WO2020012554A1 - 塗液の製造方法、塗液及び塗膜 - Google Patents

塗液の製造方法、塗液及び塗膜 Download PDF

Info

Publication number
WO2020012554A1
WO2020012554A1 PCT/JP2018/026016 JP2018026016W WO2020012554A1 WO 2020012554 A1 WO2020012554 A1 WO 2020012554A1 JP 2018026016 W JP2018026016 W JP 2018026016W WO 2020012554 A1 WO2020012554 A1 WO 2020012554A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
coating liquid
mass
porous particles
Prior art date
Application number
PCT/JP2018/026016
Other languages
English (en)
French (fr)
Inventor
寛之 泉
竜也 牧野
智彦 小竹
慧 高安
直義 佐藤
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/026016 priority Critical patent/WO2020012554A1/ja
Priority to US17/257,854 priority patent/US20210277261A1/en
Priority to EP18925784.3A priority patent/EP3822326A4/en
Priority to JP2020529876A priority patent/JP7259857B2/ja
Priority to CN201880095459.0A priority patent/CN112513208A/zh
Priority to KR1020207037598A priority patent/KR102613368B1/ko
Publication of WO2020012554A1 publication Critical patent/WO2020012554A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a method for producing a coating liquid, a coating liquid, and a coating film.
  • Patent Document 1 proposes to use porous particles (particulate aerogel) as a filler between resin plates and the like constituting a heat insulating window.
  • the present invention has been made in view of the above circumstances, and has as its object to provide a novel method for producing a coating liquid containing porous particles. Another object of the present invention is to provide a coating liquid obtained by the production method and a coating film obtained by using the coating liquid.
  • the present invention provides a method for producing a coating liquid, comprising a stirring step of stirring a raw material containing porous particles, a binder resin, and a liquid medium with a planetary mixer.
  • a stirring step of stirring a raw material containing porous particles, a binder resin, and a liquid medium with a planetary mixer In the coating liquid obtained by the production method of the present invention, a larger amount of porous particles are present in a dispersed state than in the prior art. Therefore, a coating film densely containing porous particles can be formed on the target surface.
  • the production method of the present invention may include a preliminary stirring step of stirring the raw materials by a high-speed shear stirrer before the stirring step. This makes it easier to mix the porous particles more uniformly in the liquid medium.
  • the liquid medium can include water.
  • the liquid medium can further include an organic solvent.
  • the binder resin is an epoxy resin, a silicone resin, a phenol resin, a urea resin, a melamine resin, a polyurethane resin, a polyethylene resin, a polypropylene resin, a polystyrene resin, a polyester resin, an acrylic resin, a polyvinyl chloride resin, At least one selected from the group consisting of vinyl acetate resin, polyamide resin, polyimide resin, cellulose resin, and polyvinyl resin can be included. Thereby, the film formability can be further improved.
  • the porous particles may be airgel particles.
  • the present invention also provides a coating liquid obtained by the production method of the present invention.
  • the present invention provides a coating liquid comprising a porous particle, a binder resin and a liquid medium, wherein the content of the porous particle is 20% by mass or more.
  • a larger amount of porous particles are present in a dispersed state than in the prior art. Therefore, a coating film densely containing porous particles can be formed on the target surface.
  • One reason that a large amount of porous particles could be dispersed in the coating liquid is that the dispersion method was appropriately adjusted.
  • the liquid medium can contain water.
  • the liquid medium can further include an organic solvent.
  • the binder resin is an epoxy resin, a silicone resin, a phenol resin, a urea resin, a melamine resin, a polyurethane resin, a polyethylene resin, a polypropylene resin, a polystyrene resin, a polyester resin, an acrylic resin, a polyvinyl chloride resin, At least one selected from the group consisting of vinyl acetate resin, polyamide resin, polyimide resin, cellulose resin, and polyvinyl resin can be included. Thereby, the film formability can be further improved.
  • the specific gravity of the coating liquid of the present invention can be 0.8 or less.
  • the present invention also provides a coating film containing porous particles and a binder resin, wherein the content of the porous particles is 80% by mass or more and the density is 0.4 g / cm 3 or less.
  • a light-weight coating film (porous coating film) in which the porous particles were highly filled as described above, but this can be realized by using the coating liquid of the present invention.
  • the binder resin is an epoxy resin, silicone resin, phenol resin, urea resin, melamine resin, polyurethane resin, polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, acrylic resin, polyvinyl chloride resin, poly At least one selected from the group consisting of vinyl acetate resin, polyamide resin, polyimide resin, cellulose resin, and polyvinyl resin can be included. Thereby, the film quality can be further improved.
  • a novel method for producing a coating liquid containing porous particles can be provided. Further, according to the present invention, it is possible to provide a coating liquid obtained by the production method and a coating film (porous coating film) obtained using the coating liquid.
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as a minimum value and a maximum value, respectively.
  • “A or B” may include any one of A and B, and may include both.
  • the materials exemplified in the present embodiment can be used alone or in combination of two or more, unless otherwise specified.
  • porous particles examples include inorganic porous particles and organic porous particles.
  • constituent materials of the inorganic porous particles include metal oxides (including composite oxides), hydroxides, nitrides, carbides, carbonates, borates, sulfates, silicates, phosphates, and the like.
  • metal oxides including composite oxides
  • hydroxides titanium oxide, zinc oxide, alumina, zircon oxide, tin oxide, magnesium oxide, metal oxides such as potassium titanate, aluminum hydroxide, magnesium hydroxide, hydroxides such as calcium hydroxide, Nitride such as silicon nitride, titanium nitride and aluminum nitride
  • carbide such as silicon carbide and titanium carbide
  • carbonate such as calcium carbonate and magnesium carbonate
  • borate such as aluminum borate and magnesium borate
  • sulfuric acid such as calcium sulfate and magnesium sulfate
  • Examples thereof include salts, silicates such as calcium silicate and magnesium silicate, and phosphates such as calcium phosphate.
  • porous particles one kind may be used alone, or two or more kinds may be used in combination.
  • the specific surface area of the porous particles can be 1200 m 2 / g or less, but may be 1000 m 2 / g or less, 900 m 2 / g or less, or 800 m 2 / g or less. Good. This makes it easy to prepare a coating liquid having excellent film-forming properties.
  • the lower limit of the specific surface area of the porous particles is not particularly limited, it can be set to about 30 m 2 / g from the viewpoint of suppressing aggregation in the coating liquid and improving the filling rate.
  • the specific surface area can be measured by the BET method.
  • a gas adsorption amount measuring device Autosorb-iQ (Autosorb is a registered trademark) manufactured by Kantachrome Instruments Japan GK
  • Autosorb-iQ Autosorb is a registered trademark manufactured by Kantachrome Instruments Japan GK
  • the average particle diameter D50 of the porous particles can be 1 to 1000 ⁇ m, but may be 3 to 700 ⁇ m, 5 to 500 ⁇ m, 10 to 100 ⁇ m, or 10 to 50 ⁇ m. There may be.
  • the average particle diameter D50 of the porous particles can be appropriately adjusted by a pulverizing method and pulverizing conditions, a sieve, a classification method, and the like.
  • the average particle diameter D50 of the porous particles can be measured by a laser diffraction / scattering method.
  • the dispersion of the porous particles is added to a solvent (ethanol) so that the content of the porous particles is 0.05 to 5% by mass, and the mixture is vibrated for 15 to 30 minutes with a 50 W ultrasonic homogenizer. Do. Thereafter, about 10 mL of the dispersion is injected into a laser diffraction / scattering type particle size distribution analyzer, and the particle size is measured at 25 ° C. with a refractive index of 1.3 and an absorption of 0. The particle diameter at an integrated value of 50% (by volume) in the particle diameter distribution is defined as an average particle diameter D50.
  • the measuring device for example, Microtrac MT3000 (product name, manufactured by Nikkiso Co., Ltd.) can be used.
  • porous particles will be described as an example of the porous particles, but the porous particles are not limited to the following embodiments.
  • a dry gel obtained by using a supercritical drying method for a wet gel is aerogel
  • a dry gel obtained by drying under atmospheric pressure is a xerogel
  • a dry gel obtained by freeze-drying is a cryogel.
  • the obtained low-density dried gel is referred to as “aerogel” regardless of the method for drying the wet gel. That is, in the present embodiment, the “aerogel” is a broadly-defined aerogel, “Gel-complied of a microporous solid in which the dispersed phase is a gas (a gel composed of a microporous solid whose dispersed phase is a gas). Means.
  • the inside of the airgel has a network-like fine structure, and has a cluster structure in which a particulate airgel component of about 2 to 20 nm is bonded. There are pores smaller than 100 nm between the skeletons formed by the clusters. Thereby, the airgel has a three-dimensionally fine porous structure.
  • the aerogel according to the present embodiment is, for example, a silica aerogel containing silica as a main component.
  • the silica airgel include a so-called organic-inorganic hybridized silica airgel into which an organic group (eg, a methyl group) or an organic chain is introduced.
  • the airgel particles in the present embodiment are not particularly limited, and airgel particles manufactured by various known manufacturing methods can be used.
  • an airgel that can constitute the airgel particles of the present embodiment will be described.
  • the airgel is selected from the group consisting of a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a silicon compound having a hydrolyzable functional group, as described below. It is a dried product of a wet gel which is a condensate of a sol containing at least one (a product obtained by drying a wet gel generated from a sol: a dried product of a wet gel derived from a sol).
  • the airgel according to the present embodiment can have a structure represented by the following general formula (1).
  • the airgel according to the present embodiment can have a structure represented by the following general formula (1a) as a structure including the structure represented by the formula (1).
  • R 1 and R 2 each independently represent an alkyl group or an aryl group
  • R 3 and R 4 each independently represent an alkylene group.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • p represents an integer of 1 to 50.
  • two or more R 1 may be the same or different, and similarly, two or more R 2 may be the same or different.
  • two R 3 may be the same or different, and similarly, two R 4 may be the same or different.
  • R 1 and R 2 each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group, and the like. And the like.
  • R 3 and R 4 each independently include an alkylene group having 1 to 6 carbon atoms, and the alkylene group includes an ethylene group, a propylene group, and the like.
  • p may be 2 to 30, and may be 5 to 20.
  • the airgel according to the present embodiment also has a ladder-type structure including a support portion and a bridge portion, and the bridge portion may have a structure represented by the following general formula (2).
  • the “ladder type structure” refers to a structure having two struts and bridges connecting the struts (bridges) (having a so-called “ladder” form). It is.
  • the skeleton of the airgel may have a ladder-type structure, but the airgel may have a ladder-type structure partially.
  • R 5 and R 6 each independently represent an alkyl group or an aryl group, and b represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • examples of the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 may be the same or different, and similarly, two or more R 6 may be the same. May also be different.
  • silsesquioxane is a polysiloxane having a composition formula: (RSiO 1.5 ) n , and can have various skeleton structures such as a cage type, a ladder type, and a random type.
  • the structure of the cross-linking portion is -O-, but the aerogel according to the present embodiment
  • the structure of the crosslinked portion is a structure (polysiloxane structure) represented by the above general formula (2).
  • the airgel of this embodiment may have a structure derived from silsesquioxane in addition to the structure represented by the general formula (2).
  • R represents a hydroxy group, an alkyl group or an aryl group.
  • the ladder-type structure has the following general formula ( It may have a ladder structure represented by 3).
  • R 5 , R 6 , R 7 and R 8 each independently represent an alkyl group or an aryl group
  • a and c each independently represent an integer of 1 to 3000
  • b represents 1 to 50 Indicates an integer.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • b is an integer of 2 or more
  • two or more R 5 may be the same or different
  • two or more R 6 may be the same. May also be different.
  • a is an integer of 2 or more
  • two or more R 7 may be the same or different
  • similarly, when c is an integer of 2 or more, two or more R 8 may be the same or different.
  • R 5 , R 6 , R 7 and R 8 in the formulas (2) and (3) (where R 7 and R 8 are only in the formula (3))
  • a and c can each independently be 6 to 2000, but may be 10 to 1000.
  • b may be 2 to 30, but may be 5 to 20.
  • the structure represented by the following general formulas (4) to (6) can be introduced into the skeleton of the airgel.
  • the airgel according to the present embodiment can have one of these structures alone or two or more of them.
  • R 9 represents an alkyl group.
  • examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group include a methyl group.
  • R 10 and R 11 each independently represent an alkyl group.
  • examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group include a methyl group.
  • R 12 represents an alkylene group.
  • examples of the alkylene group include an alkylene group having 1 to 10 carbon atoms, and examples of the alkylene group include an ethylene group and a hexylene group.
  • the airgel according to the present embodiment may further contain silica particles in addition to the airgel component from the viewpoint of further toughening and achieving even better heat insulation and flexibility.
  • An airgel containing an airgel component and silica particles can also be referred to as an airgel composite.
  • the airgel composite has a cluster structure, which is a characteristic of aerogel, even though the airgel component and silica particles are composited, and is considered to have a three-dimensionally fine porous structure. .
  • the airgel containing the airgel component and the silica particles is a silicon compound having a hydrolyzable functional group or a condensable functional group, and hydrolysis of a silicon compound having a hydrolyzable functional group.
  • the product is a dried product of a wet gel that is a condensate of a sol containing at least one selected from the group consisting of products and silica particles.
  • the silica particles can be used without any particular limitation, and include amorphous silica particles and the like.
  • amorphous silica particles include fused silica particles, fumed silica particles, and colloidal silica particles.
  • the colloidal silica particles have high monodispersity and easily suppress aggregation in the sol.
  • the silica particles may have a hollow structure, a porous structure, or the like.
  • the shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a cocoon shape, and an association type. Among them, the use of spherical particles as the silica particles makes it easier to suppress aggregation in the sol.
  • the average primary particle diameter of the silica particles is 1 nm or more, or 5 nm or more, from the viewpoint that it is easy to impart appropriate strength and flexibility to the aerogel, and to easily obtain an aerogel having excellent resistance to shrinkage during drying. And may be 20 nm or more.
  • the average primary particle diameter of the silica particles is 500 nm or less, 300 nm or less, and 100 nm or less, from the viewpoint of easily suppressing the solid heat conduction of the silica particles and easily obtaining an aerogel having excellent heat insulating properties.
  • the following may be used. From these viewpoints, the average primary particle diameter of the silica particles may be 1 to 500 nm, 5 to 300 nm, or 20 to 100 nm.
  • the average particle diameter of the airgel component and the average primary particle diameter of the silica particles can be obtained by directly observing the airgel using a scanning electron microscope (hereinafter abbreviated as “SEM”).
  • SEM scanning electron microscope
  • the “diameter” here means a diameter when a cross section of the particles exposed on the cross section of the airgel is regarded as a circle.
  • the “diameter when the cross section is regarded as a circle” is the diameter of the true circle when the area of the cross section is replaced by a perfect circle having the same area.
  • the diameter of a circle is determined for 100 particles, and the average is taken.
  • the average particle size of the silica particles can also be measured from the raw material.
  • the biaxial average primary particle diameter is calculated as follows from the result of observing 20 arbitrary particles by SEM. That is, taking colloidal silica particles having a solid concentration of about 5 to 40% by mass and dispersed in water as an example, a dispersion liquid of colloidal silica particles was obtained by cutting a wafer with patterned wiring into 2 cm square. After soaking the chip for about 30 seconds, the chip is rinsed with pure water for about 30 seconds and dried with nitrogen blow. Thereafter, the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, and the silica particles are observed at a magnification of 100,000 and an image is taken. 20 silica particles are arbitrarily selected from the obtained image, and the average of the particle diameters of the particles is defined as the average particle diameter.
  • the number of silanol groups per 1 g of the silica particles may be 10 ⁇ 10 18 / g or more, and may be 50 ⁇ 10 18 / g or more from the viewpoint of easily obtaining an aerogel having excellent shrink resistance. , 100 ⁇ 10 18 / g or more.
  • the number of silanol groups per gram of the silica particles may be 1000 ⁇ 10 18 / g or less, 800 ⁇ 10 18 / g or less, and 700 ⁇ It may be 10 18 / g or less.
  • the number of silanol groups per 1 g of the silica particles may be 10 ⁇ 10 18 to 1000 ⁇ 10 18 / g, or may be 50 ⁇ 10 18 to 800 ⁇ 10 18 / g. , 100 ⁇ 10 18 to 700 ⁇ 10 18 particles / g.
  • the method for producing the airgel particles is not particularly limited, but for example, it can be produced by the following method.
  • the airgel particles of the present embodiment are formed by a sol generation step, a sol obtained in the sol generation step, and a wet gel generation step of aging to obtain a wet gel, and a wet gel obtained in the wet gel generation step.
  • a manufacturing method mainly comprising a washing and solvent replacement step of washing and (if necessary) solvent replacement, a drying step of drying the washed and solvent-replaced wet gel, and a pulverization step of pulverizing the aerogel obtained by drying. Can be manufactured.
  • a sol generating step, a wet gel generating step, a wet gel crushing step of crushing the wet gel obtained in the wet gel generating step, a washing and solvent replacement step, and a manufacturing method mainly comprising a drying step May be.
  • the size of the obtained airgel particles can be further uniformed by sieving, classification and the like. By adjusting the size of the particles, the dispersibility can be increased.
  • the “sol” is a state before a gelation reaction occurs, and in the present embodiment, means a state in which, for example, a silicon compound and optionally silica particles are dissolved or dispersed in a solvent. I do.
  • the wet gel refers to a gel solid in a wet state that does not have fluidity while containing a liquid medium.
  • the sol generation step is a step of mixing a silicon compound and, in some cases, silica particles (may be a solvent containing silica particles) in a solvent and performing a hydrolysis reaction as necessary. More specifically, the sol generation step includes a hydrolysis of a silicon compound having a hydrolyzable functional group, a silicon compound having a condensable functional group, and a silicon compound having a hydrolyzable functional group. This is a step of producing a sol containing a product or the like.
  • the sol generation step includes a silicon compound having a hydrolyzable functional group or a condensable functional group, and at least one selected from the group consisting of hydrolysis products of the silicon compound having a hydrolyzable functional group. It can be said that this is a step of producing a sol to be contained.
  • the aerogel exemplified above can be obtained by drying a wet gel generated from such a sol.
  • a polysiloxane compound can be used as the silicon compound. That is, the sol is at least selected from the group consisting of a polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a polysiloxane compound having a hydrolyzable functional group.
  • a polysiloxane compound group One kind of compound (hereinafter, sometimes referred to as “polysiloxane compound group”) may be contained.
  • the functional group in the polysiloxane compound is not particularly limited, but may be a group that reacts with the same functional group or a group that reacts with another functional group.
  • Examples of the hydrolyzable functional group include an alkoxy group.
  • Examples of the condensable functional group include a hydroxyl group, a silanol group, a carboxyl group, and a phenolic hydroxyl group.
  • the hydroxyl group may be contained in a hydroxyl group-containing group such as a hydroxyalkyl group.
  • a polysiloxane compound having a hydrolyzable functional group or a condensable functional group is a reactive group different from the hydrolyzable functional group and the condensable functional group (the hydrolyzable functional group and the condensable functional group).
  • the reactive group include an epoxy group, a mercapto group, a glycidoxy group, a vinyl group, an acryloyl group, a methacryloyl group, and an amino group.
  • the epoxy group may be contained in an epoxy group-containing group such as a glycidoxy group.
  • groups that improve the flexibility of the airgel include alkoxy groups, silanol groups, hydroxyalkyl groups, and the like.
  • alkoxy groups and hydroxyalkyl groups are:
  • the compatibility of the sol can be further improved.
  • the number of carbon atoms of the alkoxy group and the hydroxyalkyl group can be 1 to 6, but the flexibility of the aerogel is further improved. From the viewpoint, it may be 2 to 4.
  • Examples of the polysiloxane compound having a hydroxyalkyl group in the molecule include those having a structure represented by the following general formula (A).
  • A a polysiloxane compound having a structure represented by the following general formula (A)
  • the structures represented by the general formulas (1) and (1a) can be introduced into the skeleton of the airgel.
  • R 1a represents a hydroxyalkyl group
  • R 2a represents an alkylene group
  • R 3a and R 4a each independently represent an alkyl group or an aryl group
  • n represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1a may be the same or different, and similarly, two R 2a may be the same or different.
  • two or more R 3a may be the same or different, and similarly, two or more R 4a may be the same or different.
  • R 1a includes a hydroxyalkyl group having 1 to 6 carbon atoms, and the hydroxyalkyl group includes a hydroxyethyl group, a hydroxypropyl group, and the like.
