WO2020012722A1 - 連続プレス成形方法及びその実施のための加熱装置 - Google Patents

連続プレス成形方法及びその実施のための加熱装置 Download PDF

Info

Publication number
WO2020012722A1
WO2020012722A1 PCT/JP2019/011670 JP2019011670W WO2020012722A1 WO 2020012722 A1 WO2020012722 A1 WO 2020012722A1 JP 2019011670 W JP2019011670 W JP 2019011670W WO 2020012722 A1 WO2020012722 A1 WO 2020012722A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
heating
unit
unit resin
press
Prior art date
Application number
PCT/JP2019/011670
Other languages
English (en)
French (fr)
Inventor
遠藤 勝久
雅人 宇佐美
Original Assignee
ユニプレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニプレス株式会社 filed Critical ユニプレス株式会社
Priority to CN201980044385.2A priority Critical patent/CN112351876B/zh
Priority to JP2019528613A priority patent/JP6640431B1/ja
Priority to MX2020011633A priority patent/MX2020011633A/es
Priority to US17/046,015 priority patent/US11548203B2/en
Publication of WO2020012722A1 publication Critical patent/WO2020012722A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/02Combined thermoforming and manufacture of the preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/50Removing moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling
    • B29C51/421Heating or cooling of preforms, specially adapted for thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3405Feeding the material to the mould or the compression means using carrying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/50Removing moulded articles
    • B29C2043/5061Removing moulded articles using means movable from outside the mould between mould parts
    • B29C2043/5069Removing moulded articles using means movable from outside the mould between mould parts take-off members or carriers for the moulded articles, e.g. grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0027Cutting off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0063Cutting longitudinally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/355Conveyors for extruded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • B29C51/082Deep drawing or matched-mould forming, i.e. using mechanical means only by shaping between complementary mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/261Handling means, e.g. transfer means, feeding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/264Auxiliary operations prior to the thermoforming operation, e.g. cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/266Auxiliary operations after the thermoforming operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/44Removing or ejecting moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene

Definitions

  • the present invention provides a series of unit resin sheets cut to a predetermined length from a belt-shaped softened resin sheet obtained by extruding a molten resin from a die, and sequentially loads the series of unit resin sheets into a press molding machine while heating the unit resin sheets.
  • the present invention also relates to a continuous press forming method for sequentially performing press forming on a series of unit resin sheets by a press forming machine, and a unit resin sheet heating device for performing the method.
  • the molten resin is extruded from a die to form a strip-shaped softened resin sheet, and the strip-shaped softened resin sheet is cut in the width direction to form a series of unit resin sheets of a predetermined length.
  • the reduced unit resin sheet is heated to a temperature suitable for press molding, and a press forming process of the heated sheet by a press forming machine into a press molded product (injection of a unit resin sheet to a molding die, clamping of a mold). Press molding, mold opening, take-out of press-formed product, etc.), extruding the band-shaped softened resin sheet from the die, cutting the band-shaped softened resin sheet into unit resin sheets, and cutting the unit resin.
  • the resin sheet continuous press method cuts a continuous resin sheet extruded from a die into unit resin sheets of a length suitable for press molding by a press molding machine, and presses a unit resin sheet in a softened state that is still hot with a press molding machine.
  • This is a method for performing continuous processing of press-formed products by sending them to It is clear that a certain amount of time is required to carry in the unit resin sheet, open the mold, close the mold for press molding, open the mold and carry out the press molded product.
  • the cycle time of the construction method (the time required to complete one molded product) is determined. However, this is not the case, and the cycle time is determined by the time required to heat the unit resin sheet to a temperature suitable for press molding.
  • the temperature of the continuous resin sheet for cutting the continuous resin sheet, if the temperature of the resin is high, the sheet is too soft and the cutting cannot be performed smoothly, so that the temperature of the continuous resin sheet (for example, a temperature of 120 ° C.) by a temperature adjusting roller in the middle. It is necessary to cut the unit resin sheet by lowering it and pass it through a heating furnace that raises the temperature of the unit resin sheet to a temperature suitable for press molding (for example, 150 ° C) before press molding with a press molding machine. There is. However, if the temperature is rapidly increased by the heating furnace, it is difficult to uniformly heat the entire unit resin sheet.
  • the heating rate cannot be increased so much, and the infrared ray having a wavelength of, for example, 10 to 20 ⁇ m in the far infrared region.
  • the ceramic heater that radiated the heat.
  • it takes a time such as 60 seconds to increase the temperature to 150 ° C. which is suitable for press working after cutting. It was a limitation of shortening.
  • press molding in a press molding machine can perform press molding in a short time of less than 20 seconds by the present applicant's technology, and the total cycle For productivity factories by shortening the time, it has been desired to reduce the heating time of the unit resin sheet while maintaining uniform temperature.
  • the present invention has been made in view of the problems of the related art.
  • the continuous press molding method of the present invention A step of forming a belt-shaped softened resin sheet by extruding a molten resin from a die, A cutting step of cutting a band-shaped softened resin sheet in the width direction to form a series of unit resin sheets of a predetermined length, A unit resin sheet heating step of heating a series of unit resin sheets to a temperature suitable for press molding by heating, A series of units consisting of loading a heated unit resin sheet into a press mold, press-forming a press-formed product using a press die, and carrying out a press-formed product to the next process.
  • a press forming process that is performed repeatedly on the resin sheet at a cycle time;
  • the unit resin sheet heating step comprises: a first heating step of gradually heating in a cycle time to a first temperature somewhat lower than a unit resin sheet temperature suitable for press molding of the unit resin sheet; A second heating step of rapidly heating the unit resin sheet to a second temperature suitable for press molding in a cycle time after the first heating step.
  • a mixed resin of 40 to 60% of a polypropylene resin and 60 to 40% of a polyethylene resin is used as a material of the molten resin, and the temperature of the mixed resin at the time of extrusion is 190 to 220 ° C .;
  • the temperature of the resin sheet at the time of cutting is 115 to 135 ° C.
  • the size of the resin sheet is 700 to 1550 mm ⁇ 1000 to 2300 mm
  • the temperature of the resin heated in the first heating step is 125 to 135 ° C.
  • the temperature of the resin heated in the second heating step is 130 to 160 ° C.
  • each step from cutting to a unit resin sheet to press molding is performed with a cycle time of 15 to 25 seconds.
  • the gradual heating of the unit resin sheet in the first heating step is performed while continuously feeding the unit resin sheet at a speed of 0.02 to 1.0 m / s, and the rapid heating of the unit resin sheet in the second heating step is performed in units of This can be performed by stopping the resin sheet.
  • a heat source that emits infrared rays in the far infrared region having a wavelength of 10 to 20 ⁇ m is used for continuous heating of the unit resin sheet in the first heating step, and a wavelength of 5 to 5 mm is used for rapid heating of the unit resin sheet in the second heating step.
  • a heat source that emits infrared radiation in the mid-infrared region of 10 ⁇ m can be used.
  • the apparatus for heating a molten resin for performing the press molding method includes a first heating furnace for performing heating in a first heating step and a heating furnace for performing a second heating step.
  • the first heating furnace and the second heating furnace are respectively disposed in the heating chamber, the heating chamber, a conveyor for transporting the unit resin sheet, and the heating chamber along the transport path of the unit resin sheet.
  • an infrared heater is provided.
  • the conveyor of the first heating furnace performs a low-speed movement of the unit resin sheet for gradual heating of the unit resin sheet and a rapid movement for receiving the unit resin sheet into the first heating furnace.
  • the conveyor of the second heating furnace is provided with a conveyor driving mechanism, and stops the unit resin sheet during heating, quickly receives the unit resin sheet from the first heating furnace, and presses the unit resin sheet after heating on the press molding machine side. And a second conveyor drive mechanism for rapid delivery to the conveyor.
  • the unit resin sheet is heated to a temperature suitable for press molding by a press molding machine.
  • a first heating step of gradually heating to a somewhat lower first temperature in the cycle time and after the first heating step, rapidly heating the unit resin sheet to a second temperature suitable for press molding in the cycle time.
  • the number of steps is increased by one step by dividing into two stages of the second heating step to be performed, the entire heating while maintaining the uniformity of the temperature of the unit resin sheet is performed by the gradual heating in the first heating step.
  • a two-stage heating of rapid heating is performed to reduce the temperature of the unit resin sheet to a temperature suitable for press molding without substantially impairing uniformity. Until it is possible to shorten the time it takes to rise greatly, resulting enables greatly shortening the cycle time, it is possible to realize a reduction in the increase and manufacturing costs of the production efficiency.
  • FIG. 1 is an overall schematic diagram of a molding line from a molten resin to a molded product according to an embodiment of the present invention.
  • FIG. 2A is a perspective view of a molded product obtained by integrating left and right protector fenders of an automobile manufactured by a molding line according to an embodiment of the present invention
  • FIG. 2B is a left and right protector fender of an automobile obtained from the molded product.
  • FIG. 3 is a plan view of the molded product of FIG.
  • FIG. 4 is a front view (a front view as viewed from the longitudinal direction of the continuous sheet) of a slit forming apparatus for forming a slit in the belt-shaped softened resin sheet (a schematic view taken along the line IV-IV in FIG.
  • FIG. 5 is a view of one air cylinder of the slit forming apparatus viewed from a direction perpendicular to the longitudinal direction of the belt-shaped softened resin sheet (a view taken in the direction of arrows VV in FIG. 4).
  • FIG. 6 is a perspective view schematically showing a state in which the cutting blade connected to the piston rod of one air cylinder is ready to form a slit in the continuous sheet.
  • FIG. 7 is a perspective view schematically showing a state in which a slit is formed in the belt-shaped softened resin sheet.
  • FIG. 8 is a schematic cross-sectional view of the blade surface of the cutting blade (a cross-sectional view along line VIII-VIII in FIG. 6).
  • FIG. 9 is a schematic cross-sectional view (a cross-sectional view taken along line IX-IX in FIG. 4) of the gear box of the slit forming device.
  • FIG. 10 is a schematic sectional view showing the configuration of the heating device.
  • FIGS. 11 (a), (b), (c), (d), and (e) respectively show the loading of the belt-shaped softened resin sheet into the first heating furnace, the cutting into the unit resin sheet, Heating the unit resin sheet in the first heating furnace and the second heating furnace, transferring the unit resin sheet between the first heating furnace and the second heating furnace, and further pressing the press molding machine from the second heating furnace
  • FIG. 4 is a view schematically showing a state of discharging a unit resin sheet into a unit.
  • FIG. 12 (a), (b), (c), and (d) show a cutting operation from a belt-shaped softened resin sheet into unit resin sheets, an operation of a conveyor of a first heating furnace (furnace 1), and a second operation, respectively.
  • FIG. 5 is a diagram showing the operation of the conveyor of the heating furnace (furnace 2) and the operation timing of the manipulator for removing the press-formed product P. .
  • FIG. 13A is a top view showing a state in which a slit is formed in the strip-shaped softened resin sheet by the slit forming apparatus in a positional relationship with a press-formed product to be press-formed later, and FIG. 13B is cut from the strip-shaped softened resin sheet. It is a top view which shows the unit resin sheet which was set.
  • FIGS. 14A and 14B are schematic cross-sectional views showing the thickness of a vertical wall portion in a press-formed product, wherein FIG.
  • FIG. 1 shows a molding line from a molten resin to a molded product according to the embodiment of the present invention.
  • the roller row 12 for pulling out the band-shaped softened resin sheet S from the sheet 10 and controlling the temperature, and the band-shaped softened resin sheet S are formed into one press-formed product (in this embodiment, as will be described later, the left and right sides of the vehicle body as a product).
  • Which is composed of a pair of resin protector fenders and a remaining scrap portion
  • a softened unit resin sheet U hereinafter simply referred to as a unit resin sheet U
  • a manipulator (robot) 18 for handling the unit resin sheet U thus prepared, and a press forming machine 20 which press-forms the unit resin sheet U taken out of the heating device 16 by the manipulator 18 to form a press-formed product are arranged.
  • the molding line includes a manipulator 22 for taking out the press-formed product P formed by the press-forming machine 20 and a post-processing line 24 of the press-formed product P formed by the press-forming machine 20 on the downstream side. .
  • the press molding machine 20 includes a male mold 20-1 and a female mold 20-2.
  • the manipulator 18 grips the unit resin sheet U heated to a temperature suitable for press molding by the heating device 16 with the suction cup 18-1, and the male mold 20- in the mold opened press molding machine 20. Set it at a predetermined position between 1 and female mold 20-2.
  • the female mold 20-2 is lowered toward the male mold 20-1 by the hydraulic cylinder 20-3, and the unit resin sheet U is pressed into a shape corresponding to the mold cavity by mold clamping.
