WO2020012744A1 - Light emission analysis device and maintenance method for same - Google Patents

Light emission analysis device and maintenance method for same Download PDF

Info

Publication number
WO2020012744A1
WO2020012744A1 PCT/JP2019/015970 JP2019015970W WO2020012744A1 WO 2020012744 A1 WO2020012744 A1 WO 2020012744A1 JP 2019015970 W JP2019015970 W JP 2019015970W WO 2020012744 A1 WO2020012744 A1 WO 2020012744A1
Authority
WO
WIPO (PCT)
Prior art keywords
intensity
maintenance
detector
detection intensity
calibration
Prior art date
Application number
PCT/JP2019/015970
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 堀
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020529999A priority Critical patent/JP6996630B2/en
Priority to CN201980043699.0A priority patent/CN112400107A/en
Publication of WO2020012744A1 publication Critical patent/WO2020012744A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Definitions

  • the sample is caused to emit light by discharge, and the light is collected by a condenser lens and detected by a detector, whereby the sample is sampled based on a calibration curve in which the relationship between the detected intensity and the chemical value is associated.
  • the present invention relates to an emission spectrometer for measuring a chemical value and a maintenance method thereof.
  • the emission analyzer is provided with, for example, an electrode, and a sample is arranged so as to face the electrode.
  • a discharge is generated between the sample and the electrode, and light generated by the discharge is received by the detector.
  • a chemical value such as the content of an element contained in the sample is analyzed (for example, see Patent Document 1 below).
  • the condensing lens needs to be regularly maintained because, for example, the surface of the condensing lens is stained or deteriorated by the influence of oil of a vacuum pump used in an emission spectrometer, ultraviolet light, or the like.
  • the maintenance time of the condenser lens can be determined based on, for example, the number of discharges and the number of days of use of the apparatus, but conventionally, the determination is left to each user.
  • the transmittance of the condenser lens decreases for a while after that, and a drift occurs in the baseline of the light intensity detected by the detector. Therefore, if the frequency of maintenance of the condenser lens is high, the period of performing the analysis in a state where the drift has occurred becomes longer, and the chance of performing the analysis in a state where the performance of the apparatus is not sufficiently exhibited is increased.
  • the present invention has been made in view of the above circumstances, and periodically checks whether maintenance of a condenser lens is necessary, and provides an emission analyzer that can perform maintenance at an appropriate timing, and a maintenance method thereof.
  • the purpose is to provide.
  • the relationship between the detected intensity and the chemical value is correlated by causing the sample to emit light by discharge, collecting the light by a condenser lens, and detecting the light by a detector.
  • An emission spectrometer for analyzing a chemical value of a sample based on the calibration curve obtained, comprising a detection intensity acquisition unit and a maintenance necessity determination unit.
  • the detection intensity acquisition unit acquires the detection intensity of the detector at a timing at which the emission analyzer is calibrated.
  • the maintenance necessity determination unit determines whether maintenance of the condenser lens is necessary by comparing the detection intensity acquired by the detection intensity acquisition unit with a reference intensity.
  • the detection intensity of the detector is acquired at the timing of calibration of the emission analyzer that is periodically performed, and the detection intensity is compared with the reference intensity, so that maintenance of the condenser lens is required. No is determined. Therefore, the necessity of maintenance of the condenser lens is periodically checked, and maintenance can be performed at an appropriate timing based on a comparison result between the detected intensity and the reference intensity.
  • the reference intensity may be set based on the detection intensity of the detector when the calibration curve is created.
  • the reference intensity may be set based on a detection intensity of the detector when a calibration sample used for calibration of the emission analyzer is changed.
  • the necessity of maintenance of the condenser lens is determined using the reference intensity set based on the detection intensity of the detector when the calibration sample used for the calibration of the emission analyzer is changed. It can be determined appropriately.
  • the relationship between the detection intensity and the chemical value is obtained by causing the sample to emit light by discharging, collecting the light by a condenser lens, and detecting the light by a detector.
  • a maintenance method for an emission spectrometer for analyzing a chemical value of a sample based on an associated calibration curve including a detection intensity acquisition step, a maintenance necessity determination step, and a maintenance execution step.
  • the detection intensity acquisition step the detection intensity of the detector is acquired at a timing at which the emission analyzer is calibrated.
  • the maintenance necessity determination step the necessity of maintenance of the condenser lens is determined by comparing the detection intensity acquired in the detection intensity acquisition step with a reference intensity.
  • the maintenance execution step the maintenance of the condenser lens is performed when the maintenance necessity determination step determines that maintenance is necessary.
  • the necessity of maintenance of the condenser lens is periodically checked, and the detection intensity of the detector and the reference intensity obtained at that time are checked. Maintenance can be performed at an appropriate timing based on the comparison result.
  • FIG. 1 is a schematic diagram illustrating a configuration example of an emission spectrometer according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an example of an electrical configuration of the emission analyzer of FIG. 1.
  • 6 is a flowchart showing a flow when performing maintenance of the condenser lens.
  • FIG. 1 is a schematic diagram showing a configuration example of an emission analyzer according to one embodiment of the present invention.
  • This emission analyzer includes a sample mounting table 1 and electrodes 2.
  • a discharge chamber 11 is formed inside the sample mounting table 1, and the tip of the electrode 2 faces the discharge chamber 11.
  • An opening 12 is formed in the wall surface of the discharge chamber 11 at a position facing the tip of the electrode 2.
  • the solid sample 3 to be analyzed is mounted on the sample mounting table 1 so as to cover the opening 12, and the surface thereof is opposed to the tip of the electrode 2 at an interval.
  • the measurement section 4 is formed in a hollow shape by forming a measurement chamber 41 therein, and a spectroscope 42 and a detector 43 are provided in the measurement chamber 41.
  • the detector 43 includes a plurality of light receiving elements 431, and the light of each wavelength separated by the spectroscope 42 is received by each light receiving element 431, so that the sample 3 can be analyzed based on the detection intensity of each wavelength. Done.
  • the analysis of Sample 3 is performed based on the calibration curve.
  • the calibration curve is data in which the relationship between the detected intensity of light received by the detector 43 (each light receiving element 431) and the chemical value of the sample 3 is associated.
  • the chemical value is a value indicating a chemical property of the sample 3, for example, a value indicating a ratio of a specific element contained in the sample 3.
  • the calibration curve is an approximate straight line created based on each standard value, with the chemical values corresponding to a plurality of detection intensities obtained as described above as standard values. That is, the calibration curve is based on the detection intensity data corresponding to each chemical value, and the horizontal axis indicates the chemical value (standard value) of each standard sample 3A, and the detector 43 (each light receiving element 431) for each standard sample 3A. By plotting the detected intensity of the detected light on the vertical axis, it is calculated as an approximate straight line (regression line) of each plotted point.
