WO2020010647A1 - 一种顶发射式微腔oled显示装置 - Google Patents

一种顶发射式微腔oled显示装置 Download PDF

Info

Publication number
WO2020010647A1
WO2020010647A1 PCT/CN2018/096546 CN2018096546W WO2020010647A1 WO 2020010647 A1 WO2020010647 A1 WO 2020010647A1 CN 2018096546 W CN2018096546 W CN 2018096546W WO 2020010647 A1 WO2020010647 A1 WO 2020010647A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
seed pixel
organic light
thickness
microcavity
Prior art date
Application number
PCT/CN2018/096546
Other languages
English (en)
French (fr)
Inventor
夏婉婉
顾铁
钱栋
刘波
Original Assignee
上海视欧光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海视欧光电科技有限公司 filed Critical 上海视欧光电科技有限公司
Priority to US16/728,048 priority Critical patent/US11183668B2/en
Publication of WO2020010647A1 publication Critical patent/WO2020010647A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the invention relates to the field of display, in particular to a top-emitting microcavity OLED display device with good display color effect and low power consumption.
  • OLED display device is the latest generation display technology, which has the advantages of fast response speed, thin thickness, and bendability.
  • the full-colorization scheme of OLED display devices includes red, green, and blue sub-pixel juxtaposition, which uses red, green, and blue light-emitting materials to be patterned on the substrate through fine mask technology.
  • the resolution requirements are getting higher and higher.
  • Traditional fine masking technology cannot meet the high resolution requirements due to process limitations, especially the rise of the market for miniature head displays such as AR (enhanced display technology) / VR (virtual reality technology) in recent years. , Put forward higher requirements for screen resolution. To cope with this trend, white light OLED matching color filter layer came into being.
  • the top emission microcavity OLED display device mainly realizes the full-color display effect through the micro-resonant cavity effect.
  • the micro-cavity effect refers to the optical interference effect inside an OLED device. It must make a semi-transparent and semi-reflecting half mirror at the light output of the device. When photons are emitted from the light-emitting layer, they will interfere with each other between the reflective anode and the half mirror, causing constructive or destructive interference. Only a certain wavelength of light will be enhanced, and some will be weakened, so the half-height of the light wave The width also narrows.
  • the existing technology is generally divided into a strong microcavity and a weak microcavity.
  • a strong microcavity is a case where the reflectivity of the cathode and the anode is relatively high, and the enhancement effect of the microcavity on a specific wavelength is more significant, and the half-width and width are narrow; instead, Weak microcavity is when the reflectivity of the cathode and anode is relatively low, the enhancement effect of the microcavity to a specific wavelength is relatively insignificant, and the FWHM is wider.
  • the white light OLEDs used in the prior art solutions can be divided into two forms.
  • the first one a top emission weak microcavity white OLED device matching a color filter layer solution.
  • the white OLED directly emits three colors of red, green and blue. Red Above the three green and blue sub-pixels are corresponding filter layers of corresponding colors. Unwanted wavelengths can be filtered through the filter layers to achieve color display.
  • the thickness of the optical modulation layer is the thickest red, the green is the second, and the blue is the thinnest.
  • the second scheme is compared with the first. Scheme, the color gamut is larger, and the color is more pure.
  • the red, green and blue light emitted by the weak microcavity white OLED cannot be perfectly and selectively transmitted by the filter layer. In general, there will be A part of stray light is transmitted, as shown in FIG.
  • the strong microcavity white OLED can effectively solve the problem of impure color, but there will still be a certain amount of energy loss after passing through the color filter layer. Therefore, how to ensure the purity of the color, improve the energy utilization rate, and reduce the power consumption of the display is a problem to be solved by the present invention.
  • the invention provides a top-emitting microcavity OLED display device, including: an array substrate, a reflective metal layer provided on the array substrate, an anode modulation layer provided on the reflective metal layer, and an anode modulation layer.
  • the top emission microcavity OLED display device includes a plurality of Pixels, the anode modulation layer is divided into a plurality of anode modulation electrodes to correspond to the plurality of sub-pixels; the plurality of sub-pixels are at least divided into a first seed pixel, a second seed pixel, and a third seed pixel, and the first seed
  • the pixel, the second seed pixel, and the third seed pixel display different colors, and the thicknesses of the anode modulation electrodes corresponding to the first, second, and third
  • the first seed pixel displays red
  • the second seed pixel displays green
  • the third seed pixel displays blue
  • the thickness of the anode modulation electrode corresponding to the first seed pixel is greater than that of the first seed pixel.
  • the thickness of the anode modulation electrode corresponding to the two seed pixels, and the thickness of the anode modulation electrode corresponding to the second seed pixel is greater than the thickness of the anode modulation electrode corresponding to the third seed pixel.
  • the thickness of the organic light-emitting layer of the first seed pixel and its corresponding anode modulation electrode is 290-320 nm
  • the thickness of the organic light-emitting layer of the second seed pixel and its corresponding anode modulation electrode is The sum is 230 to 260 nm
  • the thickness of the organic light emitting layer of the third seed pixel and the corresponding anode modulation electrode is 190 to 220 nm.
  • the thickness of the anode modulation electrode corresponding to the first seed pixel is 110 to 125 nm
  • the thickness of the anode modulation electrode corresponding to the second seed pixel is 65 to 75 nm
  • the third seed pixel corresponds to The thickness of the anode modulation electrode is 18 to 25 nm.
  • the organic light-emitting layer includes a first hole-transporting layer, a blue organic light-emitting material layer, a first electron-transporting layer, a second hole-transporting layer, and red-green disposed on the anode modulation layer in order.
  • the thickness of the first hole transport layer is between 10 and 30 nm
  • the thickness of the blue organic light-emitting material layer is 20 to 35 nm
  • the first electron transport layer and the second hole transport The thickness sum of the layers is 50-60 nm
  • the thickness of the red-green organic light-emitting material layer is 25-35 nm
  • the thickness of the second electron transport layer is 30-50 nm
  • the refractive indexes of the luminescent material layer, the first electron transport layer, the second hole transport layer, the red-green organic light emitting material layer, and the second electron transport layer are between 1.7 and 1.9.
  • a red filter layer is correspondingly disposed on the first seed pixel.
  • a material of the anode modulation layer is indium tin oxide.
  • the present invention provides a top-emitting microcavity OLED display device, including: an array substrate, a reflective anode layer disposed on the array substrate, a microcavity modulation layer disposed on the reflective anode layer, and a microcavity adjustment An organic light-emitting layer on the substrate, and a cathode layer disposed on the organic light-emitting layer; the organic light-emitting layer is not patterned; the top-emitting microcavity OLED display device includes a plurality of sub-pixels, and the plurality of sub-pixels are at least divided into Are a first seed pixel, a second seed pixel, and a third seed pixel; the first seed pixel displays red, the second seed pixel displays green, and the third seed pixel displays blue; and the first seed The thickness of the microcavity modulation layer corresponding to the pixel, the second seed pixel, and the third seed pixel is different; the sum of the thicknesses of the organic light emitting layer of the first seed
  • the thickness of the microcavity modulation layer corresponding to the first seed pixel is 110 to 125 nm
  • the thickness of the microcavity modulation layer corresponding to the second seed pixel is 65 to 75 nm
  • the third seed pixel The thickness of the corresponding microcavity modulation layer is 18-25 nm.
  • the organic light emitting layer includes a first hole transport layer, a blue organic light emitting material layer, a first electron transport layer, a second hole transport layer, and a red A green organic light emitting material layer and a second electron transporting layer.
  • the thickness of the first hole transport layer is between 10 and 30 nm
  • the thickness of the blue organic light emitting material layer is between 20 and 35 nm
  • the first electron transport layer and the holes The thickness of the transport layer is between 50 and 60 nm
  • the thickness of the red-green organic light-emitting material layer is between 25 and 35 nm
  • the thickness of the second electron transport layer is between 30 and 50 nm
  • the refractive index of the hole transport layer, the blue organic light-emitting material layer, the first electron transport layer, the second hole transport layer, the red-green organic light-emitting material layer, and the second electron transport layer is between 1.7 and 1.9.
  • a red filter layer is correspondingly disposed on the first seed pixel.
  • a top-emitting microcavity OLED display device includes: an array substrate, a reflective layer disposed on the array substrate, an anode layer disposed on the reflective layer, and a microcavity modulation disposed on the anode layer.
  • the top-emitting microcavity OLED display device includes a plurality of sub-pixels, the plurality of sub-pixels are at least divided into a first seed pixel, a second seed pixel, and a third seed pixel; the first seed pixel displays red light, and the first The two seed pixels display green light, the third seed pixel displays blue light, and the thicknesses of the microcavity modulation layers corresponding to the first seed pixel, the second seed pixel, and the third seed pixel are different;
  • the reflective layer and the anode layer are the same film layer, and the film layer is a metal reflective material.
  • the anode layer and the microcavity modulation layer are the same film layer, and the film layer is a translucent conductive material.
  • the organic light-emitting material layer has an unpatterned continuous surface structure, and color display is achieved by setting the microcavity cavity length of different sub-pixels.
  • the three light-emitting materials of red, green, and blue are patterned and formed on the substrate separately without using a fine mask technology. Limitations of mask technology can achieve higher resolution display effects.