  • R 2a includes an alkylene group having 1 to 6 carbon atoms, and the alkylene group includes an ethylene group, a propylene group, and the like.
  • R 3a and R 4a each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and the alkyl group includes a methyl group and the like.
  • n can be 2 to 30, but may be 5 to 20.
  • polysiloxane compound having the structure represented by the general formula (A) commercially available products can be used, and compounds such as X-22-160AS, KF-6001, KF-6002, and KF-6003 (all of which are shown below) can be used. And Shin-Etsu Chemical Co., Ltd.), and compounds such as XF42-B0970 and Fluid ⁇ OFOH ⁇ 702-4% (all manufactured by Momentive Performance Materials Japan GK).
  • Examples of the polysiloxane compound having an alkoxy group in a molecule include those having a structure represented by the following general formula (B).
  • a polysiloxane compound having a structure represented by the following general formula (B) By using a polysiloxane compound having a structure represented by the following general formula (B), a ladder-type structure having a crosslinked portion represented by the general formula (2) or (3) is introduced into the skeleton of the airgel. can do.
  • R 1b represents an alkyl group, an alkoxy group or an aryl group
  • R 2b and R 3b each independently represent an alkoxy group
  • R 4b and R 5b each independently represent an alkyl group or an aryl group.
  • M represents an integer of 1 to 50.
  • examples of the aryl group include a phenyl group and a substituted phenyl group.
  • the substituent of the substituted phenyl group include an alkyl group, a vinyl group, a mercapto group, an amino group, a nitro group, and a cyano group.
  • two R 1b may be the same or different
  • two R 2b may be the same or different, respectively.
  • 3b may be the same or different.
  • when m is an integer of 2 or more
  • two or more R 4b may be the same or different, and similarly, two or more R 5b may be the same. May also be different.
  • R 1b includes an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and the like, and the alkyl group or the alkoxy group is a methyl group. Methoxy group, ethoxy group and the like.
  • R 2b and R 3b each independently include an alkoxy group having 1 to 6 carbon atoms, and the alkoxy group includes a methoxy group and an ethoxy group.
  • R 4b and R 5b each independently include an alkyl group having 1 to 6 carbon atoms, a phenyl group and the like, and the alkyl group includes a methyl group and the like.
  • m can be 2 to 30, but may be 5 to 20.
  • the polysiloxane compound having the structure represented by the general formula (B) can be obtained by appropriately referring to the production methods reported in JP-A-2000-26609, JP-A-2012-233110, and the like. .
  • the polysiloxane compound having the alkoxy group may be present as a hydrolysis product in the sol, and the polysiloxane compound having the alkoxy group and the hydrolysis product are mixed. May be.
  • the polysiloxane compound having an alkoxy group all of the alkoxy groups in the molecule may be hydrolyzed or partially hydrolyzed.
  • polysiloxane compounds having a hydrolyzable functional group or a condensable functional group, and hydrolysis products of a polysiloxane compound having a hydrolyzable functional group may be used alone or as a mixture of two or more. May be used.
  • a silicon compound other than the above-described polysiloxane compound can be used as the silicon compound.
  • Such silicon compounds include silane monomers. That is, the sol containing the silicon compound is a group consisting of a silane monomer having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silane monomer having a hydrolyzable functional group. At least one selected from the following (hereinafter sometimes referred to as “silane monomer group”) may be contained in addition to the above-mentioned polysiloxane compound group or in place of the above-mentioned polysiloxane compound group.
  • the number of silicon atoms in the molecule of the silane monomer can be 1 to 6.
  • the silane monomer having a hydrolyzable functional group is not particularly limited, and examples thereof include an alkyl silicon alkoxide.
  • Alkyl silicon alkoxides can reduce the number of hydrolyzable functional groups to three or less from the viewpoint of improving water resistance.
  • Examples of such an alkyl silicon alkoxide include monoalkyl trialkoxy silane, monoalkyl dialkoxy silane, dialkyl dialkoxy silane, monoalkyl monoalkoxy silane, dialkyl monoalkoxy silane, and trialkyl monoalkoxy silane.
  • Examples thereof include methyltrimethoxysilane, methyldimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane and the like.
  • examples of the hydrolyzable functional group include an alkoxy group such as a methoxy group and an ethoxy group.
  • the silane monomer having a condensable functional group is not particularly limited, but includes silanetetraol, methylsilanetriol, dimethylsilanediol, phenylsilanetriol, phenylmethylsilanediol, diphenylsilanediol, n-propylsilanetriol, hexylsilane Triol, octylsilanetriol, decylsilanetriol, trifluoropropylsilanetriol and the like can be mentioned.
  • silane monomer further has the above-mentioned reactive group (functional group which does not correspond to the hydrolyzable functional group and the condensable functional group) different from the hydrolyzable functional group and the condensable functional group, Good.
  • silane monomer having a hydrolyzable functional group and a reactive group examples include vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-2- (Aminoethyl) -3-aminopropylmethyldimethoxysilane and the like can also be used.
  • silane monomers having a condensable functional group and a reactive group examples include vinyl silane triol, 3-glycidoxypropyl silane triol, 3-glycidoxy propyl methyl silane diol, 3-methacryloxy propyl silane triol, and 3-methacryloxy propyl Methylsilanediol, 3-acryloxypropylsilanetriol, 3-mercaptopropylsilanetriol, 3-mercaptopropylmethylsilanediol, N-phenyl-3-aminopropylsilanetriol, N-2- (aminoethyl) -3-amino Propylmethylsilanediol and the like can also be used.
  • the silane monomer may have two or more silicon atoms, and bistrimethoxysilylmethane, bistrimethoxysilylethane, bistrimethoxysilylhexane and the like can also be used.
  • a silane monomer having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of the silane monomer having a hydrolyzable functional group may be used alone or as a mixture of two or more. Is also good.
  • the sol generation step is a silicon compound having a hydrolyzable functional group or a condensable functional group, and a hydrolysis product of a silicon compound having a hydrolyzable functional group. It can be said that this is a step of generating a sol containing at least one selected from the group and silica particles.
  • the content of the polysiloxane compound group contained in the sol (the content of the polysiloxane compound having a hydrolyzable functional group or a condensable functional group, and the hydrolysis of the polysiloxane compound having a hydrolyzable functional group)
  • the sum of the contents of the products may be 5 parts by mass or more, or 10 parts by mass or more with respect to 100 parts by mass of the total amount of the sol, from the viewpoint of more easily obtaining good reactivity.
  • the content of the polysiloxane compound group contained in the sol may be 50 parts by mass or less with respect to 100 parts by mass of the total amount of the sol, from the viewpoint of making it easier to obtain good compatibility. There may be. From these viewpoints, the content of the polysiloxane compound group contained in the sol may be 5 to 50 parts by mass or 10 to 30 parts by mass based on 100 parts by mass of the total amount of the sol.
  • the content of the silane monomer group (the content of the silane monomer having a hydrolyzable functional group or a condensable functional group, and the content of the silane monomer having a hydrolyzable functional group)
  • the sum of the contents of the hydrolysis products may be 5 parts by mass or more, or 10 parts by mass or more with respect to 100 parts by mass of the total amount of the sol, from the viewpoint of further obtaining good reactivity. Is also good.
  • the content of the silane monomer group contained in the sol may be 50 parts by mass or less, or 30 parts by mass or less, based on 100 parts by mass of the total amount of the sol, from the viewpoint of further obtaining good compatibility. You may. From these viewpoints, the content of the silane monomer group contained in the sol may be 5 to 50 parts by mass, or may be 10 to 30 parts by mass.
  • the ratio between the content of the polysiloxane compound group and the content of the silane monomer group is preferably 1: from the viewpoint that good compatibility is more easily obtained. It may be 0.5 or more, or 1: 1 or more.
  • the ratio between the content of the polysiloxane compound group and the content of the silane monomer group may be 1: 4 or less, or 1: 2 or less, from the viewpoint of further suppressing gel shrinkage. Good. From these viewpoints, the ratio of the content of the polysiloxane compound group to the content of the silane monomer group may be from 1: 0.5 to 1: 4, and may be from 1: 1 to 1: 2. Is also good.
  • the content of the silica particles makes it easy to impart appropriate strength to the aerogel, and from the viewpoint of easily obtaining an aerogel having excellent shrink resistance during drying, the total amount of the sol is 100 parts by mass. On the other hand, it may be 1 part by mass or more, or 4 parts by mass or more.
  • the content of the silica particles is easy to suppress the solid heat conduction of the silica particles, and from the viewpoint of easily obtaining an aerogel having excellent heat insulating properties, the total amount of the sol may be 20 parts by mass or less based on 100 parts by mass of the sol, It may be 15 parts by mass or less. From these viewpoints, the content of the silica particles may be 1 to 20 parts by mass or 4 to 15 parts by mass with respect to 100 parts by mass of the total amount of the sol.
  • a solvent is used for mixing and possibly hydrolyzing the silicon compound.
  • the solvent for example, water or a mixture of water and alcohol can be used.
  • the alcohol include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, t-butanol and the like.
  • examples of the alcohol having a low surface tension and a low boiling point in terms of reducing the interfacial tension with the gel wall include methanol, ethanol, and 2-propanol. These may be used alone or as a mixture of two or more.
  • the amount of the alcohol when used as the solvent, can be 4 to 8 mol, or 4 to 6.5 mol per 1 mol of the total amount of the polysiloxane compound group and the silane monomer group. Alternatively, it may be 4.5 to 6 mol.
  • the amount of the alcohol By setting the amount of the alcohol to 4 mol or more, it becomes easier to obtain good compatibility, and to set the amount to 8 mol or less, the shrinkage of the gel is more easily suppressed.
  • the solvent may contain an acid catalyst for promoting the hydrolysis reaction.
  • the acid catalyst include inorganic acids such as hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, hypophosphorous acid, bromic acid, chloric acid, chlorous acid, and hypochlorous acid; Acid phosphates such as aluminum, magnesium acid phosphate and zinc acid phosphate; organic carboxylic acids such as acetic acid, formic acid, propionic acid, oxalic acid, malonic acid, succinic acid, citric acid, malic acid, adipic acid and azelaic acid And the like.
  • an organic carboxylic acid is mentioned as an acid catalyst for further improving the water resistance of the obtained airgel.
  • the organic carboxylic acid include acetic acid, and may be formic acid, propionic acid, oxalic acid, malonic acid, and the like. These may be used alone or as a mixture of two or more.
  • the amount of the acid catalyst can be 0.001 to 0.1 part by mass based on 100 parts by mass of the total of the polysiloxane compound group and the silane monomer group.
  • a surfactant as disclosed in Japanese Patent No. 5250900, a surfactant, a thermally hydrolyzable compound, and the like can be added to a solvent.
  • a nonionic surfactant As the surfactant, a nonionic surfactant, an ionic surfactant or the like can be used. These may be used alone or as a mixture of two or more.
  • a compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group a compound containing a hydrophilic part such as polyoxypropylene and the like can be used.
  • the compound containing a hydrophilic part such as polyoxyethylene and a hydrophobic part mainly composed of an alkyl group include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene alkyl ether and the like.
  • the compound containing a hydrophilic portion, such as polyoxypropylene include polyoxypropylene alkyl ether, a block copolymer of polyoxyethylene and polyoxypropylene, and the like.
  • Examples of the ionic surfactant include a cationic surfactant, an anionic surfactant, and an amphoteric surfactant.
  • Examples of the cationic surfactant include cetyltrimethylammonium bromide and cetyltrimethylammonium chloride, and examples of the anionic surfactant include sodium dodecylsulfonate.
  • examples of the amphoteric surfactant include an amino acid-based surfactant, a betaine-based surfactant, and an amine oxide-based surfactant.
  • Examples of the amino acid surfactant include acylglutamic acid and the like.
  • Examples of the betaine-based surfactant include betaine lauryldimethylaminoacetate and betaine stearyldimethylaminoacetate.
  • Examples of the amine oxide-based surfactant include lauryl dimethylamine oxide.
  • surfactants have the effect of reducing the difference in chemical affinity between the solvent in the reaction system and the growing siloxane polymer in the wet gel formation step described below, and suppressing phase separation. It is believed that.
  • the amount of the surfactant added depends on the type of the surfactant or the type and amount of the silicon compound. For example, 1 to 100 parts by mass relative to 100 parts by mass of the total of the polysiloxane compound group and the silane monomer group. It can be. Incidentally, the addition amount may be 5 to 60 parts by mass.
  • thermohydrolyzable compound generates a basic catalyst by thermal hydrolysis, makes the reaction solution basic, and promotes the sol-gel reaction in the wet gel formation step described later.
  • the thermohydrolyzable compound is not particularly limited as long as it can make the reaction solution basic after hydrolysis, and urea; formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N Acid amides such as -methylacetamide and N, N-dimethylacetamide; and cyclic nitrogen compounds such as hexamethylenetetramine.
  • urea is particularly easy to obtain the above-mentioned promoting effect.
  • the amount of the thermally hydrolyzable compound to be added is not particularly limited as long as it can sufficiently promote the sol-gel reaction in the wet gel forming step described below.
  • the amount of addition can be 1 to 200 parts by mass based on 100 parts by mass of the total of the polysiloxane compound group and the silane monomer group.
  • the amount may be 2 to 150 parts by mass.
  • components such as carbon graphite, an aluminum compound, a magnesium compound, a silver compound, and a titanium compound may be added to a solvent for the purpose of suppressing heat radiation.
  • the hydrolysis in the sol generation step depends on the type and amount of the silicon compound, silica particles, acid catalyst, surfactant and the like in the mixed solution, but for example, in a temperature environment of 20 to 60 ° C. for 10 minutes to 24 hours.
  • the heat treatment may be performed for a period of time, or for 5 minutes to 8 hours in a temperature environment of 50 to 60 ° C.
  • the temperature environment of the sol generation step may be adjusted to a temperature at which the hydrolysis of the heat-hydrolyzable compound is suppressed and the gelation of the sol is suppressed.
  • the temperature at this time may be any temperature as long as it can suppress hydrolysis of the thermally hydrolyzable compound.
  • the temperature environment in the sol generation step can be 0 to 40 ° C., but may be 10 to 30 ° C.
  • the wet gel generation step is a step of gelling the sol obtained in the sol generation step and then aging to obtain a wet gel.
  • a base catalyst can be used to promote gelation.
  • the base catalyst examples include carbonates such as calcium carbonate, potassium carbonate, sodium carbonate, barium carbonate, magnesium carbonate, lithium carbonate, ammonium carbonate, copper (II) carbonate, iron (II) carbonate and silver (I) carbonate; hydrogen carbonate Hydrogen carbonates such as calcium, potassium hydrogen carbonate, sodium hydrogen carbonate and ammonium hydrogen carbonate; alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide; ammonium hydroxide, ammonium fluoride; Ammonium compounds such as ammonium chloride and ammonium bromide; basic sodium phosphates such as sodium metaphosphate, sodium pyrophosphate and sodium polyphosphate; allylamine, diallylamine, triallylamine, isopropylamine, diisopropylamine, ethylamine, diethylamine Ruamine, triethylamine, 2-ethylhexylamine, 3-ethoxypropylamine, diiso
  • ammonium hydroxide (aqueous ammonia) is excellent in that it has high volatility and hardly remains in the airgel particles after drying, so that it does not easily impair water resistance, and furthermore, it is economical.
  • the above base catalysts may be used alone or in combination of two or more.
  • a base catalyst By using a base catalyst, a dehydration condensation reaction or a dealcoholization condensation reaction of the silicon compound and silica particles in the sol can be promoted, and the sol can be gelled in a shorter time. In addition, thereby, a wet gel having higher strength (rigidity) can be obtained.
  • ammonia has high volatility and hardly remains in the airgel particles. Therefore, by using ammonia as the base catalyst, airgel particles having more excellent water resistance can be obtained.
  • the amount of the base catalyst added can be 0.5 to 5 parts by mass, or 1 to 4 parts by mass, based on 100 parts by mass of the total of the polysiloxane compound group and the silane monomer group.
  • the amount is 0.5 parts by mass or more, gelation can be performed in a shorter time, and when the amount is 5 parts by mass or less, a decrease in water resistance can be further suppressed.
  • the gelation of the sol in the wet gel formation step may be performed in a closed container so that the solvent and the base catalyst do not volatilize.
  • the gelling temperature can be between 30 and 90 ° C, but may be between 40 and 80 ° C. By setting the gelation temperature to 30 ° C. or higher, gelation can be performed in a shorter time, and a wet gel having higher strength (rigidity) can be obtained. Further, by setting the gelling temperature to 90 ° C. or lower, the volatilization of the solvent (particularly, alcohol) is easily suppressed, so that gelation can be performed while suppressing volume shrinkage.
  • the aging in the wet gel forming step may be performed in a closed container so that the solvent and the base catalyst do not volatilize.
  • the aging strengthens the binding of the components constituting the wet gel, and as a result, a wet gel having high strength (rigidity) enough to suppress shrinkage during drying can be obtained.
  • the aging temperature can be 30 to 90 ° C, but may be 40 to 80 ° C. By setting the aging temperature to 30 ° C. or higher, a wet gel having higher strength (rigidity) can be obtained, and by setting the aging temperature to 90 ° C. or lower, the volatilization of the solvent (particularly alcohol) is easily suppressed. Gelation can be performed while suppressing volume shrinkage.
  • the gelation of the sol and the subsequent aging may be performed continuously in a series of operations.
  • the gelation time and the aging time can be appropriately set according to the gelation temperature and the aging temperature.
  • the gelation time can be particularly shortened as compared with the case where silica particles are not contained. This is presumed to be because the silanol group or the reactive group of the silicon compound in the sol forms a hydrogen bond or a chemical bond with the silanol group of the silica particles.
  • the gelation time can be 10 to 120 minutes, but may be 20 to 90 minutes. By setting the gelling time to 10 minutes or more, it becomes easy to obtain a uniform wet gel, and by setting the gelling time to 120 minutes or less, the washing and solvent replacement steps to be described later can be simplified from the drying step.
  • the total time of the gelation time and the aging time in the entire gelation and aging step can be 4 to 480 hours, but may be 6 to 120 hours.
  • the total of the gelation time and the aging time can be 4 to 480 hours, but may be 6 to 120 hours.
  • the wet gel obtained in the wet gel generating step is pulverized.
  • the pulverization can be performed, for example, by putting the wet gel in a Henshall type mixer, or by performing a wet gel generation step in the mixer, and operating the mixer under appropriate conditions (number of rotations and time).
  • a wet gel is placed in a sealable container, or a wet gel generation step is performed in a sealable container, and shaking is performed by using a shaking device or the like for an appropriate time.
  • the particle size of the wet gel can be adjusted using a jet mill, a roller mill, a bead mill, or the like, if necessary.
  • the washing and solvent replacement step includes a step of washing the wet gel obtained in the wet gel generation step or the wet gel pulverizing step (washing step) and a step of washing the washing liquid in the wet gel with a solvent suitable for drying conditions (a drying step described later).
  • a solvent replacement step can be performed in a form in which only the solvent replacement step is performed without performing the step of washing the wet gel, but it is possible to reduce impurities such as unreacted substances and by-products in the wet gel.
  • the wet gel may be washed from the viewpoint of enabling the production of highly pure airgel particles.
  • the wet gel obtained in the wet gel forming step or the wet gel pulverizing step is washed.
  • the washing can be repeatedly performed using, for example, water or an organic solvent. At this time, the cleaning efficiency can be improved by heating.
  • organic solvent examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetone, methyl ethyl ketone, 1,2-dimethoxyethane, acetonitrile, hexane, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, and methylene chloride.
  • N, N-dimethylformamide, dimethylsulfoxide, acetic acid, formic acid and the like can be used.
  • the above organic solvents may be used alone or in combination of two or more.
  • the organic solvent used in the washing step includes a hydrophilic organic solvent having high mutual solubility in both water and the low surface tension solvent.
  • the hydrophilic organic solvent used in the washing step can serve as a preliminary replacement for the solvent replacement step.
  • examples of the hydrophilic organic solvent include methanol, ethanol, 2-propanol, acetone, and methyl ethyl ketone.
  • methanol, ethanol, methyl ethyl ketone, etc. are excellent in terms of economy.
  • the amount of water or the organic solvent used in the washing step can be set to an amount that can sufficiently replace the solvent in the wet gel and can be washed.
  • the amount can be 3 to 10 times the volume of the wet gel. Washing can be repeated until the water content in the wet gel after washing becomes 10% by mass or less based on the mass of silica.
  • the temperature environment in the washing step can be a temperature equal to or lower than the boiling point of the solvent used for washing.
  • the temperature can be raised to about 30 to 60 ° C.
  • the solvent of the washed wet gel is replaced with a predetermined replacement solvent in order to suppress shrinkage of the airgel in the drying step.
  • the replacement efficiency can be improved by heating.
  • the substitution solvent specifically, in the drying step, when drying at a temperature lower than the critical point of the solvent used for drying under atmospheric pressure, a solvent having a low surface tension, which will be described later, may be mentioned.
  • the replacement solvent include ethanol, methanol, 2-propanol, dichlorodifluoromethane, carbon dioxide, and the like, or a solvent obtained by mixing two or more of these.
