおよび第2の貫通孔1Cは、それぞれ、相対的に大きな径を有し、所定の方向に沿って延びる第1の貫通孔部分と、第1の貫通孔部分より相対的に小さな径を有し、所定の方向に沿って延びる第2の貫通孔部分と、を有してもよい。第1の貫通孔部分と第2の貫通孔部分との間の段差貫通孔によって被係合部1Eが構成されてもよい。
 これによれば、給電シャフトAS,CSおよび貫通孔1A,1Cを容易に形成することができる。
 (3)電解水生成装置100は、陽極Aと、陰極Cと、陽極Aと陰極Cとの間に設けられた陽イオン交換膜Iと、を備える。電解水生成装置100は、水が流入する流入口Finと、水が流出する流出口Foutとを有し、陽極A、陰極C、および陽イオン交換膜Iを内包し、第1の貫通孔1Aおよび第2の貫通孔1Cが設けられたハウジング5を備える。電解水生成装置100は、陽極Aに電気的に接続され、第1の貫通孔1Aを突き抜けるように所定の方向に延びる第1の給電シャフトASを備える。電解水生成装置100は、陰極Cに電気的に接続され、第2の貫通孔1Cを突き抜けるように所定の方向に延びる第2の給電シャフトCSを備える。第1の給電シャフトASおよび第2の給電シャフトCSは、それぞれ、嵌合部SFを有する。第1の貫通孔1Aおよび第2の貫通孔1Cは、それぞれ、被嵌合部1Fを有する。嵌合部SFおよび被嵌合部1Fは、所定の方向を回転軸とする第1の給電シャフトASの第1の貫通孔1Aに対する回転、および、所定の方向を回転軸とする第2の給電シャフトCSの第2の貫通孔1Cに対する回転を抑制するように互いに嵌り合う。
 これによれば、給電シャフトAS,CSが延びる所定の方向を回転中心軸とする回転方向の陽極A、陰極C、および陽イオン交換膜Iの位置ズレ(所定方向の周りの回転)を抑制することができる。
 (4)嵌合部SFは、所定の方向に沿って延びる第1の給電シャフトASおよび第2の給電シャフトCSのそれぞれの外側平面部であってもよい。被嵌合部1Fは、所定の方向に沿って延びる第1の貫通孔1Aおよび第2の貫通孔1Cのそれぞれの内側平面部であってもよい。
 これによれば、嵌合部SFおよび被嵌合部1Fを容易に形成することができる。
 (5)電解水生成装置100は、陽極Aと、陰極Cと、陽極Aと陰極Cとの間に設けられた陽イオン交換膜Iと、を備える。電解水生成装置100は、水が流入する流入口Finと、水が流出する流出口Foutとを有し、陽極A、陰極C、および陽イオン交換膜Iを内包し、第1の貫通孔1Aおよび第2の貫通孔1Cが設けられたハウジング5を備える。電解水生成装置100は、陽極Aに電気的に接続され、第1の貫通孔1Aを突き抜けるように所定の方向に延びる第1の給電シャフトASを備える。電解水生成装置100は、陰極Cに電気的に接続され、第2の貫通孔1Cを突き抜けるように所定の方向に延びる第2の給電シャフトCSを備える。電解水生成装置100は、陽極Aと第1の給電シャフトASとを接続する第1のバネ部Bと、陰極Cと第2の給電シャフトCSとを接続する第2のバネ部Bと、を備える。
 これによれば、給電シャフトAS,CSに負荷が生じても、バネ部Bがその負荷に基づく給電シャフトAS,CSの位置ズレを吸収する。そのため、その位置ズレが陽極Aおよび陰極Cの少なくともいずれか一方へ悪影響を与えることを抑制することができる。
 (6)第1のバネ部Bおよび第2のバネ部Bは、所定の方向を回転中心軸として旋回するような渦巻き状であってもよい。
 これによれば、その位置ズレが陽極Aおよび陰極Cの少なくともいずれか一方へ悪影響を及ぼすことをより効果的に抑制することができる。
 (7)電解水生成装置100は、陽極Aと、陰極Cと、陽極Aと陰極Cとの間に設けられた陽イオン交換膜Iと、を備える。また、電解水生成装置100は、水が流入する流入口Finと、水が流出する流出口Foutとを有し、陽極A、陰極C、および陽イオン交換膜Iを内包するハウジング5を備える。ハウジング5は、外部の被嵌合部Pと嵌合する位置決め用嵌合部Tを含む。