  • the present invention sets the thickness and thickness of the organic light emitting layer of the first seed pixel and its corresponding anode modulation electrode to 290-320 nm, and sets the organic light emitting layer of the second seed pixel and
  • the thickness and the thickness of the corresponding anode modulation electrode are set to 230 to 260 nm, and the thickness and the thickness of the corresponding organic modulation layer of the third seed pixel are set to 190 to 220 nm;
  • the thickness and the thickness of the light emitting layer and the corresponding microcavity modulation layer are set to 290-320nm, the thickness and the thickness of the organic light-emitting layer of the second seed pixel and the corresponding microcavity modulation layer are set to 230-260nm, and the third The thickness and setting of the organic light-emitting layer of the seed pixel and its corresponding microcavity modulation layer are 190 to 220 nm, which can increase the output
  • the top-emitting microcavity OLED display device provided by the present invention can be provided without a color filter layer, and has the advantages of low power consumption and high efficiency.
  • the top-emitting microcavity OLED display device provided by the present invention can also have an anode modulation layer that provides a hole function and can also be used as an optical modulation layer.
  • the anode modulation layer serves as both the anode of the sub-pixel and the sub-pixel.
  • Optical modulation layer simple structure.
  • FIG. 1 is a red, green, and blue spectrum diagram of light emitted by a weak microcavity white OLED after passing through a color filter layer in the prior art
  • FIG. 2 is a schematic diagram of a top-emission microcavity OLED display device according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of each film layer of a top-emission microcavity OLED according to the first embodiment
  • FIG. 4 is a spectrum diagram of a red sub-pixel
  • FIG. 5 is a spectrum comparison chart of a red sub-pixel with and without a filter layer
  • FIG. 7 is a spectrum diagram of a blue sub-pixel
  • FIG. 8 is a schematic diagram showing a color displayed by a top-emission microcavity OLED display device according to Embodiment 1 of the present invention in a 1931-CIE chromaticity diagram;
  • FIG. 9 is a schematic diagram of a top-emission microcavity OLED display device according to a second embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of each film layer of the top-emission microcavity OLED provided in the second embodiment.
  • FIG. 2 is a schematic diagram of a top-emission microcavity OLED display device according to Embodiment 1 of the present invention, including: an array substrate 11, a reflective metal layer 12 disposed on the array substrate 11; and an anode modulation layer 13 disposed on the reflective metal layer 12.
  • the anode modulation layer 13 is a translucent conductive material; an organic light emitting layer 14 disposed on the anode modulation layer 13 is not patterned, that is, the organic light emitting layer 14 is formed of a continuous whole layer structure.
  • the anode modulation layer 13 further includes a cathode layer 15 disposed on the organic light emitting layer 14, a planarization layer 19 disposed on the cathode layer 15, and an encapsulation layer 20 disposed on the planarization layer 19.
  • the top emission microcavity OLED display device includes a plurality of sub-pixels 16, and the anode modulation layer 13 is divided into a plurality of anode modulation electrodes to correspond to the plurality of sub-pixels 16.
  • the plurality of sub-pixels 16 are at least divided into a first seed pixel 161, a second seed pixel 162, and a third seed pixel 163, and the first seed pixel 161, the second seed pixel 162, and the third seed pixel 163 display different colors.
  • the thicknesses of the anode modulation electrodes 13 corresponding to the first, second, and third seed pixels 161, 162, and 163 are different.
  • a top-emission microcavity OLED display device mainly realizes a full-color display effect through a microcavity effect, and the microcavity effect refers to an optical interference effect inside an OLED device.
  • the luminous characteristics of the microresonator can be determined by the optical length of the microresonator, and it is related to the thickness and refractive index of each layer of material.
  • an optical length control layer with different thickness needs to be added to adjust.
  • the optical length control layer is generally called an optical modulation layer.
  • the material of the optical modulation layer is generally an ITO film, an IZO film, an AZO film, or an organic material film, and the optical modulation layer is disposed above the anode.
  • the modulation layer and the anode are two separate film structures.
  • an anode modulation layer 13 with different thicknesses is provided corresponding to different seed pixels.
  • the anode modulation layer 13 serves as both the anode of the sub-pixel and the optical modulation layer of the sub-pixel. Display and adjust the optical length.
  • the material of the anode modulation layer 13 is indium tin oxide, which is a material with a high work function.
  • the anode only serves as an electrode for providing holes when driving the organic light-emitting layer, and therefore has 4.5eV-5.3eV.
  • the high work function indium tin oxide as the anode modulation layer 13 fully satisfies the function as an anode; on the other hand, a reflective metal layer 12 is provided below the anode modulation layer 13, and light emitted from the organic light emitting layer 14 is reflected on the reflective metal layer. 12 and the translucent cathode layer 15 interfere with each other, causing constructive or destructive interference. Different optical path lengths are formed between the reflective metal layer 12 and the translucent cathode layer 15, and the material of the anode modulation layer 13 is translucent.
  • Indium tin oxide can transmit light emitted from the organic light-emitting layer 14 to the reflective metal layer 12 or the cathode layer 15, and the anode modulation layer 13 has different thicknesses corresponding to different seed pixels, and can be used as an optical modulation layer.
  • an anode modulation layer 13 with different thicknesses is provided corresponding to different seed pixels.
  • the anode modulation layer 13 serves as both the anode of the sub-pixel and the optical modulation layer of the sub-pixel, and has a simple structure.
  • the first seed pixel 161 displays red
  • the second seed pixel 162 displays green
  • the third seed pixel 163 displays blue.
  • the thickness of the anode modulation electrode 131 corresponding to the first seed pixel 161 is larger than the thickness of the anode modulation electrode 132 corresponding to the second seed pixel 162, and the thickness of the anode modulation electrode 132 corresponding to the second seed pixel 162 is greater than that of the third seed pixel 163.
  • the thickness of the anode modulation electrode 133 is adjusted by setting anode modulation electrodes 13 of different thicknesses corresponding to different seed pixels.
  • the microcavity is based on the principle of multi-beam interference.
  • the cavity length and wavelength of the microcavity meet the conditions for constructive interference, the enhanced output of the wavelength can be achieved. Specifically, the following formula (1) must be satisfied:
  • n i is the refractive index of the i-th layer material
  • d i is the thickness of the i-th layer material
  • ⁇ k is the phase shift of the metal, which is generally equivalent to the equivalent penetration depth of the metal at 20 nm
  • 2 n i d i is the front
  • the first embodiment of the present invention provides a specific film structure and thickness of a top-emission microcavity OLED.
  • FIG. 3 is a schematic structural diagram of each film layer of the top-emission microcavity OLED provided in the first embodiment.
  • Each sub-pixel of a top-emitting microcavity OLED display device is used to emit different colors of light, and each sub-pixel 16 includes the following structures: a reflective metal layer 12 provided on the array substrate 11 and an anode modulation provided on the reflective metal layer 12 A layer 13, an organic light emitting layer 14 provided on the anode modulation layer 13, and a cathode layer 15 provided on the organic light emitting layer 14.
  • the microcavity length of the sub-pixel 16 is related to the film thickness between the reflective metal layer 12 and the cathode layer 15 and the refractive index of the material, that is, the film thickness of the organic light-emitting layer 14 and the anode modulation layer 13 and the refraction of the material. Rate.
  • the thickness of the organic light-emitting layer 14 of the first seed pixel 161 and its corresponding anode modulation electrode 131 is 290-320 nm
  • the organic light-emitting layer 14 of the second seed pixel 162 and its The thickness sum of the corresponding anode modulation electrode 132 is 230-260 nm
  • the thickness sum of the organic light-emitting layer 14 of the third seed pixel 163 and the corresponding anode modulation electrode 133 is 190-220 nm.
  • the refractive index of the material of the organic light-emitting layer and each film layer of the anode modulation electrode is basically between 1.9 and 2, and the formula (1) can be simplified as the formula (2):
  • ⁇ d i is the sum of the thicknesses of the organic light-emitting layer and the anode modulation electrode, and the sum of the thicknesses of the organic light-emitting layer and the anode modulation electrode of the first seed pixel, the second seed pixel, and the third seed pixel are respectively calculated in formula (2).
  • first seed pixel light with a wavelength of about 610nm can be enhanced, that is, the display color purity of red light is improved;
  • light with a wavelength of about 510nm can be enhanced, that is, the display color purity of green light is improved;
  • the pixel can enhance light with a wavelength of about 410 nm, that is, the display color purity of blue light is improved.
  • the top-emission type microcavity OLED display device provided in the first embodiment of the present invention can enhance the color purity of the display color of a sub-pixel by setting the sum of the thicknesses of the organic light-emitting layers and the anode modulation electrodes of different kinds of sub-pixels, and improve the display effect.
  • the organic light-emitting layer 14 includes a first hole-transporting layer 141, a blue organic light-emitting material layer 142, a first electron-transporting layer 143, and a second hole-transporting layer 144, which are sequentially disposed on the anode modulation layer 13. , A red-green organic light-emitting material layer 145 and a second electron transport layer 146.
  • the thickness of the first hole transport layer 141 is set between 10 and 30 nm.
