JPH1130586A - Emission spectrometric analyzer - Google Patents

Emission spectrometric analyzer

Info

Publication number
JPH1130586A
JPH1130586A JP20232397A JP20232397A JPH1130586A JP H1130586 A JPH1130586 A JP H1130586A JP 20232397 A JP20232397 A JP 20232397A JP 20232397 A JP20232397 A JP 20232397A JP H1130586 A JPH1130586 A JP H1130586A
Authority
JP
Japan
Prior art keywords
windows
light
plate body
band
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20232397A
Other languages
Japanese (ja)
Inventor
Takaaki Minami
孝明 南
Takeshi Uemura
健 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP20232397A priority Critical patent/JPH1130586A/en
Publication of JPH1130586A publication Critical patent/JPH1130586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the analysis accuracy for every measurement element, by erecting, between a light-emitting part and a light-condensing part, a plate body having a plurality of windows correspondingly to an optimum emission position for the measurement element. SOLUTION: The plate body 5 having a plurality of windows 51-53 is set between a discharge column (light-emitting part) 3 formed between a sample 1 and a counter electrode 2 and a condenser lens (light-condensing part) 4. An opening of each window 51-53 of the plate body 5 has a size of 1×1.5 μm and is set at a height corresponding to a temperature band 31-33 of the discharge column 3, 10,000K, 8000K, 5000K. The plate body 5 enables alkali metals such as Na, K, etc., to be measured accurately at an optimum measurement position of the 5000K band, similarly, P, S, Mn, etc., at the 8000K band and the other metallic elements at the 10,000K band. The plate body 5 can be provided with a single window, in place of the plurality of windows 51-53, which is moved up and down via a rod or the like by a motor equipped with a decelerator. The same effect and operation can be obtained in this case as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスパーク又はアーク
放電による原子発光分光法(Atomic Emission Spectoro
scopy,AESと略称)を採用した発光分光分析装置の改
良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to atomic emission spectroscopy using spark or arc discharge.
scopy, AES).

【0002】[0002]

【従来の技術】発光分光分析装置では、従来、例えば図
7に示すように、試料aと対電極bとの間に形成される
放電柱(発光部)cと分光器(分光部)dとの間に集光
レンズ(集光部)eと入口スリットfを配置し、その入
口スリットfにより、放電柱cの1点と対応する高さ位
置におけるスリット幅に相当する帯域の放電光を抽出し
て分光・測定していた。なお、図7中、gは検出器、h
は増幅器、iは記録計である。
2. Description of the Related Art In an emission spectrometer, a discharge column (light emitting portion) c and a spectroscope (spectral portion) d formed between a sample a and a counter electrode b are conventionally provided as shown in FIG. A condensing lens (condensing portion) e and an entrance slit f are arranged between the two, and discharge light in a band corresponding to a slit width at a height position corresponding to one point of the discharge column c is extracted by the entrance slit f. It was spectroscopically measured. In FIG. 7, g is a detector, h
Is an amplifier, and i is a recorder.

【0003】[0003]

【発明が解決しようとする課題】ところで、放電柱cの
高さ方向における温度分布をみると、試料面(+)近傍
で最も高く、対電極側(−)にゆくに従って温度は低下
し対電極面で若干上昇し、その温度差は 3,000℃〜 5,0
00℃に及ぶことが確認されている。すなわち、試料面近
傍の10,000Kあたりはイオン線に、 8,000Kあたりは高
エネルギーの原子線に、対電極面近傍の 5,000Kあたり
は低エネルギーの原子線にそれぞれ対応する温度分布が
みられる。
By the way, the temperature distribution in the height direction of the discharge column c is highest near the sample surface (+), and decreases as it goes to the counter electrode side (-). Surface temperature, the temperature difference is 3,000 ℃ ~ 5,0
It has been confirmed that the temperature reaches 00 ° C. That is, a temperature distribution corresponding to an ion beam around 10,000 K near the sample surface, a high energy atom beam around 8,000 K, and a low energy atom beam around 5,000 K near the counter electrode surface is observed.

【0004】従って、元素の種類により、最大のS/N
が得られる発光部位が異なるにもかかわらず、上述した
ような従来の発光分光分析装置では、固定状態に配置さ
れた入口スリットfによって、測定位置が予め決められ
た高さ領域に固定されているため、測定元素ごとの分析
精度の向上は図り得なかった。
Therefore, the maximum S / N ratio depends on the type of element.
In the conventional emission spectrometer described above, the measurement position is fixed to a predetermined height region by the entrance slit f which is arranged in a fixed state, despite the fact that the light emission site where the light emission portion is obtained is different. Therefore, improvement in analysis accuracy for each measurement element could not be achieved.