  • the female mold 20-2 rises and separates from the male mold 20-1 by opening the mold, and the press-formed product P is moved by the suction cup 22-1 of the manipulator (robot) 22.
  • the press-formed product taken out of the press molding machine 20 and placed on the conveyor 24-1 of the post-processing line 24 is omitted from the drawing because it is out of the spirit of the present invention, but is carried out to the post-processing line 24 by the conveyor 24-1.
  • a part to be a product in the embodiment of the present invention, a pair of left and right resin protector fenders on the left and right sides of the vehicle body
  • the press-formed product P after cooling, and scrap around the part to be a product is separated.
  • post-processing (chip formation) for reuse is performed.
  • the cycle time ST refers to a time required for molding one press molded product.
  • the cycle time ST is a series of steps including opening the mold in the press molding machine 20, setting the unit resin sheet U from the manipulator 18, molding the molded article by clamping, opening the mold, and taking out the molded article by the manipulator 22. It is common sense thinking of those skilled in the art that it is determined by the time required for the step.
  • the resin temperature is lowered for cutting the belt-shaped softened resin sheet S into the unit resin sheet U, and the temperature of the unit resin sheet U is suitable for the pressing before the pressing. It is necessary to raise the temperature while maintaining the temperature uniformity up to the temperature, and conventionally, it took time for the temperature to be raised. Therefore, the cycle time was limited to the time required for the heating step of the unit resin sheet U.
  • the heating time can be reduced by devising the heating device 16, thereby shortening the cycle time ST.
  • the belt-shaped softened resin sheet S is extruded from the molten resin extruder 10 so as to be synchronized with the set cycle time ST, and further cut into unit resin sheets U by the cutting device 14 described below, and further, Then, the temperature of the unit resin sheet U is adjusted by the heating device 16, during which time the substantial melting of the continuous molten unit resin sheet S occurs or the unit resin sheet U in the press molding machine 20 waits for substantial arrival. No time is created.
  • FIG. 2A perspective view
  • FIG. (A plan view) illustrates a press-formed product P, in which left and right protector fenders for a front wheel of an automobile are integrally formed by press-forming a unit resin sheet U, and left and right which are products taken out from the press-formed product P of the portion to be a protector fender shown respectively at P 1, P 2, these sites P 1, P 2 has a high vertical wall section W height. It can be seen that the upper surface of the vertical wall portion is provided with an embossed portion E serving as a seat surface of a bolt for mounting the vehicle body.
  • FIG. 1 perspective view
  • FIG. (A plan view) illustrates a press-formed product P, in which left and right protector fenders for a front wheel of an automobile are integrally formed by press-forming a unit resin sheet U, and left and right which are products taken out from the press-formed product P of the portion to be a protector fender shown respectively at P 1, P 2, these sites P 1, P 2 has a high vertical wall section W height
  • FIG. 3 is a plan view of the press-formed product P so that the outline shapes of the portions P 1 and P 2 serving as protector fenders can be clearly understood, and from outside the portions P 1 and P 2 serving as protector fenders.
  • the portion P 3 of the press-formed product P up to the outer periphery P ′ of the press-formed product P is removed by the post-processing line 24 and becomes a portion that becomes a scrap.
  • the portion P 3 to be scrapped, as described below, the product of the vertical wall by press molding at the strip softened resin sheet state before cutting into unit resin sheet U Slits (cuts) C 1 , C 2 , C 3 , C 4 , C 5 are formed along the portion W and the portion E to be embossed.
  • FIG. 2 (b) removing the portion P 3 to be scrapped, showing a state in which the left and right protector fender as a product schematically.
  • the lower mold 20-1 and the upper mold 20-2 in the press molding machine 20 are schematically drawn for convenience, but the actual mold surface has a shape corresponding to the molded article in FIG. Needless to say.
  • the molten resin extruder 10 is generally known because it is well known.
  • a hopper 26 for charging resin pellets, a screw extruder 28, a heater 30, a gear pump 32, and a die (extrusion nozzle) 34 are provided.
  • the resin material is a mixed resin of polypropylene and polyethylene, and the pellets of polypropylene and polyethylene are put into the hopper 26 at a predetermined mixing ratio.
  • the screw extruder 28 feeds the pellets in the axial direction while mixing them, while the pellets are melted and mixed by the heat of the heater 30.
  • the gear pump 32 sends the mixed molten resin to the die 34 at a constant speed, and is extruded as a belt-shaped softened resin sheet S from the die 34 having an elongated rectangular cross section.
  • the resin temperature at the time of extrusion is about 190 to 220 ° C. in the case of the resin of this embodiment having about 50% by weight of polypropylene and about 50% of polyethylene.
  • the roller row 12 includes a pair of sheet pull-out rollers 36 and temperature control rollers 38 and # 40, and the molten resin from the die 34 is adjusted in temperature by passing through the sheet pull-out roller pair 36 and the temperature control rollers 38 and # 40. Is done.
  • the temperature range is about 115 to 135 ° C., which is suitable for cutting the strip-shaped softened resin sheet S into the unit resin sheet U by the cutting device 14. If the temperature is too high, the temperature is too soft and the unit resin sheet U There is a disadvantage that the cutting cannot be performed.
  • the unit resin sheet U before cutting has an appropriate temperature so as not to be too soft for the smooth forming operation of the slit by the slit forming apparatus 50 in the embodiment of the present invention. .
  • a roll 41 of a laminate film (such as a nonwoven fabric film having a thickness of about 0.5 to 5 mm) is provided on the upper side, and the laminate film F from the roll 41 is combined with the belt-shaped softened resin sheet S by the temperature control roller 38.
  • the laminating film F is located on the surface of the belt-shaped softened resin sheet S when it exits the temperature control roller 38.
  • the cutting device 14 includes a pinch roller pair 42 and a cutting device 44.
  • the cutting device 44 is disposed at the outlet of the pinch roller pair 42, and includes a combination of a lower fixed blade 44-1 and an upper movable blade 44-2.
  • the fixed blade 44-1 and the movable blade 44-2 are provided with blade portions having a length exceeding the entire width of the belt-shaped softened resin sheet S.
  • the movable blade 44-2 is separated upward from the fixed blade 44-1.
  • the movable blade 44-2 is driven so as to immediately return to the fixed blade 44-1 after being instantaneously lowered and immediately returned to the fixed blade 44-1 every time the band-shaped softened resin sheet S passes through the fixed retracted position.
  • S is cut into unit resin sheets U of a fixed length, and the unit resin sheets U are sent to the heating device 16.
  • the slits C 1 , C 2 , C 3 , C 4 , and C 5 (see also FIG. 13) at the portions to be scraps in the molded product described with reference to FIGS. 2 and 3 are provided before the pinch roller pair 42 in the cutting device 14.
  • Forming device 50 is arranged.
  • the structure of the slit forming apparatus 50 will be described below.
  • the slit forming apparatus 50 includes three cutting blades 52 in the width direction of the belt-shaped softened resin sheet S as shown in FIG.
  • the cutting blades 52 can be individually moved up and down and moved in the width direction as described later.
  • the left side of FIG. 4 is denoted by A
  • the center is denoted by B
  • the right side is denoted by C. Shall be expressed.
  • each cutting blade 52 is attached to the lower end of a piston rod 56 extending from a piston 55 (FIG. 5) of the air cylinder 54 via an adapter 57 (which fixes the cutting blade 52 by screwing). It is attached detachably.
  • FIG. 4 shows a state in which the cutting blade 52 of the central portion B penetrates the band-shaped softened resin sheet S, and the cutting blades 52 of both sides A and C remain covered by the safety cover 58.
  • the air cylinder 54 urges the piston 55 upward in FIG. 4 so that the cutting blade 52 can normally be housed in the safety cover 58. That is, in FIG. 5, the air pressure is introduced from the lower air pressure port 54-1 of the air cylinder 54 (the direction of arrow a in FIG. 5) and the air pressure is discharged from the upper air pressure port 54-2 (the direction of arrow b in FIG. 5).
  • FIG. 55 shows a state in which the blade 55 is moved up and the cutting edge 52-1 is housed in the safety cover 58. Then, contrary to FIG. 5, the piston is introduced by introducing air pressure from the upper air pressure port 54-2 (in the direction opposite to the arrow b in FIG. 5) and discharging air from the lower air pressure port 54-1 (in the direction opposite to the arrow a in FIG. 5). 55 moves downward, and the cutting edge 52-1 protrudes from a state in which it is accommodated in the safety cover 58, so that a slit can be formed in the belt-shaped softened resin sheet S.
  • FIG. 8 shows a horizontal cross-sectional shape at a mid-height position of the cutting blade 52.
  • the cutting edge 52-2 connected to the lower cutting edge 52-1 is directed to the moving direction (arrow f) of the belt-shaped softened resin sheet S.
  • the cutting edge 52 has a sharp tip 52-1 in order to facilitate entry into the band-shaped softened resin sheet S for forming a slit.
  • a horizontal moving member 60 is fixedly arranged on the back surface of the main body of the air cylinder 54.
  • a support member 62 for the air cylinder 54 is installed upright on the back surface of each of the three air cylinders 54 in FIG. 4, and the support member 62 is a guide path 62 for guiding the horizontal movement of the horizontal movement member 60. -1 is formed. Therefore, each air cylinder 54, in other words, each cutting blade 52 can be individually moved horizontally.
  • the mechanisms 60 and # 62 for the horizontal movement of the air cylinder 54 are schematically illustrated for simplicity, a commercially available guide device having a linear bearing can be used as it is, and the air cylinder 54 is driven by a small driving force. Precise horizontal position control is possible.
  • a chain drive mechanism for causing the individual horizontal movement of each air cylinder 54 will be described.
  • a pair of sprocket wheels 64 and # 66 located on both upper sides of the belt-shaped softened resin sheet S are wound.
  • An endless chain 68 is provided to hang.
  • Three endless chains 68 are provided for the individual horizontal movement of the three air cylinders 54.
  • Three pairs of sprocket wheels 64, 66 are also provided for each endless chain 68.
  • One sprocket wheel 64 of each sprocket wheel pair is the driving side, and the other sprocket wheel 66 is the driven side.
  • one chain piece 68-1 is shown for each of the upper lane and the lower lane of each endless chain 68.
  • one endless chain is connected by connecting the chain pieces 68-1 with pins.
  • the chain 68 is configured. And, for simplicity, only one chain piece 68-1 on the upper and lower sides of the plurality of chain pieces of one endless chain 68 is shown in FIG.
  • One of the chain pieces 68-1 is fixed to the corresponding air cylinder 54, and the endless chain 68 allows the one air cylinder 54 fixed to the endless chain 68 to move horizontally. That is, in FIG. 5, upper and lower bracket plates 70, 72 are fixed to the outer surface of the air cylinder 54 on the opposite side (front side) of the support member 62 by welding or the like in a cantilever manner.
  • One of the chain pieces 68-1 of the two endless chains 68 are fixed by welding or the like, whereby horizontal driving force can be applied to the air cylinder 54 from the endless chain 68.
  • the driving sprocket wheel 64 is supported in the gear box 74 by a shaft 64-1, and the rotation of the rotating shaft 76-1 of the servomotor 76 is rotated by a pair of bevel gears 78 and # 80. 64.
  • the rotation of the rotary shaft 76-1 of the servomotor 76 is transmitted to the endless chain 68 via the driving sprocket wheel 64, and the horizontal member 60 is guided by the support member 62.
  • Such a servo motor 76 for horizontal drive of the endless chain 68 is provided for each of the three endless chains 68 (servo motors 76 corresponding to the air cylinders 54A, B, and C in FIG. 4).