  • the calibration curve may be calculated not as data having the chemical value as the vertical axis and the light detection intensity as the vertical axis, but as data having the light detection intensity as the vertical axis and the chemical value as the horizontal axis. Since the calibration curve is an approximate straight line, each plotted point (standard value) may be on the calibration curve or may not be on the calibration curve.
  • the calibration curve is created for each wavelength corresponding to each light receiving element 431, and represents the relationship between the chemical value of the element corresponding to each wavelength and the detection intensity.
  • the detection intensity of light from the unknown sample 3B detected by each light receiving element 431 is determined using the calibration curve corresponding to each wavelength.
  • the corresponding chemical value is calculated. Thereby, the chemical value of the element corresponding to each wavelength contained in the unknown sample 3B can be measured.
  • FIG. 2 is a block diagram showing an example of the electrical configuration of the luminescence analyzer of FIG.
  • This emission spectrometer is provided with, for example, a control unit 5 and a storage unit 6 in addition to the above configuration.
  • the control unit 5 includes, for example, a CPU (Central Processing Unit), and functions as an apparatus calibration processing unit 51, a detection intensity acquisition unit 52, a maintenance necessity determination unit 53, and the like when the CPU executes a program.
  • the storage unit 6 includes, for example, a hard disk or a random access memory (RAM), and stores various data such as a calibration curve.
  • RAM random access memory
  • the device calibration is periodically performed according to the user's judgment.
  • the device calibration is performed when the intensity of light detected by each light receiving element 431 gradually decreases with use or when the wavelength of light incident on each light receiving element 431 gradually shifts with use. This is performed to calibrate the deviation.
  • measurement is performed using the calibration sample 3C, and device calibration is performed based on the obtained detection intensity data.
  • the device calibration includes, for example, calibration (intensity calibration) for raising the intensity of light detected by each light receiving element 431 to the intensity at the time of creating the calibration curve, and a wavelength corresponding to the intensity of light detected by each light receiving element 431 Calibration (wavelength calibration) and the like are included.
  • calibration intensity calibration
  • wavelength calibration wavelength calibration
  • the detection intensity acquisition unit 52 acquires the detection intensity of the detector 43. Then, the maintenance necessity determination unit 53 determines whether maintenance of the condenser lens 13 is necessary based on the detection intensity acquired by the detection intensity acquisition unit 52.
  • the detection intensity of the detector 43 is obtained at the timing when the calibration of the emission analyzer is performed by the device calibration processing unit 51. That is, when the device calibration is performed, the detection intensity of the detector 43 is automatically acquired by the detection intensity acquisition unit 52, and the maintenance necessity determining unit 53 determines whether the maintenance of the condenser lens 13 is necessary based on the detection intensity. No is determined.
  • the maintenance necessity determination unit 53 determines whether maintenance of the condenser lens 13 is necessary by comparing the reference intensity stored in the storage unit 6 in advance with the detection intensity acquired by the detection intensity acquisition unit 52. . Specifically, when the detection intensity acquired by the detection intensity acquisition unit 52 is smaller than the reference intensity by a predetermined value or more, it is determined that maintenance of the condenser lens 13 is necessary.
  • the detection intensity of the detector 43 is acquired at the timing of the calibration of the emission analyzer that is periodically performed, and the detection intensity is compared with the reference intensity. It is determined whether maintenance is necessary. Therefore, the necessity of maintenance of the condenser lens 13 is periodically checked, and maintenance can be performed at an appropriate timing based on a comparison result between the detected intensity and the reference intensity.
  • the reference intensity can be set arbitrarily, but may be set based on, for example, the detection intensity of the detector 43 when the calibration curve is created. For example, when the type of the main component (base) to be analyzed changes, a calibration curve is created, and the detected intensity of the detector 43 at that time may be stored in the storage unit 6 as the reference intensity. In this case, the necessity of maintenance of the condenser lens 13 can be appropriately determined using the reference intensity set based on the detection intensity of the detector 43 when the calibration curve is created.
  • the reference intensity may be set based on the detection intensity of the detector 43 when the calibration sample 3C used for the device calibration is changed. Since the calibration sample 3C is a consumable item, when it is consumed to some extent, it is changed to a new calibration sample 3C. Therefore, when the calibration is performed using the changed new calibration sample 3C, the detection intensity of the detector 43 may be stored in the storage unit 6 as the reference intensity. In this case, using the reference intensity set based on the detection intensity of the detector 43 when the calibration sample 3C used for calibration of the emission spectrometer is changed, the necessity of maintenance of the condenser lens 13 is appropriately determined. Can be determined.
  • FIG. 3 is a flowchart showing a flow when the condenser lens 13 is maintained.
  • Step S103 maintenance necessity determination step
  • step S104 maintenance execution step
  • the maintenance of the condenser lens 13 may be automatically performed in the emission analyzer, or a message that maintenance is determined to be necessary is displayed on a display unit (not shown), and the user who confirms the display may manually perform the maintenance. May be performed.
  • the reference intensity is set to the detection intensity of the detector 43 when the calibration curve is created, or the detection intensity of the detector 43 when the calibration sample 3C used for device calibration is changed.
  • the configuration described above has been described. However, not limited to such a configuration, the reference intensity may be set to another value calculated based on these detected intensities, or the reference intensity may be set based on these detected intensities. .
  • the configuration of the emission spectrometer is not limited to the configuration of the above embodiment, and the present invention can be applied to other emission analyzers such as an ICP (high frequency inductively coupled plasma) emission analyzer. it can.
  • ICP high frequency inductively coupled plasma
  • Reference Signs List 1 Sample mounting table 2 Electrode 3 Sample 3A Standard sample 3B Unknown sample 3C Calibration sample 4 Measurement unit 5 Control unit 6 Storage unit 13 Condensing lens 43 Detector 51 Device calibration processing unit 52 Detection intensity acquisition unit 53 Maintenance necessity determination unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

In the present invention, a detected intensity acquisition unit 52 acquires a detected intensity from a detector 43 when correction of this light emission analysis device is performed. A maintenance requirement determination unit 53 determines whether maintenance needs to be performed on a condensing lens by comparing the detected intensity acquired by the detected intensity acquisition unit 52 with a reference intensity. The detected intensity from the detector 43 is acquired when the periodic correction of the light emission analysis device is performed, and by comparing the detected intensity with the reference intensity, it is determined whether maintenance of the condensing lens is required. Thus, whether maintenance of the condensing lens is required is periodically checked, and on the basis of the comparison results between the detected intensity and the reference intensity, maintenance can be performed at a suitable timing.