【0005】また、放電柱断面の外周部は温度が低く、
外気雰囲気ガスや対電極物蒸気の帯スペクトルが現れ、
これがノイズとして作用することも確認されている。
The temperature of the outer periphery of the cross section of the discharge column is low,
A band spectrum of the ambient air gas and the counter electrode vapor appears,
It has been confirmed that this acts as noise.

【0006】本発明はこのような実情に鑑みてなされ、
測定元素ごとの分析精度の向上を図った発光分光分析装
置を提供することを目的としている。
The present invention has been made in view of such circumstances,
It is an object of the present invention to provide an emission spectrometer that improves the analysis accuracy for each measurement element.

【0007】[0007]

【課題を解決するための手段】本発明は上述の課題を解
決するための手段を以下のように構成している。請求項
1に記載の発明では、発光部と集光部との間に測定元素
に最適な発光位置と対応する複数の窓を有する板体を立
設してなることを特徴としている。
According to the present invention, means for solving the above-mentioned problems are constituted as follows. The invention according to claim 1 is characterized in that a plate body having a plurality of windows corresponding to an optimum light emitting position for a measurement element is provided between the light emitting unit and the light collecting unit.

【0008】請求項2に記載の発明では、請求項1に記
載の発明における前記複数の窓を有する板体に代えて、
単一の窓を有する可動の板体を設けてなることを特徴と
している。
According to the second aspect of the present invention, instead of the plate having a plurality of windows in the first aspect of the present invention,
It is characterized in that a movable plate having a single window is provided.

【0009】請求項3に記載の発明では、請求項1に記
載の発明における前記複数の窓を有する板体に代えて、
回転駆動される円盤に複数の窓が形成されてなるマスク
盤を立設してなることを特徴としている。
According to a third aspect of the present invention, in place of the plate having a plurality of windows in the first aspect of the present invention,
It is characterized in that a mask disk having a plurality of windows formed on a rotationally driven disk is erected.

【0010】[0010]

【発明の実施の形態】図1は本発明の発光分光分析装置
(以下装置という)の実施形態を示す模式的構成図で、
符号1は金属の固体試料(以下試料という),2は対電
極,3は試料1と対電極2との間に形成される放電柱
(発光部),4は集光レンズ(集光部),5は放電柱3
と集光レンズ4との間に設けられる板体であり、3つの
窓51,52,53を有している。7は分光器(入口スリットを
含む),8はホトマルチプライヤ(ホトマル)よりなる
検出器であり、図示を省略するが、その検出器8には増
幅器、記録計が接続されている。
FIG. 1 is a schematic diagram showing an embodiment of an emission spectrometer (hereinafter referred to as an apparatus) of the present invention.
Reference numeral 1 denotes a metal solid sample (hereinafter, referred to as a sample), 2 denotes a counter electrode, 3 denotes a discharge column (light emitting portion) formed between the sample 1 and the counter electrode 2, and 4 denotes a condensing lens (condensing portion). , 5 are discharge columns 3
And a plate provided between the lens and the condenser lens 4, and has three windows 51, 52, and 53. Reference numeral 7 denotes a spectroscope (including an entrance slit), and reference numeral 8 denotes a detector composed of a photomultiplier (photomultiplier). Although not shown, the detector 8 is connected to an amplifier and a recorder.

【0011】上述の板体5に形成された各窓51,52,53の
開口寸法は1×1.5 μm程で、それれ放電柱3の10,000
K,8,000K,5,000Kの各温度帯域に対応する高さ部位に
設定される。このような板体5により、Na,Kなどのア
ルカリ金属は 5,000K帯域、P,S,Mn などは 8,000
K帯域、その他の金属元素は10,000K帯域のそれぞれ最
適な測定位置で精度よく検出することができる。
Each of the windows 51, 52, 53 formed on the plate 5 has an opening dimension of about 1.times.1.5 .mu.m.
K, 8,000K, and 5,000K are set at the height portions corresponding to the respective temperature bands. With such a plate 5, alkali metals such as Na and K can be used in the 5,000K band, and P, S and Mn can be used in the 8,000 band.
The K band and other metal elements can be accurately detected at optimal measurement positions in the 10,000 K band.