  • A, B, ⁇ C are added to the air cylinder 54). Therefore, each of the three air cylinders 54 of A, B, ⁇ C is individually formed by the A, B, C servo motors 76 to form the strip softened resin sheet S.
  • a slit Ca is formed in the belt-shaped softened resin sheet S in parallel with the moving direction. Then, the lateral movement of the cutting blade 52 due to the rotation of the rotary shaft 76-1 of the servomotor 76 changes the direction of the slit according to the movement of the belt-shaped softened resin sheet S.
  • the oblique slits shown are formed.
  • the cutting edge 52-2 of the cutting blade 52 is slightly inclined from the directly facing position with respect to the cutting direction, but the band-shaped softened resin sheet S to be cut is softened by heating. As a result, the cutting edge 52 does not have substantial cutting resistance, and a smooth cutting can be performed.
  • the heating device 16 of the present invention for adjusting the unit resin sheet U obtained by the cutting device 14 to a temperature suitable for press molding is provided with a primary heating furnace 84 connected in the feed direction of the unit resin sheet U. And a secondary heating furnace 86.
  • the primary heating furnace 84 includes a heating chamber 84-1, a conveyor 84-2 disposed in the heating chamber 84-1 for conveying the unit resin sheet U, and facing the conveyor 84-2. It includes a series of infrared heaters 84-3 installed on the upper surface of the heating chamber 84-1 and a series of infrared heaters 84-4 arranged on the lower surface of the heating chamber 84-1.
  • the conveyor 84-2 is wound around a driving pulley 84-2a and a driven pulley 84-2b, and a rotating shaft of the driving pulley 84-2a is connected to a driving motor 84-5 schematically shown.
  • the wavelength of the emitted light from the infrared heaters (such as ceramic heaters) 84-3 and 84-4 is in the far-infrared region, for example, 10 to 20 ⁇ m.
  • the conveyor 84-2 is performed while the unit resin sheet U is continuously conveyed as described later. At this time, the transfer speed of the unit resin sheet U by the conveyor 84-2 has a value of, for example, 1.0 m / s.
  • the unit resin sheet U is suitable for press molding of the unit resin sheet U by the press molding machine 20 when the unit resin sheet U is fed from the primary heating furnace 84 to the secondary heating furnace 86 by continuous heating with relatively low energy radiation in the far infrared region. Is controlled at a temperature of 125 to 135 ° C., which is somewhat lower than the temperature. Due to the slit formation and cutting into the unit resin sheet U in the previous step, the temperature of the unit resin sheet U when entering the primary heating furnace 84 as the unit resin sheet U has dropped to 115 to 125 ° C. The unit resin sheet U has a temperature of 125 to 135 ° C.
  • the primary heating furnace 84 applies the unit resin sheet U over the entire surface by relatively low-energy radiation in the far-infrared region prior to the heating in the secondary heating furnace 86, in addition to the main purpose of heating. It also aims to maintain the uniformity.
  • the unit resin sheet U heated in the primary heating furnace 84 is sent to the secondary heating furnace 86.
  • the secondary heating furnace 86 includes a heating chamber 86-1, a conveyor 86-2 arranged in the heating chamber 86-1, and conveying the unit resin sheet U, and a heating chamber 86-1 opposed to the conveyor 86-2.
  • a series of infrared heaters 86-3 installed on the upper surface and a series of infrared heaters 86-4 arranged on the lower surface of the heating chamber 86-1 are provided.
  • the wavelength of the radiated light of each of the infrared heaters (such as ceramic heaters) 86-3 and # 86-4 is in the mid-infrared region, for example, 5 to 10 ⁇ m.
  • the conveyor 86-2 is wound around a driving pulley 86-2a and a driven pulley 86-2b, and a rotating shaft of the driving pulley 86-2a is connected to a driving motor 86-5 schematically shown.
  • the heating of the unit resin sheet U by the infrared heaters 86-3 and # 86-4 in the secondary heating furnace 86 is performed by stopping the unit resin sheet U.
  • the unit resin sheet U is rapidly heated by infrared rays having a relatively short wavelength in the mid-infrared region, and the temperature of the unit resin sheet U after heating is controlled to a temperature of 130 to 160 ° C. This temperature is appropriately selected so that optimum press molding can be performed according to a molded product to be molded by press processing.
  • the heating in the mid-infrared region in a state where the unit resin sheet U is stopped can obtain the target temperature of the unit resin sheet U by heating in an extremely short time, for example, 15 seconds. This can contribute to increasing the production efficiency of the resin sheet continuous pressing method.
  • a heating method is used for heating by infrared rays in a far infrared region.
  • a unit resin having a size of about 1500 mm ⁇ 2000 mm and a thickness of 1.6 mm is used.
  • the cycle time ST can be set to a time such as 20 seconds, and a remarkable improvement in productivity is realized.
  • the unit resin sheet U is conveyed to the press molding machine 20 via the heating device 16 and transferred between the primary heating furnace 84 and the secondary heating furnace 86, and further to the downstream press molding machine 20. Describing the unloading operation, the unit resin sheet U obtained by the cutting device 14 enters the primary heating furnace 84 as it is.
  • the heating of the unit resin sheet U in the primary heating furnace 84 is continuous, and the conveyor 84-2 basically moves continuously at a constant low speed. However, it is necessary to rapidly feed the unit resin sheet U for receiving the unit resin sheet U.
  • the rotation speed of the drive motor 84-6 of the conveyor 84-2 can be rapidly increased.
  • the rapid heating of the unit resin sheet U in the secondary heating furnace 86 is basically performed with the conveyor 86-2 stopped, but the receiving of the unit resin sheet U from the primary heating furnace 84 and the downstream press molding machine 20 are performed.
  • the drive motor 86-5 can be rotated rapidly for unloading.
  • the speed at the time of rapid movement of the conveyor 84-2 of the primary heating furnace 84 and the speed at the time of rapid movement of the conveyor 86-2 of the secondary heating are the same speed, for example, 10 m / s.
  • FIGS. 11 and 12 schematically show the cooperative operation of the process of sending the unit resin sheet U from the cutting device 44 to the press molding machine via the primary heating furnace 84 and the secondary heating furnace 86.
  • FIG. 11A shows a state where the leading end of the belt-shaped softened resin sheet S has been sent to the primary heating furnace 84.
  • the unit resin sheet U is rapidly heated on the stationary conveyor 86-2.
  • FIG. 11B shows a state in which the belt-shaped softened resin sheet S is further fed by the conveyor 84-2 in the primary heating furnace 84, and the unit resin sheet U is sent on the conveyor 84-2 at a low speed. As shown, the rapid heating of the unit resin sheet U in the stationary state in the secondary heating furnace 86 is continued.
  • FIG. 11 (c) shows cleavage of the strip softened resin sheet S by the cutting device 44 (timing t c in FIG. 12 (a)), the cleavage of the unit the resin sheet U of strip-shaped softening the resin sheet S is performed.
  • the cycle time ST next press molding the molding line in the time the present embodiment between successive cutting timing t c from the strip softened resin sheet S to the unit a resin sheet U, unit resin sheet with a press molding machine A series of press forming steps of U is also performed during this time.
  • the stop time AT of the secondary heating furnace 86 is the rapid heating time in the stationary state of the unit resin sheet U in the secondary heating furnace 86 in the cycle time ST.
  • the heating device 16 is divided into a primary heating furnace 84 and a secondary heating furnace 86.
  • the primary heating furnace 84 the reduced resin temperature is cycled for slit formation and cutting into unit sheets U.
  • the entire resin temperature can be uniformly heated or maintained to the original temperature, and then the central heating unit unit U in the secondary heating furnace 86 is stopped.
  • the rapid heating of the outer region allows the resin temperature optimum for press working to be reached in a short time, and the required heating can be performed in a short time with a margin for the cycle time, and the heating time is 15 seconds (AT in FIG. 12).
  • the heating time is limited to about 60 seconds.
  • the cycle time is limited making it possible to shorten up to about 20 seconds. That is, the heating method of the present invention can realize a production speed three times as high as that of the conventional method.
  • the heating device 16 receives heat in the primary heating furnace 84 and the secondary heating furnace 86, and is heated to a temperature optimum for press molding.
  • the unit resin sheet U is placed on the male mold 20-1 # of the opened press molding machine 20, the female mold 20-2 is lowered by the hydraulic cylinder 20-3, and the unit resin sheet U is placed in a male state in a mold-matched state.
  • the molded body P is formed into a mold cavity shape of a mold 20-1 and a female mold 20-2.
  • a molded product P is integrally formed with left and right protector fenders for a front wheel of an automobile shown in FIG.
  • the opened molded product P is taken out by the manipulator 22 and sent to the conveyor 24-1 of the processing line 24. Needless to say, a series of steps of charging the unit resin sheet U, closing the mold, opening the mold, and removing the press-formed product in the press-forming machine 20 are performed within the cycle time in relation to FIG.
  • the molding operation in the embodiment of the present invention in the press molding machine 20 will be described in more detail.
  • the molded product P to be press-molded in the form has a plurality of high vertical wall portions W and embossed portions E. If smooth extension of the resin in these portions is hindered, local insufficient thickness may occur. There were concerns that arose.
  • a portion P serving as a scrap outside the product is formed by pressing the unit resin sheet U after cutting the continuous resin sheet S.
  • FIG. 13A shows a state in which the slits C 1 , C 2 , C 3 , C 4 , and C 5 are formed in the belt-shaped softened resin sheet S by the slit forming device 50.
  • the portions of the protector fenders P 1 and P 2 which are products in the molded product formed by the press molding machine 20 after the strip-shaped softened resin sheet S is cut into the unit resin sheet U by the cutting device 44, are shown by imaginary lines.
  • the slits C 1 , C 2 , C 3 , C 4 , and C 5 are formed in portions that become scraps outside the portions that become the protector fenders P 1 and P 2 in the molded product to be molded by the press molding machine 20.
  • the slits C 1 , C 2 , C 3 , C 4 , C 5 are located at positions where the ductility of the meat of the protector fenders P 1 , P 2 is a product in a molded product to be molded by the press molding machine 20.
  • the slit forming apparatus 50 has three cutting blades 52 of A, B, and C that can be independently raised and lowered and controlled in the width direction.
  • FIG. 14 is a cross-sectional view of the vertical wall W schematically illustrating this.
  • thickness [delta] a after molding is insufficient in desired value, but the thickness [delta] B after molding for smooth extension of the resin is obtained by the formation of the slit C 3, C 4 in the present invention embodiment It can be secured to the expected value.
  • molten resin extruder 14 cutting device 16: heating device 20: press molding machine 20-1: male mold 2 20-2 ... female mold 24 ... post-processing line 26 ... hopper for feeding resin pellets 34 ... dies 44 ... cutting device 44-1 ... fixed blade 44-2 ... movable blade 50 ... slit forming device 52 ... cutting blade 54 ...
  • Air cylinder 54-1 Lower air pressure port 54-2: Upper air pressure port 55: Piston 60: Horizontal drive member of air cylinder 62: Support member of air cylinder 64, 66: Sprocket wheel 68: Endless chain 68-1: Chain piece 70, 72: Bracket 76: Servo motor (A, B, C) 84... Primary heating furnace 84-1... Primary heating furnace heating chamber 84-2... Primary heating furnace conveyor 84-3, 84-4... Primary heating furnace infrared heater 84-5... Primary heating furnace conveyor Motor 86: Secondary heating furnace 86-1: Heating chamber of secondary heating furnace 86-2: Conveyor of secondary heating furnace 86-3, 86-4: Infrared heater of secondary heating furnace 86-5: Secondary driving motor C 1 of the conveyor of the furnace, C 2, C 3, C 4, C 5 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

