WO2020011144A1 - 非水相悬浮聚合制备热塑性聚氨酯粉末的方法及利用该方法制备的聚氨酯粉末 - Google Patents

非水相悬浮聚合制备热塑性聚氨酯粉末的方法及利用该方法制备的聚氨酯粉末 Download PDF

Info

Publication number
WO2020011144A1
WO2020011144A1 PCT/CN2019/095194 CN2019095194W WO2020011144A1 WO 2020011144 A1 WO2020011144 A1 WO 2020011144A1 CN 2019095194 W CN2019095194 W CN 2019095194W WO 2020011144 A1 WO2020011144 A1 WO 2020011144A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
isocyanate
polyurethane
polyurethane powder
aqueous medium
Prior art date
Application number
PCT/CN2019/095194
Other languages
English (en)
French (fr)
Other versions
WO2020011144A9 (zh
Inventor
瞿强
谢丰鸣
景浩
Original Assignee
今创景新材料科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 今创景新材料科技(上海)有限公司 filed Critical 今创景新材料科技(上海)有限公司
Publication of WO2020011144A1 publication Critical patent/WO2020011144A1/zh
Publication of WO2020011144A9 publication Critical patent/WO2020011144A9/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the invention belongs to the field of polyurethane preparation, and particularly relates to a method for preparing thermoplastic polyurethane powder by non-aqueous suspension polymerization and a polyurethane powder prepared by the method.
  • Thermoplastic polyurethane has become one of the important thermoplastic elastomer materials.
  • Thermoplastic polyurethane is a linear block copolymer, which includes a hard segment and a soft segment.
  • the hard segment is composed of a diol and a diisocyanate
  • the soft segment is composed of a polyester diol or a polyether diol.
  • the hard segment serves as a physical cross-linking and reinforcing filler, providing strength to the TPU
  • the soft segment provides elasticity and toughness to the TPU.
  • thermoplastic polyurethanes make them useful in powder-based additive manufacturing.
  • the thermoplastic polyurethane powder is prepared by extruding and granulating TPU powder by liquid nitrogen freezing and pulverizing. This preparation method requires a large amount of consumption Liquid nitrogen, high preparation cost, the obtained TPU powder has an irregular shape, a wide particle size distribution, and does not have an appropriate particle size distribution; in the powder-based additive manufacturing process, the irregular powder form will cause mechanical properties of the product Drop; TPU powder structure control of extrusion method is difficult.
  • Polyurethane powder obtained by mechanical crushing method currently on the market currently contains more isocyanate (NCO) active groups.
  • NCO isocyanate
  • sintering this TPU powder requires increasing the energy of the laser and reducing the laser.
  • the scanning speed, the polyurethane material produced by this technology does not have regular spheres and good fluidity, there is a phenomenon of powder agglomeration, and it does not meet the demand for ease of processing in additive manufacturing. And this method cannot produce polyurethane powder with perfect thermoplasticity that can be quickly sintered.
  • sintering cannot meet the requirements of higher mechanical properties.
  • FIG. 1 is an optical micrograph of an irregular polyurethane powder prepared by mechanical low-temperature crushing in the prior art.
  • Chinese patent CN104910609A discloses a polyurethane composite material for 3D printing, and a preparation method and application thereof, which is characterized in that the polyurethane is mechanically grinded, freeze-pulverized, solvent-precipitated, or spray-dried. It is difficult to recycle the medium, resulting in high production costs, and it is difficult to precisely control the particle size and particle size distribution of the polyurethane powder at low cost. And the products obtained by this method do not meet the requirements for the machining performance of materials in additive manufacturing.
  • Chinese patent CN107083226A discloses a process for preparing a polyurethane powder adhesive by using a polyurethane prepolymer inverse suspension polymerization method. The process is applicable to the adhesive. The patent does not involve and it is difficult to obtain an additive manufacturing material with good sintering performance.
  • Chinese patent CN106366635A discloses a TPU elastomer using one or more of calcium stearate, silica, and calcium carbonate as a release agent, but it is not disclosed in the prior art to use a release agent directly in a solution to obtain a thermoplastic polyurethane.
  • Technical solution for powder In the process of manufacturing polyurethane materials disclosed in this patent, it is difficult to continuously monitor the value of isocyanate (NCO), so there are significant residues of isocyanate (NCO) reactive groups in the final product, resulting in unstable product performance and cannot be guaranteed Stability of mechanical properties when used as a material.
  • NCO isocyanate
  • thermoplastic polyurethane powders that is suitable for the additive manufacturing method is an issue to be urgently solved by those skilled in the industry.
  • the technical problem solved by the present invention is: in view of the defects in the prior art mentioned above, the technical solution guarantees that the polyurethane powder has thermoplasticity, can be quickly sintered, and has a regular spherical shape.
  • the technical solution is a method for preparing a thermoplastic polyurethane powder by non-aqueous suspension polymerization.
  • the non-aqueous medium is difficult for isocyanate chemical reaction and isocyanate-terminated polyurethane prepolymer and thermoplastic polyurethane powder synthesized based on the same.
  • Dissolving solvent including the following steps:
  • Step 1 preparing an isocyanate-terminated polyurethane prepolymer from a diol and a diisocyanate;
  • Step 2 uniformly dispersing the isocyanate-terminated polyurethane prepolymer with the non-aqueous medium in which a surfactant is dissolved;
  • Step 3 Add a chain extender for polymerization.
  • Diisocyanate is put into the reaction kettle and the temperature is increased until the diisocyanate is melted, and stirring is started;
  • the isocyanate (NCO) value of the isocyanate-terminated polyurethane prepolymer is sampled and tested. After the isocyanate (NCO) value approaches the theoretical value, it is ready to proceed to the next step.
  • the isocyanate-terminated polyurethane prepolymer may further include a catalyst, and for the stability of the resulting product, an antioxidant, a light stabilizer and other auxiliary agents may also be included;
  • the diisocyanate is selected from the group consisting of ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-twelve Alkane diisocyanate, or a combination thereof.
  • the diisocyanate is selected from the group consisting of isophorone diisocyanate, 1,4-cyclohexane diisocyanate, 1-methyl-2,4-cyclohexane diisocyanate, 1- Methyl-2,6-cyclohexane diisocyanate, 4-4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane diisocyanate, 2-2'-dicyclohexylmethane diisocyanate, or Its combination.
  • the diisocyanate is selected from the group consisting of 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, and 2,4'-di Phenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, urethane modified 4-4'diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4 '-Diisocyanato-1,2-diphenylethane, 1,5-naphthalene diisocyanate, or a combination thereof.
  • the diol is a polyester diol, a polyether diol, or a combination thereof.
  • the diol has a number average molecular weight of 500-10000 g / mol, preferably 500-3000 g / mol, and more preferably 1000-2000 g / mol.
  • the polyester diol can be prepared by ring-opening or transesterification of a lactone or a polycondensation reaction of a dicarboxylic acid having 2-12 carbon atoms and a glycol having 2-12 carbon atoms. get.
  • the dicarboxylic acid of 2-12 carbon atoms is selected from the group consisting of a C2-12 fatty dicarboxylic acid, a C8-12 aromatic dicarboxylic acid, or a combination thereof.
  • the dicarboxylic acid of 2-12 carbon atoms is selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, nonyl Diacid, sebacic acid, or a combination thereof.
  • the dicarboxylic acid of 2-12 carbon atoms is selected from the group consisting of phthalic acid, isophthalic acid and terephthalic acid, or a combination thereof.
