JP2012052822A - Emission spectral analysis method and apparatus - Google Patents

Emission spectral analysis method and apparatus Download PDF

Info

Publication number
JP2012052822A
JP2012052822A JP2010193237A JP2010193237A JP2012052822A JP 2012052822 A JP2012052822 A JP 2012052822A JP 2010193237 A JP2010193237 A JP 2010193237A JP 2010193237 A JP2010193237 A JP 2010193237A JP 2012052822 A JP2012052822 A JP 2012052822A
Authority
JP
Japan
Prior art keywords
emission
pulse laser
metal sample
discharge
spark discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010193237A
Other languages
Japanese (ja)
Inventor
Yukio Usui
幸夫 臼井
Tomohiro Matsushima
朋裕 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010193237A priority Critical patent/JP2012052822A/en
Publication of JP2012052822A publication Critical patent/JP2012052822A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for improving linearity of a calibration curve in a high concentration range and improving quantitative analysis accuracy by suppressing influence of self-absorption under a stable discharge condition in quantitative analysis of a metal material by a spark discharge emission spectral analysis method.SOLUTION: In the emission spectral analysis method and apparatus for quantitatively analyzing components of a metal sample by applying pulse laser light to the metal sample and analyzing emission spectra generated by spark discharge between the metal sample and a counter electrode, the pulse laser light is applied to a position deviated from the center of an incident light axis of a spectroscope and the spark discharge is guided to measure the emission intensity of an emission line of an element to be analyzed.

Description

本発明は、金属試料の成分及びその組成比を分析するためのスパーク放電発光分光分析方法及び装置に関し、特に、パルスレーザによる放電位置制御を用いた定量発光分光分析方法及び装置に関する。   The present invention relates to a spark discharge emission spectroscopic analysis method and apparatus for analyzing a component of a metal sample and its composition ratio, and more particularly to a quantitative emission spectroscopic analysis method and apparatus using discharge position control by a pulse laser.

スパーク放電による発光分光分析方法は、金属試料中の多くの元素を同時に迅速に分析することができる優れた分析方法である。しかし、スパーク放電発光分光分析方法で金属材料中の成分濃度を定量する際に、分析対象元素の濃度が数パーセント以上の高濃度である場合には、発光強度の自己吸収により、検量線の直線性が失われ曲線となり定量分析では分析精度が問題となる。このような場合には、近似曲線を用いた検量線により定量分析が行われている。   The emission spectroscopic analysis method by spark discharge is an excellent analysis method capable of quickly analyzing many elements in a metal sample simultaneously. However, when the component concentration in a metal material is quantified by the spark discharge emission spectroscopic analysis method, if the concentration of the element to be analyzed is a high concentration of several percent or more, the calibration curve is linear due to self-absorption of the emission intensity. The accuracy is lost and the curve becomes a curve. In such a case, quantitative analysis is performed using a calibration curve using an approximate curve.

しかし、分析試料の表面状態や対電極の状態などにより放電状態は一定ではないため、発光強度のみならず放電により生成するプラズマ中の原子密度なども不安定に変化する。このように発光強度に対する自己吸収の影響量は一定ではないため、非直線の検量線を用いた定量分析では分析精度が低下するという課題がある。   However, since the discharge state is not constant depending on the surface state of the analysis sample, the state of the counter electrode, etc., not only the emission intensity but also the atomic density in the plasma generated by the discharge changes in an unstable manner. As described above, since the influence amount of self-absorption on the emission intensity is not constant, there is a problem that the analysis accuracy is lowered in the quantitative analysis using the non-linear calibration curve.

この課題に対し、特許文献1、2では、スパーク放電の放電エネルギーを小さくすることにより、プラズマ中の原子密度を小さくし、自己吸収の影響を軽減するとともに、測定する発光線として、直線性の高い発光線を選択することにより、定量精度の向上を図っている。   In response to this problem, in Patent Documents 1 and 2, by reducing the discharge energy of the spark discharge, the atomic density in the plasma is reduced, and the influence of self-absorption is reduced. The quantitative accuracy is improved by selecting a high emission line.