Description

発光分析装置、及び、そのメンテナンス方法Optical emission analyzer and its maintenance method
 本発明は、試料を放電により発光させ、その光を集光レンズで集光させて検出器で検出することにより、検出強度と化学値との関係が対応付けられた検量線に基づいて試料の化学値を測定する発光分析装置、及び、そのメンテナンス方法に関するものである。 According to the present invention, the sample is caused to emit light by discharge, and the light is collected by a condenser lens and detected by a detector, whereby the sample is sampled based on a calibration curve in which the relationship between the detected intensity and the chemical value is associated. The present invention relates to an emission spectrometer for measuring a chemical value and a maintenance method thereof.
 発光分析装置には、例えば電極が設けられており、当該電極に対向するように試料が配置される。試料の分析を行う際には、試料と電極との間で放電が行われ、放電により発生した光が検出器により受光される。そして、検出器により受光された光の強度に基づいて、試料に含まれる元素の含有率などの化学値が分析される(例えば、下記特許文献1参照)。 The emission analyzer is provided with, for example, an electrode, and a sample is arranged so as to face the electrode. When the sample is analyzed, a discharge is generated between the sample and the electrode, and light generated by the discharge is received by the detector. Then, based on the intensity of the light received by the detector, a chemical value such as the content of an element contained in the sample is analyzed (for example, see Patent Document 1 below).
 放電により試料から発生した光は、集光レンズにより集光されて、検出器で受光される。集光レンズは、例えば発光分析装置に用いられる真空ポンプの油や、紫外線などの影響により、その表面に汚れが付着したり、劣化したりするため、定期的にメンテナンスを行う必要がある。集光レンズのメンテナンス時期については、例えば放電回数や装置の使用日数などに基づいて判断することができるが、従来は、その判断が各ユーザに委ねられていた。 光 Light generated from the sample by the discharge is collected by the condenser lens and received by the detector. The condensing lens needs to be regularly maintained because, for example, the surface of the condensing lens is stained or deteriorated by the influence of oil of a vacuum pump used in an emission spectrometer, ultraviolet light, or the like. The maintenance time of the condenser lens can be determined based on, for example, the number of discharges and the number of days of use of the apparatus, but conventionally, the determination is left to each user.
実用新案登録第3187346号公報Utility Model Registration No. 3187346
 集光レンズのメンテナンスを行った場合、その後しばらくの間は集光レンズの透過率が低下し、検出器により検出される光の強度のベースラインにドリフトが発生する。そのため、集光レンズのメンテナンスの頻度が高いと、ドリフトが発生した状態で分析を行う期間が長くなり、装置の性能を十分に発揮できていない状態で分析が行われる機会が多くなってしまう。 場合 When the maintenance of the condenser lens is performed, the transmittance of the condenser lens decreases for a while after that, and a drift occurs in the baseline of the light intensity detected by the detector. Therefore, if the frequency of maintenance of the condenser lens is high, the period of performing the analysis in a state where the drift has occurred becomes longer, and the chance of performing the analysis in a state where the performance of the apparatus is not sufficiently exhibited is increased.
 一方、集光レンズのメンテナンスの頻度が低いと、集光レンズが汚れた状態や劣化した状態で分析を行う期間が長くなり、S/N比が悪くなる。そのため、分析結果にばらつきが生じやすく、精度よく分析を行うことができないという問題がある。 On the other hand, if the frequency of maintenance of the condenser lens is low, the period during which the condenser lens is analyzed in a dirty or deteriorated state becomes longer, and the S / N ratio deteriorates. For this reason, there is a problem that the analysis result tends to vary, and the analysis cannot be performed accurately.
 本発明は、上記実情に鑑みてなされたものであり、集光レンズのメンテナンスの要否を定期的に確認し、適切なタイミングでメンテナンスを行うことができる発光分析装置、及び、そのメンテナンス方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and periodically checks whether maintenance of a condenser lens is necessary, and provides an emission analyzer that can perform maintenance at an appropriate timing, and a maintenance method thereof. The purpose is to provide.
(1)本発明に係る発光分析装置は、試料を放電により発光させ、その光を集光レンズで集光させて検出器で検出することにより、検出強度と化学値との関係が対応付けられた検量線に基づいて試料の化学値を分析する発光分析装置であって、検出強度取得部と、メンテナンス要否判定部とを備える。前記検出強度取得部は、前記発光分析装置の校正を行うタイミングで前記検出器の検出強度を取得する。前記メンテナンス要否判定部は、前記検出強度取得部により取得した検出強度を基準強度と比較することにより、前記集光レンズのメンテナンスの要否を判定する。 (1) In the emission spectrometer according to the present invention, the relationship between the detected intensity and the chemical value is correlated by causing the sample to emit light by discharge, collecting the light by a condenser lens, and detecting the light by a detector. An emission spectrometer for analyzing a chemical value of a sample based on the calibration curve obtained, comprising a detection intensity acquisition unit and a maintenance necessity determination unit. The detection intensity acquisition unit acquires the detection intensity of the detector at a timing at which the emission analyzer is calibrated. The maintenance necessity determination unit determines whether maintenance of the condenser lens is necessary by comparing the detection intensity acquired by the detection intensity acquisition unit with a reference intensity.
 このような構成によれば、定期的に行われる発光分析装置の校正のタイミングで、検出器の検出強度を取得し、その検出強度を基準強度と比較することにより、集光レンズのメンテナンスの要否が判定される。したがって、集光レンズのメンテナンスの要否を定期的に確認し、検出強度と基準強度との比較結果に基づいて、適切なタイミングでメンテナンスを行うことができる。 According to such a configuration, the detection intensity of the detector is acquired at the timing of calibration of the emission analyzer that is periodically performed, and the detection intensity is compared with the reference intensity, so that maintenance of the condenser lens is required. No is determined. Therefore, the necessity of maintenance of the condenser lens is periodically checked, and maintenance can be performed at an appropriate timing based on a comparison result between the detected intensity and the reference intensity.
(2)前記基準強度は、前記検量線を作成したときの前記検出器の検出強度に基づいて設定されてもよい。 (2) The reference intensity may be set based on the detection intensity of the detector when the calibration curve is created.
 このような構成によれば、検量線を作成したときの検出器の検出強度に基づいて設定された基準強度を用いて、集光レンズのメンテナンスの要否を適切に判定することができる。 According to such a configuration, it is possible to appropriately determine whether maintenance of the condenser lens is necessary, using the reference intensity set based on the detection intensity of the detector when the calibration curve is created.
(3)前記基準強度は、前記発光分析装置の校正に用いられる校正用試料を変更したときの前記検出器の検出強度に基づいて設定されてもよい。 (3) The reference intensity may be set based on a detection intensity of the detector when a calibration sample used for calibration of the emission analyzer is changed.
