WO2020013148A1 - 固体燃料バーナ - Google Patents

固体燃料バーナ Download PDF

Info

Publication number
WO2020013148A1
WO2020013148A1 PCT/JP2019/027063 JP2019027063W WO2020013148A1 WO 2020013148 A1 WO2020013148 A1 WO 2020013148A1 JP 2019027063 W JP2019027063 W JP 2019027063W WO 2020013148 A1 WO2020013148 A1 WO 2020013148A1
Authority
WO
WIPO (PCT)
Prior art keywords
swirler
swirl
fuel
solid fuel
fuel nozzle
Prior art date
Application number
PCT/JP2019/027063
Other languages
English (en)
French (fr)
Inventor
昌平 水戸
倉増 公治
木山 研滋
馬場 彰
恒輔 北風
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to AU2019300827A priority Critical patent/AU2019300827B2/en
Publication of WO2020013148A1 publication Critical patent/WO2020013148A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus

Definitions

  • the present invention relates to a solid fuel burner using coal, biomass or the like as a fuel.
  • Patent Document 1 As a conventional technique for enriching a solid fuel inside a burner, the following Patent Document 1 is known.
  • a first swirler (6) and a second swirler (7) are provided on an outer periphery of an oil burner (8) penetrating a fuel nozzle, and a mixed fluid is provided by the first swirler (6).
  • a technique is described in which a second swirler (7) imparts a reverse swirl to a mixed fluid while imparting swirl to the fluid.
  • the first swirler (6) imparts swirling to the mixed fluid, and concentrates the fuel by biasing the fuel outward in the radial direction, so that the fuel concentration is low and the load is low.
  • the second swirler (7) reduces the swirling of the mixed fluid, thereby reducing the scattering of fuel and improving the stability of the flame.
  • An object of the present invention is to provide a solid fuel burner that is excellent in ignitability and flame stability even at a low load with low fuel concentration, suppresses an increase in pressure loss, and is excellent in maintainability.
  • the above object of the present invention can be achieved by employing the following configuration.
  • the invention according to claim 1 has a straight pipe portion having an opening toward a furnace, and a curved pipe portion continuing to the straight pipe portion, and the solid fuel supplied to the curved pipe portion and its transportation.
  • a second swirler provided downstream of the mixing device in the flow direction of the mixed fluid to provide the mixed fluid with a swirl in a direction opposite to the first swirler; and the first swirl extending along an axial direction of the fuel nozzle.
  • a swivel unit having a shaft unit connecting the vessel and the second swirler, and a radially extending fuel nozzle, connecting the swirl unit and an inner surface of the fuel nozzle, and A solid fuel bar, comprising: a support member supported by a fuel nozzle. It is.
  • the invention according to claim 2 is the solid fuel burner according to claim 1, wherein the first swirler, the second swirler, and the shaft are integrally formed.
  • the solid fuel burner according to the first or second aspect further comprising the support for connecting the shaft and the inner surface of the fuel nozzle.
  • the first swirler constituted by the first swirler which is inclined with respect to the axial direction of the straight pipe portion, and the first swirler are inclined in the opposite direction.
  • the solid fuel burner according to the fourth aspect further comprising the support for connecting an outer edge of the swirling blade and an inner surface of the fuel nozzle.
  • the mixed fluid when viewed from the opening side of the straight pipe portion, flows in the axial direction within an outer diameter range of the first swirling blade and the second swirling blade.
  • the swivel unit is supported on the inner surface of the fuel nozzle by the support, and is excellent in ignitability and flame stability even at a low fuel concentration and a low load, and increases pressure loss. It is possible to provide a solid fuel burner that is suppressed and has excellent maintainability.
  • the manufacturing cost can be reduced as compared with the case where the first swirler, the second swivel, and the shaft are not integrally formed.
  • the turning unit can be fixed by the support that connects the shaft and the inner surface of the fuel nozzle.
  • the fourth aspect of the invention it is possible to increase the fuel concentration in the vicinity of the inner surface of the fuel nozzle with the first swirling blade and to weaken the swirling component of the mixed fluid with the second swirling blade.
  • the length of the support can be reduced as compared with the case where the support is not provided on the outer edge of the swirling blade.
  • the sixth aspect of the present invention it is possible to easily increase the fuel concentration near the inner surface of the fuel nozzle as compared with the case where the configuration of the present invention is not provided.
  • FIG. 2A is a perspective view
  • FIG. 2B is a cross-sectional view
  • FIG. 2C is a view as viewed from an opening side
  • FIG. 3A is a perspective view
  • FIG. 3B is a cross-sectional view
  • FIG. 3C is a view as viewed from the opening side
  • FIG. 4A is a perspective view
  • FIG. 4B is a cross-sectional view
  • FIG. 4C is a view from the opening side.
  • FIG. 5A is a perspective view
  • FIG. 5B is a cross-sectional view
  • FIG. 5C is a view seen from an opening side.
  • FIG. 1 is a side view (schematic diagram) showing a partial cross section of a solid fuel burner according to one embodiment of the present invention.
  • the solid fuel burner 1 according to the embodiment of the present invention is provided on a wall throat 13 a of a furnace 13.
  • the solid fuel burner 1 has a fuel nozzle 9 having a circular cross section through which a mixed fluid (solid-gas two-phase flow) of fine powder fuel and carrier gas flows.
  • the fuel nozzle 9 has a curved pipe part 5 having a 90 ° bend and a straight pipe part 2 continuous with the curved pipe part 5.
  • the solid fuel may be coal, biomass, or a mixture thereof.
  • air is usually used as a carrier gas for the solid fuel, but a mixed gas of combustion exhaust gas and air can be applied, and the type of fuel and carrier gas are not limited.
  • pulverized coal is used as the solid fuel and air is used as the carrier gas.
  • the fuel nozzle 9 may also be referred to as a primary air nozzle 9.
  • the front end of the straight pipe portion 2 opens toward the furnace 13, and the mixed fluid of pulverized coal and primary air supplied to the primary air nozzle 9 from the direction of arrow A (below) passes through the curved pipe portion 5 and is almost It turns 90 °, flows from the straight pipe section 2 toward the furnace 13, and is ejected from the opening (the outlet of the primary air nozzle 9).
  • the curved tube section 5 may have an L-shaped or U-shaped vertical cross section. Further, the angle of the bent portion of the curved tube portion 5 is not limited to 90 °, and may be larger or smaller. An elbow tube, a bend tube, or the like is used as the curved tube portion 5.
  • the secondary air nozzle 3 and the tertiary air nozzle 4 are arranged concentrically around the primary air nozzle 9, and the secondary air and the tertiary air are supplied toward the furnace 13. These air flows are ejected so as to spread in the outer peripheral direction.
  • a flame stabilizer (flame holding ring) 10 is supported around the outlet of the primary air nozzle 9 and between the primary air nozzle 9 and the secondary air nozzle 3.