一方、特許文献3には、スパーク放電に先立ちレーザを試料に照射し、レーザ照射部と放電対電極間でスパーク放電を発生させることにより、金属試料の微小領域における成分を分析する技術について開示されている。   On the other hand, Patent Document 3 discloses a technique for analyzing a component in a minute region of a metal sample by irradiating a sample with a laser prior to the spark discharge and generating a spark discharge between the laser irradiation unit and the discharge counter electrode. ing.

特開平10−318926号公報Japanese Patent Laid-Open No. 10-318926 特開平11−83744号公報JP 11-83744 A 特開2008−14649号公報JP 2008-14649 A

しかし、特許文献1、2の方法では、放電エネルギーを小さくしすぎると放電が不安定となり、分析精度が劣化するため、放電エネルギーの減少には限界がある。さらに、スパーク放電発光分光分析法では、試料上での放電位置が一定ではないため直径数mmの放電領域全体の平均的な情報しか得られず、特定の放電位置からの発光強度を得ることは出来ないという課題がある。   However, in the methods of Patent Documents 1 and 2, if the discharge energy is too small, the discharge becomes unstable and the analysis accuracy deteriorates, so there is a limit to the reduction of the discharge energy. Furthermore, in the spark discharge emission spectrometry, the discharge position on the sample is not constant, so only average information of the entire discharge region with a diameter of several mm can be obtained, and the emission intensity from a specific discharge position can be obtained. There is a problem that it cannot be done.

また、特許文献1の図2や特許文献2の図1、図2に開示されているように、検量線の非直線性は完全には解消されていない。   Further, as disclosed in FIG. 2 of Patent Document 1 and FIGS. 1 and 2 of Patent Document 2, the nonlinearity of the calibration curve is not completely eliminated.

一方、特許文献3の方法は、レーザ照射位置にスパーク放電を起すことが可能であるが、レーザ照射がない場合にスパーク放電が発生しない状態を維持するために、試料と対電極の間隔を調整する必要がある。   On the other hand, although the method of Patent Document 3 can generate a spark discharge at the laser irradiation position, the distance between the sample and the counter electrode is adjusted in order to maintain a state in which no spark discharge occurs when there is no laser irradiation. There is a need to.

しかし、レーザ照射がない場合にスパーク放電が発生しないような試料−対電極間隔は、試料の表面状態、対電極の先端形状、放電室内の雰囲気等の影響を受けるため、適正な試料−対電極間隔への調整は煩雑であり時間がかかるという問題があった。また、レーザ照射位置に放電を誘導した際の、発光強度に対する影響については知見がない。   However, the distance between the sample and the counter electrode that does not generate a spark discharge in the absence of laser irradiation is affected by the surface condition of the sample, the tip shape of the counter electrode, the atmosphere in the discharge chamber, etc. Adjustment to the interval is complicated and takes time. Moreover, there is no knowledge about the influence on the light emission intensity when the discharge is induced at the laser irradiation position.

本発明は、上記問題を解決し、スパーク放電発光分光分析方法による金属材料の定量分析において、安定な放電条件下で、自己吸収の影響を抑制して、高濃度域における検量線の直線性を改善し、定量分析精度を向上させるための方法と装置を提供することを目的とする。   The present invention solves the above problems and suppresses the influence of self-absorption under stable discharge conditions in the quantitative analysis of metallic materials by the spark discharge emission spectroscopic analysis method, thereby improving the linearity of the calibration curve in a high concentration range. It is an object of the present invention to provide a method and apparatus for improving and improving quantitative analysis accuracy.

発明者等は、金属試料の表面にパルスレーザを照射し、照射部と対電極との間で、スパーク放電を発生させる分析方法を検討する中で、パルスレーザ照射位置が変化すると発光強度も変化することを見出した。そこで、パルスレーザ照射位置が各元素の発光強度及び定量精度に与える影響について、さらに詳細に検討した。   Inventors etc. are irradiating the surface of a metal sample with a pulse laser and studying an analysis method for generating a spark discharge between the irradiation part and the counter electrode. When the pulse laser irradiation position changes, the emission intensity also changes. I found out. Therefore, the influence of the pulse laser irradiation position on the emission intensity and quantitative accuracy of each element was examined in more detail.