 これによれば、電解水生成装置100を外部装置200に対して容易に位置決めすることができる。したがって、電解水生成装置100をより良好に使用することができる。
 (8)ハウジング5は、陽極A、陰極C、および陽イオン交換膜Iを受け入れる容器部1と、容器部1の開口を閉塞する蓋部2と、を含んでもよい。位置決め用嵌合部Tは、蓋部2に設けられてもよい。
 これによれば、位置決め用嵌合部Tに起因した強度の低下を抑制しながら、位置決め用嵌合部Tを有する容器部1を形成することができる。
 (9)蓋部2は、相対的に肉厚が小さい薄肉部21と、相対的に肉厚が大きい厚肉部22とを含んでもよい。位置決め用嵌合部Tは、厚肉部22に設けられてもよい。
 これによれば、蓋部2の強度の低下が抑制される。
 (10)位置決め用嵌合部Tは、蓋部2の長手方向に沿って延びる溝部であってもよい。
 これによれば、電解水生成装置100を外部の被嵌合部Pに対して安定的に位置決めすることができる。
 (11)電解水生成装置100は、陽極Aと、陰極Cと、陽極Aと陰極Cとの間に設けられた陽イオン交換膜Iと、を備える。また、電解水生成装置100は、水が流入する流入口Finと、水が流出する流出口Foutとを有し、陽極A、陰極C、および陽イオン交換膜Iを内包するハウジング5を備える。ハウジング5は、陽極A、陰極C、および陽イオン交換膜Iを受け入れる容器部1と、容器部1の開口を閉塞する蓋部2と、を含む。蓋部2は、相対的にレーザ光を透過し易い色を有するレーザ透過性樹脂を含む。容器部1は、相対的にレーザ光を吸収し易い色のレーザ吸収性樹脂を含む。蓋部2と容器部1とは、レーザ樹脂溶着によって互いに固定される。
 これによれば、蓋部2と容器部1とが容易に固定される。
 (12)蓋部2は、相対的に肉厚が小さい薄肉部21と、相対的に肉厚が大きい厚肉部22とを含んでもよい。容器部1は、蓋部2の薄肉部21に向かって突出する容器凸部11を含んでもよい。薄肉部21と容器凸部11とは、レーザ樹脂溶着によって互いに固定されてもよい。
 これによれば、蓋部2と容器部1とが強固に固定される。
 (13)電解水生成装置100は、陽極Aと、陰極Cと、陽極Aと陰極Cとの間に設けられた陽イオン交換膜Iと、を備える。また、電解水生成装置100は、水が流入する流入口Finと、水が流出する流出口Foutとを有し、陽極A、陰極C、および陽イオン交換膜Iを内包するハウジング5を備える。ハウジング5は、陽極A、陰極C、および陽イオン交換膜Iを受け入れる容器部1と、容器部1の開口を閉塞する蓋部2と、を含む。陽極A、陽イオン交換膜I、および陰極Cは、積層構造4を構成する。蓋部2は、積層構造4を積層方向において押さえ付けるように蓋部2の内側に設けられた押さえ凸部Rを含む。
 これによれば、蓋部2を容器部1に固定するだけで、積層構造4を構成する陽極A、陽イオン交換膜I、および陰極Cの位置ズレが抑制される。
 (14)押さえ凸部Rは、通水方向に沿って延びる凸状であるかまたは通水方向に沿って並べられた複数の押さえ突起RA,RCであってもよい。
 これによれば、押さえ凸部Rが電解水生成装置100内での水の流れを阻害する程度が極力小さくなる。
 (15)押さえ凸部Rは、陽極Aを押さえ付ける陽極A用の押さえ突起RAと、陰極Cを押さえ付ける陰極C用の押さえ突起RCとを含んでもよい。
 これによれば、陰極Cおよび陽極Aのそれぞれの位置ズレがより確実に抑制される。
 (16)電解水生成装置100は、陽極Aと、陰極Cと、陽極Aと陰極Cとの間に設けられた陽イオン交換膜Iと、を備える。電解水生成装置100は、水が流入する流入口Finと、水が流出する流出口Foutとを有し、陽極A、陰極C、および陽イオン交換膜Iを内包するハウジング5を備える。ハウジング5は、陽極A、陰極C、および陽イオン交換膜Iを受け入れる容器部1と、容器部1の開口を閉塞する蓋部2と、を含む。電解水生成装置100は、容器部1の底面と陽極A、陰極C、および陽イオン交換膜Iとの間に設けられた弾性体3をさらに備える。蓋部2は、陽極A、陰極C、および陽イオン交換膜Iを弾性体3に向かって押さえ付けるように構成される。弾性体3は、弾性体3が容器部1の側壁に向かって変形することを抑制する中空部Hを含む。