  • Examples of the solvent having a low surface tension include a solvent having a surface tension at 30C of 30 mN / m or less.
  • the surface tension may be 25 mN / m or less, or 20 mN / m or less.
  • low surface tension solvents examples include pentane (15.5), hexane (18.4), heptane (20.2), octane (21.7), 2-methylpentane (17.4), Aliphatic hydrocarbons such as methylpentane (18.1), 2-methylhexane (19.3), cyclopentane (22.6), cyclohexane (25.2) and 1-pentene (16.0); benzene Aromatic hydrocarbons such as (28.9), toluene (28.5), m-xylene (28.7) and p-xylene (28.3); dichloromethane (27.9), chloroform (27.2) ), Carbon tetrachloride (26.9), 1-chloropropane (21.8), 2-chloropropane (18.1) and other halogenated hydrocarbons; ethyl ether (17.1), propyl ether (20.5) ), Isop Ethers such as pill ether (17.7), butyl
  • aliphatic hydrocarbons (hexane, heptane, etc.) have low surface tension and excellent work environment.
  • a hydrophilic organic solvent such as acetone, methyl ethyl ketone, and 1,2-dimethoxyethane
  • the organic solvent can also be used as the organic solvent in the washing step.
  • a solvent having a boiling point at normal pressure of 100 ° C. or lower may be used because drying in a drying step described later is easy.
  • the above solvents may be used alone or in combination of two or more.
  • the amount of the solvent used in the solvent replacement step can be set to an amount that can sufficiently replace the solvent in the wet gel after washing.
  • the amount can be 3 to 10 times the volume of the wet gel.
  • the temperature environment in the solvent replacement step can be a temperature equal to or lower than the boiling point of the solvent used for replacement.
  • the temperature can be raised to about 30 to 60 ° C.
  • the solvent replacement step is not essential.
  • the inferred mechanism is as follows. That is, since the silica particles function as a support for the three-dimensional network skeleton, the skeleton is supported, and shrinkage of the gel in the drying step is suppressed. Therefore, it is considered that the gel can be directly subjected to the drying step without replacing the solvent used for washing. As described above, the use of the silica particles makes it possible to simplify the washing and solvent replacement steps to the drying step.
  • the method of drying is not particularly limited, and known atmospheric drying, supercritical drying or freeze drying can be used.
  • normal pressure drying or supercritical drying can be used from the viewpoint of easily producing a low-density airgel. From the viewpoint of production at low cost, normal pressure drying can be used.
  • the normal pressure means 0.1 MPa (atmospheric pressure).
  • the aerogel can be obtained by drying the wet gel after washing and (if necessary) solvent replacement at a temperature below the critical point of the solvent used for drying under atmospheric pressure.
  • the drying temperature varies depending on the type of solvent that has been replaced (the solvent used for washing if solvent replacement is not performed), especially when drying at high temperatures increases the evaporation rate of the solvent and causes large cracks in the gel.
  • the temperature can be set to 20 to 150 ° C.
  • the drying temperature may be 60 to 120 ° C.
  • the drying time varies depending on the volume of the wet gel and the drying temperature, but can be 4 to 120 hours. It should be noted that the drying under a normal pressure includes applying a pressure lower than the critical point within a range not impairing the productivity to accelerate the drying.
  • Airgel can also be obtained by supercritical drying of a wet gel that has been washed and (if necessary) replaced with a solvent.
  • Supercritical drying can be performed by a known method.
  • a method of supercritical drying for example, a method of removing the solvent at a temperature and a pressure higher than the critical point of the solvent contained in the wet gel may be mentioned.
  • the wet gel is immersed in liquefied carbon dioxide, for example, at a temperature of about 20 to 25 ° C. and about 5 to 20 MPa, so that all or a part of the solvent contained in the wet gel is dried. Is replaced with carbon dioxide having a lower critical point than the solvent, and then carbon dioxide alone or a mixture of carbon dioxide and a solvent is removed.
  • the airgel obtained by such normal pressure drying or supercritical drying may be additionally dried at 105 to 200 ° C. under normal pressure for about 0.5 to 2 hours. This makes it easier to obtain an airgel having a low density and small pores.
  • the additional drying may be performed at 150 to 200 ° C. under normal pressure.
  • the airgel (aerogel block) obtained by drying is pulverized to obtain airgel particles.
  • it can be carried out by putting aerogel into a jet mill, roller mill, bead mill, hammer mill or the like and operating at an appropriate rotation speed and time.
  • the method for producing a coating liquid includes a stirring step of stirring a raw material containing the porous particles, the binder resin, and the liquid medium with a planetary mixer.
  • a planetary mixer planetary motion mixer
  • the stirring process can also be referred to as a low-speed shearing stirring process.
  • Stirring conditions when using a planetary mixer can be a stirring speed of 8 to 200 rpm and a stirring time of 1 to 120 minutes.
  • the stirring speed may be between 20 and 150 rpm and the stirring time may be between 5 and 80 minutes.
  • the method for producing a coating liquid may include a preliminary stirring step of stirring the raw material by a high-speed shear stirrer before the stirring step of stirring by a planetary mixer. That is, the method for producing a coating liquid can include a high-speed shearing and stirring step of stirring the raw material with a high-speed shearing stirrer, and a subsequent low-speed shearing and stirring step of stirring with a low-speed shearing stirrer.
  • the high-speed shear stirrer is a stirrer that performs shear stirring at a stirring speed of about 1000 rpm or more, and specifically includes a homomixer and the like.
  • the stirring conditions may be a stirring speed of 1000 to 3000 rpm and a stirring time of 1 to 20 minutes.
  • the stirring speed may be between 1500 and 2500 rpm and the stirring time may be between 1 and 5 minutes.
  • Planetary mixers include the planetary mixer series (product name, manufactured by Inoue Seisakusho Co., Ltd.), the PDM series (product name, manufactured by Inoue Seisakusho Co., Ltd.), the Hibismix series (product name, manufactured by Primix Co., Ltd.), Hibis Dispermix Series (manufactured by Primix Co., Ltd., product name) and the like, and examples of the homomixer include L5 series (manufactured by SILVERSON, product name), and homomixer MARKII series (manufactured by Primix, Inc., product name).
  • the coating liquid contains the above-described porous particles, a binder resin, and a liquid medium.
  • the coating liquid can be obtained by the above-described method for producing a coating liquid.
  • the binder resin has a function of binding the porous particles after the formation of the coating film.
  • the binder resin for example, epoxy resin, silicone resin, phenol resin, urea resin, melamine resin, polyurethane resin, polyethylene resin, polypropylene resin, polystyrene resin, polyester resin, acrylic resin, polyvinyl chloride resin, polyvinyl acetate resin, Examples thereof include a polyamide resin, a polyimide resin, a cellulose resin, and a polyvinyl resin.
  • silicone resin, acrylic resin, phenol resin and polyester resin can be preferably used.
  • cellulose resin for example, hydroxypropylmethylcellulose, carboxymethylcellulose ammonium, hydroxyethylmethylcellulose and the like can be mentioned.
  • polyvinyl resin examples include polyvinyl alcohol and polyvinyl pyrrolidone.
  • the coating liquid may further contain a curing agent.
  • the curing agent is not particularly limited, and may be appropriately changed according to the type of the thermosetting resin.
  • the thermosetting resin is an epoxy resin
  • a known epoxy resin curing agent can be used as the curing agent.
  • the epoxy resin curing agent include, for example, an amine curing agent, an acid anhydride curing agent, a polyamide curing agent, and the like. From the viewpoint of reactivity, preferably use an amine curing agent and a polyamide curing agent. Can be.
  • Liquid media include water and organic solvents.
  • the organic solvent is not particularly limited as long as it can disperse the porous particles. Examples thereof include aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene and p-cymene; and fats such as hexane, heptane and pentane.
  • Group hydrocarbons such as diethyl ether, tetrahydrofuran and 1,4-dioxane; alcohols such as methanol, ethanol, isopropanol (isopropyl alcohol), butanol, ethylene glycol and propylene glycol; acetone, methyl ethyl ketone, methyl isobutyl ketone; Ketones such as cyclohexanone and 4-hydroxy-4-methyl-2-pentanone; esters such as methyl acetate, ethyl acetate and butyl acetate; N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone Such as amides and the like.
  • ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane
  • alcohols such as methanol, ethanol, isopropanol (isopropyl alcohol), butanol, ethylene
  • alcohols and ketones can be used from the viewpoints of volatility, boiling point, and the like, and alcohols can be particularly preferably used. Since alcohols and ketones can be easily mixed with water, an aqueous resin or the like, they are also suitable when used in combination with those components.
  • the coating liquid may contain a thickener, a fibrous substance, a pigment, a leveling agent and the like as other components.
  • the thickener can improve the viscosity of the coating liquid and improve the coating property for the object.
  • examples of the thickener include fine particles such as fumed silica and clay mineral.
  • the fibrous substance can exhibit an anchor function between porous particles after the formation of a coating film, and can further improve the strength of the coating film.
  • the fibrous substance is not particularly limited, and includes organic fibers and inorganic fibers.
  • the organic fiber include polyamide fiber, polyimide fiber, polyvinyl alcohol fiber, polyvinylidene chloride fiber, polyvinyl chloride fiber, polyester fiber, polyacrylonitrile fiber, polyethylene fiber, polypropylene fiber, and polyurethane fiber. Fiber, phenolic fiber, polyetherester fiber, polylactic acid fiber, polycarbonate fiber and the like.
  • the inorganic fibers include glass fibers, carbon fibers, ceramic fibers, and metal fibers.
  • the coating liquid of the present embodiment contains a larger amount of porous particles than in the past, and the content of the porous particles in the coating liquid is 20% by mass or more. From the viewpoint of obtaining a lower-density coating film, the content can be 25% by mass or more, may be 30% by mass or more, or may be more than 30% by mass.
  • the upper limit of the content is not particularly limited, but may be 50% by mass from the viewpoint of the dispersibility of the porous particles, good coating properties, and the like.
  • the content of the binder resin in the coating liquid may be 1% by mass or more, and may be 2% by mass or more, from the viewpoints of the binding property between the porous particles, the heat insulating property of the coating film, and the like. It may be 3% by mass or more. Further, the content can be 10% by mass or less, but may be 7% by mass or less, or may be 5% by mass or less.
  • the content of the binder resin in the coating liquid can be, for example, 5 parts by mass or more with respect to 100 parts by mass of the porous particles, but may be 7 parts by mass or more, or 10 parts by mass or more. And may be 12 parts by mass or more. This makes it easier for the porous particles to be firmly bound by the binder resin, further improving the strength of the coating film.
  • the content of the binder resin can be, for example, 20 parts by mass or less with respect to 100 parts by mass of the porous particles, but may be 18 parts by mass or less, or may be 15 parts by mass or less. Good. Thereby, the ratio of the porous particles in the coating film is increased, the density of the coating film can be reduced, and the heat insulating property of the coating film is further improved.
  • the content of the fibrous substance in the coating liquid can be 0.01 to 30% by mass from the viewpoints of dispersibility in the coating liquid, good anchor function, and the like. It may be 10% by mass.
  • the content of the fibrous substance in the coating liquid can be, for example, 5 parts by mass or more based on 100 parts by mass of the porous particles, but may be 7 parts by mass or more, or 9 parts by mass or more. There may be. Thereby, the anchor effect by the fibrous substance is easily obtained, and the coating film strength is further improved.
  • the content of the fibrous substance can be, for example, 50 parts by mass or less with respect to 100 parts by mass of the porous particles, but may be 35 parts by mass or less, or 25 parts by mass or less. And may be 20 parts by mass or less, or 15 parts by mass or less.
  • the ratio of the porous particles in the coating film is increased, and the heat insulating property of the coating film is further improved.
  • the content of the thickener can be appropriately adjusted so as to have a desired coating liquid viscosity (for example, 1000 mPa ⁇ s or more). Since the viscosity of the coating liquid can be improved by blending a binder resin, in such a case, it is not always necessary to blend a thickener.
  • the ratio of the porous particles to the entire solid content in the coating liquid can be 90% by volume or more, but may be 95% by volume or more, or 98% by volume or more.
  • the ratio of the binder resin to the entire solid content in the coating liquid can be 3% by volume or less, but may be 2.5% by volume or less, or may be 2% by volume or less.
  • the liquid medium may contain water as a main component (for example, 90% by mass or more). Water is less likely to penetrate into the porous structure of the water-repellent porous particles, so that the application of the coating liquid becomes easier.
  • the liquid medium may contain an organic solvent in order to further improve the kneading properties of the porous particles and the binder resin.
  • the content of the organic solvent in the liquid medium may be 1% by mass or more, may be 3% by mass or more, and may be 5% by mass or more.
  • the specific gravity of the coating liquid can be 0.8 or less, but may be 0.77 or less, or 0.75 or less.
  • the lower limit of the specific gravity can be set to 0.35, and may be set to 0.6, from the viewpoint of easily forming a coating film while suppressing the occurrence of cracks.
  • the specific gravity of the coating solution can be measured at room temperature (10 to 30 ° C.) using a disposable syringe. Specifically, a 2.5 mL disposable syringe is filled with 1.5 mL or more of the coating liquid, and after evacuating the air in the syringe, the total weight (A) of the syringe and the coating liquid is measured.
  • the total weight (B) of the syringe and the coating liquid in the syringe after extruding 1.0 mL of the coating liquid from the syringe is measured.
  • the specific gravity of the coating liquid can be calculated by setting the weight difference between (A) and (B) as the weight per 1.0 mL of the coating liquid.
  • the specific gravity of the coating liquid can be measured by a laser volume meter, a float, a specific gravity meter, or the like, in addition to the above-described method using a syringe.
  • the coating liquid according to the present embodiment can be referred to as a porous particle-containing coating liquid, but may be in a paste form depending on the viscosity, and can be referred to as a porous particle-containing paste.
  • the coating film can be formed by removing the liquid medium from the coating liquid containing the porous particles, the binder resin, and the liquid medium. More specifically, a method for producing a coating film (a method for forming a coating film) includes a step of applying the above-described coating liquid on an object, and a step of removing a liquid medium from the coating liquid applied on the object. , Can be provided.
  • the method of applying the coating liquid on the object is not particularly limited, and examples thereof include dip coating, spray coating, spin coating, and roll coating.
  • the applied coating liquid is subjected to a heating (for example, 40 to 150 ° C.) treatment, a reduced pressure (for example, 10,000 Pa or less) treatment, or both of these treatments, so that the coating liquid is converted to a liquid medium. May be removed.
  • the content of the porous particles in the coating film can be, for example, 80% by mass or more, but may be 85% by mass or more, or 90% by mass or more. As a result, the coating film density is reduced, and the heat insulating properties of the coating film are further improved.
  • the content of the porous particles in the coating film can be, for example, 95% by mass or less, but may be 93% by mass or less. Thereby, a coating film tends to be easily formed.
  • the ratio of the porous particles in the coating film can be 90% by volume or more, but may be 95% by volume or more, or 98% by volume or more. Further, the ratio of the binder resin in the coating film can be 3% by volume or less, but may be 2.5% by volume or less, or may be 2% by volume or less.
  • the density of the coating may be 0.4 g / cm 3 or less, but may be 0.37 g / cm 3 or less, or 0.35 g / cm 3 or less.
  • the lower limit of the density of the coating film is not particularly limited, it may be 0.1 g / cm 3 or may be 0.2 g / cm 3 from the viewpoint of easily obtaining good coating strength.
  • the density of the coating film can be measured by the “method for measuring density and specific gravity by liquid weighing method” or “the method for measuring density and specific gravity by geometric measurement” described in JIS Z 8827: 2012. .
  • the thickness of the coating film is not particularly limited, and may be, for example, 0.01 to 5 mm.
  • the material constituting the object is not particularly limited, and examples thereof include metal, ceramic, glass, resin, and composite materials thereof.
  • the form of the target object can be appropriately selected according to the purpose or material used, and includes a block shape, a sheet shape, a powder shape, a fiber shape, and the like.
  • the coating film has various characteristics (for example, excellent heat insulating properties, heat resistance, flame retardancy, etc.) depending on the type of the porous particles. Due to such advantages, the coating film can be applied to a cryogenic container, a space field, an architectural field, an automobile field, a home appliance field, a semiconductor field, a heat insulating material in industrial equipment, and the like.
  • the coating film can be used not only as a heat insulating material but also as a water repellent material, a sound absorbing material, a vibration damping material, a catalyst supporting material, and the like.
  • the "polysiloxane compound X" was synthesized as follows. First, in a 1-liter three-necked flask equipped with a stirrer, a thermometer and a Dimroth condenser, dimethylpolysiloxane XC96-723 having silanol groups at both ends (manufactured by Momentive Performance Materials Japan GK. (Product name), 101.3 parts by mass of methyltrimethoxysilane, and 0.50 parts by mass of t-butylamine were mixed and reacted at 30 ° C. for 5 hours. Thereafter, this reaction solution was heated at 140 ° C. for 2 hours under a reduced pressure of 1.3 kPa to remove volatile components, thereby obtaining a bifunctional alkoxy-modified polysiloxane compound at both ends (polysiloxane compound X).
  • the obtained wet gel was transferred to a plastic bottle, sealed, and then pulverized for 10 minutes at 27,000 rpm using an extreme mill (manufactured by As One Corporation, MX-1000XTS) to obtain a particulate wet gel. .
  • the obtained particulate wet gel was immersed in 2500.0 parts by mass of methanol and washed at 25 ° C. for 24 hours. This washing operation was performed three times in total while exchanging with fresh methanol.
  • the washed particulate wet gel was immersed in 2500.0 parts by mass of heptane as a low surface tension solvent, and the solvent was replaced at 25 ° C. for 24 hours.
  • JIOS AeroVa (registered trademark, manufactured by JIOS AEROGEL CORPORATION, product name) was prepared as the porous particles B (airgel particles B).
  • the BET specific surface area of the porous particles was measured using a gas adsorption amount measuring device (Autosorb-iQ (Autosorb is a registered trademark) manufactured by Kantachrome Instruments Japan GK).
  • the specific surface area of the porous particles A was 125 m 2 / g
  • the specific surface area of the porous particles B was 716 m 2 / g.
  • Example 1 In a 100 mL polycup, 5.00 g of Marpolose MP30000 (manufactured by Matsumoto Yushi Co., Ltd., product name, specific gravity 1.2) as hydroxypropylmethylcellulose and 10 g of isopropyl alcohol were stirred and mixed with a spoonful to prepare a dispersion of MP30000. Next, 100 g of pure water was placed in a 500 mL polycup, and the whole amount of the above dispersion was added while stirring the pure water at 2000 rpm using a homomixer L5R (manufactured by SILVERSON, product name). The stirring time was 3 minutes. Thus, a base solution was prepared.
  • Marpolose MP30000 manufactured by Matsumoto Yushi Co., Ltd., product name, specific gravity 1.2
  • Example 1 a coating liquid of Example 1 was obtained.
  • a coating liquid was prepared in the same manner as in Example 1, except that the raw materials and the stirring method of the coating liquid were changed as shown in Table 1 or 2.
  • the raw materials for the coating liquid were charged into a special container of Awatori Nerita ARV-310 (manufactured by Sinky Co., Ltd., product name), and the coating liquid was stirred at a stirring speed of 2000 rpm for 20 minutes. Obtained.
  • the coating solution obtained in each case was placed in a vertically long glass container like a measuring cylinder, and the container was covered. After standing in that state for 60 minutes, the state of the coating liquid was visually observed.
  • the evaluation criteria were as follows. Good: A cloudy paste was formed. Poor: The liquid component and the porous particles were separated, and a supernatant of 1% by volume or more of the entire coating liquid was generated.
  • the specific gravity of the coating liquid obtained in each example was measured using a disposable syringe (manufactured by Terumo Corporation, capacity: 2.5 mL). Specifically, at room temperature (10 to 30 ° C.), remove the plunger from the syringe, fill the syringe with the coating liquid using a spoon so as to prevent air bubbles from entering the coating liquid, and set the plunger again. The bubbles at the tip of the syringe were removed.
  • the difference between the weight of the entire syringe including the coating liquid and the weight after discharging 1 mL of the coating liquid was defined as the weight per 1 mL of the coating liquid, and the specific gravity of the coating liquid was calculated.
  • a coating film was formed using the coating liquid obtained in each example. Specifically, the coating liquid was applied on an aluminum foil using a metal spatula so as to have a thickness of 2 mm. Then, the liquid medium was removed from the coating liquid by heating at 120 ° C. for 1 hour to obtain a coating film. The obtained coating film was visually observed and evaluated according to the following evaluation criteria. Good: had a good appearance without cracks. Poor: cracks occurred.
  • the density of the coating film obtained in the above evaluation of the film forming property was measured. Specifically, the obtained coating film was cut into a size of 3 cm ⁇ 3 cm to obtain a measurement sample, and the measurement sample was measured using a hydrometer (MDS-300, manufactured by Alpha Mirage Co., Ltd.) equipped with a water tank having a water temperature of 20 ° C. The weight in the air and in the water was measured to obtain the specific gravity of the coating film.
  • MDS-300 manufactured by Alpha Mirage Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Polymers (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明は、多孔質粒子、バインダ樹脂及び液状媒体を含む原料をプラネタリミキサーにより撹拌する撹拌工程を備える、塗液の製造方法に関する。また、本発明は、多孔質粒子、バインダ樹脂及び液状媒体を含み、多孔質粒子の含有量が20質量%以上である、塗液に関する。さらに、本発明は、多孔質粒子及びバインダ樹脂を含み、多孔質粒子の含有量が80質量%以上であり、密度が0.4g/cm以下である、塗膜に関する。