  • the flame stabilizer 10 is formed in a divergent shape (conical shape) toward the furnace 13 side. Note that a burner in which the flame stabilizer 10 is not installed is also included in the present embodiment.
  • a circulating flow is formed downstream of the flame stabilizer 10 (furnace 13 side), and a mixture of fuel and air ejected from the primary air nozzle 9, secondary air, high-temperature combustion gas, and the like flow into the circulating flow. And stay.
  • the temperature of the fuel particles increases due to the radiation heat from the furnace 13. Due to these effects, the solid fuel is ignited downstream of the flame stabilizer 10 and the flame is kept flame.
  • the air supplied to the secondary air nozzle 3 and the tertiary air nozzle 4 can adjust and control the flow rate and flow rate of air by using a flow rate adjusting member (not shown) such as a damper or an air register.
  • FIGS. 1 and 2 are explanatory diagrams of the turning unit according to the first embodiment.
  • FIG. 2A is a perspective view
  • FIG. 2B is a cross-sectional view
  • FIG. 2C is a view from the opening side.
  • a turning unit 21 is disposed downstream of the straight pipe section 2.
  • the turning unit 21 has a spindle unit 22 as an example of a shaft body.
  • the spindle portion 22 is formed in a spindle shape extending along the axial direction of the fuel nozzle 9.
  • the spindle portion 22 is desirably formed in a hollow rod shape for weight reduction and cost reduction, but may be formed in a solid rod shape.
  • a first swirler 23 as an example of a first swirler is supported on the outer surface of the spindle portion 22 on the upstream side in the flow direction of the mixed fluid.
  • the first turning blade 23 of the first embodiment is configured by four plate-shaped members.
  • the first swirl vanes 23 are supported by the spindle unit 22 in a state of being inclined with respect to the axial direction of the fuel nozzle 9 so that swirl such that the passing mixed fluid is sent to the outside in the radial direction is imparted. I have.
  • a second swirling blade 24 as an example of a second swirler is supported on the outer surface of the downstream side of the spindle unit 22 with respect to the flow direction of the mixed fluid.
  • the second swirling blade 24 of the first embodiment is configured by four plate-shaped members.
  • the second swirling blade 24 is supported by the spindle unit 22 in a state where the second swirling blade 24 is inclined in a direction opposite to the axial direction of the fuel nozzle 9 with respect to the first swirling blade 23.
  • the angle of inclination of each of the swirling blades 23 and 24 with respect to the axial direction is set to the same angle of inclination. It is also possible to have different inclination angles.
  • Each of the swirling blades 23 and 24 of the first embodiment is supported at an interval of 90 °.
  • the first swirling blades 23 are arranged at positions of 45 °, 135 °, 225 °, and 315 ° when the phase above the vertical direction is 0 °.
  • the second swirling blades 24 are installed at positions of 0 °, 90 °, 180 °, and 270 ° when the phase above the vertical direction is 0 °. Therefore, as shown in FIG. 2C, the first swirl blade 23 and the second swirl blade 24 of the first embodiment are in the Within the range of the radius of the second swirling vane 24, they are arranged with a phase shift in the circumferential direction so that the mixed fluid does not penetrate in the axial direction.
  • the phase and the rotation blade 23 are set so that either the first rotation blade 23 or the second rotation blade 24 exists in a range of 360 ° around the spindle portion 22. , 24 in the circumferential direction are set.
  • a support rod 26 as an example of a support member is provided at an outer edge of the second swirling blade 24 (24a) installed at a position of 180 ° in phase.
  • a support rod 26 as an example of a supporting member is also provided on an outer edge of the first turning blade (23a, 23b) installed at a position of 135 ° and 225 ° in phase. I have.
  • the support rod 26 of the first embodiment is installed at a central position with respect to the longitudinal direction (almost the flow direction) of the swirling blades 23a, 23b, 24a.
  • Each support rod 26 is formed in a rod shape extending outward in the radial direction.
  • the outer end of the support rod 26 is fixed to the inner wall 9a of the fuel nozzle 9 by welding or the like. Therefore, the turning unit 21 of the first embodiment is fixed to the fuel nozzle 9 at three positions.
  • the support rod 26 of the first embodiment is integrally formed with each of the turning blades 23a, 23b, and 24a by casting.
  • a portion 2a downstream of the position where the swirling unit 21 is installed is made of a wear-resistant material. That is, although the fuel is not biased toward the inner surface side of the fuel nozzle 9 in the upstream portion 2b than the swirl unit 21, the fuel is biased in the downstream portion 2a than the swirl unit 21 and the inner surface of the fuel nozzle 9 is easily worn. Therefore, it is made of a wear-resistant material.
  • the mixed fluid containing the fuel supplied to the fuel nozzle 9 is swirled when passing through the first swirling blade 23. Therefore, the fuel moves radially outward due to the centrifugal effect of the swirl, and the fuel concentration near the inner surface of the fuel nozzle 9 increases. Then, when the swirled fluid passes through the second swirling blade 24, a reverse swirl is applied. Therefore, the swirling component of the fluid is canceled and the swirling is weakened. At the burner outlet, the swirl component has a weak flow in a state where the fuel concentration in the vicinity of the flame stabilizer 10 has increased.
  • the ignitability of the fuel (pulverized coal) at the burner outlet is improved.
  • the pulverized coal concentration needs to be equal to or higher than a certain value for ignition of pulverized coal
  • the fuel concentration in the vicinity of the flame stabilizer 10 is increased even at a low load when the average concentration of pulverized coal is low.
  • the ignitability is secured. If the mixed fluid is strongly swirled at the outlet of the primary air nozzle 9, the pulverized coal particles scatter in the furnace 13 toward the outer periphery of the solid fuel burner 1, thereby decreasing the stability of the flame and reducing the NOx emission. To increase.
  • the swirling strength is reduced by the second swirling blade 24 before the mixed fluid is jetted into the furnace 13. Therefore, the stability of the flame is improved, and an increase in NOx emission is also suppressed.
  • the spindle unit 22, the first turning blade 23, and the second turning blade 24 are unitized. Therefore, as compared with the case where the first swirl blade 23 and the second swirl blade 24 are individually installed on the fuel nozzle 9, the assembly is completed only by attaching the swirl unit 21, and the first swirl blade 23 and the second swirl blade There is no need to adjust the positional relationship such as the spacing and phase of the two swirling vanes 24, and they can be replaced as a unit when they are replaced. Therefore, assemblability and maintainability are improved.
  • the swivel unit 21 of the first embodiment is integrally formed by casting, so that the manufacture is easy and the cost can be reduced.
  • the support rod 26 is also integrally formed, so that the cost can be further reduced as compared with the case where the support rod 26 is formed separately.