  • the diol having 2-12 carbon atoms is selected from the group consisting of ethylene glycol, diethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1 6,6-hexanediol, 1,10-decanediol, 2-dimethyl-1,3-propanediol, 1,3-propanediol, dipropylene glycol, or a combination thereof.
  • the polyester diol is selected from the group consisting of polyethylene adipate, polyethylene 1,4-butanediol, and polyethylene adipate-1 1,4-butanediol ester, 1,6-hexanediol-neopentyl glycol adipate, 1,6-hexanedipic acid-1,6-hexanediol-1,4-butane Glycol ester, polycaprolactone, polycarbonate, or a combination thereof.
  • the polyether diol is prepared from an oxygen-containing heterocyclic ring having 2 to 4 carbon atoms and a starter molecule.
  • the alkylene oxide with 2 to 4 carbon atoms includes: ethylene oxide, 1,2-propylene oxide, epichlorohydrin, 1,2-butylene oxide, 2,3 -Butylene oxide, or a combination thereof.
  • the initiator molecule is selected from the group consisting of water, amino alcohol, glycol, or a combination thereof.
  • the initiator molecule is selected from the group consisting of a polyoxypropylene ether diol, a polytetrahydrofuran ether diol, or a combination thereof.
  • the step 1 is performed under an optional catalyst, an antioxidant, and a light stabilizer to ensure that the reaction proceeds stably and efficiently.
  • the catalyst is selected from the group consisting of dioctyltin dilaurate, stannous octoate, triethylenediamine, triethylamine, zinc naphthenate, bismuth naphthenate, or a combination thereof.
  • the antioxidant is selected from the group consisting of 2,6-di-tert-butyl-4-methylphenol, tetra (4-hydroxy3,5-tert-butylphenylpropionic acid) pentaerythritol ester, 3 Stearyl, 5-di-tert-butyl-4-hydroxyphenylpropionate, bis (2,2,6,6-tetramethyl-4-piperidine) malonate, triphenyl phosphite, phosphorous acid Tris (nonylphenyl ester), phenothiazine, bis ( ⁇ -3,5-di-tert-butyl-4-hydroxyphenylpropionic acid) hexanediol ester, or a combination thereof.
  • the light stabilizer is selected from the group consisting of 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ' -Dihydroxy-and methoxybenzophenone, 2-hydroxy-4-n-octyloxybenzophenone, 2 (2'-hydroxy-3'.5'-di-tert-pentylphenyl) benzo Triazole, or a combination thereof.
  • non-aqueous suspension medium in which a surfactant is dissolved, mixed with an isocyanate-terminated polyurethane prepolymer, and the amount of the surfactant is 0.1% to 10% of the total reaction resin (preferably 1) -8%, even 1.5% -6%).
  • the dispersion process of the isocyanate-terminated polyurethane prepolymer can be performed in one or more steps.
  • the one-step method includes step 2.1: dissolving the surfactant and the non-aqueous medium, and then adding it to the isocyanate-terminated polyurethane prepolymer once and dispersing it.
  • the one-step method includes step 2.2: adding the isocyanate-terminated polyurethane prepolymer to a non-aqueous medium mixed with a surfactant and stirring and dispersing.
  • the multi-step method includes the following steps:
  • Step 2.3.1 The non-aqueous medium pre-dissolved with the surfactant is first added to the isocyanate-terminated polyurethane prepolymer, and dispersed by stirring to a desired particle size;
  • Step 2.3.2 Mix the mixture obtained in step 2.3.1 one or more times with the remaining required non-aqueous medium or surfactant-soluble non-aqueous medium.
  • the mixture can be selected to be added to the remaining required non-aqueous medium or the surfactant-dissolved non-aqueous medium in stages according to the reaction conditions; the remaining required non-aqueous medium can also be selected. Or a non-aqueous medium in which a surfactant is dissolved is added to the mixture, or the mixture may be added to the remaining required non-aqueous medium or a non-aqueous medium in which a surfactant is dissolved in portions and added to another Take the reaction kettle for mixing operation.
  • the multi-step method includes the following steps:
  • Step 2.4.1 The isocyanate-terminated polyurethane prepolymer is first added to a non-aqueous medium pre-dissolved with a surfactant, and dispersed by stirring to a desired particle size;
  • Step 2.4.2 Dividing the mixture obtained in step 2.4.1 one or more times with the remaining required isocyanate-terminated polyurethane
  • Prepolymer is mixed.
  • the mixture may be selected to be added to the remaining required isocyanate-terminated polyurethane prepolymer in stages according to the reaction conditions; the remaining required isocyanate-terminated polyurethane prepolymer may also be added in stages Into the mixture; the mixture and the remaining required isocyanate-terminated polyurethane prepolymer can also be added to a separate reaction kettle for mixing operation.
  • the multi-step method is not limited to the mixing operations listed above, and the mixing method can be adjusted according to the reaction needs.
  • Step 3 Characteristics of Step 3: During the chain extension process, the reaction temperature and the addition rate of the chain extender should be controlled.
  • the chain extension process is an exothermic process.
  • the reaction temperature is high.
  • the faster the chain extension reaction speed the more exothermic.
  • the suspension polymerization process can easily lead to explosive polymerization.
  • the faster the chain extender is added the faster the reaction exotherms.
  • the chain extender is selected from the group consisting of an aliphatic diol having 2 to 14 carbon atoms, preferably ethylene glycol, diethylene glycol, 1,4-butane Alcohol, 1,5-pentanediol, 1,6-hexanediol, 1,10-decanediol, 2-dimethyl-1,3-propanediol, 1,3-propanediol, dipropylene glycol, or a combination thereof .
  • an aliphatic diol having 2 to 14 carbon atoms preferably ethylene glycol, diethylene glycol, 1,4-butane Alcohol, 1,5-pentanediol, 1,6-hexanediol, 1,10-decanediol, 2-dimethyl-1,3-propanediol, 1,3-propanediol, dipropylene glycol, or a combination thereof .
  • the problem solved by the second aspect of the present invention is to control the molecular weight of the thermoplastic polyurethane material to ensure that the polyurethane powder has thermoplasticity and can be quickly sintered.
  • a blocking agent is added during the chain extension of the isocyanate-based polyurethane prepolymer.
  • a blocking agent can control the molecular weight of the polyurethane product and prevent unreacted isocyanate from further harmful side reactions.
  • the capping agent may be selected from the group consisting of ethanol, propanol, butanol, 2-ethylhexanol, octanol, dodecanol, stearyl alcohol, various pentanols, cyclohexanol, ethylene glycol Monomethyl ether or a combination thereof.
  • the capping agent may be selected from the group consisting of dibutylamine, N-methylstearylamine, cyclohexylamine, or a combination thereof.
  • the problem solved by the third aspect of the present invention is to reduce the agglomeration of the powder in the drying process and speed up the drying speed, improve the powder flow ability, and ensure the economy of the polyurethane powder preparation process and the ease of processing of the final product.
  • the release agent in the present invention is a powdered inorganic substance and / or a powdered organic substance with a particle size of less than 10 ⁇ m.
  • the pulverized inorganic matter is selected from the group consisting of silica, glassy phosphate, glassy borate, talc, mica, kaolin, calcium silicate, magnesium silicate, alumina, or a combination thereof; the pulverized organic matter is selected from the following group: Stearates and their metal soap salts, fatty acid amides, fatty acid ester amides, or combinations thereof.
  • the amount of the release agent in the present invention may vary according to the nature and particle size of the specific release agent selected and the chemical properties and / or particle size of the polyurethane powder material.
  • thermoplastic polyurethane powder helps the thermoplastic polyurethane powder to be separated, washed, and dried.