  • the light-emitting material of the blue organic light-emitting material layer 142 is a fluorescent material, which is a host-doped guest material and has a thickness between 20 and 35 nm.
  • red-green organic light-emitting material layer 145 which is doped with a red-green guest dye as a host, but optionally, the host may be doped with a yellow light-emitting material. Of course, dual light emission may also be used.
  • the red and green light emitting layers are separated by a thin buffer layer, and the total thickness of the red and green organic light emitting material layer 145 is between 25 and 35 nm.
  • first electron transport layer 143 and a second hole transport layer 144 which serve as a PN junction connection. The total thickness is between 50 and 60 nm.
  • the refractive index is between 1.7-1.9.
  • the above organic materials are all highly transparent materials with very small extinction coefficients, the refractive indices are all between 1.7 and 2.0, and the transmittance in the visible light region is greater than 98%.
  • the thickness of the anode modulation electrode 131 corresponding to the first seed pixel is 110 to 125 nm
  • the thickness of the anode modulation electrode 132 corresponding to the second seed pixel is 65 to 75 nm
  • the anode modulation electrode 133 corresponding to the third seed pixel The thickness is 18 to 25 nm.
  • the first seed pixel 161 that is, a sub-pixel displaying a red color
  • it can enhance the output of light around 620nm and 410nm.
  • the calculation results and actual results will be There is a certain error, but the error is within a reasonable range.
  • FIG. 4 it is a spectrum diagram of light emitted by the microcavity structure of the first seed pixel 161, which enhances the output of light at about 620 nm and 410 nm.
  • the light around 620nm is red.
  • FIG. 5 is a spectrum comparison chart of a red sub-pixel with a filter layer and an unmatched filter layer in Embodiment 1 of the present invention.
  • the solid line is a spectrum curve without a filter layer
  • the dotted line is a spectrum with a filter layer.
  • the curve as shown in the figure, in the structure with the filter layer, the blue light region around 410nm is filtered out by the red filter layer, showing a more pure red.
  • the output can be enhanced for light of about 530 nm.
  • FIG. 6 it is a spectrum diagram of the light emitted by the microcavity structure of the second seed pixel 162, which enhances the output of light around 530 nm.
  • the light around 530nm is green.
  • the light emitted by the green sub-pixels is more concentrated in the range around 530nm, the spectrum is smooth, and there are no stray peaks. Stray light at other wavelengths is obtained. Great suppression, and color purity is improved.
  • the output can be enhanced for light of about 460 nm.
  • FIG. 7 it is a spectrum diagram of light emitted by the microcavity structure of the third seed pixel 163, which enhances the output of light around 460 nm.
  • the light around 460nm is blue.
  • the light emitted by the blue sub-pixels is more concentrated in the range around 460nm, the spectrum is smooth, and there are no stray peaks. Stray light at other wavelengths is obtained. Great suppression, and color purity is improved.
  • FIG. 8 is a representation of a color displayed by a top-emission microcavity OLED display device according to the first embodiment of the present invention in a 1931-CIE color gamut diagram.
  • DCI-P3 is the color gamut standard for the color film industry's unified shared coding.
  • the range OLED1 is the color distribution displayed by the above-mentioned top emission microcavity OLED display device without a red color filter.
  • the range OLED2 is the above on the first seed pixel.
  • the color distribution displayed by a top emission microcavity OLED display device with a red color filter is added.
  • the range OLED1 can also reach the color gamut specification, but the saturation of the red light is relatively poor, and the color gamut is 70% DCI-P3; the red light saturation of the range OLED2 has been greatly improved and can be displayed more Excellent display effect.
  • the organic light emitting material layer has an unpatterned continuous entire surface structure, and the color display is realized by setting the microcavity cavity length of different sub-pixels.
  • the three red, green, and blue light-emitting materials are not patterned and formed on the substrate by using a fine mask technology, so they are not subject to fine masking.
  • the limitation of the mode technology can achieve a higher resolution display effect.
  • the top-emitting microcavity OLED display device provided in the first embodiment of the present invention can increase the output intensity and color purity of three colors of red, green, and blue by setting the film thickness and material reflectivity in the microcavity. Excellent color display effect.
  • the display effect of the blue sub-pixel and the green sub-pixel can reach or be similar to and match the effect of a display device with a color filter. Therefore, it is not necessary to provide a blue and green color filter layer.
  • the volume can be reduced.
  • the display effect of the red sub-pixel can be close to that of a display device matched with a color filter. When the requirements are not high, the red filter layer can be omitted or the red filter layer can be provided to further improve the display effect.
  • Table 1 for a comparison table of items of a top-emitting microcavity OLED display device provided in the first implementation of the present invention and an OLED display device in the prior art where each color sub-pixel matches a color filter layer.
  • the project value of the prior art solution is a comparative reference value, which is 1 except for the color coordinate value.
  • the relative efficiency of the device is even 1.5 times that of the prior art.
  • the relative power consumption of the solution of the present invention is 0.7, which is 30% lower than the relative power consumption of the prior art solution of 1, which indicates that the technical solution of the present invention has lower power consumption than the prior art. And high efficiency.
  • FIG. 9 is a top emission microcavity OLED display device provided in Embodiment 2 of the present invention, which includes an array substrate 21, a reflective anode layer 22 disposed on the array substrate 21, a microcavity modulation layer 23 disposed on the reflective anode layer 22, and An organic light-emitting layer 24 on the micro-cavity modulation layer 23, and the organic light-emitting layer 24 is not patterned, that is, the organic light-emitting layer 24 is a continuous entire layered structure formed on the micro-cavity modulation layer 23; It includes a cathode layer 25 provided on the organic light emitting layer 24, a flat layer 29 provided on the cathode layer 25, and an encapsulation layer 30 provided on the flat layer 29.
  • the top-emitting microcavity OLED display device includes a plurality of sub-pixels 26, and the reflective anode layer 22 is divided into a plurality of reflective anode electrodes to correspond to the plurality of sub-pixels, and each reflective anode electrode has the same thickness.
  • the plurality of sub-pixels 26 are at least divided into a first seed pixel 261, a second seed pixel 262, and a third seed pixel 263.
  • the first seed pixel 261 displays red
  • the second seed pixel 262 displays green
  • the third seed pixel 263 displays blue. .
  • the reflective anode layer 22 and the microcavity modulation layer 23 are independent film layers.
  • the reflective anode layer 22 is used to drive an organic light-emitting display, and together with the cathode layer 25, the optical inside the OLED device is formed.
  • the microcavity modulation layer 23 is used to modulate the optical length in sub-pixels of different colors.
  • the material of the microcavity modulation layer 23 may be an ITO film, an IZO film, an AZO film, or an organic material film.
  • the microcavity is based on the principle of multi-beam interference.
  • the cavity length and the wavelength of the microcavity meet the conditions for constructive interference, an enhanced output of the wavelength can also be achieved.
  • the second embodiment of the present invention provides a specific film structure of a top-emission microcavity OLED.
  • FIG. 10 is a schematic structural diagram of each film layer of the top-emission microcavity OLED provided in the second embodiment.
  • Each sub-pixel of the top-emitting microcavity OLED display device is used to emit different colors of light.
  • Each sub-pixel 26 includes the following structures: an array substrate 21, a reflective anode layer 22 provided on the array substrate 21, and a reflective anode layer 22.
  • the length of the microcavity cavity of the sub-pixel 26 is related to the thickness of the film layer between the reflective anode layer 22 and the cathode layer 25 and the refractive index of the material, that is, the thickness of the film layer and the material of the organic light emitting layer 24 and the microcavity modulation layer 23 Refractive index related.
  • the thickness of the organic light emitting layer 24 of the first seed pixel 261 and its corresponding microcavity modulation layer 231 is 290-320 nm
  • the organic light emitting layer 24 of the second seed pixel 262 and its corresponding microcavity modulation The sum of the thicknesses of the layers 232 is 230 to 260 nm
  • the sum of the thicknesses of the organic light emitting layer 24 of the third seed pixel 263 and the corresponding microcavity modulation layer 233 is 190 to 220 nm.
  • the organic light-emitting layer 24 includes a first hole-transporting layer 241, a blue organic light-emitting material layer 242, a first electron-transporting layer 243, a second hole-transporting layer 244, and a red-green organic layer which are sequentially disposed on the microcavity modulation layer 23.
  • the thickness of the first hole transport layer 241 is set between 10 and 30 nm.
  • the light-emitting material of the blue organic light-emitting material layer 242 is a fluorescent material, which is a host-doped guest material and has a thickness between 20 and 35 nm.
  • the blue organic light-emitting material layer 242 is also a red-green organic light-emitting material layer 145, which is doped with a red-green guest dye as a host, but optionally, the host may be doped with a yellow light-emitting material. Of course, dual light emission may also be used. Layers, the red and green light emitting layers are separated by a thin buffer layer, and the total thickness of the red and green organic light emitting material layer 245 is between 25 and 35 nm. There are a first electron transport layer 243 and a second hole transport layer 244 between the blue organic light-emitting material layer 242 and the red-green organic light-emitting material layer 245, which serve as a PN junction connection.
  • the total thickness is between 50 and 60 nm.
  • the refractive index is between 1.7-1.9.