  • the swirling unit 21 of the first embodiment when viewed from the axial direction of the fuel nozzle 9, the mixed fluid penetrates in the axial direction within the radius of the first swirling blade 23 and the second swirling blade 24.
  • the first swirl blade 23 and the second swirl blade 24 are arranged so as not to be disturbed. Therefore, it is reduced that a part of the mixed fluid passes without touching the swirling blades 23 and 24. Therefore, as compared with the case where the mixed fluid can penetrate in the axial direction, the fuel is more likely to be biased toward the inner surface of the fuel nozzle 9, and the fuel enrichment effect is enhanced.
  • the support rod 26 is supported on the inner surface of the fuel nozzle 9. Therefore, as compared with the case of using a support member (oil burner) of a central shaft penetration type as described in Patent Document 1, the flow path on the upstream side of the swivel unit 21 is not narrowed, and the pressure loss increases. Is suppressed. Therefore, in order to ensure the same flow path cross-sectional area, the inner diameter of the fuel nozzle needs to be increased in the configuration of Patent Document 1, but in the first embodiment, the fuel nozzle is larger than the configuration described in Patent Document 1. The inner diameter of the nozzle 9 can be reduced.
  • the support rod 26 is supported on the outer edges of the turning blades 23a, 23b, 24a. Therefore, the length of the support rod 26 can be reduced as compared with the case where the support rod 26 is supported by the spindle unit 22. Therefore, it is possible to narrow the range of the portion (the support rod 26) requiring a measure against abrasion, and it is possible to reduce the material cost. In particular, when the support rod 26 is made of another material such as an expensive wear-resistant material, the cost reduction effect is high. Further, when the support rod 26 is short, the flow of the mixed fluid is less likely to be hindered than when the support rod 26 is long. Therefore, ignitability and flame stability are also improved.
  • the downstream portion 2a of the straight pipe portion 2 is made of a wear-resistant material, and the straight pipe portion 2 has a long life. Therefore, the frequency of component replacement is reduced, and the maintainability is improved.
  • FIG. 3A and 3B are explanatory views of the turning unit according to the second embodiment.
  • FIG. 3A is a perspective view
  • FIG. 3B is a cross-sectional view
  • FIG. 3C is a view from the opening side.
  • a description will be given of a second embodiment of the present invention.
  • the same reference numerals are given to components corresponding to the components of the first embodiment, and a detailed description thereof will be omitted. I do.
  • the second embodiment differs from the first embodiment in the following points, but has the same configuration as the first embodiment in other points.
  • FIG. 3A is a perspective view
  • FIG. 3B is a cross-sectional view
  • FIG. 3C is a view from the opening side.
  • the support rod 31 is different from the first turning blade. 23 are arranged at both longitudinal ends (upstream and downstream).
  • the support rod 31 according to the second embodiment is, as it were, formed so that the outer end of the first swirling blade 23 extends in the radial direction.
  • the support rod 31 is provided on the first turning blade 23, but it is also possible to provide the support rod 31 on the second turning blade 24.
  • a support rod 31 is provided on the first swirl vane 23 on the upstream side before the fuel is deflected radially outward, and is supported by the second swirl vane 24 on the downstream side after the fuel is deflected radially outward.
  • FIG. 4A and 4B are explanatory views of the turning unit according to the third embodiment.
  • FIG. 4A is a perspective view
  • FIG. 4B is a cross-sectional view
  • FIG. 4C is a view from the opening side.
  • a third embodiment of the present invention will be described.
  • the same reference numerals are given to components corresponding to the components of the first and second embodiments, and a detailed description thereof will be given. Is omitted.
  • the third embodiment differs from the first and second embodiments in the following points, but has the same configuration as the first and second embodiments in other points.
  • FIG. 4A is a perspective view
  • FIG. 4B is a cross-sectional view
  • FIG. 4C is a view from the opening side.
  • the support rod 32 is formed in a rod shape penetrating the spindle unit 22. I have.
  • the support rod 32 of the third embodiment is formed in a shape in which two rods penetrate the spindle part 22 in a cross shape.
  • FIG. 5A and 5B are explanatory views of the turning unit according to the fourth embodiment.
  • FIG. 5A is a perspective view
  • FIG. 5B is a cross-sectional view
  • FIG. 5C is a view as viewed from the opening side.
  • a fourth embodiment of the present invention will be described.
  • the same reference numerals are given to components corresponding to the components of the first to third embodiments, and a detailed description thereof will be given. Is omitted.
  • the fourth embodiment differs from the first to third embodiments in the following points, but has the same configuration as the first to third embodiments in other points.
  • the spindle unit 22 is configured by joining three parts of an upstream part 22a, a middle part 22b, and a downstream part 22c.
  • the first turning blade 23 is formed integrally with the upstream portion 22a
  • the second turning blade 24 is formed integrally with the downstream portion 22c.
  • the middle part 22b is made of a wear-resistant material
  • a support rod 36 also made of a wear-resistant material penetrates the middle part 22b in a cross-like manner as in the third embodiment.
  • the support rods 26 and 31 are formed separately from the revolving blades 23 and 24, or made of a different material such as a wear-resistant member, and fixed by welding or the like. A configuration is also possible.
  • the number of the support rods 26, 31, 32, and 36 is smaller because the number of flow path resistance and abraded portions is reduced. Is also possible. Further, the positions at which the support rods 26, 31, 32, and 36 are provided are not limited to the illustrated positions, and can be changed.
  • the number of the rotating blades 23 and 24 is four, but is not limited thereto.
  • the number of sheets can be increased or decreased according to required performance (specifications), design, and the like.
  • the positions and intervals at which the swirling blades 23 and 24 are installed are not limited to the configuration illustrated in the embodiment, and can be arbitrarily changed.
  • H05 In the above-described embodiment, the configuration in which the swirling blades 23 and 24 are not rotatable has been exemplified, but the configuration is not limited to this. It is also possible to adopt a configuration that is rotatable around the spindle unit 22. In this case, the support is provided on the spindle unit 22.
  • the plate-like swirling blades 23 and 24 are exemplified as the swirler, but the swirler is not limited to this. Any form to which turning can be applied can be adopted.
  • H07 In the above-described embodiment, the configuration in which the turning unit 21 is installed on the downstream side of the straight pipe section 2 is exemplified, but the configuration is not limited to this. It can be installed upstream.
  • It can be used as a burner device using solid fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