 このような構成によれば、発光分析装置の校正に用いられる校正用試料を変更したときの検出器の検出強度に基づいて設定された基準強度を用いて、集光レンズのメンテナンスの要否を適切に判定することができる。 According to such a configuration, the necessity of maintenance of the condenser lens is determined using the reference intensity set based on the detection intensity of the detector when the calibration sample used for the calibration of the emission analyzer is changed. It can be determined appropriately.
(4)本発明に係る発光分析装置のメンテナンス方法は、試料を放電により発光させ、その光を集光レンズで集光させて検出器で検出することにより、検出強度と化学値との関係が対応付けられた検量線に基づいて試料の化学値を分析する発光分析装置のメンテナンス方法であって、検出強度取得ステップと、メンテナンス要否判定ステップと、メンテナンス実行ステップとを含む。前記検出強度取得ステップでは、前記発光分析装置の校正を行うタイミングで前記検出器の検出強度を取得する。前記メンテナンス要否判定ステップでは、前記検出強度取得ステップにより取得した検出強度を基準強度と比較することにより、前記集光レンズのメンテナンスの要否を判定する。前記メンテナンス実行ステップでは、前記メンテナンス要否判定ステップによりメンテナンスが必要と判定された場合に、前記集光レンズのメンテナンスを行う。 (4) In the maintenance method of the emission spectrometer according to the present invention, the relationship between the detection intensity and the chemical value is obtained by causing the sample to emit light by discharging, collecting the light by a condenser lens, and detecting the light by a detector. A maintenance method for an emission spectrometer for analyzing a chemical value of a sample based on an associated calibration curve, the method including a detection intensity acquisition step, a maintenance necessity determination step, and a maintenance execution step. In the detection intensity acquisition step, the detection intensity of the detector is acquired at a timing at which the emission analyzer is calibrated. In the maintenance necessity determination step, the necessity of maintenance of the condenser lens is determined by comparing the detection intensity acquired in the detection intensity acquisition step with a reference intensity. In the maintenance execution step, the maintenance of the condenser lens is performed when the maintenance necessity determination step determines that maintenance is necessary.
 本発明によれば、定期的に行われる発光分析装置の校正のタイミングで、集光レンズのメンテナンスの要否を定期的に確認し、そのとき取得される検出器の検出強度と基準強度との比較結果に基づいて、適切なタイミングでメンテナンスを行うことができる。 According to the present invention, at the timing of the calibration of the emission analyzer performed periodically, the necessity of maintenance of the condenser lens is periodically checked, and the detection intensity of the detector and the reference intensity obtained at that time are checked. Maintenance can be performed at an appropriate timing based on the comparison result.
本発明の一実施形態に係る発光分析装置の構成例を示した概略図である。1 is a schematic diagram illustrating a configuration example of an emission spectrometer according to an embodiment of the present invention. 図1の発光分析装置の電気的構成の一例を示したブロック図である。FIG. 2 is a block diagram illustrating an example of an electrical configuration of the emission analyzer of FIG. 1. 集光レンズのメンテナンスを行う際の流れを示したフローチャートである。6 is a flowchart showing a flow when performing maintenance of the condenser lens.
1.発光分析装置の全体構成
 図1は、本発明の一実施形態に係る発光分析装置の構成例を示した概略図である。この発光分析装置には、試料載置台1と電極2とが備えられている。試料載置台1の内部には放電室11が形成されており、当該放電室11内に電極2の先端部が臨んでいる。放電室11の壁面には、電極2の先端部に対向する位置に開口12が形成されている。分析対象となる固体の試料3は、開口12を塞ぐように試料載置台1上に載置され、その表面が電極2の先端部と間隔を隔てて対向した状態となる。
1. Overall Configuration of Emission Analyzer FIG. 1 is a schematic diagram showing a configuration example of an emission analyzer according to one embodiment of the present invention. This emission analyzer includes a sample mounting table 1 and electrodes 2. A discharge chamber 11 is formed inside the sample mounting table 1, and the tip of the electrode 2 faces the discharge chamber 11. An opening 12 is formed in the wall surface of the discharge chamber 11 at a position facing the tip of the electrode 2. The solid sample 3 to be analyzed is mounted on the sample mounting table 1 so as to cover the opening 12, and the surface thereof is opposed to the tip of the electrode 2 at an interval.
 分析時には、電極2に電圧が印加されることにより、試料3の表面と電極2の先端部との間で放電が行われる。放電時に放電室11内で発生した光は、集光レンズ13で集光されて測定部4へと導かれる。測定部4は、その内部に測定室41が形成されることにより中空状に構成されており、測定室41内には分光器42及び検出器43が設けられている。 At the time of analysis, a voltage is applied to the electrode 2, so that a discharge occurs between the surface of the sample 3 and the tip of the electrode 2. Light generated in the discharge chamber 11 at the time of discharge is condensed by the condenser lens 13 and guided to the measurement unit 4. The measurement section 4 is formed in a hollow shape by forming a measurement chamber 41 therein, and a spectroscope 42 and a detector 43 are provided in the measurement chamber 41.
 試料3を放電させることにより発生した光は、測定室41内に入射し、分光器42により分光される。検出器43は複数の受光素子431を備えており、分光器42により分光された各波長の光が各受光素子431で受光されることにより、各波長の検出強度に基づいて試料3の分析が行われる。 (4) Light generated by discharging the sample 3 enters the measurement chamber 41 and is separated by the spectroscope 42. The detector 43 includes a plurality of light receiving elements 431, and the light of each wavelength separated by the spectroscope 42 is received by each light receiving element 431, so that the sample 3 can be analyzed based on the detection intensity of each wavelength. Done.
 試料3の分析は、検量線に基づいて行われる。検量線は、検出器43(各受光素子431)で受光される光の検出強度と試料3の化学値との関係が対応付けられたデータである。化学値とは、試料3の化学的特性を表す値であり、例えば試料3に含有される特定の元素の割合を表す値である。 分析 The analysis of Sample 3 is performed based on the calibration curve. The calibration curve is data in which the relationship between the detected intensity of light received by the detector 43 (each light receiving element 431) and the chemical value of the sample 3 is associated. The chemical value is a value indicating a chemical property of the sample 3, for example, a value indicating a ratio of a specific element contained in the sample 3.
 検量線を作成する際には、化学値が既知である複数の試料3(標準試料3A)を用いて測定が行われる。各標準試料3Aは、同一の元素を異なる割合で含有している。したがって、各標準試料3Aを用いて測定を行った場合には、それぞれ異なる化学値に対応する検出強度のデータが得られる。このとき得られる各データの化学値は、標準試料3Aの情報として予め与えられた標準的な値(標準値)である。 作成 When creating a calibration curve, measurement is performed using a plurality of samples 3 (standard samples 3A) whose chemical values are known. Each standard sample 3A contains the same element at a different ratio. Therefore, when the measurement is performed using each standard sample 3A, data of the detection intensity corresponding to each different chemical value is obtained. The chemical value of each data obtained at this time is a standard value (standard value) given in advance as information on the standard sample 3A.