溶融樹脂押出機から連続押出しされる帯状軟化樹脂シートSを帯状軟化樹脂シートSに切断し、帯状軟化樹脂シートSをプレス成形機においてプレス成形品とする。単位樹脂シートUをプレス成形機によるプレス成形に先立ち加熱するための加熱装置16は、一次加熱炉84と二次加熱炉86とから構成される。一次加熱炉84は遠赤外領域の赤外線を熱源とする一連のヒータ84-3, 84-4を備え、二次加熱炉86は中赤外領域の赤外線を熱源とする一連の86-3, 86-4を備える。一次加熱炉84では、単位樹脂シートUを低速で連続移送しながら単位樹脂シートUをプレス成形のための適温より幾分低い温度まで遠赤外線にり徐々に加熱し、二次加熱炉86では単位樹脂シートUを停止させて中赤外線により急速加熱する。単位樹脂シートUの効率的な加熱によりサイクルタイムを短縮し、生産速度を高めることができる。

Description

連続プレス成形方法及びその実施のための加熱装置
 この発明は、溶融樹脂をダイスより押出すことにより得られた帯状軟化樹脂シートより所定長さに切断された一連の単位樹脂シートとし、一連の単位樹脂シートを加熱しつつプレス成形機に順次搬入し、一連の単位樹脂シートに対してプレス成形機により順次プレス成形を行う連続プレス成形方法及び同方法の実施のための単位樹脂シートの加熱装置に関するものである。
 溶融樹脂をダイスより押出すことにより帯状軟化樹脂シートに形成し、帯状軟化樹脂シートを幅方向に切断することにより所定長さの一連の単位樹脂シートとし、単位樹脂シートへの切断のため温度が低下した単位樹脂シートをプレス成形に適した温度まで加熱し、プレス成形機による加熱されたシートのプレス成形物へのプレス成形工程(成形型への一枚毎の単位樹脂シートの投入、型締めによるプレス成形、型開き、プレス成形物の取出し動作等から成る)を実施し、ダイスからの帯状軟化樹脂シートの押出しと、帯状軟化樹脂シートからの単位樹脂シートへの切断、切断された単位樹脂シートの加熱及びプレス成形とを同調させて行うことにより、一つのラインによって樹脂の溶融押出からプレス成形物の成形までを連続的に行い、型出しされたプレス成形物を、冷却装置により冷却後、不要部分をトリミングし、製品とする技術(以下樹脂シート連続プレス工法)が本出願人と同一人により提案されている(特許文献1及び特許文献2等)。樹脂から製品までの一つのラインによる一貫生産により樹脂製品の成形工程の効率化、省エネルギ化、低コスト化を実現することができる。また、イジェクションによるプレス成形工法と比較して成形装置に要するプレス圧力を圧倒的に小さくすることができ、装置コストの低廉の面でも優れた方式である。
特公昭59-23691号公報 特公平7-100349号公報
 樹脂シート連続プレス工法は、ダイスより押出された連続樹脂シートをプレス成形機によるプレス成形に適した長さの単位樹脂シートに切断し、未だ熱を持った軟化状態の単位樹脂シートをプレス成形機に送ることによりプレス成形物の連続加工を行う方式である。単位樹脂シートの搬入及び型開き、プレス成形のための型締め、型開き及びプレス成形物の搬出には一定の時間が必要であることは明らかであり、プレス工程に要する時間により樹脂シート連続プレス工法のサイクルタイム(一つの成形品の完成に要する時間)が決まると考えるのが当業者の常識である。ところが、実際はそうではなく、サイクルタイムは、プレス成形に適した温度まで単位樹脂シートの加熱を行うための時間により決まっていた。即ち、連続樹脂シートの切断のためには樹脂の温度が高いとシートが柔らか過ぎて切断がスムースに行えないため、途中の温調整用のローラにより連続樹脂シートの温度(例えば120℃といった温度)まで降下させることにより単位樹脂シートへの切断を行い、プレス成形機でのプレス成形の前に単位樹脂シートの温度をプレス成形に適した温度(例えば150℃)まで昇温する加熱炉を通す必要がある。ところが、加熱炉による昇温を急に行うと単位樹脂シートの全体を均等に加熱することが困難であるため、加熱速度はあまり上げられず、遠赤外領域の例えば10~20μmの波長の赤外線を放射するセラミックヒータを使用して加熱していた。この場合、1000×2000mmで厚み1.6mmといった大きさの単位樹脂シートの場合、切断後にプレス加工に適した150℃といった温度に昇温するため例えば60秒といった時間を要し、これがサイクルタイムの短縮の制限となっていた。他方、プレス成形機でのプレス成形は、上述の大きさの単位樹脂シートの場合、現時点での本出願人の技術では20秒に満たない短時間でのプレス成形が可能であり、トータルのサイクルタイム短縮による生産性の工場のため、温度の均一を維持しつつ単位樹脂シートの加熱時間の短縮が希求されていた。本発明はかかる従来技術の問題点に鑑みなされたものである。
 本発明の連続プレス成形方法は、
 溶融樹脂をダイスより押出すことにより帯状軟化樹脂シートに形成する工程と、
 帯状軟化樹脂シートを幅方向に切断することにより所定長さの一連の単位樹脂シートとする切断工程と、
 一連の単位樹脂シートを加熱することによりプレス成形に適した温度まで加熱する単位樹脂シート加熱工程と、
 加熱された単位樹脂シートのプレス型への搬入、プレス型によるプレス成形物へのプレス成形、プレス成形品の次工程への搬出からなる単位樹脂シートのプレス成形品へのプレス加工を一連の単位樹脂シートについてサイクルタイムにおいて繰返的に行うプレス成形工程と、
を具備して成り、前記単位樹脂シート加熱工程は、単位樹脂シートのプレス成形に適した単位樹脂シート温度より幾分低い第1の温度までサイクルタイムにおいて徐々に加熱する第1の加熱工程と、前記第1の加熱工程後に、単位樹脂シートをプレス成形に適した第2の温度にサイクルタイムにおいて急速加熱する第2の加熱工程とから成る。
 本発明の実施において、溶融樹脂の素材として40~60%のポリプロピレン樹脂と60~40%のポリエチレン樹脂との混合樹脂を使用し、押出時の混合樹脂温度が190~220℃であり、単位シートに切断時の樹脂シートの温度は115~135℃でありかつ樹脂シートの大きさは、700~1550mm×1000~2300mmであり、第1の加熱工程で加熱された樹脂の温度は125~135℃、第2の加熱工程で加熱された樹脂の温度は130~160℃のとき、15~25秒のサイクルタイムにて単位樹脂シートへの切断からプレス成形までの各工程を実施する。
 第1の加熱工程における単位樹脂シートの徐々の加熱は単位樹脂シートを0.02~1.0m/sの速度で連続送りしながら行い、第2の加熱工程における単位樹脂シートの急速加熱は単位樹脂シートを停止させて行うことができる。第1の加熱工程における単位樹脂シートの連続加熱のため波長10~20μmの遠赤外領域の赤外線を放射する熱源を使用し、第2の加熱工程における単位樹脂シートの急速加熱のため波長5~10μmの中赤外領域の赤外線を放射する熱源を使用することができる。
 本発明によるプレス成形方法の実施のための溶融樹脂の加熱装置は、第1の加熱工程の加熱を行うための第1の加熱炉と、第2の加熱工程を行うための加熱炉とから成り、第1の加熱炉及び第2の加熱炉は、夫々、加熱室と、加熱室内に配置され、単位樹脂シートの搬送を行うコンベヤと、単位樹脂シートの搬送経路に沿って加熱室に配置された赤外線ヒータとから構成することができる。第1の加熱炉のコンベヤは、単位樹脂シートの徐々の加熱のための単位樹脂シートの低速移動を行うと共に第1の加熱炉への単位樹脂シートの受入れのための急速移動を行う第1のコンベヤ駆動機構を備え、第2の加熱炉のコンベヤは、加熱中の単位樹脂シートの停止、及び第1の加熱炉からの単位樹脂シートの急速受入れ及び加熱後の単位樹脂シートのプレス成形機側への急速送り出しを行う第2のコンベヤ駆動機構を備えるようにされる。
 この発明によれば、連続樹脂シートから単位樹脂シートに切断後、プレス成形機によるプレス成形に適した温度までの単位樹脂シートの加熱のため、単位樹脂シートのプレス成形に適した単位樹脂シート温度より幾分低い第1の温度までサイクルタイムにおいて徐々に加熱する第1の加熱工程と、前記第1の加熱工程後に、単位樹脂シートをプレス成形に適した第2の温度にサイクルタイムにおいて急速加熱する第2の加熱工程との2段階に分けて構成することにより、工程数は1工程増えるが、第1の加熱工程の徐々の加熱により、単位樹脂シートの温度の均一性を維持しつつ全体を暖めた後、第2の加熱工程により、急速加熱するという2段加熱により、単位樹脂シートの温度を均一性を実質的に損なうことなくプレス成形に適した温度まで上昇させるのに要する時間を大巾に短縮することができ、結果としてサイクルタイムの大巾な短縮が可能となり、生産効率の増大及び製造コストの低減を実現することができる。
図1はこの発明の実施形態における溶融樹脂から成形品までの成形ラインの全体概略図である。 図2(a)はこの発明の実施形態における成形ラインにより製造される自動車の左右プロテクターフェンダーを一体化した成形物の斜視図であり、(b)は成形物から得られた自動車の左右プロテクターフェンダーの斜視図である。 図3は図2(a)の成形物の平面図である。 図4は帯状軟化樹脂シートにスリットを形成するスリット形成装置の正面図(連続シートの長手方向より見た正面図)である(図5の大略IV-IV方向矢視図)。 図5はスリット形成装置の一つのエアシリンダを帯状軟化樹脂シートの長手方向に直交する方向より見た図(図4のV-V方向矢視図)である。 図6は一つのエアシリンダのピストンロッドに連結された切刃が連続シートにスリットを形成する準備に入った状態を模式的に示す斜視図である。 図7は帯状軟化樹脂シートにスリットを形成した状態を模式的に示す斜視図である。 図8は切刃の刃面の模式的横断面図(図6のVIII-VIII線に沿った断面図)である。 図9はスリット形成装置のギヤボックスの模式的断面図(図4のIX-IX線に沿った矢視断面図)である。 図10は加熱装置の構成を示す模式的断面図である。 図11(a),(b),(c),(d),(e)は、夫々、加熱装置における第1の加熱炉への帯状軟化樹脂シートの搬入、単位樹脂シートへの切断、第1の加熱炉及び第2の加熱炉での単位樹脂シートの加熱,第1の加熱炉と第2の加熱炉間での単位樹脂シートの受け渡し、更には、第2の加熱炉からプレス成形機への単位樹脂シートの排出の様相を模式的に示す図である。 図12(a),(b),(c),(d)は、夫々、帯状軟化樹脂シートから単位樹脂シートへの切断動作、第1の加熱炉(炉1)のコンベヤの動作、第2の加熱炉(炉2)のコンベヤの動作及びプレス成形物Pの取り出し用マニュピレータの動作タイミングを示す図である。。 図13(a)はスリット形成装置により帯状軟化樹脂シートにスリットを形成した状態を後にプレス成形するプレス成形物との位置関係において示す上面図であり、(b)は帯状軟化樹脂シートから切断された単位樹脂シートを示す上面図である。 図14はプレス成形物における縦壁部分の肉厚を示す模式的断面図であり(a)は従来、(b)は本発明を示す。
 以下、この発明の実施形態を説明すると、図1はこの発明の実施形態における溶融樹脂から成形品までの成形ラインを示しており、成形ラインに沿って、溶融樹脂押出機10、溶融樹脂押出機10からの帯状軟化樹脂シートSの引出し及び温調のためのローラ列12、帯状軟化樹脂シートSを一つのプレス成形物(この実施形態では、後述のように、製品としての自動車の車体の左右の一対の樹脂製プロテクターフェンダーとなる部分と残りのスクラップとなる部分とから構成される)のプレス成形のための素材となる軟化状態の単位樹脂シートU(以下単に単位樹脂シートU)への切断を行う切断装置14、単位樹脂シートUをプレス成形に適した温度に2段階で加熱する加熱装置16、加熱装置16によりプレス成形に適した温度に調整された単位樹脂シートUの取り扱いのためのマニュピレータ(ロボット)18、マニュピレータ18により加熱装置16から取り出された単位樹脂シートUをプレス成形することによりプレス成形物とするプレス成形機20が配置される。また、成形ラインは下流側において、プレス成形機20により成形されたプレス成形物Pの取り出しのためのマニュピレータ22及びプレス成形機20により成形されたプレス成形物Pの後処理ライン24を備えている。
 成形ラインについて順序が前後するが、加熱装置16により温度調整された単位樹脂シートUのプレス成形機について説明すると、プレス成形機20は雄型20-1と雌型20-2を備えており、型開きした状態においてマニュピレータ18は、加熱装置16によりプレス成形に適した温度に加熱された単位樹脂シートUを吸引カップ18-1により把持し、型開きされたプレス成形機20における雄型20-1と雌型20-2間の所定位置にセットする。単位樹脂シートUがセットされると、油圧シリンダ20-3 により雄型20-1に向けて雌型20-2が下降され、型締めによって単位樹脂シートUは型空洞に応じた形状のプレス成形物に賦形され、型内で暫時冷却後型開きにより雄型20-1から雌型20-2が上昇し離間され、プレス成形物Pは、マニュピレータ(ロボット)22の吸引カップ22-1によりプレス成形機20から取り出され、後処理ライン24のコンベヤ24-1に載せられ、この発明の本旨から外れるため図示は省略するが、後処理ライン24にはコンベヤ24-1で運び出されるプレス成形物Pの冷却装置及び冷却後のプレス成形物Pから製品となる部分(本発明の実施形態においては自動車の車体の左右の一対の樹脂製プロテクターフェンダー)を分離し、製品となる部分の周りのスクラップとなる部分については再利用するための後処理(チップ化)が行われる。
 本発明の帯状軟化樹脂シートSの押出し、切断装置44による帯状軟化樹脂シートSから単位樹脂シートUへの切断、加熱装置16による単位樹脂シートUの加熱、加熱された単位樹脂シートUのプレス成形機20によるプレス成形物のプレス成形を行う連続成形ラインにおいて、サイクルタイムSTは、プレス成形物一つの成形に要する時間のことをいう。そして、サイクルタイムSTは、プレス成形機20における型開き、マニュピレータ18からの単位樹脂シートUのセット、型締めによりプレス成形物の成形、型開き及びマニュピレータ22によるプレス成形物の取り出し、からなる一連の工程に要する時間により決まるとするのが当業者の常識的な思考である。しかしながら、樹脂シート連続プレス工法では、帯状軟化樹脂シートSから単位樹脂シートUへの切断のため樹脂温度は低下させており、プレス加工に先立って、単位樹脂シートUの温度をプレス加工に適した温度まで温度の均一性を確保しつつ昇温させる必要があり、従来はこの昇温のために時間を要していたため、サイクルタイムは単位樹脂シートUの加熱工程に要する時間に制限されていたが、本発明においては、加熱装置16の工夫により加熱時間の短縮が可能となっており、それによりサイクルタイムSTの短縮化が図られている。そして、この設定サイクルタイムSTに同調するように、溶融樹脂押出機10からの帯状軟化樹脂シートSの押し出しが行われ、更には、後述の切断装置14による単位樹脂シートUへの切断、更には、加熱装置16による単位樹脂シートUの温度調整が行なわれ、この間において連続溶融単位樹脂シートSの実質的な滞留が生じたり、プレス成形機20での単位樹脂シートUの実質的な到着の待ち時間が生じたりすることがないようになっている。