曲管部(5)に供給される固体燃料とその搬送気体の混合流体を直管部(2)の開口から火炉(13)に噴出する燃料ノズル(9)と、混合流体に旋回を与える第1の旋回器(23)と混合流体に第1の旋回器(23)とは逆方向の旋回を与える第2の旋回器(24)と第1の旋回器(23)と第2の旋回器(24)とを接続する軸体(22)とを有する旋回ユニット(21)と、旋回ユニット(21)と燃料ノズル(9)の内面とを接続し、旋回ユニット(21)を燃料ノズル(9)に支持する支持体(26)と、を備えたことを特徴とする固体燃料バーナ(1)により、燃料濃度の低い低負荷時でも着火性、火炎の安定性に優れ、メンテナンス性に優れた固体燃料バーナを提供することができる。

Description

固体燃料バーナ
 本発明は、石炭やバイオマス等を燃料とする固体燃料バーナに関する。
 固体燃料を用いた燃焼装置において、安定した着火や保炎を達成するためには、バーナ出口の保炎部に十分な濃度の燃料を含む混合流体(燃料及びその搬送気体との混合流体)を供給することが要求される。バーナ内部で固体燃料の濃縮を図る従来技術としては、下記特許文献1が公知である。
 特許文献1には、燃料ノズルを貫通する油バーナ(8)の外周に第1の旋回器(6)と第2の旋回器(7)を設け、第1の旋回器(6)で混合流体に旋回を付与しつつ、第2の旋回器(7)で混合流体に逆向きの旋回を付与する技術が記載されている。特許文献1に記載の技術では、第1の旋回器(6)で混合流体に旋回を付与して、径方向の外側に燃料を偏らせることで濃縮することで、燃料の濃度が低い低負荷時での着火性を向上させるとともに、第2の旋回器(7)で混合流体の旋回を低減することで、燃料の飛散を低減して火炎の安定性を向上させている。
特開2017-15305号公報
 特許文献1に記載の構成によれば、起動時に燃料ノズルの中央を貫通する油バーナを使用しており、各旋回器が油バーナに支持されている。
 なお、油バーナを有しない構成では、各旋回器を支持するための支持部材として油バーナと同様に、燃料ノズルの中心を貫通する支持部材が必要となる。
 しかしながら、中心軸貫通式の支持部材では、下流側の旋回器がノズル開口(火炉側)に近い部位に設置されるため、支持部材が長尺となる。したがって、旋回器を支持する上で十分な強度とするために、支持部材の外径をある程度大きなものとする必要がある。支持部材の外径が大きくなると、旋回器の上流側の流路が狭まり、圧力損失が増大する問題がある。
 また、エルボ部(曲管部)近傍では、下方から搬送されてくる高速の燃料粒子が支持部材の側面から衝突するため、その摩耗対策が必要になる問題もある。
 本発明の課題は、燃料濃度の低い低負荷時でも着火性、火炎の安定性に優れるとともに、圧力損失の増大が抑制され、メンテナンス性に優れた固体燃料バーナを提供することにある。
 上記本発明の課題は、下記の構成を採用することにより達成できる。 
 請求項1に記載の発明は、火炉に向かって開口を有する直管部と、前記直管部に連続する曲管部と、を有し、前記曲管部に供給される固体燃料とその搬送気体の混合流体を前記直管部の開口から火炉に噴出する燃料ノズルと、前記直管部内の中心軸側に設けられ、混合流体に旋回を与える第1の旋回器と、前記第1の旋回器の混合流体の流れ方向下流に設けられて混合流体に第1の旋回器とは逆方向の旋回を与える第2の旋回器と、前記燃料ノズルの軸方向に沿って延び前記第1の旋回器と前記第2の旋回器とを接続する軸体と、を有する旋回ユニットと、前記燃料ノズルの径方向に延び、前記旋回ユニットと前記燃料ノズルの内面とを接続し、前記旋回ユニットを前記燃料ノズルに支持する支持体とを備えたことを特徴とする固体燃料バーナである。
 請求項2に記載の発明は、前記第1の旋回器と前記第2の旋回器と前記軸体とが一体形成されたことを特徴とする請求項1に記載の固体燃料バーナである。
 請求項3に記載の発明は、前記軸体と前記燃料ノズルの内面とを接続する前記支持体を備えたことを特徴とする請求項1または2に記載の固体燃料バーナである。
 請求項4に記載の発明は、前記直管部の軸方向に対して傾斜する第1の旋回羽根により構成された前記第1の旋回器と、前記第1の旋回羽根とは逆向きに傾斜する第2の旋回羽根により構成された前記第2の旋回器とを備えたことを特徴とする請求項1に記載の固体燃料バーナである。
 請求項5に記載の発明は、前記旋回羽根の外縁と前記燃料ノズルの内面とを接続する前記支持体を備えたことを特徴とする請求項4に記載の固体燃料バーナである。
 請求項6に記載の発明は、前記直管部の開口側から見た場合に、前記第1の旋回羽根と前記第2の旋回羽根の外径の範囲内において、前記混合流体が軸方向に貫通しないように、周方向の位相をずらして配置された前記第1の旋回羽根および前記第2の旋回羽根を備えたことを特徴とする請求項4または5に記載の固体燃料バーナである。
 請求項1記載の発明によれば、旋回ユニットが支持体で燃料ノズルの内面に支持されており、燃料濃度の低い低負荷時でも着火性、火炎の安定性に優れるとともに、圧力損失の増大が抑制され、メンテナンス性に優れた固体燃料バーナを提供することができる。
 請求項2記載の発明によれば、第1の旋回器と第2の旋回器と軸体とが一体形成されない場合に比べて、製造コストを削減できる。
 請求項3記載の発明によれば、軸体と燃料ノズルの内面とを接続する支持体で旋回ユニットを固定することができる。
 請求項4記載の発明によれば、第1の旋回羽根で燃料ノズルの内面近傍の燃料濃度を上昇させるとともに、第2の旋回羽根で混合流体の旋回成分を弱めることができる。
 請求項5記載の発明によれば、旋回羽根の外縁に支持体を設けない場合に比べて、支持体の長さを短くすることができる。
 請求項6記載の発明によれば、本発明の構成を有しない場合に比べて、燃料ノズルの内面近傍の燃料濃度を上昇させやすくすることができる。