【0012】なお、ホトマルチプライヤよりなる検出器
8の光電面(8×24mm)は充分な受光面積を有してお
り、その検出器8の前に設ける出口スリット(図示省
略)は通常よりもスパーク光軸方向に若干長く設定して
おけばよい。
Incidentally, the photocathode (8 × 24 mm) of the detector 8 composed of a photomultiplier has a sufficient light receiving area, and an exit slit (not shown) provided in front of the detector 8 is more than usual. It may be set slightly longer in the spark optical axis direction.

【0013】このような複数の窓51,52,53を有する板体
5は、固定状態に設けられるものであるが、単一の窓を
有する可動の板体を設けてもよい。この場合、図示は省
くが、例えば、板体の両側にこれを案内するためのガイ
ドレールを設け、減速機付きのモータでロッド等を介し
てその板体を上下に移動させるように構成すればよい。
Although the plate 5 having the plurality of windows 51, 52, 53 is provided in a fixed state, a movable plate having a single window may be provided. In this case, although illustration is omitted, for example, if a guide rail for guiding the plate body is provided on both sides of the plate body, and the plate body is moved up and down via a rod or the like by a motor with a reduction gear, Good.

【0014】図2は装置の異なる実施形態の全体構成を
示し、図3はその要部構成を示し、この場合、集光レン
ズ4と保護板11との間に、回転駆動されるマスク盤15を
立設している。なお、71は回折格子、81〜83は第1,第
2,第3検出器であり、9は出口スリット、12は試料1
と対電極2に給電するための発光装置、13は検出回路で
ある。
FIG. 2 shows the overall configuration of a different embodiment of the apparatus, and FIG. 3 shows the main configuration thereof. In this case, a rotatably driven mask board 15 is provided between the condenser lens 4 and the protection plate 11. Has been established. Here, 71 is a diffraction grating, 81 to 83 are first, second, and third detectors, 9 is an exit slit, and 12 is a sample 1
And a light emitting device for supplying power to the counter electrode 2, and 13 is a detection circuit.

【0015】上述のマスク盤15は、図4に示すように、
軸 151のまわりにモータ(図示省略)によって回転駆動
させる円盤 152にそれぞれ軸 151からの距離が異なる4
つの窓153,154,155,156 を90°ずつ位相を異にして設け
てなり、その窓153 と154 は試料側測光用、窓155 と15
6 は中央部測光用であり、その窓153 〜156 の形状寸法
はそれぞれ若干異なるが、幅:30〜50mμ,高さ 100〜
1000mμ程度である。
The above-mentioned mask board 15 is, as shown in FIG.
A disk 152 driven to rotate by a motor (not shown) around the axis 151 has different distances from the axis 151.
Windows 153, 154, 155, 156 are provided with phases different by 90 °, the windows 153 and 154 are used for photometry on the sample side, and the windows 155 and 155 are provided.
6 is for central photometry, and the windows 153 to 156 have slightly different shapes and sizes, but have a width of 30 to 50 mμ and a height of 100 to 100 μm.
It is about 1000 mμ.

【0016】測定方法は、図5に示すように、測光中1
秒毎に交互の窓(153と154)および(155と156)で合計20秒
測光する。交互に測光するのは、試料中成分により放電
初期によく蒸発する成分や、後期によく蒸発する成分が
あるため、これらを時間的に等価とするためである。な
お、試料側測光時には中央部測光用スペクトルは計測せ
ず、また中央部測光時には試料側測光用スペクトルは計
測しないように、検出器8以降の計測部においてコント
ロールする。
The measuring method is as shown in FIG.
Photometry is performed every second for alternately windows (153 and 154) and (155 and 156) for a total of 20 seconds. The reason why the photometry is performed alternately is that there are components that evaporate well in the early stage of discharge and components that evaporate well in the latter stage due to the components in the sample. It should be noted that the measurement section after the detector 8 is controlled so that the central photometry spectrum is not measured during the sample side photometry and the sample side photometry spectrum is not measured during the central photometry.