 検量線は、上記のようにして得られた複数の検出強度に対応する化学値をそれぞれ標準値として、各標準値に基づいて作成された近似直線である。すなわち、検量線は、各化学値に対応する検出強度のデータに基づいて、各標準試料3Aの化学値(標準値)を横軸、各標準試料3Aについて検出器43(各受光素子431)で検出される光の検出強度を縦軸としてプロットすることにより、プロットされた各点の近似直線(回帰直線)として算出される。ただし、化学値を縦軸、光の検出強度を縦軸とするデータではなく、光の検出強度を縦軸、化学値を横軸とするデータとして検量線が算出されてもよい。なお、検量線は、近似直線であるため、プロットされた各点(標準値)が検量線上にある場合もあれば、検量線上にない場合もある。 The calibration curve is an approximate straight line created based on each standard value, with the chemical values corresponding to a plurality of detection intensities obtained as described above as standard values. That is, the calibration curve is based on the detection intensity data corresponding to each chemical value, and the horizontal axis indicates the chemical value (standard value) of each standard sample 3A, and the detector 43 (each light receiving element 431) for each standard sample 3A. By plotting the detected intensity of the detected light on the vertical axis, it is calculated as an approximate straight line (regression line) of each plotted point. However, the calibration curve may be calculated not as data having the chemical value as the vertical axis and the light detection intensity as the vertical axis, but as data having the light detection intensity as the vertical axis and the chemical value as the horizontal axis. Since the calibration curve is an approximate straight line, each plotted point (standard value) may be on the calibration curve or may not be on the calibration curve.
 検量線は、各受光素子431に対応する波長ごと作成され、各波長に対応する元素の化学値と検出強度との関係を表している。化学値が未知である試料3(未知試料3B)の分析を行う際には、各波長に対応する検量線を用いて、各受光素子431で検出される未知試料3Bからの光の検出強度に対応する化学値(分析値)が算出される。これにより、未知試料3Bに含有される各波長に対応する元素の化学値を測定することができる。 The calibration curve is created for each wavelength corresponding to each light receiving element 431, and represents the relationship between the chemical value of the element corresponding to each wavelength and the detection intensity. When analyzing the sample 3 whose unknown chemical value is unknown (unknown sample 3B), the detection intensity of light from the unknown sample 3B detected by each light receiving element 431 is determined using the calibration curve corresponding to each wavelength. The corresponding chemical value (analytical value) is calculated. Thereby, the chemical value of the element corresponding to each wavelength contained in the unknown sample 3B can be measured.
2.発光分析装置の電気的構成
 図2は、図1の発光分析装置の電気的構成の一例を示したブロック図である。この発光分析装置には、上述の構成以外に、例えば制御部5及び記憶部6などが備えられている。制御部5は、例えばCPU(Central Processing Unit)を含む構成であり、当該CPUがプログラムを実行することにより、装置校正処理部51、検出強度取得部52及びメンテナンス要否判定部53などとして機能する。記憶部6は、例えばハードディスク又はRAM(Random Access Memory)などにより構成され、検量線などの各種データを記憶している。
2. FIG. 2 is a block diagram showing an example of the electrical configuration of the luminescence analyzer of FIG. This emission spectrometer is provided with, for example, a control unit 5 and a storage unit 6 in addition to the above configuration. The control unit 5 includes, for example, a CPU (Central Processing Unit), and functions as an apparatus calibration processing unit 51, a detection intensity acquisition unit 52, a maintenance necessity determination unit 53, and the like when the CPU executes a program. . The storage unit 6 includes, for example, a hard disk or a random access memory (RAM), and stores various data such as a calibration curve.
 本実施形態に係る発光分析装置では、ユーザの判断により定期的に装置校正が行われる。装置校正は、使用に伴って各受光素子431で検出される光の強度が徐々に低下したり、使用に伴って各受光素子431に入射する光の波長が徐々にずれたりした場合に、そのずれを校正するために行われる。装置校正の際には、校正用試料3Cを用いて測定が行われ、得られた検出強度のデータに基づいて装置校正が行われる。 発 光 In the emission analyzer according to the present embodiment, the device calibration is periodically performed according to the user's judgment. The device calibration is performed when the intensity of light detected by each light receiving element 431 gradually decreases with use or when the wavelength of light incident on each light receiving element 431 gradually shifts with use. This is performed to calibrate the deviation. At the time of device calibration, measurement is performed using the calibration sample 3C, and device calibration is performed based on the obtained detection intensity data.
 装置校正には、例えば各受光素子431で検出される光の強度を検量線作成時の強度に引き上げるための校正(強度校正)や、各受光素子431で検出される光の強度に対応する波長をずらすための校正(波長校正)などが含まれる。なお、検出器43として、複数の受光素子431ではなく、光電子増倍管を使用した場合には、強度校正のみが行われてもよい。 The device calibration includes, for example, calibration (intensity calibration) for raising the intensity of light detected by each light receiving element 431 to the intensity at the time of creating the calibration curve, and a wavelength corresponding to the intensity of light detected by each light receiving element 431 Calibration (wavelength calibration) and the like are included. When a photomultiplier tube is used as the detector 43 instead of the plurality of light receiving elements 431, only the intensity calibration may be performed.
 検出強度取得部52は、検出器43の検出強度を取得する。そして、メンテナンス要否判定部53は、検出強度取得部52により取得した検出強度に基づいて、集光レンズ13のメンテナンスの要否を判定する。本実施形態では、装置校正処理部51により発光分析装置の校正が行われるタイミングで、検出器43の検出強度を取得する。すなわち、装置校正が行われるときには、検出強度取得部52により自動的に検出器43の検出強度が取得され、その検出強度に基づいて、メンテナンス要否判定部53により集光レンズ13のメンテナンスの要否が判定される。 The detection intensity acquisition unit 52 acquires the detection intensity of the detector 43. Then, the maintenance necessity determination unit 53 determines whether maintenance of the condenser lens 13 is necessary based on the detection intensity acquired by the detection intensity acquisition unit 52. In the present embodiment, the detection intensity of the detector 43 is obtained at the timing when the calibration of the emission analyzer is performed by the device calibration processing unit 51. That is, when the device calibration is performed, the detection intensity of the detector 43 is automatically acquired by the detection intensity acquisition unit 52, and the maintenance necessity determining unit 53 determines whether the maintenance of the condenser lens 13 is necessary based on the detection intensity. No is determined.