 これによれば、弾性体3の変形が陽極A、陰極C、および陽イオン交換膜Iに悪影響を与えることが抑制される。
 (17)中空部Hは、蓋部2から容器部1の底面に向かう方向に延びる貫通孔であってもよい。
 これによれば、簡単に中空部Hが形成される。
 (18)弾性体3は、ある方向に沿って延びる実質的に直方体の形状を有してもよい。中空部Hは、直方体の長手方向に沿って一列に並べられてもよい。
 これによれば、通水方向に沿って貫通孔を一列に並べることができる。
 (19)電解水生成装置100は、陽極Aと、陰極Cと、陽極Aと陰極Cとの間に設けられた陽イオン交換膜Iと、を備える。電解水生成装置100は、水が流入する流入口Finと、水が流出する流出口Foutとを有し、陽極A、陰極C、および陽イオン交換膜Iを内包するハウジング5を備える。ハウジング5は、陽極A、陰極C、および陽イオン交換膜Iを受け入れる容器部1と、容器部1の開口を閉塞する蓋部2と、を含む。電解水生成装置100は、容器部1の底面と陽極A、陰極C、および陽イオン交換膜Iとの間に設けられた弾性体3をさらに備える。容器部1は、容器部1の底面と容器部1の内側面とを連続するように接続する円弧状コーナー部R1を含む。弾性体3は、弾性体3の下面と弾性体3の側面とを連続するように接続し、円弧状コーナー部R1に密着する円弧状面取り部R2を含む。容器部1は、容器部1の内側の側面に容器被嵌合部REを含む。弾性体3は、弾性体3の側面に容器被嵌合部REと嵌合する弾性体嵌合部PRを含む。弾性体嵌合部PRおよび容器被嵌合部REは、陽極A、陽イオン交換膜I、および陰極Cの積層方向において弾性体3がハウジング5へ裏表逆向きに入れられることを防止する構造を構成する。
 これによれば、陽極A、陽イオン交換膜I、および陰極Cの積層方向における弾性体3のハウジング5への裏表逆入れが容易に防止される。
 (20)弾性体3は、水の通水方向に垂直な仮想平面に対して鏡面対称であってもよい。
 これによれば、弾性体3は、通水方向に沿って延びるように配置さえしていれば、その両端部がいずれの向きを向いていても、容器部1に適切に嵌め込まれ得る。そのため、弾性体3の容器部1への嵌め込みが容易になる。
 1 容器部
 1A,1C 貫通孔
 1E 被係合部
 1F 被嵌合部
 2 蓋部
 3 弾性体
 4 積層構造
 5 ハウジング
 11 容器凸部
 12 鍔部
 21 薄肉部
 22 厚肉部
 100 電解水生成装置
 200 外部装置
 201 爪部
 A 陽極
 AM 陽極本体
 AS 給電シャフト(陽極用の給電シャフト)
 B バネ部
 C 陰極
 CS 給電シャフト(陰極用の給電シャフト)
 F 給電体
 Fin 流入口
 Fout 流出口
 H 中空部
 I 陽イオン交換膜
 N 六角ナット
 O オーリング
 P 被嵌合部
 PR 弾性体嵌合部
 R 押さえ凸部
 RA,RC 押さえ突起
 RE 容器被嵌合部
 R1 円弧状コーナー部
 R2 円弧状面取り部
 S 座金
 SE 係合部
 SF 嵌合部
 T 位置決め用嵌合部
 W ワッシャ

Claims (20)

  1. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に設けられた陽イオン交換膜と、
    水が流入する流入口と、前記水が流出する流出口とを有し、前記陽極、前記陰極、および前記陽イオン交換膜を内包し、第1の貫通孔および第2の貫通孔が設けられたハウジングと、
    前記陽極に電気的に接続され、前記第1の貫通孔を突き抜けるように所定の方向に延びる第1の給電シャフトと、
    前記陰極に電気的に接続され、前記第2の貫通孔を突き抜けるように前記所定の方向に延びる第2の給電シャフトと、を備え、