  • good flow and leveling of the thermoplastic polyurethane powder is very important. Compared with the prior art, the powder produced by this method can be more suitable for additive manufacturing.
  • the method for adding the separating agent in the present invention may be directly added to the reaction kettle in a powder manner, or may be firstly prepared into a mother liquid with a non-aqueous medium, and then added to the reaction kettle.
  • the amount of the release agent in the present invention does not exceed 1% of the total polyurethane powder, and is preferably 0.02% to 1% of the total polyurethane powder.
  • the adding method of the separating agent in the invention can effectively reduce dust pollution, fast mixing speed and uniform mixing.
  • thermoplastic polyurethane powder is separated, and the separation may be performed by centrifugation or pressure filtration.
  • the cleaning is to remove the surfactant with a non-aqueous medium
  • the drying is to remove the non-aqueous medium remaining from the polyurethane powder.
  • a polyurethane powder having a regular spherical shape is prepared, and the particle diameter (D50) of the polyurethane powder ranges from 5 to 300 ⁇ m, preferably 20 to 150 ⁇ m, and preferably 20 to 100 ⁇ m. More preferably, it is 20-50 ⁇ m.
  • At least 95% of the polyurethane powders have a particle size of 10-200 ⁇ m.
  • the polyurethane powder obtained according to the above-mentioned polyurethane preparation method can be used in powder coating industry, plastic modification industry, powder-based additive manufacturing, and foamable polyurethane elastomer.
  • the method of the present invention is prepared by using a non-aqueous medium, and the method does not require mechanical grinding or freezing and pulverization to obtain powder, which has fewer processing steps and mild reaction conditions.
  • the non-aqueous medium can be recovered to save production costs;
  • the proportion of reactants in each step and the reaction conditions can be accurately controlled, and finally the particle size and particle size range distribution of the polyurethane powder can be precisely adjusted;
  • thermoplastic polyurethane powder obtained by the method of the present invention can be quickly sintered when performing powder-based additive manufacturing, and the mechanical properties of the final product are excellent;
  • thermoplastic polyurethane powder isocyanate (NCO) reactive groups obtained by the method of the present invention have substantially no residue, and the product is stable without affecting the final processing performance;
  • thermoplastic polyurethane powder is prepared by a non-aqueous suspension polymerization method, and no mechanical means such as extrusion is needed.
  • the polyurethane powder obtained is regular spherical and does not appear powder agglomeration.
  • FIG. 2 is an optical micrograph of a polyurethane powder prepared by non-aqueous suspension polymerization provided by the present invention
  • Example 3 is an optical micrograph of a polyurethane powder prepared by non-aqueous suspension polymerization provided in Example 1 of the present invention
  • Example 4 is an optical micrograph of a polyurethane powder prepared by non-aqueous suspension polymerization provided in Example 2 of the present invention
  • Example 5 is an optical micrograph of a polyurethane powder prepared by non-aqueous suspension polymerization provided in Example 3 of the present invention.
  • Example 6 is an infrared image of a polyurethane powder prepared by non-aqueous suspension polymerization provided in Example 1 of the invention
  • Figure 7 is an infrared image of a commercial polyurethane powder.
  • thermoplastic polyurethane used for additive manufacturing may also include a composition of thermoplastic polyurethane, that is, a polyurethane powder containing one or more particle sizes.
  • the capping agent is used to control the molecular weight of the thermoplastic polyurethane material in the droplet.
  • the release agent in the present invention may be a powdered inorganic substance and / or a powdered organic substance, which can reduce the agglomeration of the powder in the drying process, accelerate the drying speed, and improve the powder flow ability.
  • Insoluble solvent refers to the inert to isocyanate chemical reaction, isocyanate-terminated polyurethane prepolymer and thermoplastic polyurethane powder based on it are difficult to dissolve or there is little dissolution or swelling, but it can be easily and economically washed away Or remove the solvent.
  • Thermoplastic This refers to materials that have excellent rapid sintering and fusion characteristics when laser irradiated and / or heated by other heat sources.
  • FIG. 2 is an optical micrograph of a polyurethane powder prepared by non-aqueous phase suspension polymerization provided by the present invention; a method for preparing a polyurethane powder by non-aqueous phase suspension polymerization is compared with a method for preparing a polyurethane powder by mechanical low-temperature crushing in the prior art; In terms of FIG. 2, it can be clearly obtained that the polyurethane powder prepared by the method disclosed in the present invention has a regular spherical shape, and powder agglomeration does not occur.
  • NCO isocyanate
  • Step 2 Dissolve 2g of surfactant in 20g of n-heptane (that is, non-aqueous medium), add to the prepolymer, adjust the stirring speed to 400rad / min, and stir for 5min, then add 80g of n-heptane to dilute;
  • Step 3 Then slowly add 5.5 g of 1,4-butanediol (ie, a chain extender) to perform a chain extension reaction between 60-85 ° C;
  • 1,4-butanediol ie, a chain extender
  • thermoplastic polyurethane powder As shown by the infrared in FIG. 6 and FIG. 7, the isocyanate (NCO) residue of a commercial polyurethane powder is relatively large, which affects the product quality.
  • the infrared of Example 1 shows that the isocyanate (NCO) reaction is complete and the product storage and processing are stable.
  • thermoplastic polyurethane powder obtained by the above method has excellent rapid sintering and fusion characteristics when laser irradiation and / or other heat sources are heated.
  • the mechanical properties of the obtained product when used in additive manufacturing are better than polyurethane materials with similar chemical structures but prepared by other methods. .
  • a thermoplastic polyurethane powder having a particle size that can be adjusted according to the use requirements can be prepared.
  • the method disclosed in the present application can prepare a thermoplastic polyurethane powder whose particle size can be adjusted according to use requirements.
  • Additive-manufactured thermoplastic polyurethane powder can be used in the fields of powder coating industry, plastic modification industry, powder-based additive manufacturing, foamable polyurethane elastomer and the like.
  • the polyurethane powder can be used in powder coating industry, plastic modification industry, powder-based additive manufacturing, and can be developed. Foam polyurethane elastomers and other fields.
  • qualifiers similar to "first” and “second” appearing in this article do not refer to the limitation of chronological order, quantity, or importance, but merely to limit a technology in this technical solution. A feature is distinguished from another technical feature. Likewise, the qualifiers similar to “ ⁇ ” appearing in this article do not refer to the limitation on quantity, but describe the technical features that have not appeared in the previous text. Similarly, modifiers similar to "about” and “approximately” appearing before numerals in this article usually include the numerals, and their specific meanings should be understood in the context of context. Similarly, unless it is a noun modified by a specific quantitative quantifier, it should be regarded as including both the singular form and the plural form in this article. This technical solution can include both the singular and the plural technical features. Technical characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明公开了一种非水相悬浮聚合制备热塑性聚氨酯粉末的方法及利用该方法制备的聚氨酯粉末。此种球形聚氨酯粉末流动性好,熔结速度快,其物理化学性能和粒径大小可根据使用需求进行调节,可广泛应用于粉末涂料工业、塑料改性工业、粉末基增材制造、可发泡聚氨酯弹性体。