本発明の一実施例である固体燃料バーナの一部断面を示す側面図である。 実施例1の旋回ユニットの説明図であり、図2(A)は斜視図、図2(B)は断面図、図2(C)は開口側から見た図である。 実施例2の旋回ユニットの説明図であり、図3(A)は斜視図、図3(B)は断面図、図3(C)は開口側から見た図である。 実施例3の旋回ユニットの説明図であり、図4(A)は斜視図、図4(B)は断面図、図4(C)は開口側から見た図である。 実施例4の旋回ユニットの説明図であり、図5(A)は斜視図、図5(B)は断面図、図5(C)は開口側から見た図である。
 以下に、本発明の実施の形態を示す。
 図1には本発明の一実施例による固体燃料バーナの一部断面を示した側面図(概略図)を示す。 
 本発明の実施例の固体燃料バーナ1は、火炉13の壁面スロート13aに設けられている。固体燃料バーナ1は、微粉の燃料と搬送気体との混合流体(固気二相流)が流れる断面円形の燃料ノズル9を有する。燃料ノズル9は、90°の曲がり部を持つ曲管部5と曲管部5に連続する直管部2とを有する。
 固体燃料としては、石炭やバイオマス、又はこれらの混合物であっても良い。また、固体燃料の搬送気体としては、通常空気が使用されるが、燃焼排ガスと空気との混合気体等も適用でき、燃料種および搬送気体の種類は問わない。本実施形態では、固体燃料として微粉炭を、搬送気体として空気を用いた例を示している。なお、以下の説明において、燃料ノズル9は、一次空気ノズル9とも表記することもある。
 直管部2の先端は火炉13に向かって開口しており、一次空気ノズル9に矢印A方向(下方)から供給される微粉炭と一次空気の混合流体は曲管部5を通過してほぼ90°向きを変え、直管部2から火炉13に向かって流れ、前記開口(一次空気ノズル9の出口)から噴出される。曲管部5は縦断面形状がL字型でもU字型でも良い。また、曲管部5の曲がり部の角度は90°に限らず、それよりも大きくても小さくても構わない。曲管部5としては、エルボ管、ベンド管などが用いられる。
 更に、一次空気ノズル9の周囲には二次空気ノズル3と三次空気ノズル4が同心円状に配置され、火炉13に向かって二次空気と三次空気が供給される。これらの空気流は外周方向に広がるように噴出される。更に、一次空気ノズル9の出口周囲であって且つ一次空気ノズル9と二次空気ノズル3との間には、保炎器(保炎リング)10が支持されている。保炎器10は、火炉13側に向かって末広がり状(円錐状)に形成されている。尚、保炎器10が設置されないバーナも本実施形態に含まれる。
 保炎器10の下流側(火炉13側)には循環流が形成され、循環流には一次空気ノズル9から噴出した燃料と空気との混合気、二次空気、高温な燃焼ガスなどが流入し、滞留する。また、火炉13からの輻射熱を受けて燃料粒子の温度が上昇する。これらの効果で、固体燃料は保炎器10の下流側で着火し、火炎が保炎される。
 また、二次空気ノズル3と三次空気ノズル4に供給される空気は、図示しない流量調整部材(ダンパやエアレジスタなど)により、空気の流量及び流速を調整、制御可能である。
(旋回ユニットの説明)
 図2は実施例1の旋回ユニットの説明図であり、図2(A)は斜視図、図2(B)は断面図、図2(C)は開口側から見た図である。
 図1、図2において、直管部2の下流部には、旋回ユニット21が配置されている。旋回ユニット21は、軸体の一例としてのスピンドル部22を有する。スピンドル部22は、燃料ノズル9の軸方向に沿って延びる紡錘体状に形成されている。なお、スピンドル部22は、軽量化とコスト削減のため中空の棒状で構成することが望ましいが、中実の棒状とすることも可能である。
 混合流体の流れ方向に対して、スピンドル部22の上流側の外面には、第1の旋回器の一例としての第1の旋回羽根23が支持されている。実施例1の第1の旋回羽根23は、4枚の板状の部材により構成されている。第1の旋回羽根23は、通過する混合流体が径方向の外側に送られるような旋回が付与されるように、燃料ノズル9の軸方向に対して傾斜した状態でスピンドル部22に支持されている。
 混合流体の流れ方向に対して、スピンドル部22の下流側の外面には、第2の旋回器の一例としての第2の旋回羽根24が支持されている。実施例1の第2の旋回羽根24は、4枚の板状の部材により構成されている。第2の旋回羽根24は、第1の旋回羽根23とは燃料ノズル9の軸方向に対して逆向きに傾斜した状態でスピンドル部22に支持されている。
 なお、実施例1では、各旋回羽根23,24の軸方向に対する傾斜角は同様の傾斜角に設定されているが、設計や仕様等で要求される旋回付与能力や逆旋回付与能力に応じて、異なる傾斜角とすることも可能である。
 実施例1の各旋回羽根23,24は、それぞれ、90°間隔をあけて支持されている。なお、実施例1では、第1の旋回羽根23は、鉛直上方を位相0°とした場合に、45°、135°、225°、315°の位置に配置されている。また、第2の旋回羽根24は、鉛直上方を位相0°とした場合に、0°、90°、180°、270°の位置に設置されている。よって、実施例1の第1の旋回羽根23と第2の旋回羽根24は、図2(C)に示すように、燃料ノズル9の軸方向から見た場合に、第1の旋回羽根23と第2の旋回羽根24の半径の範囲内において、混合流体が軸方向に貫通しないように、周方向の位相をずらして配置されている。すなわち、軸方向から見た場合に、スピンドル部22を中心とする360°の範囲に、第1の旋回羽根23と第2の旋回羽根24のいずれかが存在するように、位相や旋回羽根23,24の周方向の長さが設定されている。
 図2(A)、(B)において、位相180°の位置に設置された第2の旋回羽根24(24a)の外縁には、支持部材の一例としての支持ロッド26が設けられている。また、第1の旋回羽根23において、位相135°と225°の位置に設置された第1の旋回羽根(23a,23b)の外縁にも、支持部材の一例としての支持ロッド26が設けられている。実施例1の支持ロッド26は、旋回羽根23a,23b,24aの長手方向(ほぼ流れ方向)に対して中央部の位置に設置されている。