    前記第1の給電シャフトおよび前記第2の給電シャフトは、それぞれ、係合部を有し、
    前記第1の貫通孔および前記第2の貫通孔は、それぞれ、被係合部を有し、
    前記係合部および前記被係合部は、前記所定の方向における前記第1の給電シャフトの前記第1の貫通孔に対する位置ズレ、および、前記所定の方向における前記第2の給電シャフトの前記第2の貫通孔に対する位置ズレを抑制するように互いに係合する、電解水生成装置。
  2. 前記第1の給電シャフトおよび前記第2の給電シャフトは、それぞれ、相対的に大きな径を有し、前記所定の方向に沿って延びる第1のシャフト部分と、前記第1のシャフト部分より相対的に小さな径を有し、前記所定の方向に沿って延びる第2のシャフト部分と、を有し、
    前記第1のシャフト部分と前記第2のシャフト部分との間の段差凸部によって前記係合部が構成され、
    前記第1の貫通孔および前記第2の貫通孔は、それぞれ、相対的に大きな径を有し、前記所定の方向に沿って延びる第1の貫通孔部分と、前記第1の貫通孔部分より相対的に小さな径を有し、前記所定の方向に沿って延びる第2の貫通孔部分と、を有し、
    前記第1の貫通孔部分と前記第2の貫通孔部分との間の段差貫通孔によって前記被係合部が構成される、請求項1に記載の電解水生成装置。
  3. 前記第1の給電シャフトおよび前記第2の給電シャフトは、それぞれ、嵌合部を有し、
    前記第1の貫通孔および前記第2の貫通孔は、それぞれ、被嵌合部を有し、
    前記嵌合部および前記被嵌合部は、前記所定の方向を回転軸とする前記第1の給電シャフトの前記第1の貫通孔に対する回転、および、前記所定の方向を回転軸とする前記第2の給電シャフトの前記第2の貫通孔に対する回転を抑制するように互いに嵌り合う、請求項1または2に記載の電解水生成装置。
  4. 前記嵌合部は、前記所定の方向に沿って延びる前記第1の給電シャフトおよび前記第2の給電シャフトのそれぞれの外側平面部であり、
    前記被嵌合部は、前記所定の方向に沿って延びる前記第1の貫通孔および前記第2の貫通孔のそれぞれの内側平面部である、請求項3に記載の電解水生成装置。
  5. 前記陽極と前記第1の給電シャフトとを接続する第1のバネ部と、
    前記陰極と前記第2の給電シャフトとを接続する第2のバネ部と、をさらに備えた、請求項1から4のいずれか一項に記載の電解水生成装置。
  6. 前記第1のバネ部および前記第2のバネ部は、前記所定の方向を回転中心軸として旋回するような渦巻き状である、請求項5に記載の電解水生成装置。
  7. 前記ハウジングは、外部の被嵌合部と嵌合する位置決め用嵌合部を含む、請求項1から6のいずれか一項に記載の電解水生成装置。
  8. 前記ハウジングは、前記陽極、前記陰極、および前記陽イオン交換膜を受け入れる容器部と、前記容器部の開口を閉塞する蓋部と、を含み、
    前記位置決め用嵌合部は、前記蓋部に設けられた、請求項7に記載の電解水生成装置。
  9. 前記蓋部は、相対的に肉厚が小さい薄肉部と、相対的に肉厚が大きい厚肉部とを含み、
    前記位置決め用嵌合部は、前記厚肉部に設けられた、請求項8に記載の電解水生成装置。
  10. 前記位置決め用嵌合部は、前記蓋部の長手方向に沿って延びる溝部である、請求項8または9に記載の電解水生成装置。
  11. 前記ハウジングは、前記陽極、前記陰極、および前記陽イオン交換膜を受け入れる容器部と、前記容器部の開口を閉塞する蓋部と、を含み、
    前記蓋部は、相対的にレーザ光を透過し易い色を有するレーザ透過性樹脂を含み、
    前記容器部は、相対的にレーザ光を吸収し易い色のレーザ吸収性樹脂を含み、
    前記蓋部と前記容器部とがレーザ樹脂溶着によって互いに固定された、請求項1から10のいずれか一項に記載の電解水生成装置。
  12. 前記蓋部は、相対的に肉厚が小さい薄肉部と、相対的に肉厚が大きい厚肉部とを含み、
    前記容器部は、前記蓋部の前記薄肉部に向かって突出する容器凸部を含み、