Description

非水相悬浮聚合制备热塑性聚氨酯粉末的方法及利用该方法制备的聚氨酯粉末 技术领域
本发明属于聚氨酯制备领域,具体地,涉及一种非水相悬浮聚合制备热塑性聚氨酯粉末的方法及其利用该方法制备的聚氨酯粉末。
背景技术
热塑性聚氨酯(TPU)已成为重要的热塑性弹性体材料之一。热塑性聚氨酯属于线性嵌段共聚物,包含硬段和软段,硬段由二元醇和二异氰酸酯组成,软段由聚酯二元醇或聚醚二元醇组成。硬段作为物理交联和增强填充剂,为TPU提供强度,软段为TPU提供弹性和韧性。通过调节软硬段的组成和相混合程度,可以实现非常宽范围的性能,使得TPU的通用性很高。
热塑性聚氨酯的综合优异性能使得其在粉末基增材制造也可使用。但是,现有技术中,如公开号为CN106103527A的中国发明专利,披露了热塑性聚氨酯粉末是由挤出造粒后的TPU粉末经液氮冷冻,粉碎研磨制得,这种制备方法需要消耗大量的液氮,制备成本高,所得TPU粉末是不规则形状,粒径分布宽,不具有适当的粒度分布;在用于粉末基增材制造过程中,不规则性的粉末形态会造成产品机械性能的下降;挤出法的TPU粉末结构控制困难。
目前市场上商业销售的利用机械破碎法得到的聚氨酯粉末中包含较多的异氰酸酯(NCO)活性基团,在用于粉末基增材制造过程中,烧结此TPU粉末需要提高激光的能量,降低激光扫描的速度,该技术所制造的聚氨酯材料不具备规则球形和良好的流动性,存在粉末团聚现象,不满足增材制造中对易加工性的需求。并且该法不能够生产出具有完美热塑性的能够快速烧结的聚氨酯粉末。在用于增材制造中,不能烧结不能满足更高的机械性能的要求。
图1为现有技术中采用机械低温破碎制备的不规则聚氨酯粉末的光学显微图。
中国专利CN104910609A公开了一种用于3D打印的聚氨酯复合材料及其制备方法和用途,其特征是将聚氨酯通过机械研磨法、冷冻粉碎法、溶剂沉淀法或喷雾干燥法,工艺环节繁杂,且反应介质难以回收利用,造成生产成本高企,难以低成本精确调控聚氨酯粉末的粒径和粒径范围分布。并且该法所得到的产品不满足增材制造中对材料的机械加工性能的需求。
中国专利CN107083226A公开了一种利用聚氨酯预聚体反相悬浮聚合法制备聚氨酯粉末胶粘剂的工艺,其工艺适用于胶粘剂,专利当中不涉及且难以得到具有良好烧结性能的增材制造材料。
中国专利CN106366635A公开了一种TPU弹性体,采用硬脂酸钙,硅石,碳酸钙中的一种或多种为隔离剂,但是现有技术中并未公开在溶液中直接使用隔离剂获得热塑性聚氨酯粉末的技术方案。此专利中公开的方法制造聚氨酯材料的过程中,很难连续对异氰酸酯(NCO)的值进行监控,因而最终产物中异氰酸酯(NCO)反应基团存在明显的残留,造成产品性能不稳定,无法保证作为材料使用时机械性能的稳定性。
有鉴于此,针对现有聚氨酯粉末制备过程中的上述缺点,研究适合增材制造法的制备热塑性聚氨酯粉末的方法,是业内相关技术人员亟待解决的一项课题。
发明内容
本发明解决的技术问题是:针对上述现有技术中的缺陷,该技术方案中保证聚氨酯粉末具有热塑性,能够快速烧结,同时具有规则球形。
该技术方案是一种非水相悬浮聚合制备热塑性聚氨酯粉末的方法,所述非水相介质是对异氰酸酯化学反应惰性及端异氰酸基聚氨酯预聚体和基于其合成的热塑性聚氨酯粉末的难溶溶剂,包括以下步骤:
步骤1:由二元醇和二异氰酸酯制备端异氰酸酯基聚氨酯预聚体;
步骤2:使所述端异氰酸基聚氨酯预聚体均匀分散与溶有表面活性剂的所述非水相介质中;
步骤3:加入扩链剂进行聚合。
步骤1特征:
a.反应釜由惰性气体保护;
b.将二异氰酸酯投入到反应釜中并升温至二异氰酸酯融化,开启搅拌;
c.将经脱水后的二元醇加入反应釜,保持合适的反应速度和混合效率;
d.反应一定时间后,取样测试端异氰酸基聚氨酯预聚体的异氰酸酯(NCO)值,在异氰酸酯(NCO)值接近理论值后,准备进入下一步骤。
其中,端异氰酸基聚氨酯预聚体中还可包含催化剂,为了所生成产物的稳定性,还可包含抗氧剂,光稳定剂等助剂;
在另一优选例中,所述二异氰酸酯选自下组:亚乙基二异氰酸酯、1,4-四亚甲基二异氰酸酯、1,6-六亚甲基二异氰酸酯、1,12-十二烷二异氰酸酯、或其组合。
在另一优选例中,所述二异氰酸酯选自下组:异佛尔酮二异氰酸酯、1,4-环己烷二异氰酸酯,1-甲基-2,4-环己烷二异氰酸酯、1-甲基-2,6-环己烷二异氰酸酯,4-4’-二环己基甲烷二异氰酸酯、2,4’-二环己基甲烷二异氰酸酯、2-2’-二环己基甲烷二异氰酸酯、或其组合。
在另一优选例中,所述二异氰酸酯选自下组:2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯、2,4’-二苯基甲烷二异氰酸酯、2,2’-二苯基甲烷二异氰酸酯、氨 基甲酸醋改性的4-4’二苯基甲烷二异氰酸酯、2,4’-二苯基甲烷二异氰酸酯、4,4’-二异氰酸根合-1,2-二苯乙烷、1,5-萘二异氰酸酯、或其组合。
在另一优选例中,所述二元醇为聚酯二元醇、聚醚二元醇、或其组合。
在另一优选例中,所述二元醇的具有500-10000g/mol数均分子量,较佳地为500-3000g/mol,更佳地为1000-2000g/mol。
在另一优选例中,所述聚酯二元醇可以由内酯开环或酯交换或具有2-12个碳原子的二元羧酸和2-12个碳原子的二元醇缩聚反应制备得到。
在另一优选例中,所述2-12个碳原子的二元羧酸选自下组:C2-12脂肪二元羧酸、C8-12芳香二元羧酸、或其组合。
在另一优选例中,所述2-12个碳原子的二元羧酸选自下组:乙二酸、丙二酸、丁二酸、戊二酸,己二酸、辛二酸、壬二酸、癸二酸、或其组合。
在另一优选例中,所述2-12个碳原子的二元羧酸选自下组:邻苯二甲酸、间苯二甲酸和对苯二甲酸、或其组合。
在另一优选例中,所述2-12个碳原子的二元醇选自下组:乙二醇、二乙二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、1,10-癸二醇、2-二甲基-1,3-丙二醇、1,3-丙二醇、二丙二醇、或其组合。
在另一优选例中,所述聚酯二元醇选自下组:聚己二酸乙二醇酯、聚己二酸1,4-丁二醇酯、聚己二酸乙二醇-1,4-丁二醇酯、聚己二酸1,6-己二醇-新戊二醇酯、聚己二酸1,6-己二酸-1,6己二醇-1,4-丁二醇酯、聚己内酯、聚碳酸酯、或其组合。
在另一优选例中,所述聚醚二元醇由具有2至4个碳原子的含氧杂环与起始剂分子制备得到。