 次に、成形ラインにより単位樹脂シートUからプレス成形機20によりプレス成形されるプレス成形物Pについて、その具体的な構造の一例について説明すると、図2(a)(斜視図)及び図3(平面図)はプレス成形物Pを図示しており、単位樹脂シートUのプレス成形により自動車の前輪用の左右のプロテクターフェンダーを一体としたものであり、プレス成形物Pから取り出される製品である左右のプロテクターフェンダーとなる部位をP1, P2にて夫々示し、これらの部位P1, P2は高さの高い縦壁部分Wを有している。縦壁部分の上面には車体取付けのためのボルトの座面等となるエンボス部分Eが設けられていることが分かる。図3は、プロテクターフェンダーとなる部分P1, P2の輪郭形状が良く分かるようにプレス成形物Pを平面図にて現したものであり、プロテクターフェンダーとなる部位P1, P2の外側からプレス成形物Pの外周P´に至るまでのプレス成形物Pの部位P3は後処理ライン24で除去され、スクラップとなる部位である。そして、本発明の実施形態によれば、スクラップとなる部位P3には、後述のように、単位樹脂シートUに切断する前の帯状軟化樹脂シートの状態でプレス成形により製品の縦壁となる部位Wやエンボスとなる部位Eに添うようにスリット(切込み)C1, C2, C3, C4, C5が形成される。後述のように、帯状軟化樹脂シートにスリットC1, C2, C3, C4, C5を形成しておくことにより、プレス成形機20による単位樹脂シートUのプレス成形時に縦壁となる部位Wやエンボスとなる部位E(薄肉厚が生じやすい深絞りとなる部位等)での肉の延びが良好となり、製品の肉厚が均衡化し品質向上を得ることができる。図2(b)はスクラップとなる部位P3を除去し、製品としての左右のプロテクターフェンダーとされた状態を模式的に示す。尚、図1において、プレス成形機20における下型20-1及び上型20-2は、便宜上略図にて画かれているが、実態の型面が図2の成形品に応じた形状を有していることは言うまでもない。
 次に、図1において成形ラインにおけるプレス成形に付されるまで、即ち調温された単位樹脂シートUに至るまでの各部の構成について説明すると、溶融樹脂押出機10は、それ自体は周知なので略示に留めるが、樹脂ペレット投入用ホッパ26と、スクリュエクストルーダ28と、ヒータ30と、ギヤポンプ32と、ダイス(押出ノズル)34とを備えている。この実施形態では、樹脂素材は、ポリプロピレンとポリエチレンとの混合樹脂であり、ポリプロピレンとポリエチレンのペレットは所定の混合割合にてホッパ26に投入される。スクリュエクストルーダ28はペレットを混合しながら軸方向送りし、その間にヒータ30の熱によりペレットは溶融混合される。ギヤポンプ32は一定速度で混合溶融樹脂をダイス34に送り、細長矩形断面のダイス34より帯状軟化樹脂シートSとして押出される。押出し時の樹脂温度はポリプロピレン約50重量%、ポリエチレン約50%の本実施形態の樹脂の場合約190~220℃である。
 ローラ列12は一対のシート引出しローラ対36と、調温ローラ38, 40とを備えており、ダイ34からの溶融樹脂はシート引出しローラ対36及び調温ローラ38, 40を通ることによって温度調整される。その温度範囲は、切断装置14での帯状軟化樹脂シートSから単位樹脂シートUへの切断に適した115~135℃程度であり、ここの温度が高すぎると柔らかすぎて単位樹脂シートUへの切断が行えなくなる不都合がある。また、本発明の実施形態におけるスリット形成装置50によるスリットの円滑な形成動作のためにも切断前の単位樹脂シートUはあまり柔らかくなり過ぎないように適正な温度となっていることが好適である。また、ラミネートフィルム(約0.5~5mm厚の不織布フィルム等)のロール41が上方に設置されており、ロール41からのラミネートフィルムFは調温ローラ38において帯状軟化樹脂シートSと合体され、調温ローラ38を出たところではラミネートフィルムFは帯状軟化樹脂シートSの表面に位置している。
 切断装置14はピンチローラ対42と、切断装置44とを備えている。切断装置44は、ピンチローラ対42の出口に配置され、下側の固定刃44-1と上側の可動刃44-2との組合せからなる。固定刃44-1及び可動刃44-2は帯状軟化樹脂シートSの全幅を超えた長さの刃部を備えており、常態においては可動刃44-2は固定刃44-1から上方に離間した退避位置にあるが、帯状軟化樹脂シートSが一定長通過する毎に可動刃44-2は固定刃44-1に向けて瞬時下降後即座に上昇復帰するように駆動され、帯状軟化樹脂シートSは一定長の単位樹脂シートUに切断され、単位樹脂シートUは加熱装置16に送られる。切断装置14については必要あれば特許文献1の記載も参照されたい。
 切断装置14におけるピンチローラ対42の手前に図2及び図3により説明した成形品におけるスクラップとなる部位におけるスリットC1, C2, C3, C4, C5(図13も参照)を入れるためのスリット形成装置50が配置される。以下スリット形成装置50の構造について説明すると、スリット形成装置50は、図4に示すように帯状軟化樹脂シートSの幅方向に3本の切刃52を備える。切刃52は後述のように個別に昇降及び幅方向移動可能となっているが、区別のため必要な場合は、図4の左側をA、中央をB、右側をCの符牒を付して表現するものとする。切刃52の刃先52-1は、図5に示すように、スリット形成時の帯状軟化樹脂シートSの受部となる一対のローラ53の中間を望むように設置され、後述のようにスリット形成のため切刃52を下降させたときその先鋭な刃先52-1が帯状軟化樹脂シートSを貫通するようになっている。図6に模式的に示すように、各切刃52はエアシリンダ54のピストン55(図5)から延びるピストンロッド56の下端にアダプタ57(ねじ止めにより切刃52の固定を行う)を介して着脱自在に装着されている。各切刃52は安全カバー58により通常は被覆されており、スリット形成時に刃先52-1が安全カバー58より突出するようになっている。図4では中央部Bの切刃52が帯状軟化樹脂シートSを貫通し、両側A, Cの切刃52は安全カバー58により被覆されたままの状態を示す。エアシリンダ54はピストン55を図4の上方に付勢し、そのため常態では切刃52を安全カバー58内に収容することができる。即ち、図5においては、エアシリンダ54の下部空気圧ポート54-1からの空気圧導入(図5の矢印a方向)及び上部空気圧ポート54-2からの空気圧排出(図5の矢印b方向)によりピストン55は上昇移動し、刃先52-1が安全カバー58内に収容された状態が示される。そして、図5と反対に、上部空気圧ポート54-2から空気圧導入(図5の矢印bと反対方向)及下部空気圧ポート54-1からの空気圧排出(図5の矢印aと反対方向)によりピストン55は下降移動し、刃先52-1が安全カバー58内に収容された状態から突出し、帯状軟化樹脂シートSに対するスリット形成を行うことができる。図8は切刃52の中程の高さ位置での水平断面形状を示し、下方の刃先52-1に連なる切断縁52-2は帯状軟化樹脂シートSの移動方向(矢印f)を向くように位置し、かつ切刃52は帯状軟化樹脂シートSに対するスリット形成のための突入を容易とするため、先鋭な先端52-1を形成している。
 次に、エアシリンダ54の支持構造について説明すると、図5に示すようにエアシリンダ54の本体背面には、水平移動部材60が固定配置される。そして、図4の3個のエアシリンダ54は各々その背面にはエアシリンダ54のための支持部材62が直立設置され、支持部材62は水平移動部材60の水平移動の案内のための案内路62-1を形成している。そのため、各エアシリンダ54、換言すれば、各切刃52は個別的な水平移動が可能となっている。尚、エアシリンダ54の水平移動のための機構60, 62は簡明のため略図としたが、市販のリニアベアリングを備えたガイド装置をそのまま使用することができ、軽微な駆動力によりエアシリンダ54の精密な水平位置のコントロールが可能となっている。
 次に、各エアシリンダ54の個別的な水平移動を惹起させるためのチェーン式駆動機構について説明すると、図4において、帯状軟化樹脂シートSの上方両側に位置するスプロケットホイールの対64, 66を巻き掛けるように無端チェーン68が設けられる。無端チェーン68は3個のエアシリンダ54の個別的な水平移動のため3本設けられる。スプロケットホイールの対64, 66も夫々の無端チェーン68のため3対設置される。各スプロケットホイールの対の一方のスプロケットホイール64が駆動側となり、他方のスプロケットホイール66が従動側となる。また、簡明のため各無端チェーン68の上側レーン及び下側レーンについて1駒づつのチェーン駒68-1を示し、周知のように、チェーン駒68-1をピンにて連接することにより一つの無端チェーン68に構成される。そして、簡明のため一つの無端チェーン68の複数のチェーン駒の上側及び下側の一つのチェーン駒68-1のみが図5に示されている。このチェーン駒68-1の一つが対応のエアシリンダ54に固定され、無端チェーン68による、その無端チェーン68に固定された一つのエアシリンダ54の水平移動が可能となる。即ち、図5において、支持部材62と反対側(前面側)におけるエアシリンダ54の本体外面に上下のブラケット板70, 72が片持状に溶接等により固着され、ブラケット板70, 72間に一つの無端チェーン68の一つのチェーン駒68-1(必要な場合は隣接する数個のチェーン駒)が溶接等により固着され、これにより無端チェーン68よりエアシリンダ54に水平駆動力を加えることができる。そして、図9に示すように駆動側スプロケットホイール64は軸64-1によってギヤボックス74内に支持され、サーボモータ76の回転軸76-1の回転を一対のベベルギヤ78, 80によって駆動側スプロケットホイール64に伝達することができる。サーボモータ76の回転軸76-1の回転は駆動側スプロケットホイール64を介して無端チェーン68に伝達され、支持部材62にその水平移動部材60が案内されるエアシリ364は帯状軟化樹脂シートSの幅方向に水平移動され、延いては、切刃52の刃先52-1の帯状軟化樹脂シートSに対する幅方向位置の正確なコントロールが可能となる。このような、無端チェーン68の水平駆動のためのサーボモータ76は3本の無端チェーン68の各々のために設けられ(図4のA, B, Cのエアシリンダ54に対応させてサーボモータ76にA, B, Cの符牒を付して表す)、そのため、A, B, Cの3本のエアシリンダ54の夫々はA, B, Cのサーボモータ76により、個々に帯状軟化樹脂シートSの幅方向に移動可能であり、先端の切刃52の帯状軟化樹脂シートSの幅方向における精密な位置制御(サーボ制御)が可能となり、帯状軟化樹脂シートSに対するスリットの成形が可能となる。即ち、図5において、エアシリンダ54の上部空気圧ポート54-2から空気圧導入(図5の矢印bと反対方向)及下部空気圧ポート54-1からの空気圧排出(図5の矢印aと反対方向)により、図6において、ピストンロッド56は下方に伸張され、先端の切刃52は帯状軟化樹脂シートSに向けて下降され、その先鋭な先端52-1が、矢印fのように移動中の帯状軟化樹脂シートSに貫通される。切刃52は先端52-1から連なる切断縁52-2が帯状軟化樹脂シートSの移動方向f(図8も参照)を向いているため、帯状軟化樹脂シートSの移動により図7に示すように移動方向と平行にスリットCaが帯状軟化樹脂シートSに形成される。そして、サーボモータ76の回転軸76-1の回転による切刃52の横方向の移動は、帯状軟化樹脂シートSの移動に従い、スリットの方向を変え、左方向に切刃52が動けばCbに示す斜めのスリットが形成されることになる。斜めのスリットCbの形成時は切刃52の切断縁52-2は切断方向に対して正対位置から幾分傾斜することになるが、切断対象である帯状軟化樹脂シートSは加温により柔らかくなっているため、切刃52の実質的な切断抵抗とはならず、スムースな切断を行うことが可能である。
 図1において切断装置14により得られた単位樹脂シートUをプレス成形に適した温度に調整する本発明の加熱装置16は、単位樹脂シートUの送り方向に連接して設置された一次加熱炉84及び二次加熱炉86から構成される。図10に示すように一次加熱炉84は、加熱室84-1と、加熱室84-1内に配置され、単位樹脂シートUを搬送するコンベヤ84-2と、コンベヤ84-2に対向して加熱室84-1の上面に設置された一連の赤外線加熱ヒータ84-3と、加熱室84-1の下面に配置された一連の赤外線加熱ヒータ84-4とを備える。コンベヤ84-2は駆動プーリ84-2aと従動プーリ84-2bとの間に巻き掛けられ、駆動プーリ84-2aの回転軸は模式的に示す駆動モータ84-5に連結される。赤外線加熱ヒータ(セラミックヒータ等)84-3, 84-4の放射光の波長は、例えば10~20μm、といった遠赤外領域にある。このコンベヤ84-2は、後述のように、投入された単位樹脂シートUの連続搬送下で行う。この際のコンベヤ84-2による単位樹脂シートUの移送速度は例えば1.0m/sといった値である。遠赤外領域の相対的な低エネルギの放射による連続加熱により単位樹脂シートUは、一次加熱炉84から二次加熱炉86へ送り込む際にプレス成形機20による単位樹脂シートUのプレス成形に適した温度より幾分低い125~135℃の温度にコントロールされる。前工程でのスリット形成及び単位樹脂シートUへの切断により、単位樹脂シートUとして一次加熱炉84に入ってくるときの単位樹脂シートUの温度は115~125℃まで下がっているが、一次加熱炉84での連続移送下の赤外線加熱ヒータ84-3, 84-4による遠赤外領域の相対的に波長の長い赤外線による比較的緩慢に起こる加熱作用により単位樹脂シートUは125~135℃の温度に制御される。即ち、一次加熱炉84は、主目的としては加熱目的もさることながら、二次加熱炉86での加熱に先立って遠赤外領域の相対的な低エネルギの放射により単位樹脂シートUを全面で均一に保持する作用をも狙ったものである。