Description

塗液の製造方法、塗液及び塗膜
 本発明は、塗液の製造方法、塗液及び塗膜に関する。
 多孔質粒子を断熱材の構成材料として用いる方法が提案されている(例えば、特許文献1)。特許文献1では、多孔質粒子(粒子状のエアロゲル)を、断熱窓を構成する樹脂板等の間の充填材として用いることが提案されている。
特開2012-91943号公報
 多孔質粒子を充填剤として粒子のまま取り扱う場合、上記のように多孔質粒子以外の構成が不可欠である。一方で、多孔質粒子の層を対象の表面に直接形成することができれば、構成をよりシンプルにすることができ、また層形成時に対象の表面形状による制約も受け難い。
 本発明は上記の事情に鑑みてなされたものであり、新規な多孔質粒子含有塗液の製造方法を提供することを目的とする。本発明はまた、当該製造方法により得られる塗液、及び当該塗液を用いて得られる塗膜を提供することを目的とする。
 本発明は、多孔質粒子、バインダ樹脂及び液状媒体を含む原料をプラネタリミキサーにより撹拌する撹拌工程を備える、塗液の製造方法を提供する。本発明の製造方法により得られる塗液中には、従来に比して多量の多孔質粒子が分散状態で存在している。そのため、対象表面に、多孔質粒子を密に含む塗膜を形成することができる。
 本発明の製造方法は、原料を高速剪断撹拌機により撹拌する予備撹拌工程を、撹拌工程前に備えていてもよい。これにより、多孔質粒子を液状媒体中により均一に混合し易くなる。
 本発明の製造方法において、液状媒体は水を含むことができる。また、当該液状媒体はさらに有機溶媒を含むことができる。
 本発明の製造方法において、バインダ樹脂は、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース系樹脂、及びポリビニル系樹脂からなる群より選択される少なくとも一種を含むことができる。これにより成膜性をより向上することができる。
 本発明の製造方法において、多孔質粒子はエアロゲル粒子であってもよい。
 本発明はまた、上記本発明の製造方法により得られる塗液を提供する。具体的には、本発明は、多孔質粒子、バインダ樹脂及び液状媒体を含み、多孔質粒子の含有量が20質量%以上である、塗液を提供する。本発明の塗液中には、従来に比して多量の多孔質粒子が分散状態で存在している。そのため、対象表面に、多孔質粒子を密に含む塗膜を形成することができる。塗液中に多量の多孔質粒子を分散させることができた一因としては、分散方法を適切に調整したことが挙げられる。
 本発明の塗液において、液状媒体は水を含むことができる。また、当該液状媒体はさらに有機溶媒を含むことができる。
 本発明の塗液において、バインダ樹脂は、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース系樹脂、及びポリビニル系樹脂からなる群より選択される少なくとも一種を含むことができる。これにより成膜性をより向上することができる。
 本発明の塗液の比重は0.8以下とすることができる。
 本発明はまた、多孔質粒子及びバインダ樹脂を含み、多孔質粒子の含有量が80質量%以上であり、密度が0.4g/cm以下である、塗膜を提供する。従来、このように多孔質粒子が高充填された軽質な塗膜(多孔質塗膜)は非常に得難かったが、上記本発明の塗液を用いることでこれを実現することが可能となった。
 本発明の塗膜において、バインダ樹脂は、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース系樹脂、及びポリビニル系樹脂からなる群より選択される少なくとも一種を含むことができる。これにより膜質をより向上することができる。
 本発明によれば、新規な多孔質粒子含有塗液の製造方法を提供することができる。また、本発明によれば、当該製造方法により得られる塗液、及び当該塗液を用いて得られる塗膜(多孔質塗膜)を提供することができる。
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。「A又はB」とは、A及びBのいずれか一方を含んでいればよく、両方を含んでいてもよい。本実施形態で例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。
<多孔質粒子>
 多孔質粒子としては、無機多孔質粒子及び有機多孔質粒子が挙げられる。
 無機多孔質粒子の構成材料としては、金属酸化物(複合酸化物含む)、水酸化物、窒化物、炭化物、炭酸塩、硼酸塩、硫酸塩、ケイ酸塩、リン酸塩等が挙げられる。具体的には、シリカ、酸化チタン、酸化亜鉛、アルミナ、酸化ジルコン、酸化錫、酸化マグネシウム、チタン酸カリウム等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、窒化珪素、窒化チタン、窒化アルミニウム等の窒化物、炭化珪素、炭化チタン等の炭化物、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、硼酸アルミニウム、硼酸マグネシウム等の硼酸塩、硫酸カルシウム、硫酸マグネシウム等の硫酸塩、ケイ酸カルシウム、ケイ酸マグネシウム等のケイ酸塩、リン酸カルシウム等のリン酸塩などが挙げられる。その他、上記構成材料としては、硝子、ゼオライト、エアロゲル等を用いることもできる。
 有機多孔質粒子の構成材料としては、木炭、活性炭、高分子多孔質焼結体、樹脂フォーム、シリコーン多孔質体等が挙げられる。
 多孔質粒子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 多孔質粒子の比表面積は1200m/g以下とすることができるが、1000m/g以下であってもよく、900m/g以下であってもよく、800m/g以下であってもよい。これにより、成膜性に優れる塗液を調製し易い。多孔質粒子の比表面積の下限は特に限定されないが、塗液中での凝集抑制及び充填率の向上という観点から、30m/g程度とすることができる。
 比表面積はBET法により測定することができる。測定装置としては、ガス吸着量測定装置(カンタクローム・インスツルメンツ・ジャパン合同会社製、Autosorb-iQ(Autosorbは登録商標))を用いることができる。
 多孔質粒子の平均粒子径D50は1~1000μmとすることができるが、3~700μmであってもよく、5~500μmであってもよく、10~100μmであってもよく、10~50μmであってもよい。多孔質粒子の平均粒子径D50が1μm以上であることにより、分散性、取り扱い性等に優れる多孔質粒子が得易くなる。一方、平均粒子径D50が1000μm以下であることにより、分散性に優れる多孔質粒子が得易くなる。多孔質粒子の平均粒子径は、粉砕方法及び粉砕条件、ふるい、分級の仕方等により適宜調整することができる。
 多孔質粒子の平均粒子径D50はレーザー回折・散乱法により測定することができる。例えば、溶媒(エタノール)に、多孔質粒子の含有量が0.05~5質量%となるように添加し、50Wの超音波ホモジナイザーで15~30分振動することによって、多孔質粒子の分散を行う。その後、分散液の約10mL程度をレーザー回折・散乱式粒子径分布測定装置に注入して、25℃で、屈折率1.3、吸収0として粒子径を測定する。そして、この粒子径分布における積算値50%(体積基準)での粒径を平均粒子径D50とする。測定装置としては、例えばMicrotrac MT3000(日機装株式会社製、製品名)を用いることができる。
 以下、多孔質粒子の一例としてエアロゲル粒子について説明するが、多孔質粒子は以下の態様に限定されるものではない。
(エアロゲル粒子)
 狭義には、湿潤ゲルに対して超臨界乾燥法を用いて得られた乾燥ゲルをエアロゲル、大気圧下での乾燥により得られた乾燥ゲルをキセロゲル、凍結乾燥により得られた乾燥ゲルをクライオゲルと称するが、本実施形態においては、湿潤ゲルのこれらの乾燥手法によらず、得られた低密度の乾燥ゲルを「エアロゲル」と称する。すなわち、本実施形態において、「エアロゲル」とは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is a gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味する。一般的に、エアロゲルの内部は、網目状の微細構造を有しており、2~20nm程度の粒子状のエアロゲル成分が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、100nmに満たない細孔がある。これにより、エアロゲルは、三次元的に微細な多孔性の構造が形成されている。なお、本実施形態に係るエアロゲルは、例えば、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、例えば、有機基(メチル基等)又は有機鎖を導入した、いわゆる有機-無機ハイブリッド化されたシリカエアロゲルが挙げられる。
 本実施形態におけるエアロゲル粒子は特に限定されず、種々の公知の製造方法により製造されたエアロゲル粒子を用いることができる。一例として、本実施形態のエアロゲル粒子を構成し得るエアロゲルについて説明する。当該エアロゲルは、後述するように、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種、を含有するゾルの縮合物である湿潤ゲルの乾燥物(ゾルから生成された湿潤ゲルを乾燥して得られるもの:ゾル由来の湿潤ゲルの乾燥物)である。
 本実施形態に係るエアロゲルは、下記一般式(1)で表される構造を有することができる。本実施形態に係るエアロゲルは、式(1)で表される構造を含む構造として、下記一般式(1a)で表される構造を有することができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 式(1)及び式(1a)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。なお、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。pは1~50の整数を示す。式(1a)中、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(1a)中、2個のRは各々同一であっても異なっていてもよく、同様に、2個のRは各々同一であっても異なっていてもよい。
 上記式(1)又は式(1a)で表される構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、低熱伝導率かつ柔軟なエアロゲルとなる。このような観点から、式(1)及び式(1a)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(1)及び式(1a)中、R及びRとしてはそれぞれ独立に炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。式(1a)中、pは2~30とすることができ、5~20であってもよい。
 本実施形態に係るエアロゲルは、また、支柱部及び橋かけ部を備えるラダー型構造を有し、かつ橋かけ部が下記一般式(2)で表される構造を有することができる。このようなラダー型構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、耐熱性と機械的強度を向上させることができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と支柱部同士を連結する橋かけ部(bridges)とを有するもの(いわゆる「梯子」の形態を有するもの)である。本態様において、エアロゲルの骨格がラダー型構造からなっていてもよいが、エアロゲルが部分的にラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000003
 式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。
 上記の構造をエアロゲル成分としてエアロゲルの骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有する(すなわち、下記一般式(X)で表される構造を有する)エアロゲルよりも優れた柔軟性を有するエアロゲルとなる。シルセスキオキサンは、組成式:(RSiO1.5を有するポリシロキサンであり、カゴ型、ラダー型、ランダム型等の種々の骨格構造を有することができる。なお、下記一般式(X)にて示すように、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルでは、橋かけ部の構造が-O-であるが、本実施形態に係るエアロゲルでは、橋かけ部の構造が上記一般式(2)で表される構造(ポリシロキサン構造)である。ただし、本態様のエアロゲルは、一般式(2)で表される構造に加え、さらにシルセスキオキサンに由来する構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000004
 式(X)中、Rはヒドロキシ基、アルキル基又はアリール基を示す。
 支柱部となる構造及びその鎖長、並びに橋かけ部となる構造の間隔は特に限定されないが、耐熱性と機械的強度とをより向上させるという観点から、ラダー型構造としては、下記一般式(3)で表されるラダー型構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000005
 式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1~3000の整数を示し、bは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に2個以上のRも各々同一であっても異なっていてもよい。また、式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様にcが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。
 なお、より優れた柔軟性を得る観点から、式(2)及び(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)としてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(3)中、a及びcは、それぞれ独立に6~2000とすることができるが、10~1000であってもよい。また、式(2)及び(3)中、bは、2~30とすることができるが、5~20であってもよい。
 また、エアロゲルの原料として、後述のシランモノマーを使用することにより、下記一般式(4)~(6)で表される構造をエアロゲルの骨格中に導入することができる。本実施形態に係るエアロゲルは、これらの構造をのうちいずれかを単独で、又は2種以上有することができる。
Figure JPOXMLDOC01-appb-C000006
 式(4)中、Rはアルキル基を示す。ここで、アルキル基としては炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式(5)中、R10及びR11はそれぞれ独立にアルキル基を示す。ここで、アルキル基としては炭素数が1~6のアルキル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 式(6)中、R12はアルキレン基を示す。ここで、アルキレン基としては炭素数が1~10のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、ヘキシレン基等が挙げられる。
 本実施形態に係るエアロゲルは、さらに強靱化する観点並びにさらに優れた断熱性及び柔軟性を達成する観点から、エアロゲル成分に加え、さらにシリカ粒子を含有していてもよい。エアロゲル成分及びシリカ粒子を含有するエアロゲルを、エアロゲル複合体ということもできる。エアロゲル複合体は、エアロゲル成分とシリカ粒子とが複合化されていながらも、エアロゲルの特徴であるクラスター構造を有しており、三次元的に微細な多孔性の構造を有していると考えられる。
 エアロゲル成分及びシリカ粒子を含有するエアロゲルは、上述の表現に倣えば、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、シリカ粒子と、を含有するゾルの縮合物である湿潤ゲルの乾燥物、ということができる。
 シリカ粒子としては、特に制限なく用いることができ、非晶質シリカ粒子等が挙げられる。非晶質シリカ粒子としては、溶融シリカ粒子、ヒュームドシリカ粒子、コロイダルシリカ粒子等が挙げられる。これらのうち、コロイダルシリカ粒子は単分散性が高く、ゾル中での凝集を抑制し易い。なお、シリカ粒子としては、中空構造、多孔質構造等を有するシリカ粒子であってもよい。
 シリカ粒子の形状は特に制限されず、球状、繭型、会合型等が挙げられる。これらのうち、シリカ粒子として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。シリカ粒子の平均一次粒子径は、適度な強度及び柔軟性をエアロゲルに付与し易く、乾燥時の耐収縮性に優れるエアロゲルが得易い観点から、1nm以上であってもよく、5nm以上であってもよく、20nm以上であってもよい。シリカ粒子の平均一次粒子径は、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなる観点から、500nm以下であってもよく、300nm以下であってもよく、100nm以下であってもよい。これらの観点から、シリカ粒子の平均一次粒子径は、1~500nmであってもよく、5~300nmであってもよく、20~100nmであってもよい。
 本実施形態において、エアロゲル成分の平均粒子径及びシリカ粒子の平均一次粒子径は、走査型電子顕微鏡(以下「SEM」と略記する。)を用いてエアロゲルを直接観察することにより得ることができる。ここでいう「直径」とは、エアロゲルの断面に露出した粒子の断面を円とみなした場合の直径を意味する。また、「断面を円とみなした場合の直径」とは、断面の面積を同じ面積の真円に置き換えたときの当該真円の直径のことである。なお、平均粒子径の算出に当たっては、100個の粒子について円の直径を求め、その平均を取るものとする。
 なお、シリカ粒子の平均粒子径は、原料からも測定することができる。例えば、二軸平均一次粒子径は、任意の粒子20個をSEMにより観察した結果から、次のようにして算出される。すなわち、通常固形分濃度が5~40質量%程度で、水中に分散しているコロイダルシリカ粒子を例にすると、コロイダルシリカ粒子の分散液に、パターン配線付きウエハを2cm角に切って得られたチップを約30秒浸した後、当該チップを純水にて約30秒間すすぎ、窒素ブロー乾燥する。その後、チップをSEM観察用の試料台に載せ、加速電圧10kVを掛け、10万倍の倍率にてシリカ粒子を観察し、画像を撮影する。得られた画像から20個のシリカ粒子を任意に選択し、それらの粒子の粒子径の平均を平均粒子径とする。
