WO2020010808A1 - 风扇 - Google Patents

风扇 Download PDF

Info

Publication number
WO2020010808A1
WO2020010808A1 PCT/CN2018/123809 CN2018123809W WO2020010808A1 WO 2020010808 A1 WO2020010808 A1 WO 2020010808A1 CN 2018123809 W CN2018123809 W CN 2018123809W WO 2020010808 A1 WO2020010808 A1 WO 2020010808A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
motor
wind
fan
ratio
Prior art date
Application number
PCT/CN2018/123809
Other languages
English (en)
French (fr)
Inventor
郭润明
崔世强
吴永强
张旭升
方与
康瑞祥
易榕
Original Assignee
广东美的环境电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的环境电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的环境电器制造有限公司
Priority to US17/057,694 priority Critical patent/US11408431B2/en
Priority to JP2021517884A priority patent/JP7160500B2/ja
Priority to KR1020207034401A priority patent/KR102500709B1/ko
Publication of WO2020010808A1 publication Critical patent/WO2020010808A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/007Axial-flow pumps multistage fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/024Multi-stage pumps with contrarotating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/005Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by changing flow path between different stages or between a plurality of compressors; Load distribution between compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of household appliances, and in particular, to a fan.
  • Electric fans can be divided into ceiling fans, table fans, floor fans, wall fans, ventilation fans, air conditioning fans, etc. according to different functions and forms; according to different ways of entering and leaving air, they can be divided into axial fans, cross-flow fans, centrifugal fans Fans and cross-flow fans.
  • the domestic table fans and floor fans are mostly axial fans.
  • the domestic table fans and floor fans are relatively small in air volume, and the air volume is relatively large in the high-end position, but the high-level air volume will generate a large noise.
  • the use environment is usually indoor, and the impact of noise will be greater.
  • the axial-flow fan has a single air outlet mode, which cannot be applied to the situation where the air supply distance is long and the situation where the air supply distance is short.
  • the air supply distance of ordinary household floor fans is difficult to blow from one side of the living room to the other side of the living room, especially when the wind is out, the air supply distance is closer;
  • the main purpose of this application is to propose a fan, which aims to solve the problem that the current electric fan has a single air supply mode and cannot specifically adjust the air volume and air supply distance according to actual needs.
  • the fan proposed in this application includes a bracket, a first motor, a first wind blade, a second motor, a second wind blade, and an electric control board; wherein the first motor and the second motor are both installed
  • the first motor and the second motor are coaxially disposed on the bracket, and the first motor and the second motor respectively have a first rotating shaft and a second rotating shaft.
  • the first wind blade is mounted on the first rotating shaft and the second wind blade.
  • the electric control board electrically connects the first motor and the second motor and controls the The first motor rotates relative to the second motor, and the electric control board includes a speed ratio adjustment module for adjusting the speed ⁇ 1 of the first motor and the speed of the second motor. ⁇ 2 ratio
  • the electric control board further includes a steering adjustment module for synchronously switching the rotation directions of the first motor and the second motor.
  • the steering adjustment module includes a protection switch to cut off the steering adjustment module when the first motor and the second motor are operating.
  • the electronic control board further includes a gear adjustment module, the gear adjustment module includes an editor and a memory capable of editing the gear; the gear adjustment module further includes a plurality of preset gear selection keys and At least one custom gear selection key.
  • the number of blades of the first wind blade is n 1
  • the number of blades of the second wind blade is n 2
  • the twist angle of the first wind blade is ⁇ 1
  • the twist angle is ⁇ 2
  • the product of the ratio of the number of blades of the first blade to the number of blades of the second blade and the ratio of the twist angle of the first blade to the second blade is defined as the first difference Coefficient, the first difference coefficient
  • the ratio of the rotation speed of the first motor to the second motor And the first difference coefficient k 1 ⁇ [0.8, 1.1].
  • the ratio of the rotation speed of the first motor to the second motor And the first difference coefficient k 1 ⁇ [0.7, 0.8) ⁇ (1.1, 1.2].
  • the blade length of the first blade is l 1 and the area is S 1
  • the blade length of the second blade is l 2 and the area is S 2
  • the blade area of the first blade is defined
  • the product of the ratio of the blade length of the first blade and the ratio of the blade area of the second blade to the blade length of the second blade is the second difference coefficient, then the second difference coefficient
  • the second difference coefficient k 2 ⁇ [0.8, 1.2].
  • the ratio of the rotation speed of the first motor to the second motor And the second difference coefficient k 2 ⁇ [0.9, 1.1].
  • the ratio of the rotation speed of the first motor to the second motor The second difference coefficient k 2 ⁇ [0.8, 0.9) ⁇ (1.1, 1.2).
  • the fan further includes a third wind blade, and the third wind blade is installed on the first rotating shaft.
  • the third wind blade is disposed outside the first wind blade, and a blade length of the third wind blade is shorter than a blade length of the first wind blade.
  • the fan further includes a fourth wind blade, and the fourth wind blade is mounted on the second rotating shaft.
  • the fourth wind blade is disposed between the first wind blade and the second wind blade, and a blade length of the fourth wind blade is shorter than a blade length of the second wind blade.
  • the technical solution of the present application adopts a mutually independent first motor and a second motor to drive the rotation of the first blade and the second blade, and adjusts the speed ratio of the first motor to the second motor through a central control system, so that
  • the fan of the present application has the ability to output air from a soft wind that quickly diffuses the air to the long-distance air that is gathered by the air, and can quickly adjust between different air modes according to demand.
  • FIG. 1 is a schematic diagram of an explosion structure of a fan of the present application
  • FIG. 2 is a schematic structural diagram of a side surface of a fan blade and a motor of the present application
  • FIG. 3 is a schematic structural diagram of a fan blade and a motor of the fan of the present application.
  • FIG. 4 is a schematic structural diagram of a motor and a fan according to another embodiment of the fan of the present application.
  • Label name Label name 100 support 301 Second wind leaf 200 First motor 302 Second shaft 201 First wind leaf 400 Third wind leaf
  • the directional indication is only used to explain in a specific posture (as shown in the drawings) (Shown) the relative positional relationship and movement of each component, etc., if the specific posture changes, the directivity indication will change accordingly.
  • Household floor fans, table fans, window fans and other axial flow fans use a motor to drive the inclined wind blades fixed on the motor shaft to rotate, so as to drive the air toward the motor's axial direction.
  • This fan has a simple structure. The way of air output is direct and the application is the most common. However, the air directly pushed by the fan blades of this fan has the momentum in the axial direction, and also the momentum perpendicular to the rotation axis caused by the friction between the blades and the air. Among them, the momentum of the airflow perpendicular to the rotation axis will diffuse the airflow.
  • the cross-section of the airflow beam will increase, and the resistance encountered when moving in the axial direction will increase sharply, resulting in a shorter effective air supply distance in the axial direction.
  • the effective air supply distance in the axial direction is closer than the air supply distance when the air is discharged in one direction.
  • the wind speed detection test was performed on the “Medical FS40-12DR” floor fan. It is basically the same as other floor fans.
  • the maximum wind speed of the beautiful FS40-12DR is about 4m / s. Turn on the fan, adjust it to the highest position, and place the air flow meter at different distances in front of the fan axis to detect the wind speed.
  • the data is as follows:
  • the fan attenuation is non-linear attenuation, the higher the speed, the faster the attenuation, and at 3m to 1.65m / s, while the human body feels the wind, the wind speed is about 1.6m / s.
  • the effective air supply distance of 3m can meet the requirements of most application scenarios, but when the axial fan such as a floor fan is turned on to a high-end position, the noise is relatively large.