【0017】上述のような測定方法により、窓 153と 1
54によって試料面近傍の放電光が集光レンズ4に集めら
れ、窓 155と 156によって放電柱3の中央部が集光レン
ズ4に集められるため、前記実施形態と同様に、測定元
素群ごとに最適の測定位置から放電光を導入できると共
に、ノイズの原因となる放電柱断面の外周部が導入され
ないため、目的元素に対応するスペクトル強度のS/N
が著しく向上し、かつ、その測定値は目的元素の含有率
に対応するので、分析値の再現精度が著しく向上する。
According to the measuring method as described above, the windows 153 and 1
The discharge light near the sample surface is collected by the condenser lens 4 by 54, and the central part of the discharge column 3 is collected by the condenser lens 4 by the windows 155 and 156. Since the discharge light can be introduced from the optimum measurement position and the outer periphery of the cross section of the discharge column, which causes noise, is not introduced, the S / N of the spectrum intensity corresponding to the target element is increased.
Is remarkably improved, and the measured value corresponds to the content of the target element, so that the reproducibility of the analysis value is remarkably improved.

【0018】このようなマスク盤15を用いた装置の要部
構造は、例えば図6に示され、この場合、集光レンズ4
以降の分光部(分光器7)は真空式であり、放電室に
は、アルゴンガス(Ar)を外部から導入しているため、
放電によって試料1からの蒸発物が充満しやすいので、
集光レンズ4が蒸発物に汚されないように、保護板11を
設けており、この保護板11と集光レンズ4との間にマス
ク盤15を配置し、これを、例えばステップモータ(図示
省略)等によって駆動させるようにする。
FIG. 6 shows an essential structure of an apparatus using such a mask board 15, for example.
The subsequent spectroscopic unit (spectroscope 7) is of a vacuum type, and an argon gas (Ar) is externally introduced into the discharge chamber.
Since the evaporant from the sample 1 is easily filled by the discharge,
A protective plate 11 is provided so that the condenser lens 4 is not contaminated by the evaporant. A mask board 15 is disposed between the protective plate 11 and the condenser lens 4 and is mounted on, for example, a step motor (not shown). ) And the like.

【0019】[0019]

【発明の効果】以上説明したように、本発明の発光分光
分析装置によれば、発光部と集光部との間に、測定元素
に最適な発光位置と対応する複数の窓を有する板体を立
設するので、P,Sなどの通常位置では強度が時間的に
変化し易い元素や、Na,Kなどの発光位置が、他の元素
と大きく異なる元素も、最適な検出限界で測定すること
ができる。
As described above, according to the emission spectrometer of the present invention, a plate body having a plurality of windows corresponding to an optimum light emitting position for a measurement element is provided between a light emitting portion and a light collecting portion. The elements whose intensity is likely to change with time at normal positions, such as P and S, and elements whose emission positions are significantly different from other elements, such as Na and K, are measured at the optimum detection limit. be able to.

【0020】また、単一の窓を有する可動の板体によっ
ても同等の作用・効果を得ることができる。
The same operation and effect can be obtained by a movable plate having a single window.

【0021】あるいは、回転駆動される円盤に複数の窓
を形成したマスク盤を設けてもよく、この場合、試料面
近傍の放電光を集める窓と、放電柱の中央部からの放電
光を集める窓とを設けることにより、ノイズが除去され
目的元素に対応するスペクトル強度のS/Nが顕著に向
上し、高い分析精度を得ることができる。
Alternatively, a mask disk having a plurality of windows formed on a rotating disk may be provided. In this case, a window for collecting discharge light near the sample surface and a discharge light from the center of the discharge column are collected. By providing the window, noise is removed, the S / N of the spectrum intensity corresponding to the target element is remarkably improved, and high analysis accuracy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の発光分光分析装置の一実施形態を示す
模式的な全体構成図である。
FIG. 1 is a schematic overall configuration diagram showing an embodiment of an emission spectrometer according to the present invention.

【図2】同発光分光分析装置の異なる実施形態を示す全
体構成図である。
FIG. 2 is an overall configuration diagram showing a different embodiment of the emission spectrometer.

【図3】同要部構成図である。FIG. 3 is a configuration diagram of the main part.

【図4】同マスク盤の平面図である。FIG. 4 is a plan view of the mask board.

【図5】同測光スケジュールを示す図面である。FIG. 5 is a diagram showing the photometric schedule.

【図6】同要部構造を示す断面図である。FIG. 6 is a sectional view showing the structure of the relevant part.

【図7】従来の発光分光分析装置の模式的な構成図であ
る。
FIG. 7 is a schematic configuration diagram of a conventional emission spectrometer.

【符号の説明】[Explanation of symbols]

3…発光部、4…集光部、5…板体、51, 52, 53, 153
, 154 , 155 , 156 …窓、15…マスク盤、 152…円
盤。
3 ... Light-emitting part, 4 ... Condensing part, 5 ... Plate, 51, 52, 53, 153
, 154, 155, 156 ... window, 15 ... mask board, 152 ... disk.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発光部と集光部との間に測定元素に最適
な発光位置と対応する複数の窓を有する板体を立設して
なることを特徴とする発光分光分析装置。
1. An emission spectroscopy apparatus characterized by comprising a plate having a plurality of windows corresponding to an optimum light emission position for a measurement element between a light emission part and a light collection part.
【請求項2】 前記複数の窓を有する板体に代えて、単
一の窓を有する可動の板体を設けてなることを特徴とす
る請求項1に記載の発光分光分析装置。
2. The emission spectrometer according to claim 1, wherein a movable plate having a single window is provided instead of the plate having a plurality of windows.
【請求項3】 前記複数の窓を有する板体に代えて、回
転駆動される円盤に複数の窓が形成されてなるマスク盤
を立設してなることを特徴とする請求項1に記載の発光
分光分析装置。
3. The apparatus according to claim 1, wherein a mask disk having a plurality of windows formed on a rotatably driven disk is provided in place of the plate having a plurality of windows. Emission spectrometer.
JP20232397A 1997-07-10 1997-07-10 Emission spectrometric analyzer Pending JPH1130586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20232397A JPH1130586A (en) 1997-07-10 1997-07-10 Emission spectrometric analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20232397A JPH1130586A (en) 1997-07-10 1997-07-10 Emission spectrometric analyzer

Publications (1)

Publication Number Publication Date
JPH1130586A true JPH1130586A (en) 1999-02-02

Family

ID=16455655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20232397A Pending JPH1130586A (en) 1997-07-10 1997-07-10 Emission spectrometric analyzer

Country Status (1)

Country Link
JP (1) JPH1130586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112400107A (en) * 2018-07-11 2021-02-23 株式会社岛津制作所 Luminescence analysis apparatus and maintenance method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112400107A (en) * 2018-07-11 2021-02-23 株式会社岛津制作所 Luminescence analysis apparatus and maintenance method thereof

Similar Documents

Publication Publication Date Title
Fryling et al. Intensity calibration and sensitivity comparisons for CCD/Raman spectrometers
Neuhauser et al. Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols
Aldous et al. Simultaneous determination of seven trace metals in potable water using a vidicon atomic absorption spectrometer
Busch et al. Vidicon tube as a detector for multielement flame spectrometric analysis
Milano et al. Evaluation of a vidicon scanning spectrometer for ultraviolet molecular absorption spectrometry
JPS631937A (en) Spectroscopic analyser
JPH1130586A (en) Emission spectrometric analyzer
Talmi et al. Laser-microprobe elemental determinations with an optical multichannel detection system
Dawson et al. Background and background correction in analytical atomic spectrometry. Part 1. Emission spectrometry. A tutorial review
JP2002195963A (en) X-ray spectroscope apparatus and x-ray analyzing apparatus
AU8417998A (en) Atomic absorption spectrometer
Sabo et al. Bridging the gap between what mass spectrometrists want and what spectroscopists can do: An instrument for spectroscopic investigation of matrix-isolated, mass-selected ions
DE102005058160A1 (en) Atom fluorescence spectrometer e.g. spark emission spectrometer, for analyzing metallic samples, has spark generator producing plasmas in area between electrode and sample surface, and radiation source producing fluorescence radiation
Al-Jeffery et al. LIBS and LIFS for rapid detection of Rb traces in blood
Olesik et al. An instrumental system for simultaneous measurement of spatially resolved electron number densities in plasmas
US20080131973A1 (en) Method of Analyzing Dioxins
JP3106868B2 (en) Emission spectrometer
Koukal et al. Meteors and meteorites spectra
JP2004191099A (en) Laser emission spectroscopic analyzer
US3503686A (en) Atomic absorption spectrophotometer
JPS5918353Y2 (en) Emission spectrometer
JPH11337696A (en) Cylindrical crystal type spectrometer and x-ray analyzer thereof
JPH05180761A (en) Atomic absorption spectrometer
Carraro et al. A wide wavelength range spectrometer (1150–8000 Å) for the RFX reversed field pinch experiment
JPH03172741A (en) Exciting light irradiation method for fourier transformation raman scatter spectral measurement