 メンテナンス要否判定部53は、記憶部6に予め記憶されている基準強度と、検出強度取得部52により取得した検出強度とを比較することにより、集光レンズ13のメンテナンスの要否を判定する。具体的には、検出強度取得部52により取得した検出強度が、基準強度に対して所定値以上小さい場合に、集光レンズ13のメンテナンスが必要と判断される。 The maintenance necessity determination unit 53 determines whether maintenance of the condenser lens 13 is necessary by comparing the reference intensity stored in the storage unit 6 in advance with the detection intensity acquired by the detection intensity acquisition unit 52. . Specifically, when the detection intensity acquired by the detection intensity acquisition unit 52 is smaller than the reference intensity by a predetermined value or more, it is determined that maintenance of the condenser lens 13 is necessary.
 このように、本実施形態では、定期的に行われる発光分析装置の校正のタイミングで、検出器43の検出強度を取得し、その検出強度を基準強度と比較することにより、集光レンズ13のメンテナンスの要否が判定される。したがって、集光レンズ13のメンテナンスの要否を定期的に確認し、検出強度と基準強度との比較結果に基づいて、適切なタイミングでメンテナンスを行うことができる。 As described above, in the present embodiment, the detection intensity of the detector 43 is acquired at the timing of the calibration of the emission analyzer that is periodically performed, and the detection intensity is compared with the reference intensity. It is determined whether maintenance is necessary. Therefore, the necessity of maintenance of the condenser lens 13 is periodically checked, and maintenance can be performed at an appropriate timing based on a comparison result between the detected intensity and the reference intensity.
 基準強度は、任意に設定することができるが、例えば検量線を作成したときの検出器43の検出強度に基づいて設定されてもよい。例えば、分析対象の主成分(ベース)の品種が変わるときなどには検量線が作成されるため、そのときの検出器43の検出強度を基準強度として記憶部6に記憶してもよい。この場合、検量線を作成したときの検出器43の検出強度に基づいて設定された基準強度を用いて、集光レンズ13のメンテナンスの要否を適切に判定することができる。 The reference intensity can be set arbitrarily, but may be set based on, for example, the detection intensity of the detector 43 when the calibration curve is created. For example, when the type of the main component (base) to be analyzed changes, a calibration curve is created, and the detected intensity of the detector 43 at that time may be stored in the storage unit 6 as the reference intensity. In this case, the necessity of maintenance of the condenser lens 13 can be appropriately determined using the reference intensity set based on the detection intensity of the detector 43 when the calibration curve is created.
 あるいは、装置校正に用いられる校正用試料3Cを変更したときの検出器43の検出強度に基づいて、基準強度が設定されてもよい。校正用試料3Cは消耗品であるため、ある程度消耗したときには新しい校正用試料3Cに変更される。したがって、変更した新しい校正用試料3Cを用いて校正を行う際に、検出器43の検出強度を基準強度として記憶部6に記憶してもよい。この場合、発光分析装置の校正に用いられる校正用試料3Cを変更したときの検出器43の検出強度に基づいて設定された基準強度を用いて、集光レンズ13のメンテナンスの要否を適切に判定することができる。 Alternatively, the reference intensity may be set based on the detection intensity of the detector 43 when the calibration sample 3C used for the device calibration is changed. Since the calibration sample 3C is a consumable item, when it is consumed to some extent, it is changed to a new calibration sample 3C. Therefore, when the calibration is performed using the changed new calibration sample 3C, the detection intensity of the detector 43 may be stored in the storage unit 6 as the reference intensity. In this case, using the reference intensity set based on the detection intensity of the detector 43 when the calibration sample 3C used for calibration of the emission spectrometer is changed, the necessity of maintenance of the condenser lens 13 is appropriately determined. Can be determined.
3.集光レンズのメンテナンス方法
 図3は、集光レンズ13のメンテナンスを行う際の流れを示したフローチャートである。発光分析装置の校正が実行される際には(ステップS101でYes)、その装置校正を行うタイミングで検出器43の検出強度が取得される(ステップS102:検出強度取得ステップ)。
3. Condenser Lens Maintenance Method FIG. 3 is a flowchart showing a flow when the condenser lens 13 is maintained. When the calibration of the emission analyzer is performed (Yes in step S101), the detection intensity of the detector 43 is acquired at the timing of performing the device calibration (step S102: detection intensity acquisition step).
 そして、取得された検出強度が、記憶部6に記憶されている基準強度と比較されることにより、集光レンズ13のメンテナンスの要否が判定される(ステップS103:メンテナンス要否判定ステップ)。その結果、メンテナンスが必要と判定された場合には(ステップS104でYes)、集光レンズ13の表面に付着した汚れを除去するなどのメンテナンスが行われる(ステップS105:メンテナンス実行ステップ)。 {Circle around (4)} The acquired detection intensity is compared with the reference intensity stored in the storage unit 6 to determine whether maintenance of the condenser lens 13 is necessary (Step S103: maintenance necessity determination step). As a result, when it is determined that maintenance is necessary (Yes in step S104), maintenance such as removing dirt attached to the surface of the condenser lens 13 is performed (step S105: maintenance execution step).
 集光レンズ13のメンテナンスは、発光分析装置において自動的に行われてもよいし、メンテナンスが必要と判定された旨が表示部(図示せず)に表示され、その表示を確認したユーザにより手動で行われてもよい。 The maintenance of the condenser lens 13 may be automatically performed in the emission analyzer, or a message that maintenance is determined to be necessary is displayed on a display unit (not shown), and the user who confirms the display may manually perform the maintenance. May be performed.
4.変形例
 以上の実施形態では、基準強度が、検量線を作成したときの検出器43の検出強度、又は、装置校正に用いられる校正用試料3Cを変更したときの検出器43の検出強度に設定されるような構成について説明した。しかし、このような構成に限らず、これらの検出強度に基づいて算出される別の値に基準強度が設定されてもよいし、これらの検出強度に基づかずに基準強度が設定されてもよい。
4. Modification In the above embodiment, the reference intensity is set to the detection intensity of the detector 43 when the calibration curve is created, or the detection intensity of the detector 43 when the calibration sample 3C used for device calibration is changed. The configuration described above has been described. However, not limited to such a configuration, the reference intensity may be set to another value calculated based on these detected intensities, or the reference intensity may be set based on these detected intensities. .
 また、発光分析装置の構成は、上記実施形態のような構成に限られるものではなく、例えばICP(高周波誘導結合プラズマ)発光分析装置などの他の発光分析装置にも本発明を適用することができる。 Further, the configuration of the emission spectrometer is not limited to the configuration of the above embodiment, and the present invention can be applied to other emission analyzers such as an ICP (high frequency inductively coupled plasma) emission analyzer. it can.
1   試料載置台
2   電極
3   試料
3A  標準試料
3B  未知試料
3C  校正用試料
4   測定部
5   制御部
6   記憶部
13  集光レンズ
43  検出器
51  装置校正処理部
52  検出強度取得部
53  メンテナンス要否判定部
Reference Signs List 1 Sample mounting table 2 Electrode 3 Sample 3A Standard sample 3B Unknown sample 3C Calibration sample 4 Measurement unit 5 Control unit 6 Storage unit 13 Condensing lens 43 Detector 51 Device calibration processing unit 52 Detection intensity acquisition unit 53 Maintenance necessity determination unit