 各支持ロッド26は、径方向の外側に延びる棒状に形成されている。支持ロッド26の外端は、燃料ノズル9の内壁9aに溶接等で固定されている。したがって、実施例1の旋回ユニット21は、燃料ノズル9に対して、3か所で固定されている。
 なお、実施例1の支持ロッド26は、各旋回羽根23a,23b,24aに対して、鋳造で一体形成されている。
 また、実施例1の燃料ノズル9では、旋回ユニット21が設置される位置よりも下流部2aは、耐摩耗材料で構成されている。すなわち、旋回ユニット21よりも上流部2bでは、燃料ノズル9の内面側に燃料が偏っていないが、旋回ユニット21よりも下流部2aでは、燃料が偏り、燃料ノズル9の内面が摩耗しやすくなるため、耐摩耗材料で構成されている。
 燃料ノズル9内の旋回ユニット21の上流側には、構造物の設置されない空筒部を形成して、曲管部5の外周側にフランジ部を介して設けられる衝突板を貫通するような部材は設けないことが望ましい。
(実施例1の作用)
 前記構成を備えた実施例1の固体燃料バーナ1では、燃料ノズル9に供給された燃料を含む混合流体は、第1の旋回羽根23を通過する際に旋回が付与される。したがって、旋回による遠心効果で、燃料が径方向の外側に移動し、燃料ノズル9の内面近傍の燃料濃度が上昇する。そして、旋回が付与された流体は、第2の旋回羽根24を通過する際に、逆旋回が付与される。したがって、流体の旋回成分が打ち消されて、旋回が弱まる。そして、バーナ出口では、保炎器10近傍での燃料濃度が上昇した状態で、旋回成分が弱い流れとなっている。
 したがって、バーナ出口における燃料(微粉炭)の着火性が向上している。特に、微粉炭の着火には微粉炭濃度をある一定値以上にする必要があるので、微粉炭の平均濃度が低い低負荷時でも、保炎器10近傍での燃料濃度を増加しているので、着火性が確保される。
 一次空気ノズル9の出口で混合流体に強い旋回がかかっていると、火炉13内で微粉炭粒子が固体燃料バーナ1の外周側へ飛び散ることで、火炎の安定性が低下し、NOx排出量が増加する。これに対して、実施例1では、第2の旋回羽根24により、混合流体が火炉13内に噴出される前に旋回強度が弱められている。したがって、火炎の安定性が向上され、NOx排出量の上昇も抑制される。
 また、実施例1の旋回ユニット21は、スピンドル部22や第1の旋回羽根23、第2の旋回羽根24がユニット化されている。したがって、第1の旋回羽根23と第2の旋回羽根24が個別に燃料ノズル9に設置される場合に比べて、旋回ユニット21を取り付けるだけで組付けが終わり、第1の旋回羽根23と第2の旋回羽根24の間隔や位相等の位置関係の調整の必要がなく、交換時も一体で交換することが可能である。よって、組み立て性やメンテナンス性が向上する。
 さらに、実施例1の旋回ユニット21は、鋳造で一体形成されており、製造も容易であり、コストも削減可能である。特に、実施例1では、支持ロッド26も一体形成されており、別個に構成する場合に比べて、さらにコスト削減が可能である。
 また、実施例1の旋回ユニット21では、燃料ノズル9の軸方向から見た場合に、第1の旋回羽根23と第2の旋回羽根24の半径の範囲内において、混合流体が軸方向に貫通しないように、第1の旋回羽根23と第2の旋回羽根24が配置されている。したがって、混合流体の一部が各旋回羽根23,24に触れずに通過することが低減されている。したがって、混合流体が軸方向に貫通可能な場合に比べて、燃料が燃料ノズル9の内面に偏りやすく、燃料の濃縮効果が高くなっている。
 さらに、実施例1の旋回ユニット21では、支持ロッド26で燃料ノズル9の内面に支持されている。したがって、特許文献1に記載のように、中心軸貫通式の支持部材(油バーナ)を使用する場合に比べて、旋回ユニット21よりも上流側の流路が狭まらず、圧力損失の増大が抑制される。したがって、同一の流路断面積を確保する場合に、特許文献1の構成では燃料ノズルの内径を大きくする必要があったが、実施例1では、特許文献1に記載の構成に比べて、燃料ノズル9の内径を小さくすることができる。
 また、特許文献1に記載の中心軸貫通式の支持部材を使用する構成では、曲管部5で支持部材(油バーナ)の摩耗対策が必要になるが、実施例1では、この摩耗対策が必要ない。したがって、摩耗に伴う部品交換が必要なく、メンテナンスの頻度を減らすことも期待でき、メンテナンス性に優れる。
 さらに、実施例1の旋回ユニット21では、旋回羽根23a,23b,24aの外縁に支持ロッド26が支持されている。したがって、スピンドル部22に支持ロッド26が支持される場合に比べて、支持ロッド26の長さを短くすることができる。
 したがって、摩耗対策が必要な部位(支持ロッド26)の範囲を狭くすることができ、材料費を削減することが可能である。特に、支持ロッド26を、高価な耐摩耗材料等の別材料で構成する場合では、費用の削減効果が高くなる。また、支持ロッド26が短くなると、支持ロッド26が長い場合に比べて、混合流体の流れの妨げになりにくい。よって、着火性や火炎の安定性も向上する。
 また、実施例1の固体燃料バーナ1では、直管部2の下流部2aが耐摩耗材料で構成されており、直管部2が長寿命化されている。したがって、部品交換の頻度が低下しており、メンテナンス性が向上している。
 図3は実施例2の旋回ユニットの説明図であり、図3(A)は斜視図、図3(B)は断面図、図3(C)は開口側から見た図である。
 次に本発明の実施例2の説明をするが、この実施例2の説明において、前記実施例1の構成要素に対応する構成要素には同一の符号を付して、その詳細な説明は省略する。