    前記薄肉部と前記容器凸部とが前記レーザ樹脂溶着によって互いに固定された、請求項11に記載の電解水生成装置。
  13. 前記ハウジングは、前記陽極、前記陰極、および前記陽イオン交換膜を受け入れる容器部と、前記容器部の開口を閉塞する蓋部と、を含み、
    前記陽極、前記陽イオン交換膜、および前記陰極は、積層構造を構成し、
    前記蓋部は、前記積層構造を積層方向において押さえ付けるように前記蓋部の内側に設けられた押さえ凸部を含む、請求項1から12のいずれか一項に記載の電解水生成装置。
  14. 前記押さえ凸部は、通水方向に沿って延びる凸条であるかまたは前記通水方向に沿って並べられた複数の押さえ突起である、請求項13に記載の電解水生成装置。
  15. 前記押さえ凸部は、前記陽極を押さえ付ける陽極用の押さえ突起と、前記陰極を押さえ付ける陰極用の押さえ突起とを含む、請求項13に記載の電解水生成装置。
  16. 前記ハウジングは、前記陽極、前記陰極、および前記陽イオン交換膜を受け入れる容器部と、前記容器部の開口を閉塞する蓋部と、を含み、
    前記容器部の底面と前記陽極、前記陰極、および前記陽イオン交換膜との間に設けられた弾性体をさらに備え、
    前記蓋部が前記陽極、前記陰極、および前記陽イオン交換膜を前記弾性体に向かって押さえ付けるように構成されており、
    前記弾性体は、前記弾性体が前記容器部の側壁に向かって変形することを抑制する中空部を含む、請求項1から15のいずれか一項に記載の電解水生成装置。
  17. 前記中空部は、前記蓋部から前記容器部の底面に向かう方向に延びる貫通孔である、請求項16に記載の電解水生成装置。
  18. 前記弾性体は、ある方向に沿って延びる実質的に直方体の形状を有し、
    前記中空部は、前記直方体の長手方向に沿って一列に並べられた、請求項16または17に記載の電解水生成装置。
  19. 前記ハウジングは、前記陽極、前記陰極、および前記陽イオン交換膜を受け入れる容器部と、前記容器部の開口を閉塞する蓋部と、を含み、
    前記容器部の底面と前記陽極、前記陰極、および前記陽イオン交換膜との間に設けられた弾性体をさらに備え、
    前記容器部は、前記容器部の底面と前記容器部の内側面とを連続するように接続する円弧状コーナー部を含み、
    前記弾性体は、前記弾性体の下面と前記弾性体の側面とを連続するように接続し、前記円弧状コーナー部に密着する円弧状面取り部を含み、
    前記容器部は、前記容器部の内側の側面に容器被嵌合部を含み、
    前記弾性体は、前記弾性体の側面に前記容器被嵌合部と嵌合する弾性体嵌合部を含み、
    前記弾性体嵌合部および前記容器被嵌合部は、前記陽極、前記陽イオン交換膜、および前記陰極の積層方向において前記弾性体が前記ハウジングへ裏表逆向きに入れられることを防止する構造を構成している、請求項1から18のいずれか一項に記載の電解水生成装置。
  20. 前記弾性体は、前記水の通水方向に垂直な仮想平面に対して鏡面対称である、請求項19に記載の電解水生成装置。
PCT/JP2019/027432 2018-07-13 2019-07-11 電解水生成装置 WO2020013254A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19834025.9A EP3822229A4 (en) 2018-07-13 2019-07-11 DEVICE FOR GENERATING ELECTROLYZED WATER
CN201980040390.6A CN112313178A (zh) 2018-07-13 2019-07-11 电解水生成装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-133654 2018-07-13
JP2018133654A JP7289077B2 (ja) 2018-07-13 2018-07-13 電解水生成装置