Claims (6)

  1.  試料を放電により発光させ、その光を集光レンズで集光させて検出器で検出することにより、検出強度と化学値との関係が対応付けられた検量線に基づいて試料の化学値を測定する発光分析装置であって、
     前記発光分析装置の校正を行うタイミングで前記検出器の検出強度を取得する検出強度取得部と、
     前記検出強度取得部により取得した検出強度を基準強度と比較することにより、前記集光レンズのメンテナンスの要否を判定するメンテナンス要否判定部とを備えることを特徴とする発光分析装置。
    The sample emits light by discharge, and the light is collected by a condenser lens and detected by a detector, so that the chemical value of the sample is measured based on a calibration curve in which the relationship between the detected intensity and the chemical value is associated. Emission spectrometer,
    A detection intensity acquisition unit that acquires the detection intensity of the detector at the timing of calibrating the emission analyzer,
    An emission spectrometer comprising: a maintenance necessity determining unit that determines whether maintenance of the condenser lens is necessary by comparing the detection intensity acquired by the detection intensity acquisition unit with a reference intensity.
  2.  前記基準強度は、前記検量線を作成したときの前記検出器の検出強度に基づいて設定されることを特徴とする請求項1に記載の発光分析装置。 The emission spectrometer according to claim 1, wherein the reference intensity is set based on a detection intensity of the detector when the calibration curve is created.
  3.  前記基準強度は、前記発光分析装置の校正に用いられる校正用試料を変更したときの前記検出器の検出強度に基づいて設定されることを特徴とする請求項1に記載の発光分析装置。 2. The emission spectrometer according to claim 1, wherein the reference intensity is set based on a detection intensity of the detector when a calibration sample used for calibration of the emission spectrometer is changed. 3.
  4.  試料を放電により発光させ、その光を集光レンズで集光させて検出器で検出することにより、検出強度と化学値との関係が対応付けられた検量線に基づいて試料の化学値を測定する発光分析装置のメンテナンス方法であって、
     前記発光分析装置の校正を行うタイミングで前記検出器の検出強度を取得する検出強度取得ステップと、
     前記検出強度取得ステップにより取得した検出強度を基準強度と比較することにより、前記集光レンズのメンテナンスの要否を判定するメンテナンス要否判定ステップと、
     前記メンテナンス要否判定ステップによりメンテナンスが必要と判定された場合に、前記集光レンズのメンテナンスを行うメンテナンス実行ステップとを含むことを特徴とする発光分析装置のメンテナンス方法。
    The sample emits light by discharge, and the light is collected by a condenser lens and detected by a detector, so that the chemical value of the sample is measured based on a calibration curve in which the relationship between the detected intensity and the chemical value is associated. A method for maintaining an emission spectrometer,
    A detection intensity acquisition step of acquiring the detection intensity of the detector at the timing of calibrating the emission analyzer,
    A maintenance necessity determining step of determining whether maintenance of the condenser lens is necessary by comparing the detection intensity obtained in the detection intensity obtaining step with a reference intensity,
    A maintenance execution step of performing maintenance on the condenser lens when the maintenance necessity determination step determines that maintenance is necessary.
  5.  前記基準強度は、前記検量線を作成したときの前記検出器の検出強度に基づいて設定されることを特徴とする請求項4に記載の発光分析装置のメンテナンス方法。 5. The method according to claim 4, wherein the reference intensity is set based on a detection intensity of the detector when the calibration curve is created. 6.
  6.  前記基準強度は、前記発光分析装置の校正に用いられる校正用試料を変更したときの前記検出器の検出強度に基づいて設定されることを特徴とする請求項4に記載の発光分析装置のメンテナンス方法。 The maintenance of the emission analyzer according to claim 4, wherein the reference intensity is set based on the detection intensity of the detector when a calibration sample used for calibration of the emission analyzer is changed. Method.
PCT/JP2019/015970 2018-07-11 2019-04-12 Light emission analysis device and maintenance method for same WO2020012744A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020529999A JP6996630B2 (en) 2018-07-11 2019-04-12 Emission analyzer and its maintenance method
CN201980043699.0A CN112400107A (en) 2018-07-11 2019-04-12 Luminescence analysis apparatus and maintenance method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018131247 2018-07-11
JP2018-131247 2018-07-11

Publications (1)

Publication Number Publication Date
WO2020012744A1 true WO2020012744A1 (en) 2020-01-16

Family

ID=69142552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015970 WO2020012744A1 (en) 2018-07-11 2019-04-12 Light emission analysis device and maintenance method for same