 一次加熱炉84で加熱を受けた単位樹脂シートUは、二次加熱炉86に送られる。二次加熱炉86は、加熱室86-1と、加熱室86-1に配置され、単位樹脂シートUを搬送するコンベヤ86-2と、コンベヤ86-2に対向して加熱室86-1の上面に設置された一連の赤外線加熱ヒータ86-3と、加熱室86-1の下面に配置された一連の赤外線加熱ヒータ86-4とを備える。個々の赤外線加熱ヒータ(セラミックヒータ等)86-3, 86-4の放射光の波長は、例えば5~10μm、といった中赤外領域にある。コンベヤ86-2は駆動プーリ86-2aと従動プーリ86-2bとの間に巻き掛けられ、駆動プーリ86-2aの回転軸は模式的に示す駆動用モータ86-5に連結されている。二次加熱炉86における赤外線加熱ヒータ86-3, 86-4による単位樹脂シートUの加熱は、単位樹脂シートUを停止させて行う。中赤外領域の相対的に短い波長の赤外線により単位樹脂シートUの急速加熱が行われ、加熱後の単位樹脂シートUの温度は130~160℃の温度に制御される。この温度は、プレス加工により成形すべき成形物に応じて最適なプレス成形を行うことがでるように適宜選択される。そして、単位樹脂シートUを停止した状態での中赤外領域での加熱は例えば15秒といった極く短時間での加熱により目的とする単位樹脂シートUの温度を得ることができ、本発明の樹脂シート連続プレス工法の生産効率を高めることに寄与させることができる。従来における本出願人の樹脂シート連続プレス工法における加熱炉の構成では、加熱用に遠赤外領域の赤外線により加熱方式であり、この場合、大きさ約1500mm×2000mmで厚み1.6mmの単位樹脂シートUにおいて、約60秒の加熱時間を要しており、樹脂シート連続プレス工法における1個の製品当たりの製造に要する時間=サイクルタイムSTは加熱炉における加熱時間による制限を受けていたが、本発明の加熱装置16の新規な構造によりサイクルタイムSTを20秒といった時間に設定することが可能となり、生産性の著しい向上が実現する。
 切断装置14から、加熱装置16を介してプレス成形機20までの単位樹脂シートUの搬送及び一次加熱炉84と二次加熱炉86間の受渡し、更には、下流側のプレス成形機20への搬出動作について説明すると、切断装置14により得られた単位樹脂シートUは、そのまま、一次加熱炉84に入る。一次加熱炉84での単位樹脂シートUの加熱は連続的であり、基本的にコンベヤ84-2は一定の低速度で連続移動するが、単位樹脂シートUの受入れのため急速送りする必要上、コンベヤ84-2の駆動モータ84-6の回転速度は、急速上昇制御可能である。二次加熱炉86での単位樹脂シートUの急速加熱は、基本的に、コンベヤ86-2を停止して行うが、一次加熱炉84からの単位樹脂シートUの受け取り及び下流のプレス成形機20の搬出のため駆動モータ86-5の急速回転が可能となっている。一次加熱炉84のコンベヤ84-2の急速移動時の速度及び二次加熱のコンベヤ86-2の急速移動時の速度は例えば、10m/sといった同一速度である。
 図11及び図12は切断装置44から一次加熱炉84及び二次加熱炉86を経てプレス成形機に単位樹脂シートUを送りだす工程ついての連携動作を模式的に示す。図11(a)は帯状軟化樹脂シートSの先端が一次加熱炉84に送られてきた状態を示す。このとき、コンベヤ84-2は帯状軟化樹脂シートSの移送速度と同一速度(駆動モータ84-5の回転速度=Low)で動いている。一方、二次加熱炉86では静止したコンベヤ86-2上での単位樹脂シートUの急速加熱が行なわれている。
 図11(b)は一次加熱炉84内でのコンベヤ84-2による帯状軟化樹脂シートSが更に送られ、単位樹脂シートUがコンベヤ84-2上に乗って低速にて送られている状態を示し、二次加熱炉86での静止状態での単位樹脂シートUの急速加熱は継続される。
 図11(c)は切断装置44による帯状軟化樹脂シートSの切断を示し(図12(a)のタイミングtc)、帯状軟化樹脂シートSより単位樹脂シートUの切断が行われる。切断から些少時間経過したタイミングt1(カット時tcに起動されるタイマにて計測される)で一次加熱炉84のコンベヤ84-2は低速運転(駆動モータ84-5の回転速度=Low)から高速運転(回転速度=High)に瞬時(例えば(0.5)秒といった極短時間)に切替えられ、コンベヤ84-2上の単位樹脂シートUは図11(d)に示すように一次加熱炉84の中程の位置まで急速移送され、この時点(図12(b)のt2のタイミング(前記タイマにて計測される))でコンベヤ84-2と高速運転(回転速度=High)から本来の低速運転(駆動モータ84-5の回転速度=Low)に復帰される。このようにして、一次加熱炉84にて単位樹脂シートUを低速移動下にて徐々に加熱、二次加熱炉86にて停止下での急速加熱が行われる。
 タイマにて計測される二次加熱炉86での所要加熱時間タイミングt3(図12(c))が到来すると、二次加熱炉86でのコンベヤ86-2の駆動モータ86-5は静止状態(Stop)から高速運転(回転速度=High)に切替えられ、コンベヤ86-2上のそれまで停止していた単位樹脂シートUは、矢印mで示すようにプレス成形機への搬出用のマニュピレータ18のコンベヤ18-2に向け搬出開始される。コンベヤ18-2も僅か送れたタイミングt4(図12(d))で同一速度で高速運転を開始する。
 二次加熱炉86のコンベヤ86-2が高速運転を開始した時点においては、図11(d)おいて一次加熱炉84のコンベヤ84上に乗っていた単位樹脂シートUは図11(e)に示すように上流側端がコンベヤ84-2から離れ、下流側端が二次加熱炉86のコンベヤ86-2に既に乗っており単位樹脂シートUは高速移動中であり、タイミングt5でコンベヤ86-2の駆動モータ86-5は高速運転(回転速度=High)から静止状態(Stop)に切り替わり、図11(a)に示すようにコンベヤ86-2に受け渡された単位樹脂シートUは二次加熱炉86の中程の位置に停止され、単位樹脂シートUの二次加熱炉86での停止状態での加熱が開始される。
 マニュピレータ18のコンベヤ18-2に向け排出された単位樹脂シートUについても程なく(タイミングt6(図12(d))ではコンベヤ18-2の規定位置に到来し、コンベヤ18-2上の単位樹脂シートUはマニュピレータの吸引カップ18-1(図1)により吸引保持され(図11(a)も参照)、プレス成形機でのプレス成形に供される。マニュピレータ18のコンベヤ18-2の規定位置(マニュピレータ18によりプレス成形機20の所期の位置への単位樹脂シートUの移送のため必要である)への到着を検出するセンサ88(図11(e)参照)が設けられており、センサ88によるコンベヤ18-2の規定位置への到来によりタイマはクリヤされ、図11(a)~(e)の動作が繰返される。図12の動作においてタイマは帯状軟化樹脂シートSの切断(タイミングをtcにて示す)により起動され(タイマ起動用に帯状軟化樹脂シートSの切断動作完了を検知する図示しないセンサが設置される)、t1~t5のタイミングはタイマにより計測され、センサ88によりコンベヤ18-2上の単位樹脂シートUの所定位置が確保されるとタイマはクリヤされ、センサによるタイマの起動及び停止(tc及びt6のタイミング)により図12(a)~(d)に示す一次加熱炉84及び二次加熱炉86内での単位樹脂シートUの移送動作を脱調させることなく確実に実現させることができる。
 図12において、帯状軟化樹脂シートSから単位樹脂シートUへの一連の切断タイミングtcの間の時間が本実施形態におけるプレス成形物成形ラインのサイクルタイムSTとなり、プレス成形機での単位樹脂シートUの一連のプレス成形工程もこの間において行なわれる。また、二次加熱炉86の停止時間ATがサイクルタイムSTにおける二次加熱炉86での単位樹脂シートUの静止状態での急速加熱時間となる。
 本発明における、加熱装置16を一次加熱炉84と二次加熱炉86とに分けた構成は、一次加熱炉84においては、スリット形成及び単位シートUへの切断のため、低下した樹脂温度をサイクルタイム内で緩慢に連続加熱することにより樹脂温度を本来の温度まで全体を均一加熱又は保温することができ、その後の、二次加熱炉86での単位シートUを停止させた状態での中赤外領域の急速加熱により短時間で、プレス加工に最適な樹脂温度に到達させることができ、サイクルタイムに対して余裕をもった短時間で必要な加熱を行うことができ、加熱時間を15秒(図12のAT)に短縮することができ、従来の加熱炉の場合は、1500mm×2000mmで厚み1.6mmといった大きさの単位樹脂シートUの場合に、加熱時間の制限から60秒程度に制限されていたサイクルタイムを20秒程度まで短縮することを可能とする。即ち、この発明の加熱方法により従来の3倍もの生産速度を実現することができる。
 次に、プレス成形機20でのプレス成形物Pの成形動作について説明すると、加熱装置16で一次加熱炉84及び二次加熱炉86での加熱を受け、プレス成形に最適な温度まで加熱された単位樹脂シートUは型開きされたプレス成形機20の雄型20-1 に載置され、油圧シリンダ20-3により雌型20-2が下降され、単位樹脂シートUは型合わせした状態における雄型20-1 と雌型20-2との型空洞の形状に成形され、この実施形態では図2(a)に示す自動車の前輪用の左右のプロテクターフェンダーを一体とした成形物Pとなり、型開き後の成形物Pはマニュピレータ22により取り出され、処理ライン24のコンベヤ24-1に送られる。プレス成形機20での、単位樹脂シートUの投入、型締め、型開き、プレス成形物の取り出しという一連の工程は図12に関連してサイクルタイム内で実施されることは言うまでもない。
 プレス成形機20での本発明の実施形態における成形動作についてより詳細に説明すると、型成形時に、単位樹脂シートUが型形状に追随してスムースな樹脂の延びを生ずる必要があるが、本実施形態にてプレス成形すべき成形物Pは高い縦壁部Wやエンボス部Eを複数有しており、これらの部位での樹脂のスムースな延びが阻害されると、局部的な肉厚不足が生ずる懸念があった。本発明の実施形態においては、連続樹脂シートSに、その切断後の単位樹脂シートUのプレス加工時に製品(本実施形態の場合はプロテクターフェンダーP1, P2)の外側のスクラップとなる部位P3に成形時における樹脂のスムースな金型内での延びの助けとなるようにスリットC1, C2, C3, C4, C5を形成している。即ち、図13(a)はスリット形成装置50により帯状軟化樹脂シートSにスリットC1, C2, C3, C4, C5を形成した状態を示す。帯状軟化樹脂シートSを切断装置44により単位樹脂シートUに切断後にプレス成形機20により成形される成形物における製品であるプロテクターフェンダーP1, P2の部分を想像線にて示す。スリットC1, C2, C3, C4, C5は、プレス成形機20により成形されることになる成形物におけるプロテクターフェンダーP1, P2となる部分の外側のスクラップとなる部分に形成されており、スリットC1, C2, C3, C4, C5は位置はプレス成形機20により成形されることになる成形物における製品であるプロテクターフェンダーP1, P2の肉の延性が問題となる縦壁やエンボスとなる部分に添って形成される。図4において説明したように、スリット形成装置50は独立して昇降及び幅方向制御可能なA, B, Cの3個の切刃52を有しており、この実施形態では、図4のAの位置の切刃52によりスリットC5が形成され、図4のBの位置の切刃52によりスリットC1, C2, C3の加工が行なわれ、図4のCの位置の切刃52によりC4の形成が行なわれることが分かる。スリット形成装置50によるスリットC1, C2, C3, C4, C5の成形後に帯状軟化樹脂シートSは切断装置44により幅方向に前端縁e1及び後端縁e2に沿って切断されることで、図13(b)に示すようにプレス成形機20による成形物Pのプレス成形に先立ちスリットC1, C2, C3, C4, C5の成形が行なわれた単位樹脂シートUとなる。
 プレス成形機20による成形物Pのプレス成形の際のスリットC1, C2, C3, C4, C5の働きについて説明すると、図2(a)のプレス成形物において縦壁Wの部位はプレス成形時の樹脂の延びが大きい部分であるが、縦壁Wとなる部分に近接したスクラップとなる部分に沿ってスリットC3, C4が形成されていることから、成形時にスリットC3, C4を開くような力が被成形物に加わり(図2(a)において成形によりスリットC1, C2, C3, C4, C5が開かれた状態が模式的に図示されている)、成形時に縦壁Wとなる部分への樹脂の延びが良くなり、成形後の縦壁Wの部分の必要な肉厚を確保することができる。図14はこれを模式的に示した縦壁Wの部分の断面図であり、スリットC3, C4の形成がない場合に、縦壁Wの部分での樹脂のスムースな延びが阻害され、成形後の肉厚δAが所期の値に不足してしまうが、本発明実施形態ではスリットC3, C4の形成により樹脂のスムースな延びが得られるため成形後の肉厚δBを所期の値に確保することができる。また、図2のエンボス部Eの成形部分では、中間に設けたスリットC1, C2, C3においてもこれを拡開するような力が被成形物に加わるため、型空間への樹脂の延びが良くなり、エンボス部Eにおいても所期の肉厚を得ることが可能となる。
 10…溶融樹脂押出機
 14…切断装置
 16…加熱装置
 20…プレス成形機
  20-1…雄型2
  20-2…雌型
 24…後処理ライン
 26…樹脂ペレット投入用ホッパ
 34…ダイス
 44…切断装置
   44-1…固定刃
 44-2…可動刃
 50…スリット形成装置
 52…切刃
 54…エアシリンダ
  54-1…下部空気圧ポート
  54-2…上部空気圧ポート
 55…ピストン
 60…エアシリンダの水平駆動部材
 62…エアシリンダの支持部材
 64, 66…スプロケットホイール
 68…無端チェーン
  68-1…チェーン駒
 70, 72…ブラケット
 76…サーボモータ(A, B, C)
 84…一次加熱炉
  84-1…一次加熱炉の加熱室
  84-2…一次加熱炉のコンベヤ
  84-3, 84-4…一次加熱炉の赤外線加熱ヒータ
  84-5…一次加熱炉のコンベヤの駆動モータ
 86…二次加熱炉
  86-1…二次加熱炉の加熱室
  86-2…二次加熱炉のコンベヤ
  86-3, 86-4…二次加熱炉の赤外線加熱ヒータ
  86-5…二次加熱炉のコンベヤの駆動モータ
 C1, C2, C3, C4, C5…スリット(切込み)
 P…プレス成形物
  P1, P2…プレス成形物のプロテクターフェンダーとなる部位
  P3…プレス成形物のスクラップとなる部位
  W…プレス成形物の縦壁部分
  E…プレス成形物のエンボス部分
 S…帯状軟化樹脂シート
 ST…サイクルタイム
 U…単位樹脂シート