  • the above organic materials are all highly transparent materials with very small extinction coefficients, and their refractive indices are between 1.7 and 2.0, and they have a transmittance of more than 98% in the visible light region.
  • the thickness of the microcavity modulation layer 231 corresponding to the first seed pixel is 110 to 125 nm
  • the thickness of the microcavity modulation layer 232 corresponding to the second seed pixel is 65 to 75 nm
  • the microcavity modulation corresponding to the third seed pixel is The thickness of the layer 232 is 18 to 25 nm.
  • the light of sub-pixels displaying different colors can be enhanced, and stray light at other wavelengths can be suppressed, and the color purity is obtained. improve.
  • the output can be enhanced for light of about 620 nm and 410 nm.
  • the output can be enhanced for light of about 530 nm.
  • the output can be enhanced for light of about 460 nm.
  • the organic light-emitting material layer has an unpatterned continuous surface structure, and color display is achieved by setting the microcavity cavity length of different sub-pixels.
  • the three light-emitting materials of red, green, and blue are patterned and formed on the substrate separately without using a fine mask technology. Limitations of mask technology can achieve higher resolution display effects.
  • the present invention can increase the output intensity and color purity of three colors of red, green, and blue, and provide excellent color display effects.
  • the display effect of the blue sub-pixel and the green sub-pixel can reach or be similar to and match the effect of a display device with a color filter. Therefore, it is not necessary to provide a blue and green color filter layer.
  • the volume can be reduced.
  • the display effect of the red sub-pixel can be close to that of a display device matched with a color filter.
  • the red filter layer can be omitted or the red filter layer can be provided to further improve the display effect.
  • the top emission type microcavity OLED display device provided by the present invention can be provided without a color filter layer, and has the advantages of low power consumption and high efficiency.
  • the top-emitting microcavity OLED display device provided by the present invention can also have an anode modulation layer that provides a hole function and can also be used as an optical modulation layer.
  • the anode modulation layer serves as both the anode of the sub-pixel and the sub-pixel.
  • Optical modulation layer simple structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种顶发射式微腔OLED显示装置,包括阵列基板;设置在阵列基板上的反射金属层;设置在反射金属层上的阳极调制层,所述阳极调制层为半透明导电材料;设置在所述阳极调制层上的有机发光层,所述有机发光层未图案化;设置在所述有机发光层上的阴极层;所述顶发射式微腔OLED显示装置包括多个子像素,所述阳极调制层分为多个阳极调制电极以对应所述多个子像素;所述多个子像素至少分为第一种子像素、第二种子像素和第三种子像素,所述第一种子像素、第二种子像素和第三种子像素显示不同颜色,并且所述第一种子像素、第二种子像素和第三种子像素所对应的阳极调制电极的厚度不同。

Description

一种顶发射式微腔OLED显示装置 技术领域
本发明涉及显示领域,尤其涉及一种显示颜色效果好、功耗低的顶发射式微腔OLED显示装置。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二级管)显示装置,简称OLED显示装置,是最新一代显示技术,具有响应速度快、厚度薄、可弯折等优势。OLED显示装置的全彩化方案包括红、绿、蓝子像素并置法,是将红、绿、蓝三种发光材通过精细掩模技术分别图案化形成在基板上,但是随着市场对屏幕分辨率要求越来也高,传统的精细掩膜技术由于工艺限制已经不能满足高分辨率要求,尤其是近年来AR(增强显示技术)/VR(虚拟现实技术)等微型头部显示器市场的崛起,对屏幕的分辨率提出了更高的要求。为了应对这种趋势,白光OLED匹配彩色滤光层应运而生。
顶发射式微腔OLED显示装置主要是通过微共振腔效应来实现全彩化显示效果的。微共振腔效应指的是OLED器件内部的光学干扰效应,它必须在器件出光处制作一半透明半反射的半镜。当光子从发光层发出后,会在反射阳极和半镜间相互干扰,造成建设性或是破坏性的干涉,只有某特定波长的光会受到增强,有一部分则被削弱,因此光波的半高宽也会变窄。现有技术一般分为强微腔和弱微腔,强微腔就是当阴极和阳极的反射率比较高的时候,微腔对特定波长的加强效果比较显著,半高宽很窄的情况;相反,弱微腔就是当阴极和阳极的反射率比较低的时候,微腔对特定波长的加强效果比较不明显,半高宽比较宽。
现有技术方案中所使用的白光OLED可分为两种形式,第一种:顶发射弱微腔白光OLED器件匹配彩色滤光层方案,白光OLED直接发出红绿蓝三种颜色的光,红绿蓝三个子像素上方分别对应相应颜色的滤光层,通过滤光层可将不需要的波长滤掉,实现彩色显示。第二种:顶发射强微腔白光OLED器件匹配彩色滤光层方案,通过调节红绿蓝三个子像素的光学调制层厚度来初步实现红绿蓝 三种腔长,腔长和出射光的波长是一一对应,最终依靠三种微腔和对应颜色的彩色滤光层来实现彩色显示,光学调制层厚度红色最厚,绿色次之,蓝色最薄,第二种方案相比第一种方案,色域更大,颜色更纯。但是,对于顶发射弱微腔白光OLED器件匹配彩色滤光层方案,弱微腔的白光OLED发出的红绿蓝三色光并不能被滤光层完美的选择性透过,一般情况下,会有一部分杂散光透过,如图1所示,为现有技术中弱微腔的白光OLED发出的光经过彩色滤光层之后的红绿蓝光谱图,三条曲线分别表示弱微腔白光OLED经过彩色滤光层之后的红绿蓝光谱,虚线R代表红光光谱、虚线G代表绿光光谱、虚线B代表蓝光光谱,以绿色光谱为例,除了550nm主波段的透过之外,460nm的蓝光并没有并抑制,最终造成颜色的纯度下降,极大地降低了显示器的色域范围。对于顶发射强微腔白光OLED器件匹配彩色滤光层方案,强微腔的白光OLED由于可以有效解决颜色不纯的问题,但是经过彩色滤光层之后还是会有一定能量的损失。因此,如何既能保证颜色的纯度,又能提高能量的利用率,降低显示器的功耗是本发明需要解决的问题。
发明内容
本发明提供一种顶发射式微腔OLED显示装置,包括:阵列基板、设置在所述阵列基板上的反射金属层、设置在所述反射金属层上的阳极调制层、设置在所述阳极调制层上的有机发光层、设置在所述有机发光层上的阴极层;所述有机发光层未图案化,所述阳极调制层为半透明导电材料;所述顶发射式微腔OLED显示装置包括多个子像素,所述阳极调制层分为多个阳极调制电极以对应所述多个子像素;所述多个子像素至少分为第一种子像素、第二种子像素和第三种子像素,所述第一种子像素、第二种子像素和第三种子像素显示不同颜色,并且所述第一种子像素、第二种子像素和第三种子像素所对应的阳极调制电极的厚度不同。
可选地,所述第一种子像素显示红色,所述第二种子像素显示绿色,所述第三种子像素显示蓝色;并且所述第一种子像素对应的阳极调制电极的厚度大于所述第二种子像素对应的阳极调制电极的厚度,所述第二种子像素对应的阳极调制电极的厚度大于所述第三种子像素对应的阳极调制电极的厚度。
可选地,所述第一种子像素的有机发光层及其所对应的阳极调制电极的厚 度和为290~320nm,所述第二种子像素的有机发光层及其所对应的阳极调制电极的厚度和为230~260nm,所述第三种子像素的有机发光层及其所对应的阳极调制电极的厚度和为190~220nm。
可选地,所述第一种子像素所对应的阳极调制电极的厚度为110~125nm,所述第二种子像素所对应的阳极调制电极的厚度为65~75nm,所述第三种子像素所对应的阳极调制电极的厚度为18~25nm。
可选地,所述有机发光层包括依次设置于所述阳极调制层之上的第一空穴传输层、蓝色有机发光材料层、第一电子传输层、第二空穴传输层、红绿有机发光材料层、第二电子传输层。
可选地,所述第一空穴传输层的厚度10~30nm之间,所述蓝色有机发光材料层的厚度为20~35nm,所述第一电子传输层和所述第二空穴传输层的厚度和为50~60nm,所述红绿有机发光材料层的厚度为25~35nm,所述第二电子传输层的厚度为30~50nm;所述第一空穴传输层、蓝色有机发光材料层、第一电子传输层、第二空穴传输层、红绿有机发光材料层、第二电子传输层的折射率在1.7~1.9之间。
可选地,在所述第一种子像素上对应设置有红色滤光层。
可选地,所述阳极调制层的材料为氧化铟锡。
本发明提供一种顶发射式微腔OLED显示装置,包括:阵列基板、设置在所述阵列基板上的反射阳极层、设置在所述反射阳极层上的微腔调制层、设置在所述微腔调制层上的有机发光层、设置在所述有机发光层上的阴极层;所述有机发光层未图案化;所述顶发射式微腔OLED显示装置包括多个子像素,所述多个子像素至少分为第一种子像素、第二种子像素和第三种子像素;所述第一种子像素显示红色,所述第二种子像素显示绿色,所述第三种子像素显示蓝色;并且所述第一种子像素、第二种子像素和第三种子像素所对应的微腔调制层的厚度不同;所述第一种子像素的有机发光层及其所对应的微腔调制层的厚度和为290~320nm,所述第二种子像素的有机发光层及其所对应的微腔调制层的厚度和为230~260nm,所述第三种子像素的有机发光层及其所对应的微腔调制层的厚度和为190~220nm。
可选地,述第一种子像素所对应的微腔调制层的厚度为110~125nm,所述第二种子像素的所对应的微腔调制层的厚度为65~75nm,所述第三种子像素所 对应的微腔调制层的厚度为18~25nm。
可选地,所述有机发光层包括依次设置于所述微腔调制层之上的第一空穴传输层、蓝色有机发光材料层、第一电子传输层、第二空穴传输层、红绿有机发光材料层、第二电子传输层。
可选地,,所述第一空穴传输层的厚度10~30nm之间,所述蓝色有机发光材料层的厚度在20~35nm之间,所述第一电子传输层和所述空穴传输层的厚度和在50~60nm之间,所述红绿有机发光材料层的厚度在25~35nm之间,所述第二电子传输层的厚度在30~50nm之间;所述第一空穴传输层、蓝色有机发光材料层、第一电子传输层、第二空穴传输层、红绿有机发光材料层、第二电子传输层的折射率在1.7~1.9之间。
可选地,在所述第一种子像素上对应设置有红色滤光层。
本发明一种顶发射式微腔OLED显示装置,包括:阵列基板、设置在所述阵列基板上的反射层、设置在所述反射层上的阳极层、设置在所述阳极层上的微腔调制层、设置在所述微腔调制层上的有机发光层、设置在所述有机发光层上的阴极层;所述有机发光层未图案化,并且所述有机膜层包括多层膜层;所述顶发射式微腔OLED显示装置包括多个子像素,所述多个子像素至少分为第一种子像素、第二种子像素和第三种子像素;所述第一种子像素显示红色的光,所述第二种子像素显示绿色的光,所述第三种子像素显示蓝色的光,并且所述第一种子像素、第二种子像素和第三种子像素所对应的微腔调制层的厚度不同;所述第一种子像素、第二种子像素和第三种子像素发出的光的波长符合如下公式:∑2n id ik=kλ;其中,n i为所述有机膜层的多层膜层和微腔调制层中的第i层膜层材料的折射率;d i为所述有机膜层的多层膜层和微腔调制层中的第i层膜层的厚度;δ k为金属相移;k为1,2,3。
可选地,所述反射层和所述阳极层为同一膜层,所述膜层为金属反光材料。
可选地,所述阳极层和所述微腔调制层为同一膜层,所述膜层为半透明导电材料。
本发明提供的顶发射式微腔OLED显示装置,有机发光材料层为未图案化的连续整面结构,通过设置不同子像素的微腔腔长来实现彩色显示。比对与现有技术的红、绿、蓝子像素并置法相比,因为不需要使用精细掩模技术是将红、绿、蓝三种发光材分别图案化形成在基板上,因此不受精细掩模技术的限制, 可以实现更高分辨率的显示效果。另外,本发明基于微腔的多光束干涉的原理,将第一种子像素的有机发光层及其所对应的阳极调制电极的厚度和设置为290~320nm,将第二种子像素的有机发光层及其所对应的阳极调制电极的厚度和设置为230~260nm,将第三种子像素的有机发光层及其所对应的阳极调制电极的厚度和设置为190~220nm;或者将第一种子像素的有机发光层及其所对应的微腔调制层的厚度和设置为290~320nm,将第二种子像素的有机发光层及其所对应的微腔调制层的厚度和设置为230~260nm,将第三种子像素的有机发光层及其所对应的微腔调制层的厚度和设置为190~220nm,可以增加红、绿、蓝三种颜色光的输出强度及色纯度,提供优异的颜色显示效果。并且,本发明提供的顶发射式微腔OLED显示装置可以不设置彩色滤光层,具有功耗低、效率高的优点。再者本发明提供的顶发射式微腔OLED显示装置,还可以即具有提供空穴作用、又可以作为光学调制层的阳极调制层,该阳极调制层既作为子像素的阳极,又作为子像素的光学调制层,结构简单。
附图说明
图1为现有技术中弱微腔的白光OLED发出的光经过彩色滤光层之后的红绿蓝光谱图;
图2为本发明实施例一提供的顶发射式微腔OLED显示装置的示意图;
图3为实施例一提供的顶发射式微腔OLED各个膜层的结构示意图;
图4为红色子像素的光谱图;
图5为红色子像素搭配滤光层和未搭配滤光层的光谱比较图;
图6为绿色子像素的光谱图;
图7为蓝色子像素的光谱图;
图8为本发明实施例一提供的顶发射式微腔OLED显示装置显示的颜色在1931-CIE色度图中表现的示意图;
图9为本发明实施例二提供的顶发射式微腔OLED显示装置的示意图;
图10为实施例二提供的顶发射式微腔OLED各个膜层的结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以 多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本发明将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本发明的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本发明的各方面。附图中所示的图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并、部分合并或调整执行步骤,因此实际执行的顺序有可能根据实际情况改变。
实施例一
图2为本发明实施例一提供的顶发射式微腔OLED显示装置的示意图,包括:阵列基板11、设置在阵列基板11上的反射金属层12;设置在反射金属层12上的阳极调制层13,阳极调制层13为半透明导电材料;设置在阳极调制层13上的有机发光层14,该有机发光层14未图案化,也就是说该有机发光层14是连续的整面层状结构形成在该阳极调制层13上的;还包括设置在有机发光层14上的阴极层15,设置在阴极层15上的平坦化层19、设置在平坦化层19上的封装层20。
该顶发射式微腔OLED显示装置包括多个子像素16,阳极调制层13分为多个阳极调制电极以对应多个子像素16。多个子像素16至少分为第一种子像素161、第二种子像素162和第三种子像素163,第一种子像素161、第二种子像素162和第三种子像素163显示不同的颜色。第一种子像素161、第二种子像素162和第三种子像素163所对应的阳极调制电极13的厚度不同。
如背景技术所描述,顶发射式微腔OLED显示装置主要是通过微共振腔效应来实现全彩化显示效果的,微共振腔效应指的是OLED器件内部的光学干扰效应。微共振腔的发光特性可由微共振腔的光学长度来决定,并和每层材料的厚度及折射率相关,一般需要加入一厚度不同的光学长度控制层来调整。该光学长度控制层一般被称为光学调制层,现有技术中,光学调制层的材料一般是ITO薄膜、IZO薄膜、AZO薄膜或者有机材料薄膜等,并且光学调 制层设置在阳极的上方,光学调制层和阳极是独立的两个膜层结构。
在本发明实施例一中,对应不同种子像素设置不同厚度的阳极调制层13,该阳极调制层13既作为子像素的阳极,又作为子像素的光学调制层,起到既驱动有机发光层14显示、又调节光学长度的作用。具体地,该阳极调制层13的材料为氧化铟锡,是具高功函数(High work function)的材料,阳极在驱动有机发光层时仅仅作为提供空穴的电极,因此具有4.5eV-5.3eV的高功函数的氧化铟锡作为阳极调制层13完全满足作为阳极的功能;另一方面,在阳极调制层13的下方设置有反射金属层12,从有机发光层14发出的光线在反射金属层12和半透明的阴极层15之间相互干扰,造成建设性或破坏性干扰,反射金属层12和半透明的阴极层15之间形成不同的光学路径长度,阳极调制层13的材料为半透明的氧化铟锡,其可以使有机发光层14发出的光线透过到达反射金属层12或者阴极层15,并且阳极调制层13对应不同种子像素的厚度不同,可以作为光学调制层。本发明实施例一中,对应不同种子像素设置不同厚度的阳极调制层13,该阳极调制层13既作为子像素的阳极,又作为子像素的光学调制层,结构简单。
可选地,在本发明实施一中,第一种子像素161显示红色,第二种子像素162显示绿色,第三种子像素163显示蓝色。并且第一种子像素161对应的阳极调制电极131的厚度大于第二种子像素162对应的阳极调制电极132的厚度,第二种子像素162对应的阳极调制电极132的厚度大于第三种子像素163对应的阳极调制电极133的厚度。本发明实施例一中,通过对应不同种子像素,设置不同厚度的阳极调制电极13,来调节光学路径长度。
微腔基于多光束干涉的原理,微腔的腔长与波长满足干涉相长的条件时,即可实现波长的增强输出,具体地,需要满足以下公式(1):
∑2n id ik=kλ(k=1,2,3)-----------公式(1)
其中:n i是第i层材料的折射率;d i是第i层材料的厚度;δ k为金属相移,一般情况下相当于金属的等效穿透深度20nm,2n id i就是前面提到的微腔腔长。