在另一优选例中,所述2至4个碳原子的氧化烯包括:环氧乙烷、1,2-环氧丙烷、环氧氯丙烷、1,2-环氧丁烷、2,3-环氧丁烷、或其组合。
在另一优选例中,所述起始剂分子选自下组:水,氨基醇、二元醇、或其组合。
在另一优选例中,所述起始剂分子选自下组:聚氧化丙烯醚二元醇、聚四氢呋喃醚二元醇、或其组合。
在另一优选例中,所述步骤1在任选的催化剂、抗氧剂、光稳定剂下进行,以确保反应稳定、高效进行。
在另一优选例中催化剂选自下组:二辛基锡二月桂酸酯、辛酸亚锡、三亚乙基二氨、三乙胺、环烷酸锌、环烷酸铋、或其组合。
在另一优选例中抗氧剂选自下组:2,6-二叔丁基-4-甲基苯酚、四(4-羟基3,5-叔丁基苯基丙酸)季戊四醇酯、3,5-二叔丁基-4-羟基苯丙酸十八酯、双(2,2,6,6-四甲基-4-哌啶)葵二酸 酯、亚磷酸三苯酯、亚磷酸三(壬基苯酯)、酚噻嗪、双(β-3,5-二叔丁基-4-羟基苯基丙酸)己二醇酯、或其组合。
在另一优选例中光稳定剂选自下组:2-羟基-4-甲氧基二苯甲酮、2,2’-二羟基-4-甲氧基二苯甲酮、2,2’-二羟基-而甲氧基二苯甲酮、2-羟基-4-正辛氧基二苯甲酮、2(2’-羟基-3’.5’-二叔戊基苯基)苯并三唑,或其组合。
步骤2的特征:
提供一溶有表面活性剂的非水相悬浮介质,与端异氰酸基聚氨酯预聚体混合,且所述表面活性剂用量为反应树脂总量的0.1%-10%(较佳地为1-8%,更加地1.5%-6%)。
所述端异氰酸基聚氨酯预聚体的分散过程可一步或多步进行。
在另一优选例中,所述一步法包括步骤2.1:将表面活性剂和非水相介质溶解好之后一次加入到端异氰酸基聚氨酯预聚体中搅拌分散。
在另一优选例中,所述一步法包括步骤2.2:将端异氰酸基聚氨酯预聚体加入到混合好表面活性剂的非水相介质中搅拌分散。
在另一优选例中,所述多步法包括以下步骤:
步骤2.3.1:将预溶有表面活性剂的非水相介质先加入到端异氰酸基聚氨酯预聚体中,搅拌分散至所需粒径;
步骤2.3.2:将步骤2.3.1获得的混合物中分一次或多次与剩余所需的非水相介质或溶有表面活性剂的非水相介质混合。
在混合操作中,可以根据反应条件,选择将所述混合物分次加入剩余所需的非水相介质或溶有表面活性剂的非水相介质中;也可以将剩余所需的非水相介质或溶有表面活性剂的非水相介质加入所述混合物中,或;也可以将所述混合物与剩余所需的非水相介质或溶有表面活性剂的非水相介质分次加入一另取的反应釜中进行混合操作。
在另一优选例中,所述多步法包括以下步骤:
步骤2.4.1:将端异氰酸基聚氨酯预聚体先加入到预溶有表面活性剂的非水相介质中,搅拌分散至所需粒径;
步骤2.4.2:将步骤2.4.1获得的混合物中分一次或多次与剩余所需的端异氰酸基聚氨酯
预聚体混合。
在混合操作中,可以根据反应条件,选择将所述混合物分次加入剩余所需的端异氰酸基聚氨酯预聚体中;也可以将剩余所需的端异氰酸基聚氨酯预聚体加入所述混合物中;也可以将所述混合物与剩余所需的端异氰酸基聚氨酯预聚体分次加入一另取的反应釜中进行混合操作。
多步法不限于上述所列的混合操作,可根据反应需求调整混合方式。
步骤3的特征:在扩链过程中,应该控制反应温度和扩链剂的加入速度。
扩链过程是一个放热过程,反应温度高,扩链反应速度越快,放热就越厉害,在悬浮聚合工艺中是很容易导致爆聚。同理,扩链剂的加入速度越快,反应放热也越快。
在另一优选例中,所述扩链剂选自下组:具有2至14个碳原子的脂肪族二元醇,较佳地为乙二醇、二乙二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、1,10-癸二醇、2-二甲基-1,3-丙二醇、1,3-丙二醇、二丙二醇、或其组合。
本发明的第二个方面解决的问题是,控制热塑性聚氨酯材料的分子量,保证聚氨酯粉末具有热塑性,能够快速烧结。
在另一优选例中,在扩链剂扩链端异氰酸酯基聚氨酯预聚体过程中加入封端剂。在聚氨酯合成过程中,封端剂的加入可以控制聚氨酯产物的分子量,防止未反应的异氰酸基进一步发生有害的副反应。
所述封端剂可选自下组:乙醇、丙醇、丁醇、2-乙基己醇、辛醇、十二烷醇、硬脂醇、各种戊醇、环己醇、乙二醇单甲基醚或其组合。
在另一优选例中,所述封端剂可选自下组:二丁胺、N-甲基硬脂胺、环己胺或其组合。
本发明的第三个方面解决的问题是,减少粉末在干燥过程中的结块和加快干燥速度,改善粉体流动能力,保证聚氨酯粉末制备工艺的经济性和最终制品的易加工性。
在另一优选例中,还包括以下步骤:
在扩链反应完成之后,
(1)加入隔离剂
(2)分离出热塑性聚氨酯粉末
(3)清洗、干燥所述热塑性聚氨酯粉末
本发明中所述隔离剂为一种粒度小于10μm的粉化无机物和/或粉化有机物。其中粉化无机物选自二氧化硅、玻璃状磷酸盐、玻璃状硼酸盐、滑石、云母、高岭土、硅酸钙、硅酸镁、氧化铝或其组合;粉化有机物选自下组:硬脂酸酯及其金属皂盐、脂肪酸酰胺、脂肪酸酯酰胺或其组合。本发明中隔离剂的量可根据所选具体隔离剂的性质和粒度以及与聚氨酯粉末材料的化学性质和/或粒径不同而异。
隔离剂的加入有助于所述热塑性聚氨酯粉末分离、清洗、干燥。在增材制造过程中,热塑性聚氨酯粉末的良好流动及平整是十分重要的,该方法生产的粉末相较于现有技术中能够更好的适用于增材制造。
本发明中隔离剂的加入方式可直接以粉末方式加入到反应釜中,也可先和非水相介质配成母液,然后加入反应釜中。
本发明中隔离剂的用量不超过聚氨酯粉末总量的1%,优选为聚氨酯粉末总量的 0.02%-1%。
本发明中隔离剂的加入方式可以有效减少粉尘污染,混合速度快,混合均匀。
另一优选例,所述热塑性聚氨酯粉末分离过程,所述分离过程可以通过离心或压滤方式完成。
另一优选例,所述清洗是用非水相介质去除表面活性剂,所述干燥是去除聚氨酯粉末残留的非水相介质。
根据上述制备聚氨酯粉末的方法,制备出的具有规则球形的聚氨酯粉末,所述聚氨酯粉末的粒径(D50)范围为5-300μm,较佳地为20-150μm,较佳地为20-100μm,更佳地为20-50μm。
在另一优选例中,所述聚氨酯粉末中,至少95%的聚氨酯粉末具有10-200μm的粒径。
根据上述的聚氨酯制备方法得到的聚氨酯粉末可用于粉末涂料工业,塑料改性工业,粉末基增材制造,可发泡聚氨酯弹性体。
与现有技术相比较,本发明所提供的技术方案具有以下优点:
1.本发明的方法采用非水相介质进行制备,且该方法无需采用机械研磨法、冷冻粉碎法获得粉末,加工环节少,反应条件温和,非水相介质可以回收节约生产成本;
2.本发明的方法中,可精确控制各步骤的反应物比例关系以及反应条件,最终精确调控聚氨酯粉末的粒径和粒径范围分布;
3.本发明的方法得到的热塑性聚氨酯粉末,在进行粉末基增材制造时能够快速烧结,最终制品的机械性能优异;
4.本发明的方法得到的热塑性聚氨酯粉末异氰酸酯(NCO)反应基团基本无残留,产品稳定,不会影响最终加工性能;
5.本发明采用非水相悬浮聚合法制备热塑性聚氨酯粉末,无需采用挤压等机械手段,制得的聚氨酯粉末为规则的球形,不会出现粉末团聚现象。
附图说明
关于本发明的优点与精神可以通过以下的发明详述及所附图得到进一步的了解。
图1是现有技术中利用机械低温破碎制备的不规则聚氨酯粉末的光学显微图;
图2是本发明所提供的利用非水相悬浮聚合制备的聚氨酯粉末的光学显微图;
图3是本发明实施例1所提供的利用非水相悬浮聚合制备的聚氨酯粉末的光学显微图;
图4是本发明实施例2所提供的利用非水相悬浮聚合制备的聚氨酯粉末的光学显微图;
图5是本发明实施例3所提供的利用非水相悬浮聚合制备的聚氨酯粉末的光学显微图;
图6是发明实施例1所提供的利用非水相悬浮聚合制备的聚氨酯粉末的红外图;
图7是某商业品聚氨酯粉末的红外图。
具体实施方式
下面结合附图详细说明本发明的具体实施例。然而,应当将本发明理解成并不局限于以下描述的这种实施方式,并且本发明的技术理念可以与其他公知技术或功能与那些公知技术相同的其他技术组合实施。
术语解释:
本发明中,用于增材制造的热塑性聚氨酯也可包括热塑性聚氨酯的组合物,即包含一种或多种粒径的聚氨酯粉末。
封端剂:本发明中,封端剂用于控制液滴内热塑性聚氨酯材料的分子量。
隔离剂:本发明中的隔离剂可以为粉化无机物质和/或粉化有机物,可减少粉末在干燥过程中的结块和加快干燥速度,改善粉体流动能力。
难溶溶剂:是指对异氰酸酯化学反应惰性及端异氰酸基聚氨酯预聚体和基于其合成的热塑性聚氨酯粉末均难溶或者存在极少溶解或溶胀的情况下,但能够方便经济的洗去或脱除的溶剂。
热塑性:特指在激光辐照和/或其他热源加热时材料具有优异的快速烧结熔合特征。
本发明公开的利用非水相介质悬浮聚合制备聚氨酯粉末的方法,可以得到不同于现有技术中的热塑性聚氨酯粉末。图2是本发明所提供的利用非水相悬浮聚合制备的聚氨酯粉末的光学显微图;利用非水相悬浮聚合制备聚氨酯粉末的方法相较于现有技术采用机械低温破碎制备聚氨酯粉末的方法而言,从图2可以清楚得到本发明公开的方法制备的聚氨酯粉末具有规则的球形,不会出现粉末团聚现象。
以下的实施例中,采用本申请中的方法说明其实施的具体方式,但不因此而限制本发明。
实施例1
利用非水相介质悬浮聚合制备聚氨酯粉末的方法的具体实施如下:
步骤1:在装有机械搅拌、温度计和真空接口的三口圆底烧瓶中,加入60.0g Mn=1000的聚己二酸1,4-丁二醇酯二元醇(即:二元醇),0.4g抗氧剂245和0.2g抗氧剂126,110℃真空脱水约2小时;然后加入34.05g MDI(即:二异氰酸酯),在60-85℃之间进行反应,间隙取样,用二正丁胺滴定法测定异氰酸酯(NCO)的变化,直到异氰酸酯(NCO)含量接近理论值;
步骤2:将2g表面活性剂溶解在20g正庚烷(即:非水相介质)中,加入预聚体中,调节搅拌转速至400rad/min,搅拌5min后,加入80g正庚烷稀释;
步骤3:随后缓慢滴加5.5g 1,4-丁二醇(即:扩链剂)在60-85℃之间进行扩链反应;
反应40min后,加入少量无水乙醇(即:封端剂)封端。加入0.2g气相白炭黑。将温度降至室温后,将产物过滤,用正己烷洗涤三次,在45℃下真空干燥,得到热塑性聚氨酯粉末, 如图3所示,粒径为50-100μm。如图6和图7的红外所示,某商业品聚氨酯粉末的异氰酸酯(NCO)残留较大,影响产品质量,而实施例1的红外显示异氰酸酯(NCO)反应完全,产品存储、加工稳定。
上述方法得到的热塑性聚氨酯粉末在激光辐照和/或其他热源加热时具有优异的快速烧结熔合特征,所得产物用于增材制造时的机械性能优于化学结构近似但由其他方法制备的聚氨酯材料。
实施例2
实施例2中公开的非水相介质悬浮聚合制备聚氨酯粉末的方法和实施例1中方法相比,不同之处在于,二元醇选用Mn=2000的聚碳酸酯二元醇;非将1.5g表面活性剂溶解于正庚烷中;搅拌转速为200rad/min;得到的热塑性聚氨酯粉末的粒径为100-180μm,如图4所示。通过本申请公开的方法可以制备粒径大小可根据使用需求进行调节的热塑性聚氨酯粉末。
实施例3
实施例3中公开的非水相介质悬浮聚合制备聚氨酯粉末的方法和实施例1公开的方法相比,不同之处在于,二元醇选用65g的Mn=1500的聚己二酸乙二醇-1,4-丁二醇酯;MDI取28.75g,搅拌转速调整为500rad/min;得到热塑性聚氨酯粉末粒径为20-70μm。如图5所示,通过本申请公开的方法可以制备粒径大小可根据使用需求进行调节的热塑性聚氨酯粉末。
实施例4
实施例4中公开的非水相介质悬浮聚合制备聚氨酯粉末的方法和实施例1中方法相比,不同之处在于,二元醇选用60.0g Mn=1000的聚四氢呋喃醚二醇,可以获得适合增材制造的热塑性聚氨酯粉末,同时该聚氨酯粉末可以用于粉末涂料工业,塑料改性工业,粉末基增材制造,可发泡聚氨酯弹性体等领域中。
实施例5
实施例5中公开的非水相介质悬浮聚合制备聚氨酯粉末的方法和实施例1中方法相比,不同之处在于,二元醇选用30.0g Mn=1000的聚四氢呋喃醚二醇,30克聚己二酸1,4-丁二醇酯二元醇,可以获得适合增材制造的热塑性聚氨酯粉末,同时该聚氨酯粉末可以用于粉末涂料工业,塑料改性工业,粉末基增材制造,可发泡聚氨酯弹性体等领域中。
如无特别说明,本文中出现的类似于“第一”、“第二”的限定语并非是指对时间顺序、数量、或者重要性的限定,而仅仅是为了将本技术方案中的一个技术特征与另一个技术特征相区分。同样地,本文中出现的类似于“一”的限定语并非是指对数量的限定,而是描述在前文中未曾出现的技术特征。同样地,本文中在数词前出现的类似于“大约”、“近似地”的修饰语通常包含本数,并且其具体的含义应当结合上下文意理解。同样地,除非是有特定的数量量词修饰的名词,否则在本文中应当视作即包含单数形式又包含复数形式,在该技术方案中即可以包括单数个该技术特征,也可以包括复数个该技术特征。
本说明书中所述的只是本发明的较佳具体实施例,以上实施例仅用以说明本发明的技术方案而非对本发明的限制。凡本领域技术人员依本发明的构思通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在本发明的范围之内。

Claims (20)

  1. 一种非水相介质悬浮聚合制备热塑性聚氨酯粉末的方法,其特征在于:所述非水相介质是对异氰酸酯化学反应惰性及端异氰酸基聚氨酯预聚体和基于其合成的热塑性聚氨酯粉末的难溶溶剂,其中包括以下步骤:
    步骤1:由二元醇和二异氰酸酯制备端异氰酸基聚氨酯预聚体;
    步骤2:使所述端异氰酸基聚氨酯预聚体均匀分散于溶有表面活性剂的所述非水相介质中,所述表面活性剂是对被分散端异氰酸酯基预聚体和上述非水相介质具有两亲性的表面活性剂;
    步骤3:加入扩链剂进行聚合。
  2. 如权利要求1所述的方法,其特征在于:在所述步骤1中端异氰酸基聚氨酯预聚体制备过程中,端异氰酸基聚氨酯预聚体中还可包含催化剂,抗氧剂,光稳定剂。
  3. 如权利要求1所述的方法,其特征在于:在所述步骤2中端异氰酸基聚氨酯预聚体分散过程可采用一步法或多步法进行。
  4. 如权利要求3所述的方法,其特征在于:所述一步法包括步骤2.1:将表面活性剂和非水相介质溶解好之后一次加入到端异氰酸基聚氨酯预聚体中搅拌分散。
  5. 如权利要求3所述的方法,其特征在于:所述一步法包括步骤2.2:将端异氰酸基聚氨酯预聚体加入到混合好表面活性剂的非水相介质中搅拌分散。
  6. 如权利要求3所述的方法,其特征在于:所述多步法包括以下步骤:
    步骤2.3.1:将预溶有表面活性剂的非水相介质先加入到端异氰酸基聚氨酯预聚体中,搅拌分散至所需粒径;
    步骤2.3.2:将步骤2.3.1获得的混合物中分一次或多次与剩余所需的非水相介质或溶有表面活性剂的非水相介质混合。
  7. 如权利要求3所述的方法,其特征在于:所述多步法包括以下步骤:
    步骤2.4.1:将端异氰酸基聚氨酯预聚体先加入到预溶有表面活性剂的非水相介质中,搅拌分散至所需粒径;
    步骤2.4.2:将步骤2.4.1获得的混合物中分一次或多次与剩余所需的端异氰酸基聚氨酯预聚体混合。
  8. 如权利要求1所述的方法,其特征在于:所述步骤3中所述扩链剂为官能度为二的小分子二元醇。
  9. 如权利要求1所述的方法,其特征在于:还包括以下步骤:
    在扩链剂扩链端异氰酸基聚氨酯预聚体过程中加入封端剂,所述封端剂用于强制终止所述扩链剂的扩链过程。
  10. 如权利要求9所述的方法,其特征在于:所述的封端剂为官能度为一的醇、酚或胺。
  11. 如权利要求1所述的方法,其特征在于:还包括以下步骤:
    在扩链反应完成之后,
    (1)加入隔离剂;
    (2)分离出热塑性聚氨酯粉末;
    (3)清洗、干燥所述热塑性聚氨酯粉末。
  12. 如权利要求11中所述的方法,其特征在于:步骤(1)中所述隔离剂以干粉形式或预分散母液形式加入。
  13. 如权利要求11中所述的方法,其特征在于:步骤(1)中所述隔离剂为粉化无机物质和/或粉化有机物,其用量不超过聚氨酯粉末总量的1%。
  14. 如权利要求11中所述的方法,其特征在于:步骤(2)所述热塑性聚氨酯粉末分离过程,所述分离过程可以通过离心或压滤方式完成。
  15. 如权利要求11中所述的方法,其特征在于:步骤(3)所述清洗是用非水相介质去除表面活性剂。
  16. 如权利要求11中所述的方法,其特征在于:步骤(3)所述干燥是去除聚氨酯粉末残留的非水相介质。
  17. 一种根据权利要求1-16任一项所述方法制备的聚氨酯粉末,其特征在于:所述聚氨酯粉末为规则球形。
  18. 一种根据权利要求1-16任一项所述方法制备的聚氨酯粉末,其特征在于:所述聚氨酯粉末的D50范围为5-300μm。
  19. 一种根据权利要求17所述的聚氨酯粉末,其特征在于:所述得到的聚氨酯粉末可用于粉末涂料工业,塑料改性工业,粉末基增材制造,可发泡聚氨酯弹性体。
  20. 一种根据权利要求18所述的聚氨酯粉末,其特征在于:所述得到的聚氨酯粉末可用于粉末涂料工业,塑料改性工业,粉末基增材制造,可发泡聚氨酯弹性体。
PCT/CN2019/095194 2018-07-09 2019-07-09 非水相悬浮聚合制备热塑性聚氨酯粉末的方法及利用该方法制备的聚氨酯粉末 WO2020011144A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810747664.2 2018-07-09
CN201810747664 2018-07-09
CN201910612261 2019-07-08
CN201910612261.1 2019-07-08

Publications (2)

Publication Number Publication Date
WO2020011144A1 true WO2020011144A1 (zh) 2020-01-16
WO2020011144A9 WO2020011144A9 (zh) 2020-05-22

Family

ID=69142103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095194 WO2020011144A1 (zh) 2018-07-09 2019-07-09 非水相悬浮聚合制备热塑性聚氨酯粉末的方法及利用该方法制备的聚氨酯粉末

Country Status (2)

Country Link
CN (1) CN110903455B (zh)
WO (1) WO2020011144A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107256A (en) * 1977-04-18 1978-08-15 The Firestone Tire & Rubber Company Suspension polymerization of polyurethanes and spin-molding the powder product thereof
JPH04161416A (ja) * 1990-10-24 1992-06-04 Sumitomo Seika Chem Co Ltd 球状ポリウレタン粒子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005500A1 (de) * 2006-02-07 2007-08-09 Degussa Gmbh Verwendung von Polymerpulver, hergestellt aus einer Dispersion, in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
US20170129177A1 (en) * 2014-06-23 2017-05-11 Covestro Deutschland Ag Use of thermoplastic polyurethane powders
CN107083226B (zh) * 2017-06-13 2020-06-02 吉林大学珠海学院 一种利用聚氨酯预聚体反相悬浮聚合法制备聚氨酯粉末胶粘剂的工艺
CN108456504B (zh) * 2018-03-06 2021-03-12 吉林大学珠海学院 一步法合成的单组份聚氨酯粉末胶粘剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107256A (en) * 1977-04-18 1978-08-15 The Firestone Tire & Rubber Company Suspension polymerization of polyurethanes and spin-molding the powder product thereof
JPH04161416A (ja) * 1990-10-24 1992-06-04 Sumitomo Seika Chem Co Ltd 球状ポリウレタン粒子の製造方法

Also Published As

Publication number Publication date
CN110903455A (zh) 2020-03-24
CN110903455B (zh) 2022-12-02
WO2020011144A9 (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
JP6559893B2 (ja) 熱可塑性ポリウレタンエラストマー、並びに、当該エラストマーの調製方法、使用、および製品
JP6225190B2 (ja) ジアミン懸濁液をホスゲン化することによりジイソシアネートを生成する方法
JP2002535468A (ja) 発泡熱可塑性ポリウレタン
EP0392285A2 (en) Method of direct manufacture of pigmented polyurethane powder
EP0562394A1 (de) Expandierbare, treibmittelhaltige Polyurethan-Pulverzubereitungen sowie ihre Verwendung zur Herstellung geschäumter Polyurethan-Formkörper
JPH04100815A (ja) 粉末状熱硬化性反応混合物の製造方法並びにポリウレタンポリ尿素の製造法
EP0010675B1 (de) Verfahren zur Aufarbeitung von Toluylendiisocyanat-Destillationsrückständen und Verwendung der Verfahrensprodukte als Pressmassen oder als reaktive Füllstoffe, insbesondere bei der Herstellung von Platten und Formteilen
US4311800A (en) Process for working up cross-linked isocyanate distillation residues containing urea groups and use of the products of the process as starting components for the production of synthetic resins
EP2511313B1 (en) Urethane resin particles for slush molding
WO2020011144A1 (zh) 非水相悬浮聚合制备热塑性聚氨酯粉末的方法及利用该方法制备的聚氨酯粉末
JP2018070850A (ja) ポリウレタン多孔粒子の製造方法
JP5681498B2 (ja) ウレタン樹脂粒子
JP2011140644A (ja) スラッシュ成形用ウレタン樹脂粒子
JPH0543678A (ja) 芳香族ポリカーボネートの粉砕方法及びそれによつて得られた芳香族ポリカーボネート粉末
EP0394789A1 (en) Continuous process for the production of powdered polyisocyanate addition products and the powders produced therefrom
JP2001011301A (ja) 粉末熱可塑性ポリウレタン樹脂組成物、及びこれを用いた成形方法、並びにこれを用いた表皮材
JP5409365B2 (ja) ポリウレタン微粒子の製造方法及びポリウレタン微粒子
JP3482808B2 (ja) 熱可塑性ポリウレタン系球状粉末体の製造方法
JP3095172B2 (ja) 球状ポリウレタン粒子の製造方法
JP6091947B2 (ja) スラッシュ成形用熱可塑性ウレタン(ウレア)樹脂粒子組成物
JPH05170927A (ja) ポリウレタン樹脂粉末の製造方法
JPH03152137A (ja) ポリエステル多孔体、その製造法及びポリエステルの固相重合法
JP2024007070A (ja) スラッシュ成形用熱可塑性樹脂組成物粒子の製造方法
EP0384249B1 (de) Verwendung von Polyisocyanat-Polyadditionsprodukten zur Regulierung der Korngrösse organischer Materialien
SU1130578A1 (ru) Способ получени деталей дл низа обуви

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833896

Country of ref document: EP

Kind code of ref document: A1