各元素の発光強度は、パルスレーザ照射位置を分光器の入射光軸に垂直な方向(図1(b)x方向)に変化させた場合に大きく変化し、分光器の入射光軸の中心上にパルスレーザを照射し放電を誘導した場合に最も発光強度が高く、分光器の入射光軸の中心から外れるに従い発光強度が低くなる。   The emission intensity of each element changes greatly when the pulse laser irradiation position is changed in a direction perpendicular to the incident optical axis of the spectrometer (FIG. 1 (b) x direction), and is above the center of the incident optical axis of the spectrometer. When the pulse laser is irradiated to induce discharge, the emission intensity is the highest, and the emission intensity decreases as the distance from the center of the incident optical axis of the spectrometer increases.

また、パルスレーザ照射位置において、代表的な分析元素の検量線を作成し、定量精度を比較検討することにより、パルスレーザ照射位置が分光器の入射光軸の中心から外れた場合に検量線の直線性が改善し、定量精度が向上することを、さらに見出した。   In addition, by creating a calibration curve for typical analytical elements at the pulse laser irradiation position and comparing the quantitative accuracy, the calibration curve can be obtained when the pulse laser irradiation position deviates from the center of the incident optical axis of the spectrometer. It was further found that the linearity is improved and the quantitative accuracy is improved.

上述した知見より得られた本発明の構成は、以下の通りである。
(1)パルスレーザを金属試料に照射し、金属試料と対電極との間のスパーク放電により、発生した発光スペクトルを分光することで、金属試料の成分を定量分析する発光分光分析方法において、前記パルスレーザは分光器の入射光軸の中心から外れた位置に照射し、前記スパーク放電を誘導し、分析対象元素の発光線の発光強度を測定することを特徴とする発光分光分析方法。
(2)前記分光器の入射光軸の中心から外れた位置は、前記パルスレーザを、分光器の入射光軸の中心と垂直方向に照射しつつ走査し、発光強度を測定し、最も高い発光強度の1/20以上1/2以下の発光強度を示す照射位置であることを特徴とする(1)に記載の発光分光分析方法。
(3)パルスレーザ発生装置及びスパーク放電発生装置を備えた発光分光分析装置において、前記パルスレーザ発生装置は、金属試料の表面を走査及び照射する手段と、
分光器の入射光軸の中心から外れた位置にパルスレーザを照射する手段
とを有することを特徴とする金属試料の成分を分析する発光分光分析装置。
The configuration of the present invention obtained from the above-described knowledge is as follows.
(1) In an emission spectroscopic analysis method for quantitatively analyzing a component of a metal sample by irradiating a metal sample with a pulse laser and spectroscopically analyzing the generated emission spectrum by spark discharge between the metal sample and a counter electrode, An emission spectroscopic analysis method characterized by irradiating a pulse laser at a position off the center of an incident optical axis of a spectrometer, inducing the spark discharge, and measuring the emission intensity of an emission line of an element to be analyzed.
(2) The position deviated from the center of the incident optical axis of the spectrometer is scanned while irradiating the pulse laser in a direction perpendicular to the center of the incident optical axis of the spectrometer, the emission intensity is measured, and the highest emission (1) The emission spectroscopic analysis method as described in (1) above, wherein the irradiation position shows an emission intensity of 1/20 or more and 1/2 or less of the intensity.
(3) In an emission spectroscopic analyzer provided with a pulse laser generator and a spark discharge generator, the pulse laser generator includes means for scanning and irradiating the surface of a metal sample;
An emission spectroscopic analysis apparatus for analyzing a component of a metal sample, characterized by comprising means for irradiating a pulse laser at a position off the center of the incident optical axis of the spectrometer.

本発明にかかる方法及び装置によれば、金属試料にパルスレーザを照射して、放電位置を制御することにより、分析対象元素の発光線の自己吸収を抑制することが可能となり、検量線の直線性が改善されるので、定量分析の精度を向上させることができる。   According to the method and apparatus of the present invention, it is possible to suppress the self-absorption of the emission line of the element to be analyzed by irradiating a metal sample with a pulse laser and controlling the discharge position. Therefore, the accuracy of quantitative analysis can be improved.

本発明方法の一実施形態である測定装置の模式図The schematic diagram of the measuring apparatus which is one Embodiment of the method of this invention レーザ照射位置を分光器の入射光軸の中心から垂直方向に変化させた際の発光強度の変化Change in emission intensity when the laser irradiation position is changed from the center of the incident optical axis of the spectrometer in the vertical direction ステンレス鋼におけるCrの検量線(レーザ照射の有無の比較)Calibration curve of Cr in stainless steel (Comparison of the presence or absence of laser irradiation) ステンレス鋼におけるNiの検量線(レーザ照射の有無の比較)Calibration curve of Ni in stainless steel (Comparison of the presence or absence of laser irradiation)

以下、本発明の実施の形態を、図を用いて説明する。図1(a)は、本発明の実施の形態で使用する発光分光分析装置の一例を示した模式図である。1は分析対象である金属試料、2はスパーク放電用の対電極、3は対電極2に電圧を印加する放電装置、4は分光分析装置(分光器)、5は分光後の発光線の強度を計数するデータ処理装置、6はパルスレーザ、7はレーザ発振器、8はレーザ走査装置、9はレーザ反射鏡、10はレーザ集光レンズ、11は制御装置、Aは分光器への入射光軸を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a schematic diagram showing an example of an emission spectroscopic analyzer used in the embodiment of the present invention. 1 is a metal sample to be analyzed, 2 is a counter electrode for spark discharge, 3 is a discharge device for applying a voltage to the counter electrode 2, 4 is a spectroscopic analyzer (spectrometer), and 5 is the intensity of the light emission line after spectroscopy Is a data processing device, 6 is a pulse laser, 7 is a laser oscillator, 8 is a laser scanning device, 9 is a laser reflector, 10 is a laser condenser lens, 11 is a control device, and A is an optical axis incident on the spectrometer. Indicates.

制御装置11は、放電装置3、データ処理装置5及びレーザ発振器7にそれぞれ接続しており、パルスレーザ6の照射、対電極2への電圧印加及びデータ処理装置5における光強度の計数のタイミングを制御する。
また、図1(b)は、図1(a)の金属試料1の近傍を対電極2側から投影した図である。
図中矢印は、パルスレーザー6をx、y方向にそれぞれ走査可能であることを示している。
The control device 11 is connected to the discharge device 3, the data processing device 5, and the laser oscillator 7, and controls the timing of irradiation with the pulse laser 6, application of voltage to the counter electrode 2, and counting of light intensity in the data processing device 5. Control.
FIG. 1B is a diagram in which the vicinity of the metal sample 1 in FIG. 1A is projected from the counter electrode 2 side.
The arrows in the figure indicate that the pulse laser 6 can be scanned in the x and y directions, respectively.

次に、本発明に係る分析測定手順を以下に示す。金属試料1を分析位置に取付け、パルスレーザ6を金属試料1に照射する。ここで、本発明に用いるレーザ発振器7として、レーザ照射位置に放電を効果的に誘導するために、試料表面上でレーザ誘起プラズマを生成できるものが望ましく、例えば、1パルスあたりのエネルギーとして1mJ以上、パルス幅として50ns(ナノ秒)以下のレーザパルスを発振できるNd:YAGレーザなどの固体パルスレーザを用いることが望ましい。   Next, the analytical measurement procedure according to the present invention will be described below. The metal sample 1 is attached to the analysis position, and the pulse laser 6 is irradiated to the metal sample 1. Here, it is desirable that the laser oscillator 7 used in the present invention is capable of generating laser-induced plasma on the sample surface in order to effectively induce discharge at the laser irradiation position. For example, the energy per pulse is 1 mJ or more. It is desirable to use a solid pulse laser such as an Nd: YAG laser that can oscillate a laser pulse with a pulse width of 50 ns (nanoseconds) or less.

また、レーザ発振器7の繰返し発振性能として、200〜1000Hz程度の高繰返し発振が可能であることが望ましい。これは、スパーク放電発光で用いられる、繰返し周波数が300〜500Hzであり、これと同等の繰返し性能を有すれば、従来のスパーク放電発光分光分析方法と比較して分析時間が延長することなく本発明法を実施できるからである。また、このような発振性能であると、レーザとスパーク放電との同期が容易にできるというメリットもある。   Further, it is desirable that the repetition oscillation performance of the laser oscillator 7 is capable of high repetition oscillation of about 200 to 1000 Hz. If the repetition frequency used in spark discharge luminescence is 300 to 500 Hz and has the same repetitive performance, the analysis time is not extended as compared with the conventional spark discharge luminescence spectroscopy method. This is because the inventive method can be carried out. In addition, such oscillation performance has an advantage that the laser and the spark discharge can be easily synchronized.

次に、金属試料1の表面にパルスレーザ6を照射した後、5μ秒以上から500μ秒以下の時間内に放電装置3により対電極2に電圧を印加し、パルスレーザ照射位置に放電を誘導する。この時間内であれば、パルスレーザ6を照射した位置に、スパーク放電を発生できることが、実験的に明らかになっている。   Next, after irradiating the surface of the metal sample 1 with the pulse laser 6, a voltage is applied to the counter electrode 2 by the discharge device 3 within a time of 5 μs or more to 500 μs or less to induce discharge at the pulse laser irradiation position. . It has been experimentally shown that a spark discharge can be generated at the position irradiated with the pulse laser 6 within this time.

しかし、この時間が5μ秒より短い場合、パルスレーザ6の照射により生成する金属試料1の蒸気やイオンが、金属試料1の表面に高密度に存在し、これが障壁となり金属試料1と対電極2との間の導通が妨げられ、分析希望位置へのスパーク放電の発生が不安定となる。   However, when this time is shorter than 5 μs, vapor and ions of the metal sample 1 generated by the irradiation of the pulse laser 6 are present at a high density on the surface of the metal sample 1, which acts as a barrier and the metal sample 1 and the counter electrode 2. And the occurrence of spark discharge to the desired analysis position becomes unstable.

一方、この時間が500μ秒より長い場合、パルスレーザ6の照射により生成するレーザ誘起プラズマが拡散してしまい、同様に、分析希望位置へのスパーク放電の発生が不安定となる。放電により発生した各元素発光の発光強度を分光分析装置4及びデータ処理装置5で計数し蓄積する。また、制御装置11は、パルスレーザ6の照射、対電極2への電圧印加及びデータ処理装置5における光強度の計数のタイミングを正確に制御するために、1μ秒以下の時間分解能でタイミング制御可能であることが望ましい。   On the other hand, when this time is longer than 500 μsec, the laser-induced plasma generated by the irradiation of the pulse laser 6 is diffused, and similarly, the occurrence of spark discharge at the desired analysis position becomes unstable. The emission intensity of each element emission generated by the discharge is counted and accumulated by the spectroscopic analyzer 4 and the data processor 5. In addition, the control device 11 can perform timing control with a time resolution of 1 μs or less in order to accurately control the timing of irradiation with the pulse laser 6, application of voltage to the counter electrode 2, and counting of light intensity in the data processing device 5. It is desirable that

本測定に先立ち、レーザ走査装置8を用いて、試料表面上のパルスレーザ6の照射位置を分光器の入射光軸Aに対して垂直方向(図1(b)におけるx軸方向)に変化させながら、パルスレーザ照射位置毎の各元素の発光強度を測定し、最も高い発光強度から外れた位置をレーザー照射位置に定める。このとき、最も高い発光強度の1/20以上、1/2以下の発光強度となる位置をレーザー照射位置に定めるのが好ましい。最も高い発光強度の1/20未満であると、S/B比(シグナル/バックグラウンド比)が低くなり精度が低下し好ましくない。また、最も高い発光強度の1/2超では、高濃度域の自己吸収の影響を十分軽減できないので好ましくない。このようにして、定めた照射位置にパルスレーザを照射しながら、スパーク放電発光分光分析を行う。   Prior to this measurement, the laser scanning device 8 is used to change the irradiation position of the pulse laser 6 on the sample surface in a direction perpendicular to the incident optical axis A of the spectrometer (the x-axis direction in FIG. 1B). However, the emission intensity of each element at each pulse laser irradiation position is measured, and a position deviating from the highest emission intensity is determined as the laser irradiation position. At this time, it is preferable to determine the position where the emission intensity is 1/20 or more and 1/2 or less of the highest emission intensity as the laser irradiation position. If it is less than 1/20 of the highest emission intensity, the S / B ratio (signal / background ratio) is lowered, and the accuracy is lowered, which is not preferable. In addition, if it exceeds 1/2 of the highest emission intensity, the influence of self-absorption in the high concentration region cannot be sufficiently reduced, which is not preferable. In this way, the spark discharge emission spectroscopic analysis is performed while irradiating the determined irradiation position with the pulse laser.