  • the comparison test of gear position and noise was performed with "Mid America FS40-12DR" (the higher the gear position, the higher the wind speed).
  • "Midland's FS40-12DR” has good mechanical noise control among similar products. There is almost no noise caused by mechanical vibration or friction of the components during operation. Therefore, the detected noise can be considered to be all from the noise generated by the air flow of the blades.
  • FS40-12DR has three gears, and the noise level corresponding to each gear is detected at two meters from the fan. The data is as follows:
  • category 0 acoustic environment zones referring to areas that require special quietness such as rehabilitation areas
  • the noise during the day is not greater than 50 decibels and the noise at night is not greater than 40 decibels;
  • Medical and health, cultural education, scientific research design, administrative office as the main function, need to keep quiet areas The requirement is that the noise during the day is not greater than 55 decibels, and the noise at night is not greater than 45 decibels.
  • the conventional floor fan with a single motor and single air blade structure cannot ensure a sufficient effective air supply distance while maintaining sufficient quietness.
  • conventional floor fans cannot meet the air supply requirements of some large spaces, such as scenes with large areas such as living rooms.
  • this application proposes a fan.
  • the fan proposed in the present application uses two motors to separately control the two blades to rotate in opposite directions, and the two blades have opposite directions of inclination. Therefore, when the two blades rotate in opposite directions, the directions of the wind are the same.
  • the fan includes a bracket 100, a first motor 200, a first wind blade 201, a second motor 300, a second wind blade 301, and an electric control board.
  • the first motor 200 and the second motor 300 are both mounted on the bracket 100 and arranged coaxially, and the first motor 200 and the second motor 300 have a first rotation shaft 202 and a second rotation shaft, respectively.
  • the first wind blade 201 is installed on the first rotating shaft 202, and the second wind blade 301 is installed on the second rotating shaft 302; the twisting direction of the first wind blade 201 and the second wind The twist direction of the leaf 301 is opposite; the electric control board electrically connects the first motor 200 and the second motor 300 and controls the first motor 200 and the second motor 300 to rotate relative to each other, and the electric control board including the speeds ratio adjustment module, the rotation speed ratio adjustment means for adjusting the rotational speed [omega] 1 of the first motor 200 and second motor 300 of ⁇ 2
  • the first motor 200 drives the first rotating shaft 202 to rotate to drive the first wind blade 201 to rotate; similarly, the second motor 300 drives the second rotating shaft 302 to rotate to drive the second wind blade 301 to rotate.
  • the first motor 200 and the second motor 300 are respectively electrically connected to an electric control board, and the electric control boards separately control the rotation direction and the rotation speed of the first motor 200 and the second motor 300, respectively, so that the first motor 200 and the second motor 300 The direction of rotation remains the opposite.
  • the dual-motor counter-rotating co-current air can cause the air to be superimposed by the axial driving force and the radial driving force to cancel each other, reducing the disturbance of the air flow in the axial direction and making the air flow move forward smoothly.
  • the rotation speed of the two blades is not much different, compared with the single blade, the effect of airflow convergence is obvious, and it can be transmitted to a longer distance.
  • the difference in the rotation speed of the two wind blades will lead to different effects of the fan's wind.
  • the effect of the rotation speed ratio of the first wind blade 201 and the second wind blade 301 on the fan's air output and effective air supply distance the details will be described below.
  • the electric control board includes a speed ratio adjustment module, a speed adjustment module, and a steering adjustment module; wherein the speed ratio adjustment module is used to adjust and fix the ratio of the speed of the first motor 200 to the speed of the second motor 300.
  • the speed regulation module is used to adjust the rotation speeds of the first motor 200 and the second motor 300 synchronously, and the steering adjustment module is used to switch the rotation directions of the first motor 200 and the second motor 300.
  • the steering adjustment module has two adjustment modes, one is the forward rotation mode, and the other is the reverse rotation mode. In the forward rotation mode, the fan outputs the wind in the forward direction, and in the reverse mode, the fan outputs the wind in the reverse direction.
  • the steering adjustment module includes adjustments. Switch and protection switch.
  • the protection switch is used to cut off the steering adjustment module when the fan is working, to prevent the steering adjustment switch from being triggered when the fan is working, to cause damage to the first motor 200 and the second motor 300 in the reverse direction.
  • the power supply mode of the first motor 200 and the second motor 300 is switched to control the fan to forward or reverse the wind.
  • the protection switch is a normally closed switch. When the fan is working, the protection switch is turned on to cut off the power supply to the steering adjustment module. When the fan is powered on and not working, the protection switch is closed and the steering adjustment module can work normally.
  • the two motors separately drive the two wind blades to rotate together to complete the wind.
  • the air output mode depends on the ratio of the speeds of the two motors. Take the wind from the first fan blade 201 side as an example for description.
  • the rotation speed of the first motor 200 is ⁇ 1 and the rotation speed of the second motor 300 is ⁇ 2.
  • the total output power of the first motor 200 and the second motor 300 is maintained Constant, adjust the speed ratio of the first motor 200 and the second motor 300, and test the total air output and effective air supply distance. The results are as follows:
  • the output and effective air supply distance of a single motor fan with the same power are 690m 3 / h and 4m, respectively. At this power, the output and effective air supply distance of the double blades are close to that of a single air blade. After the speed ratio of 200 and the second motor 300 is greater than 2.1, the air volume and effective air supply distance of the dual-spindle counterspin is no longer significantly better than that of the single-spindle.
  • Value should not be greater than 2.1 and not less than 0.7;
  • the values were refined based on the values of 0.7 and 2.1, and the test was performed again.
  • the data are as follows:
  • the rotation directions of the first motor 200 and the second motor 300 can be reversed, that is, the wind can be output from the second motor 300 side. Therefore, in order to obtain a larger air output and a longer effective delivery
  • the wind distance and the speed ratio of the first motor 200 and the second motor 300 can be selected from [0.5, 2].
  • the wind output mode when the first motor 200 and the second motor 300 have a large difference in speed ratio is still taken as an example to specifically study the wind output side of the first motor 200.
  • the above data shows that When the air outlet mode is close to a conventional fan, the focus is on Research.
  • the main parameters of the soft wind mode are the effective air supply distance and divergence angle of the air volume. Study at 0.1 intervals The air output parameters from 0.1 to 0.7, the specific data are as follows:
  • the edge area where the airflow velocity is not less than 2m / s is 1m away from the airflow blades.
  • the boundaries are defined and rounded off to obtain the above divergence angle data.
  • the divergence angle of the outgoing wind is greater than 60 °, which has a certain soft wind effect.
  • the soft wind works best when the value is between 0.1 and 0.3.
  • the soft wind mode is usually used in the case of blowing hair for the elderly or infants in a small bedroom. The fan is closer to the elderly or infants, but it needs a larger air supply area, so the divergent angle of the airflow is required.
  • the electric control board in this embodiment includes a gear adjustment module, and the gear adjustment module includes an editable gear. Position editor and memory; the gear adjustment module further includes a plurality of preset gear selection keys and at least one custom gear selection key.
  • the fan of the present application can implement different air outlet modes. Therefore, in addition to the conventional speed control position, the preset position also includes a position in the air output mode. For example, the preset position includes a soft air mode position.
  • direct wind mode gear preset in soft wind mode Preset in direct mode