Claims (7)

  1.  溶融樹脂をダイスより押出すことにより帯状軟化樹脂シートに形成する工程と、
     帯状軟化樹脂シートを幅方向に切断することにより所定長さの一連の単位樹脂シートとする切断工程と、
     一連の単位樹脂シートを加熱することによりプレス成形に適した温度まで加熱する単位樹脂シート加熱工程と、
     加熱された単位樹脂シートのプレス型への搬入、プレス型によるプレス成形物へのプレス成形、プレス成形品の次工程への搬出からなる単位樹脂シートのプレス成形品へのプレス加工を一連の単位樹脂シートについてサイクルタイムにおいて繰返的に行うプレス成形工程と、
    を具備して成り、前記単位樹脂シート加熱工程は、単位樹脂シートのプレス成形に適した単位樹脂シート温度より幾分低い第1の温度までサイクルタイムにおいて徐々に加熱する第1の加熱工程と、前記第1の加熱工程後に、単位樹脂シートをプレス成形に適した第2の温度にサイクルタイムにおいて急速加熱する第2の加熱工程とから成る連続プレス成形方法。
  2.  請求項2に記載のプレス成形方法において、溶融樹脂の素材として40~60%のポリプロピレン樹脂と60~40%のポリエチレン樹脂との混合樹脂を使用し、押出時の混合樹脂温度が190~220℃であり、単位シートに切断時の樹脂シートの温度は115~135℃でありかつ樹脂シートの大きさは、700~1550mm×1000~2300mmであり、第1の加熱工程で加熱された樹脂の温度は125~135℃であり、第2の加熱工程で加熱された樹脂の温度は130~160℃のとき、単位樹脂シートへの切断からプレス成形までの工程のサイクルタイムは15~25秒であるプレス成形方法。
  3.  請求項1若しくは2に記載のプレス成形方法において、第1の加熱工程における単位樹脂シートの加熱は単位樹脂シートを0.02~1.0m/sの速度で連続送りしながら行い、第2の加熱工程における単位樹脂シートの加熱は単位樹脂シートを停止させて行うプレス成形方法。
  4.  請求項3に記載のプレス成形方法において、第1の加熱工程における単位樹脂シートの連続加熱のため波長10~20μmの遠赤外領域の赤外線を放射する熱源を使用し、第2の加熱工程における単位樹脂シートの急速加熱のため波長5~10μmの中赤外領域の赤外線を放射する熱源を使用するプレス成形方法。
  5.  請求項1から4のいずれか一項に記載のプレス成形方法の実施のための単位樹脂シートの加熱装置であって、第1の加熱工程の加熱を行うための第1の加熱炉と、第2の加熱工程を行うための第2の加熱炉とから成り、第1の加熱炉及び第2の加熱炉は、夫々、加熱室と、加熱室内に配置され、単位樹脂シートの搬送を行うコンベヤと、単位樹脂シートの搬送経路に沿って加熱室に配置された赤外線ヒータとからなり、第1の加熱炉における赤外線ヒータは波長10~20μmの遠赤外領域の赤外線を放射し、第2の加熱炉における赤外線ヒータは波長5~10μmの中赤外領域の赤外線を放射する加熱装置。
  6.  請求項5に記載の加熱装置において、第1の加熱炉のコンベヤは、単位樹脂シートを徐々に加熱するための単位樹脂シートの低速移動を行うと共に第1の加熱炉での加熱のための単位樹脂シートの急速受入れ及び加熱後の第2の加熱炉への単位樹脂シートの排出を行う第1のコンベヤ駆動機構を備え、第2の加熱炉のコンベヤは、加熱中の単位樹脂シートの停止、及び第1の加熱炉からの単位樹脂シートの急速受入れ及び加熱後の単位樹脂シートのプレス成形機側への急速送り出しを行う第2のコンベヤ駆動機構を備えた加熱装置。
  7.  プレス成形物の連続成形装置であって、
     溶融樹脂を帯状軟化樹脂シートに押出し形成する押出機と、
     押出機により押出された帯状軟化樹脂シートを幅方向に切断することにより所定長さの一連の単位樹脂シートとする切断装置と、
     単位樹脂シートを加熱することによりプレス成形に適した温度まで加熱する単位樹脂シート加熱装置と、
     加熱された単位樹脂シートをプレス成形することによりプレス成形物とするプレス成形機と、
    を具備してなり、
     前記単位樹脂シート加熱装置は、第1の加熱工程の加熱を行うための第1の加熱炉と、第2の加熱工程を行うための第2の加熱炉とから成り、第1の加熱炉及び第2の加熱炉は、夫々、加熱室と、加熱室内に配置され、単位樹脂シートの搬送を行うコンベヤと、単位樹脂シートの搬送経路に沿って加熱室に配置された赤外線ヒータとからなり、第1の加熱炉における赤外線ヒータは波長10~20μmの遠赤外領域の赤外線を放射し、第2の加熱炉における赤外線ヒータは波長5~10μmの中赤外領域の赤外線を放射するようにされるプレス成形物の連続成形装置。
PCT/JP2019/011670 2018-07-09 2019-03-20 連続プレス成形方法及びその実施のための加熱装置 WO2020012722A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980044385.2A CN112351876B (zh) 2018-07-09 2019-03-20 连续冲压成形方法以及用于实施该连续冲压成形方法的加热装置
JP2019528613A JP6640431B1 (ja) 2018-07-09 2019-03-20 連続プレス成形方法及びその実施のための加熱装置
MX2020011633A MX2020011633A (es) 2018-07-09 2019-03-20 Metodo de moldeado por prensado continuo y maquina de calentamiento para el mismo.
US17/046,015 US11548203B2 (en) 2018-07-09 2019-03-20 Continuous press-molding method and heating machine therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129584 2018-07-09
JP2018-129584 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020012722A1 true WO2020012722A1 (ja) 2020-01-16

Family

ID=69141713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011670 WO2020012722A1 (ja) 2018-07-09 2019-03-20 連続プレス成形方法及びその実施のための加熱装置

Country Status (5)

Country Link
US (1) US11548203B2 (ja)
JP (1) JP6640431B1 (ja)
CN (1) CN112351876B (ja)
MX (1) MX2020011633A (ja)
WO (1) WO2020012722A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112512775A (zh) * 2018-07-09 2021-03-16 有能沛思株式会社 冲压成形件的连续成形方法以及冲压成形件的连续成形装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286861A (ja) * 1997-04-16 1998-10-27 Sekisui Chem Co Ltd 難成形樹脂シートの製造方法
WO2017104731A1 (ja) * 2015-12-15 2017-06-22 三井化学株式会社 積層体およびその製造方法、ならびに接着用組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923691B2 (ja) * 1981-12-01 1984-06-04 山川工業株式会社 樹脂シ−トの連続プレス成形法
JPS5923691A (ja) 1982-07-29 1984-02-07 Sony Corp インデツクス式カラ−陰極線管のドライブ回路
JP2542007B2 (ja) * 1987-10-14 1996-10-09 山川工業株式会社 樹脂シ―トの連続樹脂プレス成形法
JPH07100349A (ja) 1993-10-01 1995-04-18 Taiyo Chuki Co Ltd 連続式混練装置の攪拌羽根
JP2010143152A (ja) 2008-12-19 2010-07-01 Tokai Kogyo Co Ltd 芯材及びその製造方法と製造装置並びに押出成形品の製造方法
JP2010179489A (ja) 2009-02-03 2010-08-19 Fujifilm Corp 偏肉樹脂シートの製造方法及び偏肉樹脂シートの製造装置
CN112512775A (zh) * 2018-07-09 2021-03-16 有能沛思株式会社 冲压成形件的连续成形方法以及冲压成形件的连续成形装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286861A (ja) * 1997-04-16 1998-10-27 Sekisui Chem Co Ltd 難成形樹脂シートの製造方法
WO2017104731A1 (ja) * 2015-12-15 2017-06-22 三井化学株式会社 積層体およびその製造方法、ならびに接着用組成物

Also Published As

Publication number Publication date
MX2020011633A (es) 2022-04-01
US11548203B2 (en) 2023-01-10
JPWO2020012722A1 (ja) 2020-07-27
CN112351876A (zh) 2021-02-09
CN112351876B (zh) 2022-08-23
US20210362397A1 (en) 2021-11-25
JP6640431B1 (ja) 2020-02-05

Similar Documents

Publication Publication Date Title
US6719551B2 (en) Thermoplastic molding process and apparatus
US4440702A (en) Method and apparatus for making thin-walled plastic articles
CA1247320A (en) Apparatus for the production of articles from a thermoplastic material and method of producing articles from a foil of thermoplastic material
US20040150126A1 (en) Method of manufacturing a molded multilayer article
CN106239702B (zh) 一种连续成型陶瓷压砖机及其生产工艺
US4459093A (en) Apparatus for severing and feeding thermoplastic sheet
US4883419A (en) Device for thermoforming parts from synthetic material
WO2020012721A1 (ja) プレス成形物の連続成形方法及びプレス成形物の連続成形装置
JP6640431B1 (ja) 連続プレス成形方法及びその実施のための加熱装置
US3234594A (en) Apparatus for forming plastic containers
US3235638A (en) Method for forming plastic containers
JP6581750B1 (ja) プレス成形物の連続成形方法及びプレス成形物の連続成形装置
JP3940413B2 (ja) シートプレス機
KR0148348B1 (ko) 연속 이송 열성형 방법 및 장치
CN112476828A (zh) 一种压延造粒机
CN214053133U (zh) 一种金属管件挤压成型系统
CN209757699U (zh) 一种方形包裹设备
CN211336731U (zh) 一种高速平板式泡罩机
CN203751297U (zh) 自动扳扣机
JP3969480B2 (ja) 廃棄物を利用したボードの成形機
CN218429918U (zh) 吸塑生产线
CN112026128A (zh) 专用于ppo板材制品的生产工艺
CN219883259U (zh) 一种塑料瓶瓶口修剪装置
CN112009778B (zh) 一种柱状产品包装用的加工组装设备
CN113059821A (zh) 一种绿色可回收的塑料包装箱的生产系统及工艺

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019528613

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834354

Country of ref document: EP

Kind code of ref document: A1