レーザ走査装置8は、金属試料1の表面上におけるパルスレーザ6の照射位置を2次元的に変化させることができるガルバノスキャナのようなものが好ましいがこれに限るものではない。   The laser scanning device 8 is preferably a galvano scanner capable of two-dimensionally changing the irradiation position of the pulse laser 6 on the surface of the metal sample 1, but is not limited thereto.

本発明によれば、レーザ走査装置を用いて試料表面上のパルスレーザ照射位置を分光器の入射光軸Aに対して垂直方向に変化させて、パルスレーザ照射位置毎の各元素の検量線を作成し、自己吸収の影響が少ないパルスレーザ照射位置を定めてから、定めた照射位置にパルスレーザを照射し放電を誘導しながら、スパーク放電発光分光分析を行うようにしたので、分析対象元素の発光線の自己吸収を抑制して定量分析をすることが可能となる。   According to the present invention, a laser scanning device is used to change the pulse laser irradiation position on the sample surface in a direction perpendicular to the incident optical axis A of the spectrometer, and the calibration curve of each element at each pulse laser irradiation position is obtained. Created and determined the pulse laser irradiation position with less influence of self-absorption, and then performed the spark discharge emission spectroscopic analysis while inducing the discharge by irradiating the pulse laser to the specified irradiation position. It becomes possible to perform quantitative analysis while suppressing self-absorption of the emission line.

本発明に係る発光分光分析方法によりステンレス鋼中のCr,Niを分析した。分析の対象試料は、Cr及びNiの濃度範囲が、重量%(以下、特に断らない場合は、%表示は重量%を意味する)で、それぞれ、10.34〜27.02%及び4.03〜29.62%であるステンレス鋼を用いた。発光分光分析装置は、島津製作所製のPDA−5017(製品番号)を使用し、金属試料にパルスレーザを照射するための入射窓を備えた発光スタンドを用いた。放電条件は、この装置に予め設定された放電条件の中で最も放電エネルギーが小さいノーマルスパークモードを用いた。また、測定に用いるFe,Cr及びNiの固有スペクトル線の波長は、それぞれ287.2nm、298.9nm、227.7nmのものを用いた。レーザは、波長1064nm、パルス幅12nsのNd:YAGパルスレーザを使用し、レーザの集光及び走査は焦点距離100mmのfθレンズを備えたガルバノスキャナにより行った。   Cr and Ni in stainless steel were analyzed by the emission spectral analysis method according to the present invention. Samples to be analyzed have Cr and Ni concentration ranges of wt% (hereinafter, unless otherwise specified,% indicates wt%), and 10.34 to 27.02% and 4.03, respectively. Stainless steel of ~ 29.62% was used. As the emission spectroscopic analyzer, PDA-5017 (product number) manufactured by Shimadzu Corporation was used, and a light emission stand provided with an incident window for irradiating a metal sample with a pulse laser was used. As a discharge condition, a normal spark mode having the smallest discharge energy among discharge conditions preset in the apparatus was used. The wavelengths of the intrinsic spectral lines of Fe, Cr, and Ni used for measurement were 287.2 nm, 298.9 nm, and 227.7 nm, respectively. As the laser, an Nd: YAG pulse laser having a wavelength of 1064 nm and a pulse width of 12 ns was used, and laser focusing and scanning were performed by a galvano scanner equipped with an fθ lens having a focal length of 100 mm.

図2に、レーザ照射位置を分光器の入射光軸の中心から垂直方向に変化させた際の発光強度の変化を示す。横軸は、分光器の入射光軸の中心からの距離、縦軸は各元素の発光強度である。   FIG. 2 shows a change in emission intensity when the laser irradiation position is changed in the vertical direction from the center of the incident optical axis of the spectrometer. The horizontal axis is the distance from the center of the incident optical axis of the spectrometer, and the vertical axis is the emission intensity of each element.

分光器の入射光軸の中心から垂直方向に2mmずらした位置(図2で示されるように、最も高い発光強度の1/20となる位置)にレーザを照射して放電を誘導した場合の、Cr及びNiの検量線を、レーザ照射がない場合と比較して、図3及び図4に示す。図に示すように、レーザ照射がない場合は、Cr,Ni高濃度域で発光強度が飽和傾向にあり、検量線が曲線となる。これに対し、レーザ照射により放電位置を分光器中心軸から外した本発明に係る方法では、検量線が直線状に改善されることが確認できる。このように、レーザ照射により放電位置を制御することにより、特に高濃度域での検量線の直線性が改善される。   When a discharge is induced by irradiating a laser at a position shifted by 2 mm in the vertical direction from the center of the incident optical axis of the spectrometer (as shown in FIG. 2, a position that is 1/20 of the highest emission intensity), The calibration curves for Cr and Ni are shown in FIGS. 3 and 4 in comparison with the case without laser irradiation. As shown in the figure, when there is no laser irradiation, the emission intensity tends to be saturated in the Cr and Ni high concentration region, and the calibration curve becomes a curve. On the other hand, in the method according to the present invention in which the discharge position is removed from the central axis of the spectrometer by laser irradiation, it can be confirmed that the calibration curve is improved linearly. Thus, by controlling the discharge position by laser irradiation, the linearity of the calibration curve particularly in the high concentration region is improved.

1 分析試料
2 放電対電極
3 放電装置
4 分光分析装置
5 データ処理装置
6 パルスレーザ
7 レーザ発振器
8 レーザ走査装置
9 レーザ反射鏡
10 レーザ集光レンズ
11 制御装置
A 分光器の入射光軸の中心
DESCRIPTION OF SYMBOLS 1 Analytical sample 2 Discharge counter electrode 3 Discharge device 4 Spectroscopic analysis device 5 Data processing device 6 Pulse laser 7 Laser oscillator 8 Laser scanning device 9 Laser reflecting mirror 10 Laser condensing lens 11 Control device A Center of incident optical axis of spectroscope

Claims (3)

パルスレーザを金属試料に照射し、金属試料と対電極との間のスパーク放電により、発生した発光スペクトルを分光することで、金属試料の成分を定量分析する発光分光分析方法において、前記パルスレーザは分光器の入射光軸の中心から外れた位置に照射し、前記スパーク放電を誘導し、分析対象元素の発光線の発光強度を測定することを特徴とする発光分光分析方法。   In the emission spectroscopic analysis method for quantitatively analyzing the components of the metal sample by irradiating the metal sample with a pulse laser and spectrally analyzing the generated emission spectrum by spark discharge between the metal sample and the counter electrode, the pulse laser is An emission spectroscopic analysis method characterized by irradiating a position off the center of an incident optical axis of a spectroscope, inducing the spark discharge, and measuring an emission intensity of an emission line of an element to be analyzed. 前記分光器の入射光軸の中心から外れた位置は、前記パルスレーザを、分光器の入射光軸の中心と垂直方向に照射しつつ走査し、発光強度を測定し、最も高い発光強度の1/20以上、1/2以下の発光強度を示す照射位置であることを特徴とする請求項1に記載の発光分光分析方法。   The position off the center of the incident optical axis of the spectrometer is scanned while irradiating the pulse laser in a direction perpendicular to the center of the incident optical axis of the spectrometer, and the emission intensity is measured. The emission spectroscopic analysis method according to claim 1, wherein the emission position is an irradiation position exhibiting an emission intensity of / 20 or more and ½ or less. パルスレーザ発生装置及びスパーク放電発生装置を備えた発光分光分析装置において、
前記パルスレーザ発生装置は、
金属試料の表面を走査及び照射する手段と、
分光器の入射光軸の中心から外れた位置にパルスレーザを照射する手段
とを有することを特徴とする金属試料の成分を分析する発光分光分析装置。
In an emission spectroscopic analyzer equipped with a pulse laser generator and a spark discharge generator,
The pulse laser generator is
Means for scanning and illuminating the surface of the metal sample;
An emission spectroscopic analysis apparatus for analyzing a component of a metal sample, characterized by comprising means for irradiating a pulse laser at a position off the center of the incident optical axis of the spectrometer.
JP2010193237A 2010-08-31 2010-08-31 Emission spectral analysis method and apparatus Withdrawn JP2012052822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193237A JP2012052822A (en) 2010-08-31 2010-08-31 Emission spectral analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193237A JP2012052822A (en) 2010-08-31 2010-08-31 Emission spectral analysis method and apparatus