  • the preset gear can also be preset in the normal mode, corresponding
  • the gear editor can use the gear editor to customize the gear settings.
  • the editable content includes the total output power and speed ratio. After editing, it is saved in the memory and associated with the custom gear selection key. Customize the direct call selection of the air outlet mode, for example, in a very small bedroom, set Furthermore, it can be adjusted to a suitable air outlet mode with one click.
  • the blades of the fan include flat blades and curved blades. It should be noted that when using flat blades, the steering of the motor is changed by the steering adjustment module. The direction of the wind is opposite. The effect on the wind output is not directly applicable to the foregoing, but needs to be inverted and replaced by the speed ratio of the second blade 301 to the first blade 201 When using curved blades, the steering direction of the motor is changed through the steering adjustment module. The wind direction is opposite, but the effect of the wind is different from that when using flat blades. The ability is reduced, and other aspects are consistent with the above.
  • the technical solution of the present application uses a motor that rotates in opposite directions to drive the first and second blades 201 and 301 with opposite directions of blade rotation to drive air out in the axial direction, and controls the first motor 200 and the first motor through an electric control board.
  • the speed of the two motors 300 is within a certain ratio to adjust the fan's air output mode. For example, the speed ratio of the first air blade 201 and the second air blade 301 is adjusted.
  • it is controlled within the range of [0.9,1.0]
  • the momentum of the airflow perpendicular to the axial direction of the motor can be canceled each other, so that the airflow is more concentrated, the airflow is larger, and the air supply distance is longer, so that it can meet a certain supply.
  • the speed of the first motor 200 and the second motor 300 reduce the speed of the first motor 200 and the second motor 300, thereby reducing the noise of the fan during operation; and the speed ratio of the first fan blade 201 and the second fan blade 301 is controlled by an electronic control board.
  • the first motor can also be adjusted by the speed control module of the electronic control board.
  • the editable gear editor and memory can
  • the ventilation mode often used by users is edited and stored, and it is associated with the custom gear key as a custom gear. After setting, it can be selected with one key without repeating the settings every time it is needed.
  • the number of vanes of the first fan 201 of n 1 In addition to its two fan motor speed will affect the performance than the outside air, the number of vanes of the first fan 201 of n 1, the number of fan blades 301 of the second n 2, the first blades 201
  • the torsional angle ⁇ 1 and the value of the torsional angle ⁇ 2 of the second wind blade 301 and the relationship between each other also have an effect on the wind output effect.
  • more influencing factors affect the fan's air output capacity and it is difficult to calculate specifically, how to combine the relationships of these influencing factors to achieve the optimal design faces theoretical and experimental difficulties.
  • the product of the ratio of the number of blades of the first wind blade 201 to the number of blades of the second wind blade 301 and the ratio of the twist angle of the first wind blade 201 to the twist angle of the second wind blade 301 is defined as the first
  • the first coefficient of difference between the wind blade 201 and the second wind blade 301 defines the ratio of the blade area of the first wind blade 201 to the blade length of the first wind blade 201 and the The product of the ratio of the blade area to the blade length of the second wind blade 301 is a second difference coefficient.
  • the first difference coefficient reflects the ratio of the wind output capacity of the first wind blade 201 and the second wind blade 301 when the blade shape, area, length, width and other conditions are constant; the second difference coefficient reflects When the conditions such as the number of blades, the twist angle of the blades, and the width of the blades of the first and second blades 201 and 301 are constant, the ratio of the wind output capacity of the blades.
  • the ratio of the output air volume to the effective air supply distance is large, and the divergence angle of the airflow can be relatively large.
  • the range of the rotation speed ratio of the first motor 200 and the second motor 300 can increase the soft wind effect of the soft wind mode. That is, when the k 1 ⁇ [0.7, 0.8) ⁇ (1.1, 1.2] is adjusted, The speed ratio of the second motor 300 is , The soft wind effect of the fan is better.
  • the capacity of the fan and the air blowing distance k when the value of the preferred range is 2 k 2 ⁇ [0.8,1.2], and more preferably when k 2 ⁇ [0.9,1.1].
  • the fan's output capacity and effective air supply distance are better.
  • the soft wind effect of the fan and the air output ability in the soft wind mode are better.
  • the relationship between the length of the first wind blade 201, the length of the second wind blade 301, and the distance between the first wind blade 201 and the second wind blade 301 also affects the fan's air output capability.
  • the air output capability of the fan of the present application benefits from the common effect on the airflow caused by the relative rotation of the first and second blades 201 and 301, and when the distance between the first and second blades 201 and 301 is too small,
  • the blade length of the first wind blade 201 is large or the blade length of the second wind blade 301 is greatly different, the effect of the two blades on the airflow will be weakened. Therefore, the blade length of the first wind blade 201 needs to be reduced.
  • the ratio to the blade length of the second blade 301 is set within a certain interval, and the ratio of the blade length of the first blade 201 to the distance between the first blade 201 and the second blade 301 is set. Within a certain interval.
  • the preferred value interval is [0.8,1.3]; The preferred value interval is [1.5,3]; and The best value interval is [0.9,1.1], The best value interval is [2,2.5].
  • the above-mentioned embodiment is a specific embodiment of a fan using double-blades.
  • this application also proposes another embodiment based on the double-blades.
  • the fan in this embodiment further includes a third wind blade 400.
  • the addition of the third wind blade 400 can further rectify and adjust the farthest air supply distance based on the double wind blades rotating the wind.
  • the third wind blade 400 is installed on the first rotating shaft 202; the third wind blade 400 is provided on the other side of the first wind blade 201 opposite to the second wind blade 301, and The blade length of the third wind blade 400 is shorter than the blade length of the first wind blade 201.
  • the wind blades will change the flow velocity and direction of the airflow.
  • the airflow can be adjusted twice.
  • the specific settings and adjustments of the two sets of wind blades are used to achieve the purpose of artificially adjusting the effect of the wind.
  • the present application proposes embodiments of the above two sets of fan blades.
  • the air flow is hindered by the surrounding air, so the boundary of the air flow has greater instability.
  • the airflow can be equally divided into the central area of the airflow beam and the boundary area of the airflow beam.
  • the flow velocity in the central area of the airflow beam has a greater effect on the air supply distance
  • the airflow beam boundary area has a greater effect on the air supply angle. Therefore, the present application proposes an embodiment in which rectifying wind blades are added on the basis of the above-mentioned double wind blades.
  • the third wind blade 400 is a rectifying wind blade.
  • the rectifying wind blade is mainly used to adjust the proportion and flow rate of the central area of the airflow beam, and has reached the range of the central area and the boundary area of the airflow beam with the total power unchanged. Proportion to get a longer air supply distance.
  • the fan further includes a fourth wind blade 500, where the fourth wind blade 500 is installed on the second rotating shaft 302 and is disposed between the first wind blade 201 and the second wind blade 301.
  • the blade length of the fourth wind blade 500 is shorter than the blade length of the second wind blade 301.
  • the rectifying wind blade may adopt the third wind blade 400 or the fourth wind blade 500 alone, or the third wind blade 400 and the fourth wind blade 500 may be provided at the same time.
  • the rectifying blades cooperate with the first and second blades 201 and 301 to make the airflow more adjustable, and the rectifying blades have an additional driving effect on the airflow, and the additional driving effect is concentrated in the central area of the wind bundle You can adjust the area ratio and flow rate ratio of the central area and the boundary area of the airflow beam generated by the fan, so as to obtain a farther air outlet distance.