 シリカ粒子の1g当たりのシラノール基数は、耐収縮性に優れるエアロゲルを得易くなる観点から、10×1018個/g以上であってもよく、50×1018個/g以上であってもよく、100×1018個/g以上であってもよい。シリカ粒子の1g当たりのシラノール基数は、均質なエアロゲルが得易くなる観点から、1000×1018個/g以下であってもよく、800×1018個/g以下であってもよく、700×1018個/g以下であってもよい。これらの観点から、シリカ粒子の1g当たりのシラノール基数は、10×1018~1000×1018個/gであってもよく、50×1018~800×1018個/gであってもよく、100×1018~700×1018個/gであってもよい。
(エアロゲル粒子の製造方法)
 エアロゲル粒子の製造方法は、特に限定されないが、例えば以下の方法により製造することができる。
 本実施形態のエアロゲル粒子は、ゾル生成工程と、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを洗浄及び(必要に応じ)溶媒置換する洗浄及び溶媒置換工程と、洗浄及び溶媒置換した湿潤ゲルを乾燥する乾燥工程と、乾燥により得られたエアロゲルを粉砕する粉砕工程とを主に備える製造方法により製造することができる。
 また、ゾル生成工程と、湿潤ゲル生成工程と、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する湿潤ゲル粉砕工程と、洗浄及び溶媒置換工程と、乾燥工程とを主に備える製造方法により製造してもよい。
 得られたエアロゲル粒子は、ふるい、分級等によって大きさをさらに揃えることができる。粒子の大きさを整えることで分散性を高めることができる。なお、「ゾル」とは、ゲル化反応が生じる前の状態であって、本実施形態においては、例えばケイ素化合物と、場合によりシリカ粒子と、が溶媒中に溶解又は分散している状態を意味する。また、湿潤ゲルとは、液体媒体を含んでいながらも、流動性を有しない湿潤状態のゲル固形物を意味する。
(ゾル生成工程)
 ゾル生成工程は、ケイ素化合物と、場合によりシリカ粒子(シリカ粒子を含む溶媒であってもよい)と、を溶媒中で混合し、必要に応じて加水分解反応を行う工程である。より具体的には、ゾル生成工程は、加水分解性の官能基を有するケイ素化合物、縮合性の官能基を有するケイ素化合物、加水分解性の官能基を有するケイ素化合物を加水分解してなる加水分解生成物等を含むゾルを生成する工程である。ゾル生成工程は、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種、を含有するゾルを生成する工程であるということもできる。上記に例示したエアロゲルは、このようなゾルから生成された湿潤ゲルを乾燥することで得ることができる。
 ケイ素化合物としては、ポリシロキサン化合物を用いることができる。すなわち、上記ゾルは、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種の化合物(以下、場合により「ポリシロキサン化合物群」という)を含有することができる。
 ポリシロキサン化合物における官能基は、特に限定されないが、同じ官能基同士で反応するか、あるいは他の官能基と反応する基とすることができる。加水分解性の官能基としては、アルコキシ基が挙げられる。縮合性の官能基としては、水酸基、シラノール基、カルボキシル基、フェノール性水酸基等が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。なお、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物は、加水分解性の官能基及び縮合性の官能基とは異なる反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)をさらに有していてもよい。反応性基としては、エポキシ基、メルカプト基、グリシドキシ基、ビニル基、アクリロイル基、メタクリロイル基、アミノ基等が挙げられる。エポキシ基は、グリシドキシ基等のエポキシ基含有基に含まれていてもよい。これらの官能基及び反応性基を有するポリシロキサン化合物は単独で、又は2種類以上を混合して用いてもよい。これらの官能基及び反応性基のうち、例えば、エアロゲルの柔軟性を向上する基としては、アルコキシ基、シラノール基、ヒドロキシアルキル基等が挙げられ、これらのうち、アルコキシ基及びヒドロキシアルキル基は、ゾルの相溶性をより向上することができる。また、ポリシロキサン化合物の反応性の向上とエアロゲルの熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基の炭素数は1~6とすることができるが、エアロゲルの柔軟性をより向上する観点から2~4であってもよい。
 分子内にヒドロキシアルキル基を有するポリシロキサン化合物としては、下記一般式(A)で表される構造を有するものが挙げられる。下記一般式(A)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(1)及び式(1a)で表される構造をエアロゲルの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000009
 式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(A)中、2個のR1aは各々同一であっても異なっていてもよく、同様に2個のR2aは各々同一であっても異なっていてもよい。また、式(A)中、2個以上のR3aは各々同一であっても異なっていてもよく、同様に2個以上のR4aは各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物を含有するゾルの縮合物である(ゾルから生成された)湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲルをさらに得易くなる。このような観点から、式(A)中、R1aとしては炭素数が1~6のヒドロキシアルキル基等が挙げられ、当該ヒドロキシアルキル基としてはヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。また、式(A)中、R2aとしては炭素数が1~6のアルキレン基等が挙げられ、当該アルキレン基としてはエチレン基、プロピレン基等が挙げられる。また、式(A)中、R3a及びR4aとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(A)中、nは2~30とすることができるが、5~20であってもよい。
 上記一般式(A)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、X-22-160AS、KF-6001、KF-6002、KF-6003等の化合物(いずれも、信越化学工業株式会社製)、XF42-B0970、Fluid OFOH 702-4%等の化合物(いずれも、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)などが挙げられる。
 分子内にアルコキシ基を有するポリシロキサン化合物としては、下記一般式(B)で表される構造を有するものが挙げられる。下記一般式(B)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(2)又は(3)で表される橋かけ部を有するラダー型構造をエアロゲルの骨格中に導入することができる。
Figure JPOXMLDOC01-appb-C000010
 式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1~50の整数を示す。ここで、アリール基としてはフェニル基、置換フェニル基等が挙げられる。また、置換フェニル基の置換基としては、アルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基、シアノ基等が挙げられる。なお、式(B)中、2個のR1bは各々同一であっても異なっていてもよく、2個のR2bは各々同一であっても異なっていてもよく、同様に2個のR3bは各々同一であっても異なっていてもよい。また、式(B)中、mが2以上の整数の場合、2個以上のR4bは各々同一であっても異なっていてもよく、同様に2個以上のR5bも各々同一であっても異なっていてもよい。
 上記構造のポリシロキサン化合物又はその加水分解生成物を含有するゾルの縮合物である(ゾルから生成された)湿潤ゲルを用いることにより、低熱伝導率かつ柔軟なエアロゲルをさらに得易くなる。このような観点から、式(B)中、R1bとしては炭素数が1~6のアルキル基、炭素数が1~6のアルコキシ基等が挙げられ、当該アルキル基又はアルコキシ基としてはメチル基、メトキシ基、エトキシ基等が挙げられる。また、式(B)中、R2b及びR3bとしてはそれぞれ独立に炭素数が1~6のアルコキシ基等が挙げられ、当該アルコキシ基としてはメトキシ基、エトキシ基等が挙げられる。また、式(B)中、R4b及びR5bとしてはそれぞれ独立に炭素数が1~6のアルキル基、フェニル基等が挙げられ、当該アルキル基としてはメチル基等が挙げられる。また、式(B)中、mは2~30とすることができるが、5~20であってもよい。
 上記一般式(B)で表される構造を有するポリシロキサン化合物は、特開2000-26609号公報、特開2012-233110号公報等にて報告される製造方法を適宜参照して得ることができる。
 なお、アルコキシ基は加水分解するため、アルコキシ基を有するポリシロキサン化合物はゾル中にて加水分解生成物として存在する可能性があり、アルコキシ基を有するポリシロキサン化合物とその加水分解生成物は混在していてもよい。また、アルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。
 これら、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物は、単独で、又は2種類以上を混合して用いてもよい。
 本実施形態に係るエアロゲルを作製するにあたり、ケイ素化合物としては、上述のポリシロキサン化合物以外のケイ素化合物を用いることができる。そのようなケイ素化合物としてはシランモノマーが挙げられる。すなわち、上記のケイ素化合物を含有するゾルは、加水分解性の官能基又は縮合性の官能基を有するシランモノマー、及び、加水分解性の官能基を有する当該シランモノマーの加水分解生成物からなる群より選択される少なくとも一種(以下、場合により「シランモノマー群」という)を、上述のポリシロキサン化合物群に加えて、あるいは上述のポリシロキサン化合物群に代えて、含有することができる。シランモノマーにおける分子内のケイ素数は1~6とすることができる。
 加水分解性の官能基を有するシランモノマーとしては、特に限定されないが、アルキルケイ素アルコキシド等が挙げられる。アルキルケイ素アルコキシドは、耐水性を向上する観点から、加水分解性の官能基の数を3個以下とすることができる。このようなアルキルケイ素アルコキシドとしては、モノアルキルトリアルコキシシラン、モノアルキルジアルコキシシラン、ジアルキルジアルコキシシラン、モノアルキルモノアルコキシシラン、ジアルキルモノアルコキシシラン、トリアルキルモノアルコキシシラン等が挙げられ、具体的には、メチルトリメトキシシラン、メチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。ここで、加水分解性の官能基としては、メトキシ基、エトキシ基等のアルコキシ基などが挙げられる。
 縮合性の官能基を有するシランモノマーとしては、特に限定されないが、シランテトラオール、メチルシラントリオール、ジメチルシランジオール、フェニルシラントリオール、フェニルメチルシランジオール、ジフェニルシランジオール、n-プロピルシラントリオール、ヘキシルシラントリオール、オクチルシラントリオール、デシルシラントリオール、トリフルオロプロピルシラントリオール等が挙げられる。
 シランモノマーは、加水分解性の官能基及び縮合性の官能基とは異なる上述の反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)をさらに有していてもよい。
 加水分解性の官能基及び反応性基を有するシランモノマーとして、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等も用いることができる。
 縮合性の官能基及び反応性基を有するシランモノマーとして、ビニルシラントリオール、3-グリシドキシプロピルシラントリオール、3-グリシドキシプロピルメチルシランジオール、3-メタクリロキシプロピルシラントリオール、3-メタクリロキシプロピルメチルシランジオール、3-アクリロキシプロピルシラントリオール、3-メルカプトプロピルシラントリオール、3-メルカプトプロピルメチルシランジオール、N-フェニル-3-アミノプロピルシラントリオール、N-2-(アミノエチル)-3-アミノプロピルメチルシランジオール等も用いることができる。
 シランモノマーは2以上のケイ素原子を有していてもよく、ビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン等も用いることができる。
 加水分解性の官能基又は縮合性の官能基を有するシランモノマー、及び、加水分解性の官能基を有する当該シランモノマーの加水分解生成物は、単独で、又は2種類以上を混合して用いてもよい。
 エアロゲルがさらにシリカ粒子を含む場合は、ゾル生成工程は、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種と、シリカ粒子と、を含有するゾルを生成する工程であるということができる。
 上記ゾルに含まれるポリシロキサン化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物の含有量、及び、加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物の含有量の総和)は、良好な反応性をさらに得易くなる観点から、ゾルの総量100質量部に対し、5質量部以上であってもよく、10質量部以上であってもよい。上記ゾルに含まれるポリシロキサン化合物群の含有量は、良好な相溶性をさらに得易くなる観点から、ゾルの総量100質量部に対し、50質量部以下であってもよく、30質量部以下であってもよい。これらの観点から、上記ゾルに含まれるポリシロキサン化合物群の含有量は、ゾルの総量100質量部に対し、5~50質量部であってもよく、10~30質量部であってもよい。
 上記ゾルがシランモノマーを含有する場合、シランモノマー群の含有量(加水分解性の官能基又は縮合性の官能基を有するシランモノマーの含有量、及び、加水分解性の官能基を有するシランモノマーの加水分解生成物の含有量の総和)は、良好な反応性をさらに得易くなる観点から、ゾルの総量100質量部に対し、5質量部以上であってもよく、10質量部以上であってもよい。上記ゾルに含まれるシランモノマー群の含有量は、良好な相溶性をさらに得易くなる観点から、ゾルの総量100質量部に対し、50質量部以下であってもよく、30質量部以下であってもよい。これらの観点から、上記ゾルに含まれるシランモノマー群の含有量は、5~50質量部であってもよく、10~30質量部であってもよい。
 ゾルが、ポリシロキサン化合物群及びシランモノマー群を共に含む場合、ポリシロキサン化合物群の含有量と、シランモノマー群の含有量との比は、良好な相溶性がさらに得易くなる観点から、1:0.5以上であってもよく、1:1以上であってもよい。ポリシロキサン化合物群の含有量と、シランモノマー群の含有量との比は、ゲルの収縮がさらに抑制し易くなる観点から、1:4以下であってもよく、1:2以下であってもよい。これらの観点から、ポリシロキサン化合物群の含有量と、シランモノマー群の含有量との比は、1:0.5~1:4であってもよく、1:1~1:2であってもよい。
 上記ゾルにシリカ粒子が含まれる場合、シリカ粒子の含有量は、適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲルが得易くなる観点から、ゾルの総量100質量部に対し、1質量部以上であってもよく、4質量部以上であってもよい。シリカ粒子の含有量は、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなる観点から、ゾルの総量100質量部に対し、20質量部以下であってもよく、15質量部以下であってもよい。これらの観点から、シリカ粒子の含有量は、ゾルの総量100質量部に対し、1~20質量部であってもよく、4~15質量部であってもよい。
 ゾル生成工程では、ケイ素化合物の混合及び場合により加水分解のために溶媒が用いられる。溶媒としては、例えば、水、又は、水及びアルコールの混合液を用いることができる。アルコールとしては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、t-ブタノール等が挙げられる。これらの中でも、ゲル壁との界面張力を低減させる点で、表面張力が低くかつ沸点の低いアルコールとしては、メタノール、エタノール、2-プロパノール等が挙げられる。これらは単独で、又は2種類以上を混合して用いてもよい。
 例えば溶媒としてアルコールを用いる場合、アルコールの量は、ポリシロキサン化合物群及びシランモノマー群の総量1モルに対し、4~8モルとすることができるが、4~6.5であってもよく、又は4.5~6モルであってもよい。アルコールの量を4モル以上にすることにより良好な相溶性をさらに得易くなり、また、8モル以下にすることによりゲルの収縮をさらに抑制し易くなる。
 また溶媒には、加水分解反応を促進させるための酸触媒が含まれていてもよい。酸触媒としては、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩;酢酸、ギ酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸などが挙げられる。これらの中でも、得られるエアロゲルの耐水性をより向上する酸触媒としては有機カルボン酸が挙げられる。当該有機カルボン酸としては酢酸が挙げられるが、ギ酸、プロピオン酸、シュウ酸、マロン酸等であってもよい。これらは単独で、又は2種類以上を混合して用いてもよい。
 酸触媒を用いることで、ケイ素化合物の加水分解反応を促進させて、より短時間でゾルを得ることができる。
 酸触媒の添加量は、ポリシロキサン化合物群及びシランモノマー群の総量100質量部に対し、0.001~0.1質量部とすることができる。
 また、特許第5250900号公報に示されるように、溶媒中に界面活性剤、熱加水分解性化合物等を添加することもできる。
 界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。これらは単独で、又は2種類以上を混合して用いてもよい。
 非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物、ポリオキシプロピレン等の親水部を含む化合物などを使用できる。ポリオキシエチレン等の親水部と主にアルキル基からなる疎水部とを含む化合物としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含む化合物としては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンのブロック共重合体等が挙げられる。
 イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等が挙げられる。カチオン性界面活性剤としては、臭化セチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム等が挙げられ、アニオン性界面活性剤としては、ドデシルスルホン酸ナトリウム等が挙げられる。また、両イオン性界面活性剤としては、アミノ酸系界面活性剤、ベタイン系界面活性剤、アミンオキシド系界面活性剤等が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸等が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン等が挙げられる。アミンオキシド系界面活性剤としては、例えばラウリルジメチルアミンオキシドが挙げられる。
 これらの界面活性剤は、後述する湿潤ゲル生成工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用をすると考えられている。
 界面活性剤の添加量は、界面活性剤の種類、あるいはケイ素化合物の種類及び量にも左右されるが、例えばポリシロキサン化合物群及びシランモノマー群の総量100質量部に対し、1~100質量部とすることができる。なお、同添加量は5~60質量部であってもよい。
 熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、後述する湿潤ゲル生成工程でのゾルゲル反応を促進すると考えられている。よって、この熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、尿素;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物などを挙げることができる。これらの中でも、特に尿素は上記促進効果を得られ易い。
 熱加水分解性化合物の添加量は、後述する湿潤ゲル生成工程でのゾルゲル反応を十分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、ポリシロキサン化合物群及びシランモノマー群の総量100質量部に対して、1~200質量部とすることができる。なお、同添加量は2~150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性をさらに得易くなり、また、200質量部以下とすることにより、結晶の析出及びゲル密度の低下をさらに抑制し易くなる。
 ゾル生成工程では、熱線輻射抑制等を目的として、溶媒中にカーボングラファイト、アルミニウム化合物、マグネシウム化合物、銀化合物、チタン化合物等の成分を添加してもよい。
 ゾル生成工程の加水分解は、混合液中のケイ素化合物、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば20~60℃の温度環境下で10分~24時間行ってもよく、50~60℃の温度環境下で5分~8時間行ってもよい。これにより、ケイ素化合物中の加水分解性官能基が十分に加水分解され、ケイ素化合物の加水分解生成物をより確実に得ることができる。
 ただし、溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、熱加水分解性化合物として尿素を用いた場合は、ゾル生成工程の温度環境は0~40℃とすることができるが、10~30℃であってもよい。
(湿潤ゲル生成工程)
 湿潤ゲル生成工程は、ゾル生成工程で得られたゾルをゲル化し、その後熟成して湿潤ゲルを得る工程である。本工程では、ゲル化を促進させるため塩基触媒を用いることができる。
 塩基触媒としては、炭酸カルシウム、炭酸カリウム、炭酸ナトリウム、炭酸バリウム、炭酸マグネシウム、炭酸リチウム、炭酸アンモニウム、炭酸銅(II)、炭酸鉄(II)、炭酸銀(I)等の炭酸塩類;炭酸水素カルシウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム等の炭酸水素塩類;水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2-エチルヘキシルアミン、3-エトキシプロピルアミン、ジイソブチルアミン、3-(ジエチルアミノ)プロピルアミン、ジ-2-エチルヘキシルアミン、3-(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t-ブチルアミン、sec-ブチルアミン、プロピルアミン、3-(メチルアミノ)プロピルアミン、3-(ジメチルアミノ)プロピルアミン、3-メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N-メチルモルホリン、2-メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、水酸化アンモニウム(アンモニア水)は、揮発性が高く、乾燥後のエアロゲル粒子中に残存し難いため耐水性を損ない難いという点、さらには経済性の点で優れている。上記の塩基触媒は単独で、又は2種類以上を混合して用いてもよい。
 塩基触媒を用いることで、ゾル中のケイ素化合物、及びシリカ粒子の、脱水縮合反応又は脱アルコール縮合反応を促進することができ、ゾルのゲル化をより短時間で行うことができる。また、これにより、強度(剛性)のより高い湿潤ゲルを得ることができる。特に、アンモニアは揮発性が高く、エアロゲル粒子中に残留し難いので、塩基触媒としてアンモニアを用いることで、より耐水性の優れたエアロゲル粒子を得ることができる。
 塩基触媒の添加量は、ポリシロキサン化合物群及びシランモノマー群の総量100質量部に対し、0.5~5質量部とすることができるが、1~4質量部であってもよい。0.5質量部以上とすることにより、ゲル化をより短時間で行うことができ、5質量部以下とすることにより、耐水性の低下をより抑制することができる。
 湿潤ゲル生成工程におけるゾルのゲル化は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。ゲル化温度は、30~90℃とすることができるが、40~80℃であってもよい。ゲル化温度を30℃以上とすることにより、ゲル化をより短時間に行うことができ、強度(剛性)のより高い湿潤ゲルを得ることができる。また、ゲル化温度を90℃以下にすることにより、溶媒(特にアルコール)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 湿潤ゲル生成工程における熟成は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。熟成により、湿潤ゲルを構成する成分の結合が強くなり、その結果、乾燥時の収縮を抑制するのに十分な強度(剛性)の高い湿潤ゲルを得ることができる。熟成温度は、30~90℃とすることができるが、40~80℃であってもよい。熟成温度を30℃以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、熟成温度を90℃以下にすることにより、溶媒(特にアルコール)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
 なお、ゾルのゲル化終了時点を判別することは困難な場合が多いため、ゾルのゲル化とその後の熟成とは、連続して一連の操作で行ってもよい。
 ゲル化時間と熟成時間は、ゲル化温度及び熟成温度により適宜設定することができる。ゾル中にシリカ粒子が含まれている場合は、含まれていない場合と比較して、特にゲル化時間を短縮することができる。この理由は、ゾル中のケイ素化合物が有するシラノール基又は反応性基が、シリカ粒子のシラノール基と水素結合又は化学結合を形成するためであると推察する。なお、ゲル化時間は10~120分間とすることができるが、20~90分間であってもよい。ゲル化時間を10分間以上とすることにより均質な湿潤ゲルを得易くなり、120分間以下とすることにより後述する洗浄及び溶媒置換工程から乾燥工程の簡略化が可能となる。なお、ゲル化及び熟成の工程全体として、ゲル化時間と熟成時間との合計時間は、4~480時間とすることができるが、6~120時間であってもよい。ゲル化時間と熟成時間の合計を4時間以上とすることにより、強度(剛性)のより高い湿潤ゲルを得ることができ、480時間以下にすることにより熟成の効果をより維持し易くなる。
 得られるエアロゲル粒子の密度を下げたり、平均細孔径を大きくするために、ゲル化温度及び熟成温度を上記範囲内で高めたり、ゲル化時間と熟成時間の合計時間を上記範囲内で長くしてもよい。また、得られるエアロゲル粒子の密度を上げたり、平均細孔径を小さくするために、ゲル化温度及び熟成温度を上記範囲内で低くしたり、ゲル化時間と熟成時間の合計時間を上記範囲内で短くしてもよい。
(湿潤ゲル粉砕工程)
 湿潤ゲル粉砕工程を行う場合、湿潤ゲル生成工程で得られた湿潤ゲルを粉砕する。粉砕は、例えば、ヘンシャル型ミキサーに湿潤ゲルを入れるか、又はミキサー内で湿潤ゲル生成工程を行い、ミキサーを適度な条件(回転数及び時間)で運転することにより行うことができる。また、より簡易的には密閉可能な容器に湿潤ゲルを入れるか、又は密閉可能な容器内で湿潤ゲル生成工程を行い、シェイカー等の振盪装置を用いて、適度な時間振盪することにより行うことができる。なお、必要に応じて、ジェットミル、ローラーミル、ビーズミル等を用いて、湿潤ゲルの粒子径を調整することもできる。
(洗浄及び溶媒置換工程)
 洗浄及び溶媒置換工程は、湿潤ゲル生成工程又は湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する工程(洗浄工程)と、湿潤ゲル中の洗浄液を乾燥条件(後述の乾燥工程)に適した溶媒に置換する工程(溶媒置換工程)を有する工程である。洗浄及び溶媒置換工程は、湿潤ゲルを洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、湿潤ゲル中の未反応物、副生成物等の不純物を低減し、より純度の高いエアロゲル粒子の製造を可能にする観点からは、湿潤ゲルを洗浄してもよい。
 洗浄工程では、湿潤ゲル生成工程又は湿潤ゲル粉砕工程により得られた湿潤ゲルを洗浄する。当該洗浄は、例えば水又は有機溶媒を用いて繰り返し行うことができる。この際、加温することにより洗浄効率を向上させることができる。
 有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、アセトン、メチルエチルケトン、1,2-ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N、N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。上記の有機溶媒は単独で、又は2種類以上を混合して用いてもよい。
 後述する溶媒置換工程では、乾燥によるゲルの収縮を抑制するため、低表面張力の溶媒を用いることができる。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒が挙げられる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。上記の有機溶媒の中で、親水性有機溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等が挙げられる。なお、メタノール、エタノール、メチルエチルケトン等は経済性の点で優れている。
 洗浄工程に使用される水又は有機溶媒の量としては、湿潤ゲル中の溶媒を十分に置換し、洗浄できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。洗浄は、洗浄後の湿潤ゲル中の含水率が、シリカ質量に対し、10質量%以下となるまで繰り返すことができる。
 洗浄工程における温度環境は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、30~60℃程度の加温とすることができる。
 溶媒置換工程では、乾燥工程におけるエアロゲルの収縮を抑制するため、洗浄した湿潤ゲルの溶媒を所定の置換用溶媒に置き換える。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥する場合は、後述の低表面張力の溶媒が挙げられる。一方、超臨界乾燥をする場合は、置換用溶媒としては、例えば、エタノール、メタノール、2-プロパノール、ジクロロジフルオロメタン、二酸化炭素等、又はこれらを2種以上混合した溶媒が挙げられる。
 低表面張力の溶媒としては、20℃における表面張力が30mN/m以下の溶媒が挙げられる。なお、当該表面張力は25mN/m以下であっても、又は20mN/m以下であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2-メチルペンタン(17.4)、3-メチルペンタン(18.1)、2-メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1-ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m-キシレン(28.7)、p-キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1-クロロプロパン(21.8)、2-クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2-ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類などが挙げられる(かっこ内は20℃での表面張力を示し、単位は[mN/m]である)。これらの中で、脂肪族炭化水素類(ヘキサン、ヘプタン等)は低表面張力でありかつ作業環境性に優れている。また、これらの中でも、アセトン、メチルエチルケトン、1,2-ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、さらに後述する乾燥工程における乾燥が容易な点で、常圧での沸点が100℃以下の溶媒を用いてもよい。上記の溶媒は単独で、又は2種類以上を混合して用いてもよい。
 溶媒置換工程に使用される溶媒の量としては、洗浄後の湿潤ゲル中の溶媒を十分に置換できる量とすることができる。当該量は、湿潤ゲルの容量に対して3~10倍の量とすることができる。
 溶媒置換工程における温度環境は、置換に用いる溶媒の沸点以下の温度とすることができ、例えば、ヘプタンを用いる場合は、30~60℃程度の加温とすることができる。
 なお、ゲル中にシリカ粒子が含まれている場合、溶媒置換工程は必須ではない。推察されるメカニズムとしては次のとおりである。すなわち、シリカ粒子が三次元網目状の骨格の支持体として機能することにより、当該骨格が支持され、乾燥工程におけるゲルの収縮が抑制される。そのため、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に付すことができると考えられる。このように、シリカ粒子を用いることで、洗浄及び溶媒置換工程から乾燥工程の簡略化が可能である。
(乾燥工程)
 乾燥工程では、上記のとおり洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを乾燥させる。これにより、エアロゲル(エアロゲルブロック又はエアロゲル粒子)を得ることができる。すなわち、上記ゾルから生成された湿潤ゲルを乾燥してなるエアロゲルを得ることができる。
 乾燥の手法としては特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中で、低密度のエアロゲルを製造し易いという観点からは、常圧乾燥又は超臨界乾燥を用いることができる。また、低コストで生産可能という観点からは、常圧乾燥を用いることができる。なお、本実施形態において、常圧とは0.1MPa(大気圧)を意味する。
 エアロゲルは、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類により異なるが、特に高温での乾燥が溶媒の蒸発速度を速め、ゲルに大きな亀裂を生じさせる場合があるという点に鑑み、20~150℃とすることができる。なお、当該乾燥温度は60~120℃であってもよい。また、乾燥時間は、湿潤ゲルの容量及び乾燥温度により異なるが、4~120時間とすることができる。なお、生産性を阻害しない範囲内において臨界点未満の圧力をかけて乾燥を早めることも、常圧乾燥に包含されるものとする。
 エアロゲルは、また、洗浄及び(必要に応じ)溶媒置換した湿潤ゲルを、超臨界乾燥することによっても得ることができる。超臨界乾燥は、公知の手法にて行うことができる。超臨界乾燥する方法としては、例えば、湿潤ゲルに含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。あるいは、超臨界乾燥する方法としては、湿潤ゲルを、液化二酸化炭素中に、例えば、20~25℃、5~20MPa程度の条件で浸漬することで、湿潤ゲルに含まれる溶媒の全部又は一部を当該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。
 このような常圧乾燥又は超臨界乾燥により得られたエアロゲルは、さらに常圧下にて、105~200℃で0.5~2時間程度追加乾燥してもよい。これにより、密度が低く、小さな細孔を有するエアロゲルをさらに得易くなる。追加乾燥は、常圧下にて、150~200℃で行ってもよい。
(粉砕工程)
 湿潤ゲル粉砕工程を行わない場合は、乾燥により得られたエアロゲル(エアロゲルブロック)を粉砕することによりエアロゲル粒子を得る。例えば、ジェットミル、ローラーミル、ビーズミル、ハンマーミル等にエアロゲルを入れ、適度な回転数と時間で運転することにより行うことができる。
<塗液の製造方法及び塗液>
 塗液の製造方法は、上記の多孔質粒子、バインダ樹脂及び液状媒体を含む原料をプラネタリミキサーにより撹拌する撹拌工程を備える。プラネタリミキサー(遊星運動型ミキサー)は低速剪断により原料を撹拌する機器であるため、当該撹拌工程を低速剪断撹拌工程と言うこともできる。プラネタリミキサーを用いる場合の撹拌条件は、攪拌速度を8~200rpmとし、攪拌時間を1~120分間とすることができる。好適には、撹拌速度は20~150rpmであってもよく、攪拌時間は5~80分間であってもよい。
 塗液の製造方法は、原料を高速剪断撹拌機により撹拌する予備撹拌工程を、プラネタリミキサーにより撹拌する撹拌工程前に備えていてもよい。すなわち、塗液の製造方法は、原料を高速剪断撹拌機により撹拌する高速剪断撹拌工程と、その後の低速剪断撹拌機により撹拌する低速剪断撹拌工程とを備えることができる。高速剪断撹拌機とは、概ね1000rpm以上の撹拌速度にて剪断撹拌を行う撹拌機であり、具体的にはホモミキサー等が挙げられる。高速剪断撹拌機を予備撹拌手段として用いる場合の撹拌条件は、攪拌速度を1000~3000rpmとし、攪拌時間を1~20分間とすることができる。好適には、撹拌速度は1500~2500rpmであってもよく、攪拌時間は1~5分間であってもよい。