作为具体实施方式,本发明实施例一提供一种顶发射式微腔OLED的具体膜层结构及厚度,请参考图3,图3为实施例一提供的顶发射式微腔OLED各个膜层的结构示意图。顶发射式微腔OLED显示装置的每个子像素用于发射不同颜色的光,每个子像素16都包括如下结构:设置在阵列基板11上的反射金属层12、设置在反射金属层12上的阳极调制层13、设置在阳极调制层13上的有 机发光层14、设置在有机发光层14上的阴极层15。子像素16的微腔腔长和反射金属层12和阴极层15之间的膜层厚度及材料的折射率有关,也就是和有机发光层14和阳极调制层13的膜层厚度及材料的折射率有关。
可选地,在本发明实施一中,第一种子像素161的有机发光层14及其所对应的阳极调制电极131的厚度和为290~320nm,第二种子像素162的有机发光层14及其所对应的阳极调制电极132的厚度和为230~260nm,第三种子像素163的有机发光层14及其所对应的阳极调制电极133的厚度和为190~220nm。有机发光层和阳极调制电极各膜层的材料折射率基本在1.9~2之间,可以简化公式(1)为公式(2):
2n ∑d ik=kλ(k=1,2,3)-----------公式(2)
其中∑d i为有机发光层和阳极调制电极厚度的总和,将第一种子像素、第二种子像素、第三种子像素的有机发光层和阳极调制电极的厚度总和分别带入公式(2)计算。对于第一种子像素可增强波长在610nm左右的光线,即红光的显示色纯度提高;对于第二种子像素可增强波长在510nm左右的光线,即绿光的显示色纯度提高;对于第三种子像素可增强波长在410nm左右的光线,即蓝光的显示色纯度提高。因此本发明实施例一提供的顶发射式微腔OLED显示装置,通过设置不同种类的子像素的有机发光层和阳极调制电极厚度的和,可以增强子像素显示颜色的色纯度,提高了显示效果。
更为具体地,有机发光层14包括依次设置于阳极调制层13之上的第一空穴传输层141、蓝色有机发光材料层142、第一电子传输层143、第二空穴传输层144、红绿有机发光材料层145、第二电子传输层146。可选地,设置第一空穴传输层141的厚度在10~30nm之间。蓝色有机发光材料层142的发光材料是荧光材料,为主体掺杂客体材料,厚度在20~35nm之间。在蓝色有机发光材料层142上方还有红绿有机发光材料层145,为主体掺杂红绿客体染料,但可选的,也可以是主体掺杂黄光材料,当然,也可以使用双发光层,红绿发光层之间使用薄缓冲层隔开,红绿有机发光材料层145总厚度在25~35nm之间。在蓝色有机发光材料层142和红绿有机发光材料层145之间还有充当PN结连接作用的第一电子传输层143、第二空穴传输层144,总厚度在50~60nm之间,折射率在1.7-1.9之间。红绿有机发光材料层145和阴极层15之间还有第二电子传输层146层,厚度在30~50nm之间。上述有机材料均为消光系数非常小的高透明材料,折射 率均在1.7-2.0之间,在可见光区域具有大于98%透过率。同时,第一种子像素所对应的阳极调制电极131的厚度为110~125nm,第二种子像素的所对应的阳极调制电极132的厚度为65~75nm,第三种子像素所对应的阳极调制电极133的厚度为18~25nm。
将上述的膜层厚度及材料折射率带入公式(1)中,对于第一种子像素161,即显示红色颜色的子像素,可对620nm和410nm左右的光增强输出,计算结果和实际结果会存在一定误差,但是误差在合理范围内。如图4所示,为第一种子像素161的微腔结构所发射的光的光谱图,对620nm和410nm左右的光增强输出。620nm左右的光为红光,对比与图1所示的光强分布图,红色子像素发出的光线更为在620nm左右的范围集中,其他波长的杂光得到了很大的抑制,色纯度得到了提高。但是,如图所示,在410nm左右的蓝光区域还存在着被增加的光线,可选地,为了显示红色颜色的子像素的色纯度更高,可以在显示红色颜色的子像素上设置红色滤光层,具体地,可以设置在阴极层15之上,可以在平坦化层19之上或者之下。图5为本发明实施例一中的红色子像素搭配滤光层和未搭配滤光层的光谱比较图,实线线条为未搭配滤光层的光谱曲线,虚线线条为搭配滤光层的光谱曲线,如图所示,搭配滤光层的结构中,410nm左右的蓝光区域被红色滤光层过滤掉,显示更为纯的红色。
对于第二种子像素162,即显示绿色颜色的子像素,根据公式(1),可对530nm左右的光增强输出。如图6所示,为第二种子像素162的微腔结构所发射的光的光谱图,对530nm左右的光增强输出。530nm左右的光为绿光,对比与图1所示的光强分布图,绿色子像素发出的光线更为在530nm左右的范围集中,光谱平滑,且无杂峰,其他波长的杂光得到了很大的抑制,色纯度得到了提高。同样地,对于第三种子像素163,即显示蓝色颜色的子像素,根据公式(1),可对460nm左右的光增强输出。如图7所示,为第三种子像素163的微腔结构所发射的光的光谱图,对460nm左右的光增强输出。460nm左右的光为蓝光,对比与图1所示的光强分布图,蓝色子像素发出的光线更为在460nm左右的范围集中,光谱平滑,且无杂峰,其他波长的杂光得到了很大的抑制,色纯度得到了提高。
图8为本发明实施例一提供的顶发射式微腔OLED显示装置显示的颜色在1931-CIE色域图中的表现。其中,DCI-P3是彩色电影工业统一共享编码的色域标准,范围OLED1为上述没有设置红色滤色片的顶发射式微腔OLED显示装置 显示的颜色分布,范围OLED2为上述在第一种子像素上增加红色滤色片的顶发射式微腔OLED显示装置显示的颜色分布。如图所示,范围OLED1也能达到色域规格,但是红光的饱和度相对较差,色域为70%DCI-P3;范围OLED2的红光饱和度得到了很大提高,可以显示更为优异的显示效果。
本发明实施例一提供的顶发射式微腔OLED显示装置,有机发光材料层为未图案化的连续整面结构,通过设置不同子像素的微腔腔长来实现彩色显示。比对与现有技术的红、绿、蓝子像素并置法相比,因为不需要使用精细掩模技术将红、绿、蓝三种发光材分别图案化形成在基板上,因此不受精细掩模技术的限制,可以实现更高分辨率的显示效果。另外,本发明实施例一提供的顶发射式微腔OLED显示装置,通过设置微腔内的膜层厚度及材料反射率,可以增加红、绿、蓝三种颜色光的输出强度及色纯度,提供优异的颜色显示效果。蓝色子像素和绿色子像素的显示效果可达到或者相似于和匹配有彩色滤光片的显示装置的效果,因此不需要设置蓝色及绿色彩色滤光层,顶发射式微腔OLED显示装置的体积可以缩小。红色子像素的显示效果可接近于匹配有彩色滤光片的显示装置的效果,在要求不高的情况下也可以不用设置红色滤光层,或者可设置红色滤光层,进一步提高显示效果。
请参考表1,为本发明实施一提供的顶发射式微腔OLED显示装置和现有技术中一种各颜色子像素都匹配彩色滤光层的OLED显示装置各项目对比表格,为了比较方便,设置现有技术方案的项目值为比较基准值,除色坐标值之外都为1。
表1
Figure PCTCN2018096546-appb-000001
Figure PCTCN2018096546-appb-000002
如表1所示,虽然现有技术方案因搭配了滤色片,因此色坐标轴值更大,显示的色纯度越高。但是本发明方案因为未搭配滤光层,光线的透过率提高,并且也能达到色域规格,在相同功耗下,效率相对值大大提高,都比现有技术方案提高10%以上,R(红色)器件的效率相对值甚至为现有技术的1.5倍。在显示白画面的情况下,本发明方案的功耗相对值为0.7,比现有技术方案的功耗相对值1,下降了30%,说明本发明技术方案对比现有技术,具有功耗低、效率高的优点。
实施例二
图9为本发明实施例二提供的顶发射式微腔OLED显示装置,包括阵列基板21、设置在阵列基板21上的反射阳极层22、设置在反射阳极层22上的微腔调制层23、设置在微腔调制层23上的有机发光层24,并且该有机发光层24未图案化,也就是说该有机发光层24是连续的整面层状结构形成在该微腔调制层23的;还包括设置在有机发光层24上的阴极层25,设置在阴极层25上的平坦层29、设置在平坦层29上的封装层30。
该顶发射式微腔OLED显示装置包括多个子像素26,反射阳极层22分为多个反射阳极电极以对应上述多个子像素,并且各反射阳极电极的厚度相同。多个子像素26至少分为第一种子像素261、第二种子像素262和第三种子像素263,第一种子像素单261显示红色,第二种子像素262显示绿色,第三种子像素263显示蓝色。
和实施例一不同,在实施二中,反射阳极层22和微腔调制层23为独立的膜层,反射阳极层22用于驱动有机发光显示,并且和阴极层25一起形成OLED器件内部的光学干扰效应的微腔;而微腔调制层23为调制不同颜色的子像素内的光学长度,微腔调制层23的材料一般可以为是ITO薄膜、IZO薄膜、AZO薄膜或者有机材料薄膜等。
在实施例二结构下,微腔基于多光束干涉的原理,微腔的腔长与波长满足干涉相长的条件时,也可实现波长的增强输出。
作为具体实施方式,本发明实施例二提供一种顶发射式微腔OLED的具体膜层结构,请参考图10,图10为实施例二提供的顶发射式微腔OLED各个膜层 的结构示意图。顶发射式微腔OLED显示装置的每个子像素用于发射不同颜色的光,每个子像素26都包括如下结构:阵列基板21、设置在阵列基板21上的反射阳极层22、设置在反射阳极层22上的微腔调制层23、设置在微腔调制层23上的有机发光层24、设置在有机发光层24上的阴极层25。子像素26的微腔腔长和反射阳极层22至阴极层25之间的膜层厚度及材料的折射率有关,也就是和有机发光层24和微腔调制层23的膜层厚度及材料的折射率有关。可选地,第一种子像素261的有机发光层24及其所对应的微腔调制层231的厚度和为290~320nm,第二种子像素262的有机发光层24及其所对应的微腔调制层232的厚度和为230~260nm,第三种子像素263的有机发光层24及其所对应的微腔调制层233的厚度和为190~220nm。
有机发光层24包括依次设置于微腔调制层23之上的第一空穴传输层241、蓝色有机发光材料层242、第一电子传输层243、第二空穴传输层244、红绿有机发光材料层245、第二电子传输层246。可选地,设置第一空穴传输层241的厚度在10~30nm之间。蓝色有机发光材料层242的发光材料是荧光材料,为主体掺杂客体材料,厚度在20~35nm之间。在蓝色有机发光材料层242上方还有红绿有机发光材料层145,为主体掺杂红绿客体染料,但可选的,也可以是主体掺杂黄光材料,当然,也可以使用双发光层,红绿发光层之间使用薄缓冲层隔开,红绿有机发光材料层245总厚度在25~35nm之间。在蓝色有机发光材料层242和红绿有机发光材料层245之间还有充当PN结连接作用的第一电子传输层243、第二空穴传输层244,总厚度在50~60nm之间,折射率在1.7-1.9之间。红绿有机发光材料层245和阴极层25之间还有第二电子传输层246层,厚度在30~50nm之间。上述有机材料均为消光系数非常小的高透明材料,折射率均在1.7-2.0之间,在可见光区域具有大于98%透过率。同时,第一种子像素所对应的微腔调制层231的厚度为110~125nm,第二种子像素的所对应的微腔调制层232的厚度为65~75nm,第三种子像素所对应的微腔调制层232的厚度为18~25nm。
将上述的膜层厚度及材料折射率带入公式(1)中,和实施例一相同,显示不同颜色的子像素的光都能得到增强,并抑制了其他波长的杂光,色纯度得到了提高。对于第一种子像素261,即显示红色颜色的子像素,可对620nm和410nm左右的光增强输出。对于第二种子像素262,即显示绿色颜色的子像素,可对 530nm左右的光增强输出。对于第三种子像素263,即显示蓝色颜色的子像素,可对460nm左右的光增强输出。
本发明提供的顶发射式微腔OLED显示装置,有机发光材料层为未图案化的连续整面结构,通过设置不同子像素的微腔腔长来实现彩色显示。比对与现有技术的红、绿、蓝子像素并置法相比,因为不需要使用精细掩模技术是将红、绿、蓝三种发光材分别图案化形成在基板上,因此不受精细掩模技术的限制,可以实现更高分辨率的显示效果。另外,本发明通过设置微腔内的膜层厚度及材料反射率,可以增加红、绿、蓝三种颜色光的输出强度及色纯度,提供优异的颜色显示效果。蓝色子像素和绿色子像素的显示效果可达到或者相似于和匹配有彩色滤光片的显示装置的效果,因此不需要设置蓝色及绿色彩色滤光层,顶发射式微腔OLED显示装置的体积可以缩小。红色子像素的显示效果可接近于匹配有彩色滤光片的显示装置的效果,在要求不高的情况下也可以不用设置红色滤光层,或者可设置红色滤光层,进一步提高显示效果。并且,本发明提供的顶发射式微腔OLED显示装置可以不设置彩色滤光层层,具有功耗低、效率高的优点。再者本发明提供的顶发射式微腔OLED显示装置,还可以即具有提供空穴作用、又可以作为光学调制层的阳极调制层,该阳极调制层既作为子像素的阳极,又作为子像素的光学调制层,结构简单。
本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种顶发射式微腔OLED显示装置,其特征在于,包括:阵列基板、设置在所述阵列基板上的反射金属层、设置在所述反射金属层上的阳极调制层、设置在所述阳极调制层上的有机发光层、设置在所述有机发光层上的阴极层;所述有机发光层未图案化,所述阳极调制层为半透明导电材料;
    所述顶发射式微腔OLED显示装置包括多个子像素,所述阳极调制层分为多个阳极调制电极以对应所述多个子像素;所述多个子像素至少分为第一种子像素、第二种子像素和第三种子像素,所述第一种子像素、第二种子像素和第三种子像素显示不同颜色,并且所述第一种子像素、第二种子像素和第三种子像素所对应的阳极调制电极的厚度不同。
  2. 如权利要求1所述顶发射式微腔OLED显示装置,其特征在于,所述第一种子像素显示红色,所述第二种子像素显示绿色,所述第三种子像素显示蓝色;并且所述第一种子像素对应的阳极调制电极的厚度大于所述第二种子像素对应的阳极调制电极的厚度,所述第二种子像素对应的阳极调制电极的厚度大于所述第三种子像素对应的阳极调制电极的厚度。
  3. 如权利要求2所述顶发射式微腔OLED显示装置,其特征在于,所述第一种子像素的有机发光层及其所对应的阳极调制电极的厚度和为290~320nm,所述第二种子像素的有机发光层及其所对应的阳极调制电极的厚度和为230~260nm,所述第三种子像素的有机发光层及其所对应的阳极调制电极的厚度和为190~220nm。
  4. 如权利要求3所述顶发射式微腔OLED显示装置,其特征在于,所述第一种子像素所对应的阳极调制电极的厚度为110~125nm,所述第二种子像素所对应的阳极调制电极的厚度为65~75nm,所述第三种子像素所对应的阳极调制电极的厚度为18~25nm。
  5. 如权利要求4所述顶发射式微腔OLED显示装置,其特征在于,所述有机发光层包括依次设置于所述阳极调制层之上的第一空穴传输层、蓝色有机发光材料层、第一电子传输层、第二空穴传输层、红绿有机发光材料层、第二电子传输层。
  6. 如权利要求5所述顶发射式微腔OLED显示装置,其特征在于,所述第一空穴传输层的厚度10~30nm之间,所述蓝色有机发光材料层的厚度为20~35nm, 所述第一电子传输层和所述第二空穴传输层的厚度和为50~60nm,所述红绿有机发光材料层的厚度为25~35nm,所述第二电子传输层的厚度为30~50nm;所述第一空穴传输层、蓝色有机发光材料层、第一电子传输层、第二空穴传输层、红绿有机发光材料层、第二电子传输层的折射率在1.7~1.9之间。
  7. 如权利要求2所述顶发射式微腔OLED显示装置,其特征在于,在所述第一种子像素上对应设置有红色滤光层。
  8. 如权利要求1所述顶发射式微腔OLED显示装置,其特征在于,所述阳极调制层的材料为氧化铟锡。
  9. 一种顶发射式微腔OLED显示装置,其特征在于,
    包括:阵列基板、设置在所述阵列基板上的反射阳极层、设置在所述反射阳极层上的微腔调制层、设置在所述微腔调制层上的有机发光层、设置在所述有机发光层上的阴极层;所述有机发光层未图案化;
    所述顶发射式微腔OLED显示装置包括多个子像素,所述多个子像素至少分为第一种子像素、第二种子像素和第三种子像素;所述第一种子像素显示红色,所述第二种子像素显示绿色,所述第三种子像素显示蓝色;
    并且所述第一种子像素、第二种子像素和第三种子像素所对应的微腔调制层的厚度不同;所述第一种子像素的有机发光层及其所对应的微腔调制层的厚度和为290~320nm,所述第二种子像素的有机发光层及其所对应的微腔调制层的厚度和为230~260nm,所述第三种子像素的有机发光层及其所对应的微腔调制层的厚度和为190~220nm。
  10. 如权利要求9所述顶发射式微腔OLED显示装置,其特征在于,所述第一种子像素所对应的微腔调制层的厚度为110~125nm,所述第二种子像素的所对应的微腔调制层的厚度为65~75nm,所述第三种子像素所对应的微腔调制层的厚度为18~25nm。
  11. 如权利要求10所述顶发射式微腔OLED显示装置,其特征在于,所述有机发光层包括依次设置于所述微腔调制层之上的第一空穴传输层、蓝色有机发光材料层、第一电子传输层、第二空穴传输层、红绿有机发光材料层、第二电子传输层。
  12. 如权利要求11所述顶发射式微腔OLED显示装置,其特征在于,所述第一空穴传输层的厚度为10~30nm,所述蓝色有机发光材料层的厚度为20~35nm, 所述第一电子传输层和所述空穴传输层的厚度和为50~60nm,所述红绿有机发光材料层的厚度为25~35nm,所述第二电子传输层的厚度为30~50nm;所述第一空穴传输层、蓝色有机发光材料层、第一电子传输层、第二空穴传输层、红绿有机发光材料层、第二电子传输层的折射率在1.7~1.9之间。
  13. 如权利要求12所述顶发射式微腔OLED显示装置,其特征在于,在所述第一种子像素上对应设置有红色滤光层。
  14. 一种顶发射式微腔OLED显示装置,其特征在于,包括:阵列基板、设置在所述阵列基板上的反射层、设置在所述反射层上的阳极层、设置在所述阳极层上的微腔调制层、设置在所述微腔调制层上的有机发光层、设置在所述有机发光层上的阴极层;所述有机发光层未图案化,并且所述有机膜层包括多层膜层;
    所述顶发射式微腔OLED显示装置包括多个子像素,所述多个子像素至少分为第一种子像素、第二种子像素和第三种子像素;所述第一种子像素显示红色的光,所述第二种子像素显示绿色的光,所述第三种子像素显示蓝色的光,并且所述第一种子像素、第二种子像素和第三种子像素所对应的微腔调制层的厚度不同;
    所述第一种子像素、第二种子像素和第三种子像素发出的光的波长符合如下公式:∑2n id ik=kλ;
    其中,n i为所述有机膜层的多层膜层和微腔调制层中的第i层膜层材料的折射率;d i为所述有机膜层的多层膜层和微腔调制层中的第i层膜层的厚度;δ k为金属相移;k为1,2,3。
  15. 如权利要求14所述顶发射式微腔OLED显示装置,其特征在于,所述反射层和所述阳极层为同一膜层,所述膜层为金属反光材料。
  16. 如权利要求14所述顶发射式微腔OLED显示装置,其特征在于,所述阳极层和所述微腔调制层为同一膜层,所述膜层为半透明导电材料。
PCT/CN2018/096546 2018-07-10 2018-07-21 一种顶发射式微腔oled显示装置 WO2020010647A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/728,048 US11183668B2 (en) 2018-07-10 2019-12-27 Top-emission type micro cavity OLED display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810747676.5A CN110164911B (zh) 2018-07-10 2018-07-10 一种顶发射式微腔oled显示装置
CN201810747676.5 2018-07-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,048 Continuation-In-Part US11183668B2 (en) 2018-07-10 2019-12-27 Top-emission type micro cavity OLED display device

Publications (1)

Publication Number Publication Date
WO2020010647A1 true WO2020010647A1 (zh) 2020-01-16

Family

ID=67645019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096546 WO2020010647A1 (zh) 2018-07-10 2018-07-21 一种顶发射式微腔oled显示装置

Country Status (3)

Country Link
US (1) US11183668B2 (zh)
CN (1) CN110164911B (zh)
WO (1) WO2020010647A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113314586A (zh) * 2021-06-29 2021-08-27 合肥京东方卓印科技有限公司 显示面板及其制备方法、显示装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459699B (zh) * 2019-08-30 2022-07-15 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN110518152B (zh) * 2019-09-26 2024-08-20 江苏集萃有机光电技术研究所有限公司 有机发光显示面板以及显示装置
CN110649075B (zh) * 2019-09-27 2022-01-28 京东方科技集团股份有限公司 微腔阳极结构、显示基板及其制作方法
CN110808338A (zh) * 2019-10-10 2020-02-18 复旦大学 一种双面出光的串联式量子点器件
CN110783392B (zh) * 2019-11-06 2023-04-14 京东方科技集团股份有限公司 发光器件及其制造方法、显示装置
CN111029383A (zh) * 2019-12-13 2020-04-17 京东方科技集团股份有限公司 一种oled显示模组及其制备方法、oled显示装置
CN110828535B (zh) * 2019-12-20 2022-09-27 武汉天马微电子有限公司 一种阵列基板、显示面板和显示装置
CN111710796A (zh) * 2020-06-08 2020-09-25 深圳市华星光电半导体显示技术有限公司 发光器件、显示面板及制备方法
CN111710795A (zh) * 2020-06-08 2020-09-25 深圳市华星光电半导体显示技术有限公司 发光器件、显示面板及其制备方法
CN113972335A (zh) * 2020-07-23 2022-01-25 Tcl科技集团股份有限公司 发光器件以及调制发光器件发射峰的方法
CN112310307A (zh) * 2020-10-21 2021-02-02 武汉华星光电半导体显示技术有限公司 Oled显示面板
CN112635538A (zh) * 2020-12-29 2021-04-09 昆山梦显电子科技有限公司 一种显示面板及显示面板的制作方法
CN112887880B (zh) * 2021-01-12 2022-11-01 武汉华星光电半导体显示技术有限公司 电子装置及电子装置的制作方法
CN112993187A (zh) * 2021-02-08 2021-06-18 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN112838177A (zh) * 2021-02-26 2021-05-25 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN113178464B (zh) * 2021-04-08 2024-02-02 武汉华星光电半导体显示技术有限公司 有机发光显示面板及显示装置
CN113241414A (zh) * 2021-04-22 2021-08-10 南方科技大学 发光器件、显示装置和发光器件的制备方法
US11937478B2 (en) 2021-07-16 2024-03-19 Avalon Holographics Inc. Multi-colored microcavity OLED array having DBR for high aperture display and method of fabricating the same
CN113611730B (zh) * 2021-08-27 2023-10-27 昆山梦显电子科技有限公司 一种硅基微显示器及其制备方法
CN113871437A (zh) * 2021-09-18 2021-12-31 深圳大学 显示器件及其制备方法和显示装置
CN114284457A (zh) * 2021-12-29 2022-04-05 云南北方奥雷德光电科技股份有限公司 一种硅基oled微型显示器全彩显示结构
CN114420875A (zh) * 2022-01-28 2022-04-29 南京国兆光电科技有限公司 一种高色域的硅基oled微显示器件
WO2024187441A1 (zh) * 2023-03-16 2024-09-19 京东方科技集团股份有限公司 有机发光二极管、显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949187A (en) * 1997-07-29 1999-09-07 Motorola, Inc. Organic electroluminescent device with plural microcavities
CN103928495A (zh) * 2013-12-31 2014-07-16 上海天马有机发光显示技术有限公司 一种oled显示面板及其制备方法、显示装置
CN104600097A (zh) * 2015-02-06 2015-05-06 京东方科技集团股份有限公司 一种像素单元结构、有机发光显示面板及显示装置
CN107275503A (zh) * 2017-06-30 2017-10-20 京东方科技集团股份有限公司 Oled器件及其制作方法
CN107546248A (zh) * 2017-07-26 2018-01-05 佛山科学技术学院 一种非掺杂白光发光层串联有机电致发光器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418144B2 (ja) 2009-10-23 2014-02-19 セイコーエプソン株式会社 発光装置及び電子機器
KR101108160B1 (ko) * 2009-12-10 2012-01-31 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949187A (en) * 1997-07-29 1999-09-07 Motorola, Inc. Organic electroluminescent device with plural microcavities
CN103928495A (zh) * 2013-12-31 2014-07-16 上海天马有机发光显示技术有限公司 一种oled显示面板及其制备方法、显示装置
CN104600097A (zh) * 2015-02-06 2015-05-06 京东方科技集团股份有限公司 一种像素单元结构、有机发光显示面板及显示装置
CN107275503A (zh) * 2017-06-30 2017-10-20 京东方科技集团股份有限公司 Oled器件及其制作方法
CN107546248A (zh) * 2017-07-26 2018-01-05 佛山科学技术学院 一种非掺杂白光发光层串联有机电致发光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113314586A (zh) * 2021-06-29 2021-08-27 合肥京东方卓印科技有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN110164911A (zh) 2019-08-23
US11183668B2 (en) 2021-11-23
CN110164911B (zh) 2021-02-26
US20200144548A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
WO2020010647A1 (zh) 一种顶发射式微腔oled显示装置
CN107195584B (zh) 一种显示面板的制备方法、显示面板及显示装置
KR101990312B1 (ko) 유기전계발광표시장치 및 그 제조방법
KR101434362B1 (ko) 유기 전계 발광소자 및 이를 이용한 컬러 디스플레이 장치
US8304977B2 (en) Light emitting device and electronic device
US8350281B2 (en) Display device, display apparatus and method of adjusting a color shift of white light in same
US20090051283A1 (en) Led device having improved contrast
US20090051284A1 (en) Led device having improved light output
TWI699022B (zh) 發光裝置、顯示設備以及照明設備
US10205126B2 (en) Light emission device including light extraction plane and a plurality of reflection interfaces, display apparatus including the light emission device, and illumination apparatus including the light emission device
CN106981504A (zh) 一种显示面板及显示装置
JP2011159433A (ja) 発光装置、照明装置および表示装置
KR100874321B1 (ko) 발광 소자 및 표시 장치
KR20120106573A (ko) 발광 소자, 조명 장치 및 표시 장치
CN109560115B (zh) 一种显示面板的制备方法、显示面板及显示装置
CN113272990A (zh) 具有多个蓝光发射层的多模微腔oled
JP2013051155A (ja) 有機el素子
US8022612B2 (en) White-light LED having two or more commonly controlled portions with improved angular color performance
KR20190069940A (ko) 유기 발광 표시 장치
CN108511618B (zh) 有机电致发光装置
US11223031B2 (en) Full color display module and manufacturing method of same
KR102604263B1 (ko) 표시장치
KR102023943B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
CN108649132B (zh) 有机发光显示器件
CN108539048B (zh) 有机电致发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18925795

Country of ref document: EP

Kind code of ref document: A1