Abstract

一种风扇,包括支架(100)、第一电机(200)、第一风叶(201)、第二电机(300)、第二风叶(301)和电控板。第一电机(200)和第二电机(300)均安装于支架(100)且同轴设置,第一电机(200)和第二电机(300)分别具有第一转轴(202)和第二转轴(302),第一风叶(201)安装于第一转轴(202),第二风叶(301)安装于第二转轴(302)。第一风叶(201)的扭转方向与第二风叶(301)的扭转方向相反;电控板电连接第一电机(200)与第二电机(300),电控板包括转速比调节模块。风扇可以提供多种出风模式并且可以在不同出风模式之间快速调节。

Description

风扇
相关申请
本申请要求2018年7月9日申请的,申请号为201810750820.0,名称为“风扇”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及家用电器技术领域,特别涉及一种风扇。
背景技术
电风扇按照不同的功能和形态可以分为吊扇、台扇、落地扇、壁扇、换气扇、空调扇等多种;按照进出风方式的不同可以分为轴流式风扇、贯流式风扇、离心式风扇和横流式风扇等多种。其中,家用台扇和落地扇多为轴流式风扇,通常情况下家用台扇和落地扇风量较小,在高档位时风量相对稍大,但是高档位大风量时会产生较大的噪音,而使用环境多通常为室内,噪音的影响会更大。此外,轴流式风扇出风模式单一,不能适用于需要送风距离较远的情况和需要送风距离较近的情况。例如,在客厅面积较大时,普通家用落地扇的送风距离难以从客厅的一边吹到客厅的另一边,尤其是在摆动出风时,其送风距离更近;在卧室面积较小需要为老年人或婴幼儿送风时,又容易因距离太近而造成体感风速较快,不利于老年人或婴幼儿的健康。
发明内容
本申请的主要目的是提出一种风扇,旨在解决目前电风扇送风模式单一,不能根据实际需求对风量和送风距离进行具体调整的问题。
为实现上述目的,本申请提出的风扇包括支架、第一电机、第一风叶、第二电机、第二风叶和电控板;其中,所述第一电机和所述第二电机均安装于所述支架且同轴设置,所述第一电机和所述第二电机分别具有第一转轴和第二转轴,所述第一风叶安装于所述第一转轴,所述第二风叶安装于所述第 二转轴;所述第一风叶的扭转方向与所述第二风叶的扭转方向相反;所述电控板电连接所述第一电机与所述第二电机并控制所述第一电机与所述第二电机相对旋转,所述电控板包括转速比调节模块,所述转速比调节模块用于调节所述第一电机的转速ω 1和所述第二电机的转速ω 2之比
Figure PCTCN2018123809-appb-000001
可选地,所述电控板还包括转向调节模块,所述转向调节模块用于同步切换所述第一电机和所述第二电机的转动方向。
可选地,所述转向调节模块包括保护开关,以在所述第一电机和所述第二电机工作时切断所述转向调节模块。
可选地,所述电控板还包括档位调节模块,所述档位调节模块包括可编辑档位的编辑器和存储器;所述档位调节模块还包括多个预设档位选择键和至少一个自定义档位选择键。
可选地,所述第一风叶的叶片数量为n 1,所述第二风叶的叶片数量为n 2;所述第一风叶的扭转角度为θ 1,所述第二风叶的扭转角度为θ 2;定义所述第一风叶的叶片数量与第二风叶的叶片数量之比和所述第一风叶扭转角度与第二风叶扭转角度之比的乘积为第一差异系数,则第一差异系数
Figure PCTCN2018123809-appb-000002
所述第一差异系数k 1∈[0.7,1.2]。
可选地,所述第一电机与所述第二电机的转速之比
Figure PCTCN2018123809-appb-000003
且所述第一差异系数k 1∈[0.8,1.1]。
可选地,所述第一电机与所述第二电机的转速之比
Figure PCTCN2018123809-appb-000004
Figure PCTCN2018123809-appb-000005
且所述第一差异系数k 1∈[0.7,0.8)∪(1.1,1.2]。
可选地,所述第一风叶的叶片长度为l 1,面积为S 1,所述第二风叶的叶片长度为l 2,面积为S 2;定义所述第一风叶的叶片面积与所述第一风叶的叶片长度之比和所述第二风叶的叶片面积与所述第二风叶的叶片长度之比的乘积为第二差异系数,则第二差异系数
Figure PCTCN2018123809-appb-000006
所述第二差异系数k 2∈[0.8,1.2]。
可选地,所述第一电机与所述第二电机的转速之比
Figure PCTCN2018123809-appb-000007
且所述第二差异系数k 2∈[0.9,1.1]。
可选地,所述第一电机与所述第二电机的转速之比
Figure PCTCN2018123809-appb-000008
Figure PCTCN2018123809-appb-000009
所述第二差异系数k 2∈[0.8,0.9)∪(1.1,,1.2]。
可选地,所述风扇还包括第三风叶,所述第三风叶安装于所述第一转轴。
可选地,所述第三风叶设于第一风叶的外侧,且所述第三风叶的叶片长度小于所述第一风叶的叶片长度。
可选地,所述风扇还包括第四风叶,所述第四风叶安装于所述第二转轴。
可选地,所述第四风叶设于所述第一风叶与所述第二风叶之间,且所述第四风叶的叶片长度小于所述第二风叶的叶片长度。
本申请技术方案通过采用采用相互独立的第一电机和第二电机驱动第一风叶和第二风叶的旋转,并通过中控系统进行第一电机与第二电机转速比的调节,可以使本申请的风扇具备从气流快速散开的柔风出风能力到气流聚拢的远距离出风能力,并且可以根据需求进行不同出风模式间的快速调节。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请风扇的爆炸结构示意图;
图2为本申请风扇的风叶及电机侧面结构示意图;
图3为本申请风扇的风叶及电机结构示意图;
图4为本申请风扇的另一实施例电机与风扇的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 支架 301 第二风叶
200 第一电机 302 第二转轴
201 第一风叶 400 第三风叶
202 第一转轴 500 第四风叶
300 第二电机    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
家用落地扇、台扇、窗扇等轴流风扇采用的是一个电机带动固定在电机转轴上的倾斜的风叶旋转,从而将空气朝电机的轴向驱动的出风方式,这种风扇结构简单,出风方式直接,应用最为普遍,但这种风扇的风叶所直接推动的空气除具有沿轴向的动量之外,还具有因风叶与空气摩擦而使气体产生的与转轴垂直的动量,其中,与转轴垂直的气流的动量会使气流扩散开,气流散开之后气流束的横截面增大,沿轴向运动时所受的阻力急剧增加,导致 轴向的有效送风距离较近,尤其是风扇摇头摆风时,轴向有效送风距离相比于单一方向出风时的送风距离更近。
以“美的FS40-12DR”落地扇为对象进行风量台风速检测测试,与其他落地扇基本一样,美的FS40-12DR的最大出风速度为4m/s左右。打开风扇,调至最高档位,将风量台放置在风扇轴线前方不同距离处,对风速进行检测,数据如下:
距离(m) 1 2 3 4 5
风速(m/s) 3.85 2.47 1.65 0.75 0.6
从实验数据来看,风扇衰减为非线性衰减,速度越高衰减越快,并在在3m处衰减到1.65m/s,而人体感受到有风需要风速在1.6m/s左右。
从上述试验数据可得出结论,普通落地扇的有效送风距离为3m左右,与日常使用中经验一致。
通常,3m的有效送风距离可以满足多数应用场景的需求,但是在落地扇等轴流风扇开启到高档位时产生的噪音较大。同样以“美的FS40-12DR”进行档位与噪音对比试验(档位越高则出风速度越高)。“美的FS40-12DR”在同类产品中机械噪音控制较好,运行中几乎没有部件机械振动或摩擦而产生的噪音,因此检测的噪音可以认为全部源于风叶吹动气流时产生的噪音。FS40-12DR具有三个档位,在距离风扇两米处检测各档位对应的噪音大小,数据如下:
档位 1 2 3
噪音(分贝) 36.3 43.2 53.8
白天噪音超过50分贝,夜晚噪音超过45分贝时会干扰正常的睡眠和休息。根据声环境质量标准,0类声环境区(指康复疗养区等特别需要安静的区域)的要求是白天噪音不大于50分贝,夜晚噪音不大于40分贝;1类声环境区(指以居民住宅、医疗卫生、文化教育、科研设计、行政办公为主要功能,需要保持安静的区域)的要求是白天噪音不大于55分贝,夜晚噪音不大于45分贝。
由此可知,常规落地扇在夜晚使用时,其最大档位情况下产生的噪音会比较明显的影响到睡眠和休息。即使在白天,其最大档位情况下传产生的噪 音也不符合0类声环境区的要求。
因此常规的单电机单风叶结构的落地扇不能在保持充分安静的前提下,保证充足的有效送风距离。同时,常规落地扇也不能满足一些较大空间的送风需求,例如面积较大的客厅等需求的场景。
此外在一些特殊的应用场景下,例如在面积较小的卧室内为婴幼儿送风或为老年人送风等情况下,需要的不再是较大的有效送风距离,而是尽快将气流散开的柔风,以避免较大风速直吹婴幼儿或者老人身体。目前,人们通常将风扇朝向墙壁,利用墙壁对气流的反冲作用使气流达到快速散开的目的,而不能通过直接调整风扇达到目的。
为此,本申请提出一种风扇。本申请提出的风扇采用两个电机分别单独控制两个风叶反向旋转,两风叶的倾斜方向相反,因此两风叶反向旋转时其出风方向相同。
具体的,在本申请实施例中,请参照图1至图3,该风扇包括支架100、第一电机200、第一风叶201、第二电机300、第二风叶301和电控板;其中,所述第一电机200和所述第二电机300均安装于所述支架100且同轴设置,所述第一电机200和所述第二电机300分别具有第一转轴202和第二转轴302,所述第一风叶201安装于所述第一转轴202,所述第二风叶301安装于所述第二转轴302;所述第一风叶201的扭转方向与所述第二风叶301的扭转方向相反;所述电控板电连接所述第一电机200与所述第二电机300并控制所述第一电机200与所述第二电机300相对旋转,所述电控板包括转速比调节模块,所述转速比调节模块用于调节所述第一电机200的转速ω 1和所述第二电机300的转速ω 2之比
Figure PCTCN2018123809-appb-000010
第一电机200驱动第一转轴202旋转以带动第一风叶201转动;同样的,第二电机300驱动第二转轴302旋转以带动第二风叶301转动。第一电机200和第二电机300分别电连接电控板,所述电控板分别单独控制第一电机200和第二电机300的转动方向和转动速度,使第一电机200和第二电机300的转动方向保持相反。
双电机对旋同向出风可以使空气受到轴向叠加的驱动作用,和径向相互 抵消的驱动作用,减小气流在轴向运动时的扰动,使气流平稳的向前运动。在两风叶转速相差不大时,相对于单风叶出风,气流的聚拢效果明显,可以传送到更远的距离。两风叶转速的不同会导致风扇出风效果的不同,关于第一风叶201和第二风叶301转速比对风扇出风量和有效送风距离的影响,下文中会进行具体说明。
所述电控板包括转速比调节模块、调速模块和转向调节模块;其中,所述转速比调节模块用于调节和固定所述第一电机200与所述第二电机300转速之比,所述调速模块用于同步调节所述第一电机200与所述第二电机300的转速,所述转向调节模块用于切换所述第一电机200和所述第二电机300的转动方向。
转向调节模块具有两种调节模式,一种是正转模式,另一种是反转模式,正转模式下,风扇正向出风,反转模式下,风扇反向出风;转向调节模块包括调节开关和保护开关,保护开关用于在风扇工作时切断转向调节模块,防止在风扇工作时触发转向调节开关使第一电机200和第二电机300在工作中反向而造成损害;转向调节开关用于在风扇停止工作时对切换第一电机200和第二电机300的供电模式,以控制风扇正向或者反向出风。保护开关为常闭开关,当风扇工作时,保护开关打开,切断转向调节模块的供电;当风扇接通电源并且不工作时,保护开关闭合,转向调节模块可以正常工作。
双电机分别驱动双风叶转动共同完成出风,在两风叶相同的情况下,其出风模式取决于两电机的转速之比。以风扇第一风叶201一侧出风为例进行说明,第一电机200的转速为ω 1,第二电机300的转速为ω 2,保持第一电机200和第二电机300的总输出功率恒定,调节第一电机200和第二电机300的转速比,对出风总量和有效送风距离进行测试,结果如下:
Figure PCTCN2018123809-appb-000011
从上述实验数据可知,当第一电机200与第二电机300的转速比
Figure PCTCN2018123809-appb-000012
时,出风量和有效送风距离都较大;当
Figure PCTCN2018123809-appb-000013
时,出风量降低的速率减小,并且有效送风距离降低的速率也减小;在
Figure PCTCN2018123809-appb-000014
的值介于0.7到0.9之间时,有效送风距离和出风量均出现了很大的衰减,而在
Figure PCTCN2018123809-appb-000015
时,出风量和有效送风距离衰减明显减小。
Figure PCTCN2018123809-appb-000016
的比值范围扩大,进行风扇出风模式的进一步研究,部分数据如下:
Figure PCTCN2018123809-appb-000017
从上述试验可以得出,在
Figure PCTCN2018123809-appb-000018
时,出风量几乎不再随着该比值的增大而减小。同功率的单电机风扇出风量和有效送风距离分别为690m 3/h和4m,该功率下双风叶的出风量和有效送风距离均接近单风叶的情况,也就是在第一电机200和第二电机300转速比大于2.1之后,双风叶对旋的出风量和有效送风距离不再明显优于单风叶时的情形。
结合上一组实验数据,在需求获得较大出风量和有效送风距离的情况下,
Figure PCTCN2018123809-appb-000019
的值不应大于2.1且不应小于0.7;对
Figure PCTCN2018123809-appb-000020
取值以0.7和2.1两个值为基础进行细化,再次进行试验,数据如下:
Figure PCTCN2018123809-appb-000021
从上述数据可知,在
Figure PCTCN2018123809-appb-000022
的取值介于0.8到2.0之间时,出风量较大且有效送风距离较远。而本实施例中的第一电机200和第二电机300的转动方向可以相反,也即是可以由第二电机300一侧出风,因此,为获得较大的出风量和较远的有效送风距离,第一电机200和第二电机300的转速比的取值可选范围为[0.5,2]。
当第一电机200和第二电机300的转速差异较大时,有效送风距离较近,出风的发散角度较大,也即是柔风模式。根据上述几组实验数据,仍以第一电机200一侧出风为例对第一电机200和第二电机300转速比差异较大时的出风模式进行具体研究。以上数据表明在
Figure PCTCN2018123809-appb-000023
时,出风模式接近常规风扇,因此,重点对
Figure PCTCN2018123809-appb-000024
时进行研究。柔风模式主要的参数是出风量有效送风距离和发散角度。以0.1为间隔研究
Figure PCTCN2018123809-appb-000025
自0.1到0.7时的出风参数,具体数据如下:
Figure PCTCN2018123809-appb-000026
其中,因出风气流没有明显的边界,而对于柔风模式的出风参数精确性的要求不高,因此采用在距离出风风叶1m远处,气流流速不小于2m/s的边缘区域为边界进行界定,并取约数,得出上述发散角度数据。
从上述数据可知,当
Figure PCTCN2018123809-appb-000027
的值介于0.1到0.5时,出风的发散角度大于60°,具有一定的柔风效果,并且,在
Figure PCTCN2018123809-appb-000028
的值介于0.1到0.3时,柔风效果最好。柔风模式通常用在狭小的卧室中为老人或婴幼儿吹风的情况,风扇距离老人或婴幼儿较近,但又需要较大的送风面积,因此要求气流的发散角度较大。
普通风扇通常预设三个档位,本申请的风扇也可以进行档位的预设,具体的,本实施例中的电控板包括档位调节模块,所述档位调节模块包括可编辑档位的编辑器和存储器;所述档位调节模块还包括多个预设档位选择键和至少一个自定义档位选择键。本申请的风扇可以实现不同的出风模式,因此,预设档位除常规的控制风速的档位之外,还包括出风模式的档位,例如预设档位中包括柔风模式档位和直风模式档位,柔风模式下预设
Figure PCTCN2018123809-appb-000029
直风模式下预设
Figure PCTCN2018123809-appb-000030
配合不同风速的档位,可以实现柔风模式下多档出风和直风模式下的多档出风;预设档位中还可以预设常规模式的档位,对应
Figure PCTCN2018123809-appb-000031
在保持较大有效送风距离的前提下,气流又具有一定的发散角,风感较为适中。除此之外,用户可以适用档位编辑器进行自定义档位设置,可编辑的内容包括总输出功率和转速比,编辑完成后保存在存储器中,与自定义档位选择键进行关联,实现自定义出风模式的直接调用选择,例如在空间非常狭小的卧室内,设置
Figure PCTCN2018123809-appb-000032
进而可以一键调节到适宜的出风模式。
风扇的叶片包括平面叶片和弧面叶片,应当指出的是,在采用平面叶片时,通过转向调节模块改变电机的转向,出风方向相反,第一风叶201与第二风叶301的转速比
Figure PCTCN2018123809-appb-000033
对出风效果的影响不在直接适用前述内容,需要经过倒置,替换为第二风叶301与第一风叶201的转速比
Figure PCTCN2018123809-appb-000034
在采用弧面叶片时,通过转向调节模块改变电机转向,出风方向相反,但出风效果与采用平面叶片时有所差别,正面出风时出风能力有所提高,反面出风时出风能力有所降低,其他方面与上述内容吻合。
本申请技术方案通过采用相互反向旋转的电机,带动叶片扭转方向相反的第一风叶201和第二风叶301驱动空气沿轴向出风,并通过电控板控制第一电机200和第二电机300的转速在一定的比值范围内,以调节风扇的出风模式,例如将第一风叶201与第二风叶301的转速比
Figure PCTCN2018123809-appb-000035
控制在[0.9,1.0]的范围内时,可以使气流垂直于电机轴向方向的动量被相互抵消从而使气流更为聚拢,出风量更大,送风距离更远,从而可以在满足一定送风距离需求的前提下,降低第一电机200和第二电机300的转速,进而降低风扇工作时的噪音;而通过电控板将第一风叶201和第二风叶301的转速比
Figure PCTCN2018123809-appb-000036
控制在0.5以内时,可以使出风气流更加快速的散开,以满足婴幼儿和老年人对柔风模式的送风需求;此外,还可以通过电控板的转速比调节模块调节第一电机200和第二电机300的转速比,从而使风扇具备从气流快速散开的柔风出风功能逐渐到气流聚拢的远距离送风的功能;通过可编辑档位的编辑器和存储器,可以将用户经常用到的出风模式进行编辑存储,并将其作为自定义档位与自定义档位键进行关联,设置好之后可以一键选择而不需要每次需要使用时进行重复设置。
风扇除了其两电机的转速比会影响出风效果之外,所述第一风叶201的 叶片数量n 1、所述第二风叶301的叶片数量n 2、所述第一风叶201的扭转角度θ 1、所述第二风叶301的扭转角度θ 2的数值和相互之间的关系也会对出风效果有所影响。较多的影响因素共同影响风扇的出风能力并且难以具体计算时,如何组合这些影响因素的关系才能实现最优设计就面临理论和试验上的困难。
为此,定义所述第一风叶201的叶片数量与第二风叶301的叶片数量之比和所述第一风叶201扭转角度与第二风叶301扭转角度之比的乘积为第一风叶201与第二风叶301之间的第一差异系数;定义所述第一风叶201的叶片面积与所述第一风叶201的叶片长度之比和所述第二风叶301的叶片面积与所述第二风叶301的叶片长度之比的乘积为第二差异系数。则第一差异系数
Figure PCTCN2018123809-appb-000037
第二差异系数
Figure PCTCN2018123809-appb-000038
第一差异系数反应的是在第一风叶201和第二风叶301在叶片形状、面积、长度、宽度等其他条件一定时,其本身的出风能力的比值;第二差异系数反应的是在第一风叶201和第二风叶301的叶片数量、叶片的扭转角度和叶片的宽度等条件一定时,其本身的出风能力的比值。
在恒定总输出功率和叶片的其他条件均相同时,对不同k 1值的风扇进行出风能力的分组试验,结果如下:
k 1 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
出风量(m 3/h) 522 705 850 950 986 988 970 945 830
送风距离(m) 3.2 4.5 5.4 7.2 8.7 8.2 7.5 6.2 5.0
从上述数据中可以看出,在k 1∈[0.7,1.2]时,风扇的出风量和送风距离都处于较佳的范围,并且出风量和送风距离的最优区间为k 1∈[0.8,1.1]。此时,调整第一电机200与第二电机300的转速比,使
Figure PCTCN2018123809-appb-000039
时,风扇的出风能力和有效送风能力均可以更佳。
此外,当k 1∈[0.7,0.8)∪(1.1,1.2]时,出风量和有效送风距离的比值较大,可以得出气流发散角度相对较大,此时,配合柔风模式的第一电机200与第二电机300的转速比取值范围,可以增加柔风模式的柔风效果,也即是在k 1∈[0.7,0.8)∪(1.1,1.2]时调整第一电机200与第二电机300的转速比使
Figure PCTCN2018123809-appb-000040
时,风扇的柔风效果更佳。
在恒定总输出功率和叶片的其他条件均相同时,对不同k 2值的风扇进行出风能力的分组试验,结果如下:
k 2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
出风量(m 3/h) 615 745 851 876 869 860 845 751 683
送风距离(m) 4.2 5.0 6.2 7.7 7.4 7.0 6.2 5.5 4.8
从数据中可以看出,风扇的出风量和送风距离的较佳时k 2的取值区间为k 2∈[0.8,1.2],并且k 2∈[0.9,1.1]时更佳。此时,结合第一电机200与第二电机300的转速之比可知,当
Figure PCTCN2018123809-appb-000041
且k 2∈[0.9,1.1]时,风扇的出风能力和有效送风距离更佳。而对应的,当
Figure PCTCN2018123809-appb-000042
且k 2∈[0.8,0.9)∪(1.1,,1.2],风扇的柔风效果和柔风模式下的出风能力较佳。
此外,第一风叶201的长度、第二风叶301的长度和第一风叶201与第二风叶301之间的距离之间的关系也会影响风扇的出风能力。
本申请的风扇的出风能力得益于第一风叶201和第二风叶301的相对旋转而产生的对气流的共同作用,而当第一风叶201和第二风叶301的间距过大或者第一风叶201的叶片长度与第二风叶301的叶片长度差异较大时,两风叶对旋对气流的共同作用的效果会减弱,因此需要将第一风叶201的叶片长度与第二风叶301的叶片长度之比设定在某一区间之内,并将第一风叶201的叶片长度与第一风叶201与第二风叶301之间的距离之比设定在某一区间之内。
对此,固定其他影响因素,进行单一变量的对比试验,第一风叶201的叶片长度与第二风叶301的叶片长度之比对出风量和送风距离的影响,数据如下:
l 1/l 2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
出风量(m 3/h) 701 765 821 842 840 817 800 771 683
送风距离(m) 3.6 4.7 5.6 6.9 7.0 6.4 5.2 4.9 3.2
第一风叶201的叶片长度和第一风叶201与第二风叶301之间距离之比对出风量和送风距离的影响,数据如下:
l 1/L 1 1.5 2 2.5 3 3.5
出风量(m 3/h) 785 821 842 856 830 828
送风距离(m) 6.7 7.4 8.2 7.7 7.6 7.0
从以上数据可以得出,
Figure PCTCN2018123809-appb-000043
的较佳取值区间为[0.8,1.3];
Figure PCTCN2018123809-appb-000044
的较佳取值区间为[1.5,3];并且
Figure PCTCN2018123809-appb-000045
的最佳取值区间为[0.9,1.1],
Figure PCTCN2018123809-appb-000046
的最佳取值区间为[2,2.5]。
影响对旋风扇出风能力的因素繁多,且各因素之间具有一定的关联,导致难易确定对旋风扇最佳出风时的具体设置。本申请通过一系列独创的对比试验,得出各影响因素之间的较佳比值,且界定出了影响对旋风扇出风能力的第一风叶201和第二风叶301的各因素的比例以及取值区间,使对旋风扇的出风能力达到最佳。
上述实施例是采用了双风叶的风扇的具体实施例,为进一步提高风扇的送风距离,本申请在双风叶的基础上,还提出了另一实施例。
请参照图4,本实施例风扇还包括第三风叶400,增加第三风叶400在双风叶对旋出风的基础上,可以进行进一步的整流调节,增大最远送风距离。具体的,所述第三风叶400安装于所述第一转轴202;所述第三风叶400设于第一风叶201与所述第二风叶301相对的另一侧,且所述第三风叶400的叶片长度小于所述第一风叶201的叶片长度。
风叶会改变气流的流速和流向,采用两组风叶时可以对气流进二次调整,并通过对两组风叶进行特定的设定和调整以达到对出风效果进行人为调节的目的,据此,本申请提出了上述两组风叶风扇的实施例。而气流流动时会受到周围空气的阻碍,因此气流的边界具有较大的不稳定性。气流可以等效区分为气流束中心区和气流束边界区,相比之下,气流束中心区的流速对送风距离的影响更大,而气流束边界区对送风的角度影响较大。因此,本申请提出在上述双风叶的基础上增加整流风叶的实施例。
其中,第三风叶400为整流风叶,整流风叶主要用于调整气流束中心区区域比例和流速,已达到在总功率不变的情况下,通过调节气流束中心区与边界区的范围和比例获得更远的送风距离。
在此基础上,为提高风扇运行时的稳定性和进一步提高整流风叶的整流能力,本申请提出又一实施例,本实施例中风扇还包括第四风叶500,所述第四风叶500安装于所述第二转轴302且设于所述第一风叶201与所述第二风叶301之间。同样的,所述第四风叶500的叶片长度小于所述第二风叶301的叶片长度。需要指出的是,整流风叶可以单独采用第三风叶400或第四风叶500,也可以同时设置第三风叶400和第四风叶500。
整流风叶与第一风叶201和第二风叶301配合,可以使气流的可调整性更强,而整流风叶对气流额外的驱动作用,且该额外的驱动作用集中在风束中心区域,可以调整风扇所产生气流束的中心区和边界区的区域比例和流速比例,从而获得更远的出风距离。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (14)