 プラネタリミキサーとしては、プラネタリーミキサーシリーズ(株式会社井上製作所製、製品名)、ピーディーミキサーシリーズ(株式会社井上製作所製、製品名)、ハイビスミックスシリーズ(プライミクス株式会社製、製品名)、ハイビスディスパーミックスシリーズ(プライミクス株式会社製、製品名)等が挙げられ、ホモミキサーとしては、L5シリーズ(SILVERSON製、製品名)、ホモミクサーMARKIIシリーズ(プライミクス株式会社製、製品名)等が挙げられる。
 なお、多孔質粒子が有する空孔内に液状の成分(バインダ樹脂、液状媒体等)が多く入り込むと、塗液比重が上昇し、その結果塗膜の密度が大きくなる。このことを抑制するべく、塗液の調製に当たっては、使用する多孔質粒子の特性に応じて撹拌条件を調整したり(過度な条件での攪拌を行わない)、あるいはバインダ樹脂の種類を変更したりする(液状の成分の粘度を上げる、多孔質粒子に対して親和性の低いバインダ樹脂を選択する)ことが好ましい。なお、プラネタリミキサーを用いた遊星運動による低速での剪断撹拌は、多孔質粒子を撹拌するのに適しており、上記の問題が生じ難い。特に、上記の撹拌条件にて、またホモミキサー等を併用して撹拌を実施することで、塗液比重の上昇を抑えつつ、分散性のより良好な塗液を調製することができる。
 塗液は、上述の多孔質粒子、バインダ樹脂及び液状媒体を含む。塗液は、上記の塗液の製造方法により得ることができる。
 バインダ樹脂は、塗膜形成後に多孔質粒子同士を結着する機能を有する。バインダ樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース系樹脂、ポリビニル系樹脂等が挙げられる。これらの中でも、耐熱性及び強靭性という観点から、シリコーン樹脂、アクリル樹脂、フェノール樹脂及びポリエステル樹脂を好適に用いることができる。
 なお、セルロース系樹脂としては、例えば、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースアンモニウム、ヒドロキシエチルメチルセルロース等が挙げられる。また、ポリビニル系樹脂としては、例えば、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。
 バインダ樹脂が熱硬化性樹脂であるとき、塗液は、硬化剤をさらに含有していてよい。硬化剤は特に限定されず、熱硬化性樹脂の種類に応じて適宜変更してよい。例えば、熱硬化性樹脂がエポキシ樹脂であるとき、硬化剤としては、公知のエポキシ樹脂硬化剤を用いることができる。エポキシ樹脂硬化剤としては、例えば、アミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤等が例示でき、反応性の観点からはアミン系硬化剤及びポリアミド系硬化剤を好適に用いることができる。
 液状媒体としては水及び有機溶媒が挙げられる。有機溶媒としては、多孔質粒子を分散し得るものであれば特に制限はなく、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素類;ヘキサン、ヘプタン、ペンタン等の脂肪族炭化水素類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;メタノール、エタノール、イソプロパノール(イソプロピルアルコール)、ブタノール、エチレングリコール、プロピレングリコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類などが挙げられる。これらの中でも、揮発性、沸点等の観点から、アルコール類及びケトン類を用いることができ、特にアルコール類を好適に用いることができる。アルコール類及びケトン類は、水、水系樹脂等との混合が容易であるため、それらの成分との併用時にも好適である。
 塗液は、他の成分として増粘剤、繊維状物質、顔料、レベリング剤等を含んでいてもよい。
 増粘剤は塗液の粘性を向上させ、対象に対する塗工性をより良好にすることができる。増粘剤としては、例えば、フュームドシリカ、粘土鉱物等の微粒子が挙げられる。
 繊維状物質は塗膜形成後に多孔質粒子間のアンカー機能を発現することができ、塗膜強度をより向上することができる。繊維状物質としては特に制限されず、有機繊維及び無機繊維が挙げられる。有機繊維としては、例えば、ポリアミド系繊維、ポリイミド系繊維、ポリビニルアルコール系繊維、ポリ塩化ビニリデン系繊維、ポリ塩化ビニル系繊維、ポリエステル系繊維、ポリアクリロニトリル系繊維、ポリエチレン系繊維、ポリプロピレン系繊維、ポリウレタン系繊維、フェノール系繊維、ポリエーテルエステル系繊維、ポリ乳酸系繊維、ポリカーボネート系繊維等が挙げられる。無機繊維としては、例えば、ガラス繊維、炭素繊維、セラミック繊維、金属繊維等が挙げられる。
 本実施形態の塗液中には、従来に比して多量の多孔質粒子が含まれており、塗液中の多孔質粒子の含有量は20質量%以上である。より低密度の塗膜を得るという観点から、当該含有量は25質量%以上とすることができ、30質量%以上であってもよく、30質量%超であってもよい。なお、当該含有量の上限は特に制限されないが、多孔質粒子の分散性、良好な塗工性等の観点から、50質量%とすることができる。
 塗液中のバインダ樹脂の含有量は、多孔質粒子同士の結着性、塗膜の断熱性等の観点から、1質量%以上とすることができ、2質量%以上であってもよく、3質量%以上であってもよい。また、当該含有量は、10質量%以下とすることができるが、7質量%以下であってもよく、5質量%以下であってもよい。
 塗液中のバインダ樹脂の含有量は、例えば、多孔質粒子100質量部に対して、5質量部以上とすることができるが、7質量部以上であってもよく、10質量部以上であってもよく、12質量部以上であってもよい。これにより、多孔質粒子がバインダ樹脂によって強固に結着され易くなり、塗膜の強度が一層向上する。
 また、バインダ樹脂の含有量は、例えば、多孔質粒子100質量部に対して、20質量部以下とすることができるが、18質量部以下であってもよく、15質量部以下であってもよい。これにより、塗膜中の多孔質粒子の比率が高くなり、塗膜密度を低下することができ、また塗膜の断熱性が一層向上する。
 塗液中の繊維状物質の含有量は、塗液中での分散性、良好なアンカー機能の発現性等の観点から、0.01~30質量%とすることができるが、0.1~10質量%であってもよい。
 塗液中の繊維状物質の含有量は、例えば、多孔質粒子100質量部に対して、5質量部以上とすることができるが、7質量部以上であってもよく、9質量部以上であってもよい。これにより、繊維状物質によるアンカー効果が得られ易くなり、塗膜強度が一層向上する。
 また、繊維状物質の含有量は、例えば、多孔質粒子100質量部に対して、50質量部以下とすることができるが、35質量部以下であってもよく、25質量部以下であってもよく、20質量部以下であってもよく、15質量部以下であってもよい。これにより、塗膜中の多孔質粒子の比率が高くなり、塗膜の断熱性が一層向上する。
 増粘剤の含有量は、所望の塗液粘度(例えば、1000mPa・s以上)となるように適宜調整することができる。塗液の粘度はバインダ樹脂を配合することにより向上させることもできるため、その場合は必ずしも増粘剤を配合する必要はない。
 塗液中の固形分全体に対する多孔質粒子の割合は、90体積%以上とすることができるが、95体積%以上であってもよく、98体積%以上であってもよい。また、塗液中の固形分全体に対するバインダ樹脂の割合は、3体積%以下とすることができるが、2.5体積%以下であってもよく、2体積%以下であってもよい。
 液状媒体は水を主成分(例えば90質量%以上)として含んでいてもよい。水は撥水性の多孔質粒子が有する多孔質構造内に浸入し難いため、塗液化がより容易になる。ただし、液状媒体は、多孔質粒子とバインダ樹脂との混練性をより向上するために、有機溶媒を含んでいてもよい。液状媒体中の有機溶媒の含有量は、1質量%以上とすることができ、3質量%以上であってもよく、5質量%以上であってもよい。
 塗液の比重は0.8以下とすることができるが、0.77以下であってもよく、0.75以下であってもよい。比重の下限は、クラックの発生を抑制しつつ塗膜を形成し易いという観点から、0.35とすることができ、0.6としてもよい。塗液の比重は、室温(10~30℃)環境で、ディスポーザブルシリンジを用いて測定することができる。具体的には、2.5mLのディスポーザブルシリンジに1.5mL以上の塗液を詰め、シリンジ内の空気を抜いた後に、シリンジ及び塗液の合計重量(A)を計測する。続いてシリンジから塗液を1.0mL押し出した後のシリンジ及びシリンジ内の塗液の合計重量(B)を計測する。そして(A)-(B)の重量差を塗液1.0mLあたりの重量として、塗液の比重を算出することができる。ただし、塗液の比重は、シリンジを用いた上記の方法の他、レーザー体積計、浮ひょう、比重計等によっても測定することができる。
 なお、本実施形態に係る塗液は多孔質粒子含有塗液と言うことができるが、粘度次第ではペースト状であってもよく、多孔質粒子含有ペーストと言うことができる。
<塗膜の製造方法及び塗膜>
 塗膜は、多孔質粒子、バインダ樹脂及び液状媒体を含む上記塗液から、液状媒体を除去することで形成することができる。より具体的には、塗膜の製造方法(塗膜形成方法)は、上述の塗液を対象物上に塗布する工程と、対象物上に塗布された塗液から液状媒体を除去する工程と、を備えることができる。
 塗液を対象物上に塗布する方法としては特に制限されず、例えばディップコート、スプレーコート、スピンコート、ロールコート等が挙げられる。塗膜の形成に際しては、塗布された塗液に対し、加熱(例えば、40~150℃)処理、減圧(例えば、10000Pa以下)処理、又はそれらの両処理を行うことで、塗液から液状媒体を除去すればよい。
 上記工程により、多孔質粒子及びバインダ樹脂を含む塗膜を得ることができる。
 塗膜中の多孔質粒子の含有量は、例えば、80質量%以上とすることができるが、85質量%以上であってもよく、90質量%以上であってもよい。これにより、塗膜密度が低下し、塗膜の断熱性が一層向上する。塗膜中の多孔質粒子の含有量は、例えば、95質量%以下とすることができるが、93質量%以下であってもよい。これにより、塗膜が形成し易くなる傾向がある。
 塗膜中の多孔質粒子の割合は、90体積%以上とすることができるが、95体積%以上であってもよく、98体積%以上であってもよい。また、塗膜中のバインダ樹脂の割合は、3体積%以下とすることができるが、2.5体積%以下であってもよく、2体積%以下であってもよい。
 本実施形態の塗液を用いることにより、非常に軽質な塗膜(多孔質塗膜)を得ることができる。塗膜の密度は0.4g/cm以下とすることができるが、0.37g/cm以下であってもよく、0.35g/cm以下であってもよい。塗膜の密度の下限は特に制限されないが、良好な塗膜強度を得易いという観点から、0.1g/cmとすることができ、0.2g/cmとしてもよい。塗膜の密度は、JIS Z 8827:2012に記載の「液中ひょう量法による密度及び比重の測定方法」、あるいは「幾何学的測定による密度及び比重の測定方法に」により測定することができる。
 塗膜の厚さは特に制限されず、例えば、0.01~5mmとすることができる。
 対象物を構成する材料としては特に制限されず、金属、セラミック、ガラス、樹脂、これらの複合材料等が挙げられる。対象物の形態としては、使用する目的又は材料に応じて適宜選択することができ、ブロック状、シート状、パウダー状、繊維状等が挙げられる。
 塗膜は、多孔質粒子の種類に応じて種々の特性(例えば優れた断熱性、耐熱性、難燃性等)を有する。このような利点から、当該塗膜を、極低温容器、宇宙分野、建築分野、自動車分野、家電分野、半導体分野、産業用設備等における断熱材としての用途等に適用できる。なお、当該塗膜は、断熱材としての用途の他に、撥水材、吸音材、静振材、触媒担持材等としても利用することができる。
 次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明を制限するものではない。
(多孔質粒子Aの作製)
 シリカ粒子含有原料としてPL-2L(扶桑化学工業株式会社製、製品名)を100.0質量部、水を80.0質量部、酸触媒として酢酸を0.5質量部、カチオン性界面活性剤として臭化セチルトリメチルアンモニウム(和光純薬工業株式会社製)を1.0質量部、及び熱加水分解性化合物として尿素を150.0質量部混合し、これにケイ素化合物としてメチルトリメトキシシラン(信越化学工業株式会社製、製品名:KBM-13)を60.0質量部、ジメチルジメトキシシラン(信越化学工業株式会社製、製品名:KBM-22)を20.0質量部、上記一般式(B)で表される構造を有する両末端2官能アルコキシ変性ポリシロキサン化合物(以下、「ポリシロキサン化合物X」という)を20.0質量部加え、25℃で2時間反応させてゾルを得た。得られたゾルを60℃でゲル化した後、60℃で48時間熟成して湿潤ゲルを得た。
 なお、上記「ポリシロキサン化合物X」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1リットルの3つ口フラスコにて、両末端にシラノール基を有するジメチルポリシロキサンXC96-723(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、製品名)を100.0質量部、メチルトリメトキシシランを181.3質量部及びt-ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を、1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物X)を得た。
 その後、得られた湿潤ゲルをプラスチック製ボトルに移し、密閉後、エクストリームミル(アズワン株式会社製、MX-1000XTS)を用いて、27,000rpmで10分間粉砕し、粒子状の湿潤ゲルを得た。得られた粒子状の湿潤ゲルをメタノール2500.0質量部に浸漬し、25℃で24時間かけて洗浄を行った。この洗浄操作を、新しいメタノールに交換しながら合計3回行った。次に、洗浄した粒子状の湿潤ゲルを、低表面張力溶媒であるヘプタン2500.0質量部に浸漬し、25℃で24時間かけて溶媒置換を行った。この溶媒置換操作を、新しいヘプタンに交換しながら合計3回行った。洗浄及び溶媒置換された粒子状の湿潤ゲルを、常圧下にて、40℃で96時間乾燥し、その後さらに150℃で2時間乾燥した。最後に、ふるい(東京スクリーン株式会社製、目開き45μm、線径32μm)にかけ、上記一般式(3)、(4)及び(5)で表される構造を有する多孔質粒子A(エアロゲル粒子A)を得た。
(多孔質粒子Bの準備)
 多孔質粒子B(エアロゲル粒子B)としてJIOS AeroVa(登録商標、JIOS AEROGEL CORPORATION社製、製品名)を準備した。
(多孔質粒子の比表面積測定)
 多孔質粒子のBET比表面積を、ガス吸着量測定装置(カンタクローム・インスツルメンツ・ジャパン合同会社製、Autosorb-iQ(Autosorbは登録商標))を用いて測定した。多孔質粒子Aの比表面積は125m/g、多孔質粒子Bの比表面積は716m/gであった。
(多孔質粒子の平均粒子径測定)
 エタノールに、多孔質粒子の含有量が0.5質量%となるように添加し、これに50Wの超音波ホモジナイザーで20分間振動を与えることで分散液を調製した。得られた分散液10mLをMicrotrac MT3000(日機装株式会社製、製品名)に注入し、25℃で、屈折率1.3、吸収0として粒子径を測定した。そして、得られた粒子径分布における積算値50%(体積基準)での粒子径を平均粒子径D50とした。多孔質粒子Aの平均粒子径D50は20μm、多孔質粒子Bの平均粒子径D50は17μmであった。
(実施例1)
 100mLポリカップに、ヒドロキシプロピルメチルセルロースとしてマーポローズMP30000(松本油脂株式会社製、製品名、比重1.2)を5.00g、イソプロピルアルコールを10gとり、薬さじによりかき混ぜることでMP30000の分散液を調製した。次に、500mLポリカップに純水を100gとり、ホモミキサーL5R(SILVERSON製、製品名)により純水を2000rpmで撹拌しながら、上記の分散液を全量添加した。撹拌時間は3分間とした。これによりベース液を調製した。
 次に、ハイビスミックス2P-03型(プライミクス株式会社製、製品名)の受け容器に、上記のベース液を全量入れ、100rpmで撹拌しながら、多孔質粒子Aを50g添加した。撹拌時間は60分間とした。これにより実施例1の塗液を得た。
(その他の実施例及び比較例)
 塗液の配合原料及び撹拌方式を表1又は2に示すように変更したこと以外は、実施例1と同様にして塗液を調製した。なお、比較例2については、泡とり練太郎ARV-310(株式会社シンキー製、製品名)の専用容器に塗液の配合原料を投入し、撹拌速度2000rpmで20分間撹拌することで塗液を得た。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表1及び2中、撹拌手段A~Cの詳細は以下のとおりである。
A:ホモミキサー L5R(SILVERSON製、製品名)
B:プラネタリミキサー ハイビスミックス2P-03(プライミクス株式会社製、製品名)
C:あわとり練太郎 ARV-310(株式会社シンキー製、製品名、自転公転型ミキサー)
(各種評価)
 各例にて得られた塗液について以下の評価を行った。評価結果を表3に示す。
(塗液分散性評価)
 各例にて得られた塗液をメスシリンダー様の縦長のガラス容器に入れ、容器に蓋をした。その状態で60分間静置した後、塗液の状態を目視にて観察した。評価基準は以下のとおりとした。
良好:白濁したペースト状であった。
不良:液状の成分と多孔質粒子とが分離し、塗液全体の1体積%以上の上澄みが生じていた。
(塗液比重測定)
 各例で得られた塗液の比重をディスポーザブルシリンジ(テルモ株式会社製、容量2.5mL)を用いて測定した。具体的には、室温(10~30℃)環境で、シリンジからプランジャーを外し、塗液内に気泡が入らないように薬さじを用いてシリンジに塗液詰め、プランジャーを再度セットしてシリンジ先端の気泡を抜いた。電子天秤により、塗液を含むシリンジ全体の重量と、塗液を1mL吐出した後の重量との差を塗液1mL当たりの重量とし、塗液の比重を算出した。
(成膜性評価)
 各例で得られた塗液を用いて塗膜を形成した。具体的には、塗液を、金属ヘラを用いて、厚みが2mmとなるようにアルミ箔上に塗布した。そして120℃で1時間加熱することで塗液から液状媒体を除去し、塗膜を得た。得られた塗膜を目視にて観察し、以下の評価基準に従って評価した。
良好:クラックのない良好な外観を有していた。
不良:クラックが発生していた。
(塗膜密度測定)
 上記の成膜性評価で得られた塗膜の密度を測定した。具体的には、得られた塗膜を3cm×3cmにカットして測定サンプルとし、水温20℃の水槽を備えた比重計(アルファーミラージュ株式会社製、MDS-300)を用いて、測定サンプルの空中及び水中での重量を測定し、塗膜の比重を得た。
Figure JPOXMLDOC01-appb-T000013