 この実施例2は下記の点で、前記実施例1と相違しているが、他の点では前記実施例1と同様に構成される。
 図3において、実施例2の旋回ユニット21では、旋回羽根23a,23b,24aの長手方向の中央部に支持ロッド26が配置された実施例1と異なり、支持ロッド31は、第1の旋回羽根23の長手方向の両端(上流側および下流側)に配置されている。実施例2の支持ロッド31は、いわば、第1の旋回羽根23の外端が径方向に延びた形状に形成されている。
(実施例2の作用)
 前記構成を備えた実施例2の旋回ユニット21では、実施例1と同様に、着火性と火炎の安定性を確保しつつ、メンテナンス性も向上させることができる。
 また、実施例2では、第1の旋回羽根23に支持ロッド31が設けられているが、第2の旋回羽根24に設けることも可能である。燃料が径方向の外側に偏る前である上流側の第1の旋回羽根23に支持ロッド31を設けて、燃料が径方向の外側に偏った後の下流側の第2の旋回羽根24に支持ロッド31を設けない場合、支持ロッド31の摩耗が抑制され、長寿命化が期待できる。
 図4は実施例3の旋回ユニットの説明図であり、図4(A)は斜視図、図4(B)は断面図、図4(C)は開口側から見た図である。
 次に本発明の実施例3の説明をするが、この実施例3の説明において、前記実施例1,2の構成要素に対応する構成要素には同一の符号を付して、その詳細な説明は省略する。
 この実施例3は下記の点で、前記実施例1,2と相違しているが、他の点では前記実施例1,2と同様に構成される。
 図4において、実施例3の旋回ユニット21では、旋回羽根23a,23b,24aに支持ロッド26が配置された実施例1と異なり、支持ロッド32は、スピンドル部22を貫通する棒状に形成されている。実施例3の支持ロッド32は、2本の棒がスピンドル部22を十字に貫通する形状に形成されている。
(実施例3の作用)
 前記構成を備えた実施例3の旋回ユニット21でも、実施例1,2と同様に、着火性と火炎の安定性を確保しつつ、メンテナンス性も向上させることができる。
 なお、支持ロッド32は、外端に行くほど燃料濃度が高くなるため、摩耗が厳しくなる。よって、外端部に耐摩耗性のセラミックリング33を装着することで耐摩耗性を向上させることが望ましい。
 図5は実施例4の旋回ユニットの説明図であり、図5(A)は斜視図、図5(B)は断面図、図5(C)は開口側から見た図である。
 次に本発明の実施例4の説明をするが、この実施例4の説明において、前記実施例1~3の構成要素に対応する構成要素には同一の符号を付して、その詳細な説明は省略する。
 この実施例4は下記の点で、前記実施例1~3と相違しているが、他の点では前記実施例1~3と同様に構成される。
 図5において、実施例4の旋回ユニット21では、スピンドル部22が、上流部22a、中流部22b、下流部22cの3つのパーツが接合されて構成されている。そして、上流部22aには、第1の旋回羽根23が一体形成され、下流部22cには第2の旋回羽根24が一体形成されている。
 また、中流部22bは、耐摩耗性材料で構成され、同じく耐摩耗性材料で構成された支持ロッド36が、実施例3と同様に中流部22bを十字に貫通している。
(実施例4の作用)
 前記構成を備えた実施例4の旋回ユニット21でも、実施例1~3と同様に、着火性と火炎の安定性を確保しつつ、メンテナンス性も向上させることができる。
 また、実施例4の旋回ユニット21では、支持ロッド36や中流部22bが耐摩耗性材料で構成されているので、燃料を含む混合流体の通過に伴う摩耗がしにくくなっている。
(変更例)
 以上、本発明の実施例を詳述したが、本発明は、前記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲で、種々の変更を行うことが可能である。本発明の変更例(H01)~(H07)を下記に例示する。
(H01)前記実施例において、直管部2の下流部2aのみ耐摩耗材料で構成することが望ましいが、直管部2の全体を耐摩耗材料で構成することも可能である。また、コスト削減や十分に寿命が持つ等の理由で全体を耐摩耗材料でない材料で構成することも可能である。
(H02)前記実施例1,2において、支持ロッド26,31を、旋回羽根23,24とは別個に作成したり、耐摩耗部材等の別材料で構成したりして、溶接等で固定する構成とすることも可能である。
(H03)前記実施例において、支持ロッド26,31,32,36の本数は、少ないほうが流路抵抗や摩耗する部分が少なくなるため好ましいが、設計や仕様等に応じて、本数を増減することも可能である。また、支持ロッド26,31,32,36を設ける位置も、例示した位置に限定されず、変更可能である。
(H04)前記実施例において、旋回羽根23,24の枚数は、4枚の場合を例示したが、これに限定されない。枚数は、要求される性能(仕様)や設計等に応じて増減可能である。また、旋回羽根23,24を設置する位置や間隔についても、実施例に例示した構成に限定されず、任意に変更可能である。
(H05)前記実施例において、旋回羽根23,24は回転不能な構成を例示したが、これに限定されない。スピンドル部22を中心として回転可能な構成とすることも可能である。この場合、支持体は、スピンドル部22に設けることとなる。
(H06)前記実施例において、旋回器として、板状の旋回羽根23,24を例示したが、これに限定されない。旋回が付与可能な任意の形態を採用可能である。
(H07)前記実施例において、旋回ユニット21は、直管部2の下流側に設置する構成を例示したが、これに限定されない。上流側に設置することも可能である。
 固体燃料を用いたバーナ装置として、利用可能性がある。
1…固体燃料バーナ、
2…直管部、
5…曲管部、
9…燃料ノズル、
13…火炉、
21…旋回ユニット、
22…軸体、
23…第1の旋回器、
24…第2の旋回器、
26,31,32,36…支持体。