  1. 一种风扇,其中,包括:
    支架;
    第一电机,安装于所述支架,所述第一电机具有第一转轴;
    第一风叶,安装于所述第一转轴;
    第二电机,安装于所述支架,所述第二电机具有第二转轴;所述第二电机与所述第一电机同轴设置;
    第二风叶,安装于所述第二转轴;所述第二风叶的扭转方向与所述第一风叶的扭转方向相反;
    电控板,电性连接所述第一电机与所述第二电机,并控制所述第一电机与所述第二电机相对旋转;所述电控板包括转速比调节模块;所述转速比调节模块调节并控制所述第一电机的转速ω 1和所述第二电机的转速ω 2之比
    Figure PCTCN2018123809-appb-100001
  2. 如权利要求1所述的风扇,其中,所述电控板还包括转向调节模块,所述转向调节模块用于同步切换所述第一电机和所述第二电机的转动方向。
  3. 如权利要求2所述的风扇,其中,所述转向调节模块包括保护开关,以在所述第一电机和所述第二电机工作时切断所述转向调节模块。
  4. 如权利要求2所述的风扇,其中,所述电控板还包括档位调节模块,所述档位调节模块包括可编辑档位的编辑器和存储器;所述档位调节模块还包括多个预设档位选择键和至少一个自定义档位选择键。
  5. 如权利要求1所述的风扇,其中,所述第一风叶的叶片数量为n 1,所述第二风叶的叶片数量为n 2;所述第一风叶的扭转角度为θ 1,所述第二风叶的扭转角度为θ 2;定义所述第一风叶的叶片数量与第二风叶的叶片数量之比和所述第一风叶扭转角度与第二风叶扭转角度之比的乘积为第一差异系数,则第一差异系数
    Figure PCTCN2018123809-appb-100002
    所述第一差异系数k 1∈[0.7,1.2]。
  6. 如权利要求5所述的风扇,其中,所述第一电机与所述第二电机的转 速之比
    Figure PCTCN2018123809-appb-100003
    且所述第一差异系数k 1∈[0.8,1.1]。
  7. 如权利要求5所述的风扇,其中,所述第一电机与所述第二电机的转速之比
    Figure PCTCN2018123809-appb-100004
    且所述第一差异系数k 1∈[0.7,0.8)∪(1.1,1.2]。
  8. 如权利要求5所述的风扇,其中,所述第一风叶的叶片长度为l 1,面积为S 1,所述第二风叶的叶片长度为l 2,面积为S 2;定义所述第一风叶的叶片面积与所述第一风叶的叶片长度之比和所述第二风叶的叶片面积与所述第二风叶的叶片长度之比的乘积为第二差异系数,则第二差异系数
    Figure PCTCN2018123809-appb-100005
    所述第二差异系数k 2∈[0.8,1.2]。
  9. 如权利要求8所述的风扇,其中,所述第一电机与所述第二电机的转速之比
    Figure PCTCN2018123809-appb-100006
    且所述第二差异系数k 2∈[0.9,1.1]。
  10. 如权利要求8所述的风扇,其中,所述第一电机与所述第二电机的转速之比
    Figure PCTCN2018123809-appb-100007
    所述第二差异系数k 2∈[0.8,0.9)∪(1.1,,1.2]。
  11. 如权利要求1所述的风扇,其中,所述风扇还包括第三风叶,所述第三风叶安装于所述第一转轴。
  12. 如权利要求11所述的风扇,其中,所述第三风叶设于第一风叶的外侧,且所述第三风叶的叶片长度小于所述第一风叶的叶片长度。
  13. 如权利要求11所述的风扇,其中,所述风扇还包括第四风叶,所述第四风叶安装于所述第二转轴。
  14. 如权利要求13所述的风扇,其中,所述第四风叶设于所述第一风叶与所述第二风叶之间,且所述第四风叶的叶片长度小于所述第二风叶的叶片长度。
PCT/CN2018/123809 2018-07-09 2018-12-26 风扇 WO2020010808A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/057,694 US11408431B2 (en) 2018-07-09 2018-12-26 Fan with synchronously switch for rotation directions
JP2021517884A JP7160500B2 (ja) 2018-07-09 2018-12-26 扇風機
KR1020207034401A KR102500709B1 (ko) 2018-07-09 2018-12-26 선풍기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810750820.0 2018-07-09
CN201810750820.0A CN108953186B (zh) 2018-07-09 2018-07-09 风扇