JP2018133652A JP7122558B2 (ja) 2018-07-13 2018-07-13 電解水生成装置
JP2018-133652 2018-07-13
JP2018133656A JP7022918B2 (ja) 2018-07-13 2018-07-13 電解水生成装置
JP2018-133656 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020013254A1 true WO2020013254A1 (ja) 2020-01-16

Family

ID=69139045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027432 WO2020013254A1 (ja) 2018-07-13 2019-07-11 電解水生成装置

Country Status (5)

Country Link
US (2) US11613821B2 (ja)
EP (1) EP3822229A4 (ja)
KR (1) KR20200007708A (ja)
CN (1) CN112313178A (ja)
WO (1) WO2020013254A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161600A1 (ja) * 2020-02-14 2021-08-19 パナソニックIpマネジメント株式会社 電解液体生成装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785981A (en) * 1980-11-15 1982-05-28 Asahi Glass Co Ltd Method for producing alkali hydroxide
JP2005161196A (ja) * 2003-12-02 2005-06-23 Morinaga Milk Ind Co Ltd 電解殺菌水製造装置
JP2005313153A (ja) * 2004-03-30 2005-11-10 Hitachi Plant Eng & Constr Co Ltd 平膜エレメント及び支持板
WO2012144444A1 (ja) * 2011-04-19 2012-10-26 サンコール株式会社 端子取付構造
JP2014100648A (ja) * 2012-11-20 2014-06-05 Nikka Micron Kk 洗浄水生成装置
JP2016064383A (ja) * 2014-09-26 2016-04-28 パナソニックIpマネジメント株式会社 電解液体生成装置、電解液体生成装置を備えた液体改質装置または電解液体生成装置で生成された電解液体を利用する電気機器
WO2017010372A1 (ja) * 2015-07-14 2017-01-19 株式会社日本トリム 電解槽及び電解水生成装置
CN106365260A (zh) * 2016-09-30 2017-02-01 广州市康亦健医疗设备有限公司 一种富氢水电解槽
JP2017176993A (ja) 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 電解液体生成装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835020A (en) * 1973-02-09 1974-09-10 F Galneder Electrical termination means and electrode spacing means for maintaining a uniform electrode gap
FI72150C (fi) 1980-11-15 1987-04-13 Asahi Glass Co Ltd Alkalimetallkloridelektrolyscell.