Claims (6)

  1.  火炉に向かって開口を有する直管部と、前記直管部に連続する曲管部と、を有し、前記曲管部に供給される固体燃料とその搬送気体の混合流体を前記直管部の開口から火炉に噴出する燃料ノズルと、
     前記直管部内の中心軸側に設けられ、混合流体に旋回を与える第1の旋回器と、前記第1の旋回器の混合流体の流れ方向下流に設けられて混合流体に第1の旋回器とは逆方向の旋回を与える第2の旋回器と、前記燃料ノズルの軸方向に沿って延び前記第1の旋回器と前記第2の旋回器とを接続する軸体と、を有する旋回ユニットと、
     前記燃料ノズルの径方向に延び、前記旋回ユニットと前記燃料ノズルの内面とを接続し、前記旋回ユニットを前記燃料ノズルに支持する支持体と、
     を備えたことを特徴とする固体燃料バーナ。
  2.  前記第1の旋回器と前記第2の旋回器と前記軸体とが一体形成された
     ことを特徴とする請求項1に記載の固体燃料バーナ。
  3.  前記軸体と前記燃料ノズルの内面とを接続する前記支持体、
     を備えたことを特徴とする請求項1または2に記載の固体燃料バーナ。
  4.  前記直管部の軸方向に対して傾斜する第1の旋回羽根により構成された前記第1の旋回器と、
     前記第1の旋回羽根とは逆向きに傾斜する第2の旋回羽根により構成された前記第2の旋回器と、
     を備えたことを特徴とする請求項1に記載の固体燃料バーナ。
  5.  前記旋回羽根の外縁と前記燃料ノズルの内面とを接続する前記支持体、
     を備えたことを特徴とする請求項4に記載の固体燃料バーナ。
  6.  前記直管部の開口側から見た場合に、前記第1の旋回羽根と前記第2の旋回羽根の外径の範囲内において、前記混合流体が軸方向に貫通しないように、周方向の位相をずらして配置された前記第1の旋回羽根および前記第2の旋回羽根、
     を備えたことを特徴とする請求項4または5に記載の固体燃料バーナ。
PCT/JP2019/027063 2018-07-09 2019-07-09 固体燃料バーナ WO2020013148A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019300827A AU2019300827B2 (en) 2018-07-09 2019-07-09 Solid fuel burner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018130234A JP7171276B2 (ja) 2018-07-09 2018-07-09 固体燃料バーナ
JP2018-130234 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020013148A1 true WO2020013148A1 (ja) 2020-01-16

Family

ID=69141839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027063 WO2020013148A1 (ja) 2018-07-09 2019-07-09 固体燃料バーナ

Country Status (4)

Country Link
JP (1) JP7171276B2 (ja)
AU (1) AU2019300827B2 (ja)
TW (1) TWI703294B (ja)
WO (1) WO2020013148A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127121A1 (ja) * 2021-12-28 2023-07-06 三菱重工業株式会社 サイクロンバーナ、サイクロンバーナユニット、及びサイクロンバーナの改造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314803A (ja) * 1988-06-15 1989-12-20 Babcock Hitachi Kk 微粉炭バーナ
JPH0791661A (ja) * 1993-03-01 1995-04-04 Hitachi Ltd 燃焼器及びその運転方法
JPH0926112A (ja) * 1995-07-14 1997-01-28 Kawasaki Heavy Ind Ltd 微粉炭バーナ
JP2012247176A (ja) * 2011-05-31 2012-12-13 Babcock Hitachi Kk 固体燃料バーナ
JP2017015305A (ja) * 2015-06-30 2017-01-19 三菱日立パワーシステムズ株式会社 固体燃料バーナ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028418A (ja) * 2016-08-19 2018-02-22 三菱日立パワーシステムズ株式会社 固体燃料バーナ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314803A (ja) * 1988-06-15 1989-12-20 Babcock Hitachi Kk 微粉炭バーナ
JPH0791661A (ja) * 1993-03-01 1995-04-04 Hitachi Ltd 燃焼器及びその運転方法
JPH0926112A (ja) * 1995-07-14 1997-01-28 Kawasaki Heavy Ind Ltd 微粉炭バーナ
JP2012247176A (ja) * 2011-05-31 2012-12-13 Babcock Hitachi Kk 固体燃料バーナ
JP2017015305A (ja) * 2015-06-30 2017-01-19 三菱日立パワーシステムズ株式会社 固体燃料バーナ

Also Published As

Publication number Publication date
JP2020008221A (ja) 2020-01-16
AU2019300827A1 (en) 2021-01-28
TW202006294A (zh) 2020-02-01
AU2019300827B2 (en) 2022-07-07
JP7171276B2 (ja) 2022-11-15
TWI703294B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
JP5868354B2 (ja) ガスタービンバーナ用の軸方向スワーラ
AU2016286769B2 (en) Solid fuel burner
JP6084138B2 (ja) 予混合バーナ
CN103562641A (zh) 用于涡轮机的环形燃烧室
JP2013190201A (ja) 複数管燃料ノズルにおける混合を強化するシステム
JP2010060275A (ja) ターボ機械燃焼器用の二次燃料ノズルの旋回角度
JP2017015305A5 (ja)
EP3004742B1 (en) Asymmetric base plate cooling with alternating swirl main burners
WO2020013148A1 (ja) 固体燃料バーナ
US20180266678A1 (en) Staged burner
JP2016521840A5 (ja)
CN110440286B (zh) 一种用于预混气态燃料的旋流装置
JP2015500976A (ja) 流れトリップ装置を具備する筒型燃焼器
TWI697643B (zh) 固體燃料噴燃器及固體燃料噴燃器用燃燒穩定器
JPWO2019230165A1 (ja) 液体燃料噴射器
EP3207312B1 (en) Method for reducing nox emission in a gas turbine, air fuel mixer, gas turbine and swirler
WO2023189314A1 (ja) 燃焼器及びガスタービン
JP6870966B2 (ja) 燃焼器ノズル、及びガスタービン
JPS6280413A (ja) 固体燃料の低NOx燃焼装置
JPH0960823A (ja) 予混合ノズル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019300827

Country of ref document: AU

Date of ref document: 20190709

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19834407

Country of ref document: EP

Kind code of ref document: A1