Publications (1)

Publication Number Publication Date
WO2020010808A1 true WO2020010808A1 (zh) 2020-01-16

Family

ID=64483590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123809 WO2020010808A1 (zh) 2018-07-09 2018-12-26 风扇

Country Status (5)

Country Link
US (1) US11408431B2 (zh)
JP (1) JP7160500B2 (zh)
KR (1) KR102500709B1 (zh)
CN (1) CN108953186B (zh)
WO (1) WO2020010808A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028639A1 (zh) * 2016-08-10 2018-02-15 苏州宝时得电动工具有限公司 花园吹风机
CN108953186B (zh) * 2018-07-09 2021-04-27 广东美的环境电器制造有限公司 风扇
JP7251464B2 (ja) 2019-12-19 2023-04-04 トヨタ自動車株式会社 車両、車両制御システム
JP7272258B2 (ja) * 2019-12-19 2023-05-12 トヨタ自動車株式会社 車両
JP7276113B2 (ja) 2019-12-19 2023-05-18 トヨタ自動車株式会社 車両、車両制御システム
CN111102656B (zh) * 2020-01-10 2023-11-10 珠海格力电器股份有限公司 空调室外机的双风叶风机系统、控制方法及空调机组
US11536279B1 (en) * 2022-03-07 2022-12-27 Stokes Technology Development Ltd. Thin type counter-rotating axial air moving device
CN114962328B (zh) * 2022-07-25 2023-01-06 沈阳鼓风机集团股份有限公司 一种连续式风洞装置用轴流式主驱动压缩机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2406088Y (zh) * 2000-01-17 2000-11-15 台达电子工业股份有限公司 具有多个串联的动叶部的轴流式风扇
CN2695689Y (zh) * 2004-04-13 2005-04-27 郑宗殷 散热风扇
CN1796796A (zh) * 2004-12-21 2006-07-05 英业达股份有限公司 一种串行风扇组及其转速匹配曲线产生方法
CN202560599U (zh) * 2012-04-10 2012-11-28 广东美的制冷设备有限公司 一种串联风机系统
CN104235065A (zh) * 2013-06-07 2014-12-24 日本电产株式会社 直列式轴流风扇
CN106050713A (zh) * 2015-04-08 2016-10-26 三星电子株式会社 风扇组件和具有该风扇组件的空调
CN207229425U (zh) * 2017-08-25 2018-04-13 宁波宝工电器有限公司 双风叶电机组件
CN108953186A (zh) * 2018-07-09 2018-12-07 广东美的环境电器制造有限公司 风扇

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3483447B2 (ja) * 1998-01-08 2004-01-06 松下電器産業株式会社 送風装置
DE10230253A1 (de) * 2002-07-04 2004-01-22 Behr Gmbh & Co. Anordnung und Verfahren zum Schutz vor Überlast eines Elektromotors
CN101529099B (zh) * 2006-11-22 2011-06-08 日本电产伺服有限公司 串联配置轴流风扇
US8556593B2 (en) * 2007-10-29 2013-10-15 Sanyo Denki Co., Ltd. Method of controlling counter-rotating axial-flow fan
JP5715469B2 (ja) * 2011-04-08 2015-05-07 山洋電気株式会社 二重反転式軸流送風機
JP5709921B2 (ja) * 2013-03-29 2015-04-30 リズム時計工業株式会社 二重反転式送風機
WO2020010807A1 (zh) * 2018-07-09 2020-01-16 广东美的环境电器制造有限公司 风扇
US20220034326A1 (en) * 2019-01-31 2022-02-03 Miro Co., Ltd. Air circulator having dual rotary vane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2406088Y (zh) * 2000-01-17 2000-11-15 台达电子工业股份有限公司 具有多个串联的动叶部的轴流式风扇
CN2695689Y (zh) * 2004-04-13 2005-04-27 郑宗殷 散热风扇
CN1796796A (zh) * 2004-12-21 2006-07-05 英业达股份有限公司 一种串行风扇组及其转速匹配曲线产生方法
CN202560599U (zh) * 2012-04-10 2012-11-28 广东美的制冷设备有限公司 一种串联风机系统
CN104235065A (zh) * 2013-06-07 2014-12-24 日本电产株式会社 直列式轴流风扇
CN106050713A (zh) * 2015-04-08 2016-10-26 三星电子株式会社 风扇组件和具有该风扇组件的空调
CN207229425U (zh) * 2017-08-25 2018-04-13 宁波宝工电器有限公司 双风叶电机组件
CN108953186A (zh) * 2018-07-09 2018-12-07 广东美的环境电器制造有限公司 风扇

Also Published As

Publication number Publication date
KR20210002685A (ko) 2021-01-08
JP7160500B2 (ja) 2022-10-25
KR102500709B1 (ko) 2023-02-15
CN108953186A (zh) 2018-12-07
CN108953186B (zh) 2021-04-27
US11408431B2 (en) 2022-08-09
US20210199119A1 (en) 2021-07-01
JP2021526613A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020010808A1 (zh) 风扇
CN108869358B (zh) 风扇
CN109306968B (zh) 风扇
CN108869357B (zh) 风扇
CN108869356B (zh) 风扇
WO2020010807A1 (zh) 风扇
CN108266809A (zh) 空调柜机及空调器
JP2019148171A (ja) 送風装置
CN208765087U (zh) 空调器
CN208778284U (zh) 风扇
CN208778286U (zh) 风扇
CN108999798B (zh) 风扇
US11493050B2 (en) Fan
CN208778287U (zh) 风扇
CN208934959U (zh) 风扇
JP7004687B2 (ja) 送風機
CN211009283U (zh) 一种转页扇
JP2003083577A (ja) 換気システム
JPS6015224B2 (ja) 風向変更装置
JPS6122176Y2 (zh)
CN114322283A (zh) 散风装置及落地式空调器
Bodman et al. G95-1242 Ventilation Fans: Performance
KR20180068692A (ko) 스핀너에 날개를 형성한 2중 날개형 선풍기
JPH0579669A (ja) 換気扇
JPH04106435U (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207034401

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021517884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926028

Country of ref document: EP

Kind code of ref document: A1