JP4246530B2 (ja) 2003-03-31 2009-04-02 クロリンエンジニアズ株式会社 電解用電極及びそれを使用するイオン交換膜電解槽
US7303661B2 (en) 2003-03-31 2007-12-04 Chlorine Engineers Corp., Ltd. Electrode for electrolysis and ion exchange membrane electrolytic cell
HU227638B1 (en) * 2005-12-23 2011-10-28 Thales Rt Flowing laboratorial ozonizating apparatus and method for ozonization reaction
JP4789654B2 (ja) * 2006-03-02 2011-10-12 モレックス インコーポレイテド カード用コネクタ
JP5060793B2 (ja) * 2007-02-02 2012-10-31 日科ミクロン株式会社 オゾン水生成装置
KR101396283B1 (ko) * 2009-12-25 2014-05-16 모리나가 뉴교 가부시키가이샤 전해수 제조 장치
KR101222371B1 (ko) * 2010-11-12 2013-01-16 로베르트 보쉬 게엠베하 이차 전지의 단자, 이차 전지의 단자 조립 방법, 이차 전지 모듈 및 그 조립 방법
CN202401350U (zh) 2011-12-21 2012-08-29 湖北航天化学技术研究所 铁路扣件用弹性垫板
JP6190424B2 (ja) 2015-07-07 2017-08-30 株式会社日本トリム 電解槽及び電解水生成装置
WO2017053380A1 (en) * 2015-09-24 2017-03-30 Nuvera Fuel Cells, LLC Bipolar plate having a polymeric coating
JP2017070895A (ja) 2015-10-06 2017-04-13 ユーテック株式会社 開閉蓋装置
DE102016007739A1 (de) * 2016-06-27 2017-12-28 Westfälische Hochschule Gelsenkirchen Bocholt Recklinghausen Vorrichtung zur Energieumwandlung, insbesondere Brennstoffzelle oder Elektrolyseur

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785981A (en) * 1980-11-15 1982-05-28 Asahi Glass Co Ltd Method for producing alkali hydroxide
JP2005161196A (ja) * 2003-12-02 2005-06-23 Morinaga Milk Ind Co Ltd 電解殺菌水製造装置
JP2005313153A (ja) * 2004-03-30 2005-11-10 Hitachi Plant Eng & Constr Co Ltd 平膜エレメント及び支持板
WO2012144444A1 (ja) * 2011-04-19 2012-10-26 サンコール株式会社 端子取付構造
JP2014100648A (ja) * 2012-11-20 2014-06-05 Nikka Micron Kk 洗浄水生成装置
JP2016064383A (ja) * 2014-09-26 2016-04-28 パナソニックIpマネジメント株式会社 電解液体生成装置、電解液体生成装置を備えた液体改質装置または電解液体生成装置で生成された電解液体を利用する電気機器
WO2017010372A1 (ja) * 2015-07-14 2017-01-19 株式会社日本トリム 電解槽及び電解水生成装置
JP2017176993A (ja) 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 電解液体生成装置
WO2017168475A1 (ja) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 電解液体生成装置
CN106365260A (zh) * 2016-09-30 2017-02-01 广州市康亦健医疗设备有限公司 一种富氢水电解槽

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161600A1 (ja) * 2020-02-14 2021-08-19 パナソニックIpマネジメント株式会社 電解液体生成装置
JP2021126621A (ja) * 2020-02-14 2021-09-02 パナソニックIpマネジメント株式会社 電解液体生成装置
JP7345112B2 (ja) 2020-02-14 2023-09-15 パナソニックIpマネジメント株式会社 電解液体生成装置

Also Published As

Publication number Publication date
US11613821B2 (en) 2023-03-28
EP3822229A4 (en) 2021-08-25
US20230212767A1 (en) 2023-07-06
EP3822229A1 (en) 2021-05-19
KR20200007708A (ko) 2020-01-22
US20200017983A1 (en) 2020-01-16
CN112313178A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
JP7022918B2 (ja) 電解水生成装置
JP2023174976A (ja) 電解水生成装置
WO2020013254A1 (ja) 電解水生成装置
JP6937476B2 (ja) 電解液体生成装置
JP7122558B2 (ja) 電解水生成装置
KR20180055902A (ko) 전기분해수를 생성하기 위한 장치
JP6937475B2 (ja) 電解液体生成装置
JP7325025B2 (ja) 電解水生成装置
WO2021161601A1 (ja) 電解液体生成装置
US20220396506A1 (en) Electrolytic solution generation device
WO2020013255A1 (ja) 電解液体生成装置
JP6630984B2 (ja) 電解水生成装置
WO2021161598A1 (ja) 電解液体生成装置
WO2021161600A1 (ja) 電解液体生成装置
JP2016179424A (ja) 電解水生成装置および電極ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019834025

Country of ref document: EP

Effective date: 20210215