Country Status (3)

Country Link
JP (1) JP6996630B2 (en)
CN (1) CN112400107A (en)
WO (1) WO2020012744A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142319A (en) * 1993-06-15 1995-06-02 Hitachi Ltd Light source device
JP2005167017A (en) * 2003-12-03 2005-06-23 Sumitomo Heavy Ind Ltd Laser oscillator diagnosis device and laser beam machine equipped therewith
JP2005205604A (en) * 2004-01-20 2005-08-04 Fuji Xerox Co Ltd Image forming apparatus, recording medium, image forming method, apparatus adjusting method and program therefor
JP2010249518A (en) * 2009-04-10 2010-11-04 Nikon Corp Deterioration determining device and inspection device equipped with the same
US20140065720A1 (en) * 2012-02-17 2014-03-06 Flir Systems, Inc. Optical emission collection and detection device and method
JP2016161301A (en) * 2015-02-27 2016-09-05 株式会社日立ハイテクノロジーズ Specimen inspection automatization system
JP2017156643A (en) * 2016-03-03 2017-09-07 キヤノン株式会社 Monitoring system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304285A (en) * 1995-05-12 1996-11-22 Sumitomo Metal Ind Ltd Emission spectroscopic analyzer and using method thereof
JPH10335213A (en) * 1997-05-30 1998-12-18 Miyazaki Oki Electric Co Ltd Apparatus and method for controlling wavelength of aligner
JPH1130586A (en) * 1997-07-10 1999-02-02 Horiba Ltd Emission spectrometric analyzer
JP2006300731A (en) * 2005-04-20 2006-11-02 Horiba Ltd Glow discharge emission spectrophotometer and glow discharge emission spectrochemical analytical method
JP4762852B2 (en) * 2006-02-23 2011-08-31 新日本製鐵株式会社 Method for evaluating the concentration of components in the thickness direction of metal samples by spark discharge emission spectrometry
WO2008107166A1 (en) * 2007-03-07 2008-09-12 Carl Zeiss Smt Ag Method for cleaning an euv lithography device method for measuring the residual gas atmosphere and the contamination and euv lithography device
JP2011198990A (en) * 2010-03-19 2011-10-06 Seiko Epson Corp Method for measuring stray light of projection aligner, method for exposing projection aligner, and method for maintaining projection aligner
JP2012052822A (en) * 2010-08-31 2012-03-15 Jfe Steel Corp Emission spectral analysis method and apparatus
JP5906500B2 (en) * 2010-09-15 2016-04-20 イマジニアリング株式会社 Analysis equipment
JP5387536B2 (en) * 2010-09-24 2014-01-15 株式会社島津製作所 How to create a calibration curve
WO2014113824A2 (en) * 2013-01-21 2014-07-24 Sciaps, Inc. Handheld libs spectrometer
US9267842B2 (en) * 2013-01-21 2016-02-23 Sciaps, Inc. Automated focusing, cleaning, and multiple location sampling spectrometer system
JP3187346U (en) * 2013-09-10 2013-11-21 株式会社島津製作所 Luminescence analyzer
JP6613402B2 (en) * 2015-03-13 2019-12-04 Vista株式会社 Vacuum exhaust monitoring device
US9983060B1 (en) * 2016-11-28 2018-05-29 Cymer, Llc Calibration of a spectral analysis module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142319A (en) * 1993-06-15 1995-06-02 Hitachi Ltd Light source device
JP2005167017A (en) * 2003-12-03 2005-06-23 Sumitomo Heavy Ind Ltd Laser oscillator diagnosis device and laser beam machine equipped therewith
JP2005205604A (en) * 2004-01-20 2005-08-04 Fuji Xerox Co Ltd Image forming apparatus, recording medium, image forming method, apparatus adjusting method and program therefor
JP2010249518A (en) * 2009-04-10 2010-11-04 Nikon Corp Deterioration determining device and inspection device equipped with the same
US20140065720A1 (en) * 2012-02-17 2014-03-06 Flir Systems, Inc. Optical emission collection and detection device and method
JP2016161301A (en) * 2015-02-27 2016-09-05 株式会社日立ハイテクノロジーズ Specimen inspection automatization system
JP2017156643A (en) * 2016-03-03 2017-09-07 キヤノン株式会社 Monitoring system

Also Published As

Publication number Publication date
JP6996630B2 (en) 2022-01-17
CN112400107A (en) 2021-02-23
JPWO2020012744A1 (en) 2021-04-30

Similar Documents

Publication Publication Date Title
US9816934B2 (en) Laser induced breakdown spectroscopy (LIBS) apparatus with automatic wavelength calibration
WO2012008129A1 (en) Analytical apparatus and analytical method
JP6368067B2 (en) Mass spectrometer and mass spectrometry method
JP2016118562A (en) Use of variable xic widths of tof-msms data for determination of background interference in srm assays
JPWO2018207228A1 (en) Chromatograph mass spectrometry data processing apparatus and chromatograph mass spectrometry data processing program
JP2006275892A (en) Emission spectrophotometer
WO2020012744A1 (en) Light emission analysis device and maintenance method for same
JP6507757B2 (en) Foreign substance analyzer
JP5204655B2 (en) Methods for qualitative and quantitative analysis by emission spectroscopy
JP2005134181A (en) Data processing method and analyzing apparatus
JP6696458B2 (en) Optical emission spectrometer
JP5387536B2 (en) How to create a calibration curve
JP4754888B2 (en) Emission spectroscopy analysis method and emission spectroscopy analyzer
JP5902883B2 (en) Spectrofluorometer
WO2014175363A1 (en) Component-concentration measurement device and method
JP2020008478A (en) Emission spectrometer and calibration method thereof
JP2017227542A (en) Mass analysis data processing device, mass analysis device, mass analysis data processing method, and mass analysis data processing program
JP2009535619A (en) Method in spectroscopy for the investigation of samples containing at least two elements
CN110455760A (en) A kind of color dispersion-type AFS light source scattering interference subtraction method based on DMD
JP5125807B2 (en) X-ray analyzer
JPH11160239A (en) Quantitative determination method for very small inclusion in iron and steel
JP2007078640A (en) Icp optical emission spectroscopic method and icp optical emission spectroscopic analyzer
JP7445634B2 (en) Diagnostic test methods for spectrometers
JP2006258633A (en) Analyzer
TWI545937B (en) Method and system for inspecting displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833263

Country of ref document: EP

Kind code of ref document: A1