Publications (1)

Publication Number Publication Date
JP2012052822A true JP2012052822A (en) 2012-03-15

Family

ID=45906318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193237A Withdrawn JP2012052822A (en) 2010-08-31 2010-08-31 Emission spectral analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP2012052822A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316511A (en) * 2014-11-06 2015-01-28 钢研纳克检测技术有限公司 Correcting method for spectral line interference in atomic emission spectrometric analysis of spark source
JP2015187588A (en) * 2014-03-27 2015-10-29 株式会社島津製作所 Component analysis device and component analysis method
CN112345512A (en) * 2020-09-30 2021-02-09 钢研纳克检测技术股份有限公司 Global component analysis device and method for oversized tubular and bar-shaped metal material
CN112400107A (en) * 2018-07-11 2021-02-23 株式会社岛津制作所 Luminescence analysis apparatus and maintenance method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187588A (en) * 2014-03-27 2015-10-29 株式会社島津製作所 Component analysis device and component analysis method
CN104316511A (en) * 2014-11-06 2015-01-28 钢研纳克检测技术有限公司 Correcting method for spectral line interference in atomic emission spectrometric analysis of spark source
CN112400107A (en) * 2018-07-11 2021-02-23 株式会社岛津制作所 Luminescence analysis apparatus and maintenance method thereof
CN112345512A (en) * 2020-09-30 2021-02-09 钢研纳克检测技术股份有限公司 Global component analysis device and method for oversized tubular and bar-shaped metal material
CN112345512B (en) * 2020-09-30 2023-10-13 钢研纳克检测技术股份有限公司 Device and method for analyzing overall components of oversized tubular and bar-shaped metal material

Similar Documents

Publication Publication Date Title
Tognoni et al. Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches
US7821634B2 (en) Laser-triggered plasma apparatus for atomic emission spectroscopy
Benedetti et al. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration
Miziolek et al. Laser induced breakdown spectroscopy
US9797776B2 (en) Laser induced breakdown spectroscopy (LIBS) apparatus based on high repetition rate pulsed laser
Gautier et al. Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry
Lednev et al. Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam
KR20190050934A (en) Fugitive analyzer and method for measuring element concentration
Le Drogoff et al. Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy
JP2012052822A (en) Emission spectral analysis method and apparatus
Sabsabi et al. Quantitative analysis of copper alloys by laser-produced plasma spectrometry
Tang et al. Investigation on self-absorption reduction in laser-induced breakdown spectroscopy assisted with spatially selective laser-stimulated absorption
Wormhoudt et al. Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer
Yao et al. Repeatability improvement in laser induced plasma emission of particle flow by aberration-diminished focusing
Mermet et al. Processing of shot-to-shot raw data to improve precision in laser-induced breakdown spectrometry microprobe
US20220113190A1 (en) Short pulsewidth high repetition rate nanosecond transient absorption spectrometer
Nicolodelli et al. Laser-induced breakdown spectroscopy of environmental and synthetic samples using non-intensified CCD: optimization of the excitation wavelength
Kaku et al. Vacuum ultraviolet spectroscopic system using a laser-produced plasma
GB2598779A (en) Kinematics path method for laser-induced breakdown spectroscopy
Qu et al. High-precision mapping of fluorine and lithium in energy materials by means of laser-induced XUV spectroscopy (LIXS)
KR20100118426A (en) Apparatus of spectrum analyzing by using laser and method of the same
JP2006220501A (en) Measuring instrument for trace amount of component
JP5862101B2 (en) Method and apparatus for analyzing carbon concentration in molten steel
JPH04274743A (en) Laser emission analysis method
JP2012052828A (en) Emission spectral analysis method of silicon in steel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105