Claims (14)

  1.  多孔質粒子、バインダ樹脂及び液状媒体を含む原料をプラネタリミキサーにより撹拌する撹拌工程を備える、塗液の製造方法。
  2.  前記原料を高速剪断撹拌機により撹拌する予備撹拌工程を、前記撹拌工程前に備える、請求項1に記載の製造方法。
  3.  前記液状媒体が水を含む、請求項1又は2に記載の製造方法。
  4.  前記液状媒体がさらに有機溶媒を含む、請求項3に記載の製造方法。
  5.  前記バインダ樹脂が、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース系樹脂、及びポリビニル系樹脂からなる群より選択される少なくとも一種を含む、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記多孔質粒子がエアロゲル粒子である、請求項1~5のいずれか一項に記載の製造方法。
  7.  請求項1~6のいずれか一項に記載の製造方法により得られる塗液。
  8.  多孔質粒子、バインダ樹脂及び液状媒体を含み、前記多孔質粒子の含有量が20質量%以上である、塗液。
  9.  前記液状媒体が水を含む、請求項8に記載の塗液。
  10.  前記液状媒体がさらに有機溶媒を含む、請求項9に記載の塗液。
  11.  前記バインダ樹脂が、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース系樹脂、及びポリビニル系樹脂からなる群より選択される少なくとも一種を含む、請求項8~10のいずれか一項に記載の塗液。
  12.  比重が0.8以下である、請求項8~11のいずれか一項に記載の塗液。
  13.  多孔質粒子及びバインダ樹脂を含み、前記多孔質粒子の含有量が80質量%以上であり、密度が0.4g/cm以下である、塗膜。
  14.  前記バインダ樹脂が、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリエステル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース系樹脂、及びポリビニル系樹脂からなる群より選択される少なくとも一種を含む、請求項13に記載の塗膜。
     
PCT/JP2018/026016 2018-07-10 2018-07-10 塗液の製造方法、塗液及び塗膜 WO2020012554A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/026016 WO2020012554A1 (ja) 2018-07-10 2018-07-10 塗液の製造方法、塗液及び塗膜
US17/257,854 US20210277261A1 (en) 2018-07-10 2018-07-10 Method for producing coating liquid, coating liquid, and coating film
EP18925784.3A EP3822326A4 (en) 2018-07-10 2018-07-10 COATING LIQUID, COATING LIQUID AND COATING FILM PRODUCTION PROCESS
JP2020529876A JP7259857B2 (ja) 2018-07-10 2018-07-10 塗液の製造方法、塗液及び塗膜
CN201880095459.0A CN112513208A (zh) 2018-07-10 2018-07-10 涂液的制造方法、涂液及涂膜
KR1020207037598A KR102613368B1 (ko) 2018-07-10 2018-07-10 도액의 제조 방법, 도액 및 도막

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026016 WO2020012554A1 (ja) 2018-07-10 2018-07-10 塗液の製造方法、塗液及び塗膜

Publications (1)

Publication Number Publication Date
WO2020012554A1 true WO2020012554A1 (ja) 2020-01-16

Family

ID=69141766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026016 WO2020012554A1 (ja) 2018-07-10 2018-07-10 塗液の製造方法、塗液及び塗膜

Country Status (6)

Country Link
US (1) US20210277261A1 (ja)
EP (1) EP3822326A4 (ja)
JP (1) JP7259857B2 (ja)
KR (1) KR102613368B1 (ja)
CN (1) CN112513208A (ja)
WO (1) WO2020012554A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020012553A1 (ja) * 2018-07-10 2021-07-08 昭和電工マテリアルズ株式会社 塗液及び塗膜
WO2023228848A1 (ja) * 2022-05-26 2023-11-30 宇部エクシモ株式会社 多孔質粒子分散液、多孔質粒子分散液の製造方法、撥水剤、多孔質構造体、及び多孔質構造体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817374A (zh) * 2021-09-22 2021-12-21 华阳纳谷(北京)新材料科技有限公司 一种气凝胶空气净化涂料及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508049A (ja) * 1994-10-20 1998-08-04 ヘキスト・アクチェンゲゼルシャフト エーロゲルを含む組成物、その製造法、およびその使用
JPH11513431A (ja) * 1995-10-11 1999-11-16 ヘキスト、リサーチ、アンド、テクノロジー、ドイッチェラント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディート、ゲゼルシャフト エーロゲル被覆フィルム
JP2000026609A (ja) 1998-07-13 2000-01-25 Ge Toshiba Silicones Co Ltd アルコキシ基末端ポリジオルガノシロキサンの製造方法
JP2004534108A (ja) * 2001-03-15 2004-11-11 キャボット コーポレイション 光沢のないチキソトロープペイント配合物
JP2005525454A (ja) * 2002-05-15 2005-08-25 キャボット コーポレイション エーロゲルと中空粒子バインダーの組成物、絶縁複合材料、及びそれらの製造方法
JP2006504543A (ja) * 2002-01-29 2006-02-09 キャボット コーポレイション 耐熱性エーロゾル絶縁複合材料およびその製造方法、エーロゾルバインダー組成物およびその製造方法
JP2006515556A (ja) * 2002-12-18 2006-06-01 デグサ アクチエンゲゼルシャフト 表面改質された、エアロゲル型ストラクチャードシリカ
JP2007514810A (ja) * 2003-11-12 2007-06-07 バーチル,ジー.スチュアート,ジュニア 断熱層のための組成物
JP2012091943A (ja) 2010-10-25 2012-05-17 Tokuyama Corp エアロゲル
JP2012233110A (ja) 2011-05-06 2012-11-29 Shin-Etsu Chemical Co Ltd 末端アルコキシ変性オルガノポリシロキサン及びその製造方法
JP5250900B2 (ja) 2005-07-19 2013-07-31 株式会社ダイナックス アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法
JP2016109943A (ja) * 2014-12-08 2016-06-20 キヤノン株式会社 光学素子、遮光膜および遮光塗料
JP2017031386A (ja) * 2015-07-30 2017-02-09 現代自動車株式会社Hyundai Motor Company 断熱コーティング組成物および断熱コーティング層
JP2017194632A (ja) * 2016-04-22 2017-10-26 キヤノン株式会社 遮熱膜、遮熱塗料、および光学機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522070A (en) * 1965-01-21 1970-07-28 Du Pont Aqueous coating compositions containing dispersed submicron cellulosic polymer particles and the process of preparing said coating compositions
JP2002293015A (ja) 2001-03-30 2002-10-09 Lintec Corp 受理層形成用組成物およびインクジェット用記録シート
JP5851983B2 (ja) * 2009-04-27 2016-02-03 キャボット コーポレイションCabot Corporation エーロゲル組成物ならびにその製造および使用方法
TWI640585B (zh) * 2016-06-04 2018-11-11 安炬科技股份有限公司 抗腐蝕複合層
WO2020012553A1 (ja) 2018-07-10 2020-01-16 日立化成株式会社 塗液及び塗膜

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508049A (ja) * 1994-10-20 1998-08-04 ヘキスト・アクチェンゲゼルシャフト エーロゲルを含む組成物、その製造法、およびその使用
JPH11513431A (ja) * 1995-10-11 1999-11-16 ヘキスト、リサーチ、アンド、テクノロジー、ドイッチェラント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディート、ゲゼルシャフト エーロゲル被覆フィルム
JP2000026609A (ja) 1998-07-13 2000-01-25 Ge Toshiba Silicones Co Ltd アルコキシ基末端ポリジオルガノシロキサンの製造方法
JP2004534108A (ja) * 2001-03-15 2004-11-11 キャボット コーポレイション 光沢のないチキソトロープペイント配合物
JP2006504543A (ja) * 2002-01-29 2006-02-09 キャボット コーポレイション 耐熱性エーロゾル絶縁複合材料およびその製造方法、エーロゾルバインダー組成物およびその製造方法
JP2005525454A (ja) * 2002-05-15 2005-08-25 キャボット コーポレイション エーロゲルと中空粒子バインダーの組成物、絶縁複合材料、及びそれらの製造方法
JP2006515556A (ja) * 2002-12-18 2006-06-01 デグサ アクチエンゲゼルシャフト 表面改質された、エアロゲル型ストラクチャードシリカ
JP2007514810A (ja) * 2003-11-12 2007-06-07 バーチル,ジー.スチュアート,ジュニア 断熱層のための組成物
JP5250900B2 (ja) 2005-07-19 2013-07-31 株式会社ダイナックス アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法
JP2012091943A (ja) 2010-10-25 2012-05-17 Tokuyama Corp エアロゲル
JP2012233110A (ja) 2011-05-06 2012-11-29 Shin-Etsu Chemical Co Ltd 末端アルコキシ変性オルガノポリシロキサン及びその製造方法
JP2016109943A (ja) * 2014-12-08 2016-06-20 キヤノン株式会社 光学素子、遮光膜および遮光塗料
JP2017031386A (ja) * 2015-07-30 2017-02-09 現代自動車株式会社Hyundai Motor Company 断熱コーティング組成物および断熱コーティング層
JP2017194632A (ja) * 2016-04-22 2017-10-26 キヤノン株式会社 遮熱膜、遮熱塗料、および光学機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3822326A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020012553A1 (ja) * 2018-07-10 2021-07-08 昭和電工マテリアルズ株式会社 塗液及び塗膜
JP7230914B2 (ja) 2018-07-10 2023-03-01 株式会社レゾナック 塗液及び塗膜
WO2023228848A1 (ja) * 2022-05-26 2023-11-30 宇部エクシモ株式会社 多孔質粒子分散液、多孔質粒子分散液の製造方法、撥水剤、多孔質構造体、及び多孔質構造体の製造方法

Also Published As

Publication number Publication date
EP3822326A4 (en) 2021-07-14
CN112513208A (zh) 2021-03-16
KR20210031647A (ko) 2021-03-22
JP7259857B2 (ja) 2023-04-18
KR102613368B1 (ko) 2023-12-13
JPWO2020012554A1 (ja) 2021-07-08
EP3822326A1 (en) 2021-05-19
US20210277261A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP7196854B2 (ja) 塗液、塗膜の製造方法及び塗膜
JP7196852B2 (ja) 塗液、塗膜の製造方法及び塗膜
JP7322479B2 (ja) 塗液、複合材料及び塗膜
JPWO2019069494A1 (ja) 塗液、塗膜の製造方法及び塗膜
JP7259857B2 (ja) 塗液の製造方法、塗液及び塗膜
JP7230914B2 (ja) 塗液及び塗膜
WO2020208756A1 (ja) 複合材料、シート及び断熱材
WO2021153764A1 (ja) 塗液の製造方法及び断熱材の製造方法
EP3783076B1 (en) Method for suppressing corrosion under heat-insulating material, and paste for suppressing corrosion under heat-insulating material
JP7196853B2 (ja) 塗液、塗膜の製造方法及び塗膜
JP7302654B2 (ja) 塗液、複合材料及び塗膜
JP7160106B2 (ja) エアロゲル粒子、分散体及び塗膜
JP7107321B2 (ja) 分散液及びエアロゲル粒子
JP2022059803A (ja) 塗液の製造方法及び断熱材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE