WO2020010585A1 - 光耦合装置及其封装方法、光模块及通讯设备 - Google Patents

光耦合装置及其封装方法、光模块及通讯设备 Download PDF

Info

Publication number
WO2020010585A1
WO2020010585A1 PCT/CN2018/095511 CN2018095511W WO2020010585A1 WO 2020010585 A1 WO2020010585 A1 WO 2020010585A1 CN 2018095511 W CN2018095511 W CN 2018095511W WO 2020010585 A1 WO2020010585 A1 WO 2020010585A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
coupling
optical fiber
end surface
waveguide
Prior art date
Application number
PCT/CN2018/095511
Other languages
English (en)
French (fr)
Inventor
刘军
董振
高磊
宋小鹿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18925780.1A priority Critical patent/EP3809177B1/en
Priority to PCT/CN2018/095511 priority patent/WO2020010585A1/zh
Priority to CN201880095175.1A priority patent/CN112368617A/zh
Publication of WO2020010585A1 publication Critical patent/WO2020010585A1/zh
Priority to US17/146,365 priority patent/US11391892B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3644Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the coupling means being through-holes or wall apertures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • G02B6/3676Stacked arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3897Connectors fixed to housings, casing, frames or circuit boards
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12169Annealing
    • G02B2006/12171Annealing using a laser beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment

Definitions

  • the present application relates to the field of optical communication technologies, and in particular, to an optical coupling device, an optical module, and a communication device.
  • the optical module is an important part of the data transmission network. It is mainly used for low-loss long-distance transmission through optical fiber.
  • Optical signals are transmitted between the optical fiber and the optical chip.
  • the optical chip converts photoelectric and electrical-optical signals.
  • Optical signals need to be coupled between optical fibers and optical chips, while large-capacity data optical interconnects need to have multiple channels and high fiber channel densities, and high channel densities are difficult to align and couple when coupling packages, affecting coupling efficiency.
  • the embodiments of the present application provide a high-density multi-channel optical coupling device, an optical module, and a communication device, which improve the difficulty of coupling and alignment.
  • the optical coupling device described in this application includes an optical fiber assembly including multiple optical fibers and an optical fiber fixing block, the multiple optical fibers are fixed to the optical fiber fixing block, and the optical fiber fixing block is provided with a first end surface At least a part of the optical fiber includes a plug-in end protruding from the first end surface; and an optical writing waveguide block including a main body and a plurality of waveguides corresponding to the cores of the plurality of optical fibers, the A plurality of waveguides are provided in the main body, the main body is provided with a second end surface, and the second end surface is concavely provided with a coupling hole corresponding to the plug end in a one-to-one manner, and the coupling hole is formed by the waveguide.
  • An end portion is formed recessed in the second end surface; the second end surface is abutted with the first end surface, and the insertion ends of the at least part of the optical fibers are correspondingly inserted into the coupling holes one by one so that The cores of the plurality of optical fibers and the plurality of waveguides are coupled and aligned in a one-to-one correspondence, thereby realizing optical signal transmission between the optical fiber component and the optical writing waveguide block.
  • the positions and numbers of the plug-in ends and the coupling holes can be flexibly selected according to requirements.
  • the end of the optical fiber is directly used as the plug end to be inserted into the coupling hole on the waveguide block that is in communication with the waveguide.
  • the structure is simple and the cost is low, and the loss caused by using an additional coupling device can be avoided.
  • the optical fiber component and the optical wave writing waveguide block are assisted in coupling and alignment of the optical fiber component and the optical wave writing waveguide block through the plugging end and the coupling hole, thereby reducing the coupling alignment of the high-density optical fiber and the waveguide. This improves the packaging efficiency of the optical fiber component and the optical wave writing waveguide block, thereby improving the coupling accuracy.
  • an aperture of an end portion of the coupling hole located on the second end surface is larger than an aperture of an end portion connected to the waveguide. That is to say, the coupling hole is similar to a horn shape, which makes it easier for the optical fiber component to be docked with the optical wave writing waveguide block, and the plug-in end is inserted into the coupling hole. Further, the length of the plug end protruding from the first end face is less than 1 mm, which ensures that the optical fiber provided with the plug end has sufficient strength and collimation to achieve high-precision auxiliary coupling alignment.
  • a mode field diameter of a waveguide in the optical writing waveguide block for coupling with the optical fiber is equal to a mode field diameter of the optical fiber, so as to facilitate coupling between the optical fiber component and the optical writing waveguide block. Align and improve coupling efficiency and reduce coupling loss.
  • a part of the plurality of optical fibers including the plug-in end is a first optical fiber
  • the other optical fibers of the plurality of optical fibers are second optical fibers
  • the first optical fiber is distributed on the periphery of the second optical fiber, Or the first optical fiber is distributed between the second optical fibers; or the first optical fiber is distributed on opposite sides of the second optical fiber.
  • the distribution of the first optical fiber relative to the distribution of the second optical fiber can improve the stability and convenience of insertion of the optical fiber component and the optical writing waveguide block.
  • an end portion of the optical fiber other than the optical fiber provided with the plug-in end in the plurality of optical fibers is flush with the first end surface, and an end portion of the waveguide except the waveguide provided with a coupling hole is The second end surface is flush.
  • the plug-in end is plugged into the coupling hole, the first end surface and the second end-face package are bonded together, and an optical fiber end portion excluding the optical fiber provided with the plug-in end and a waveguide excluding a waveguide provided with a coupling hole are removed.
  • the ends can fit as much as possible to reduce the loss of light transmission.
  • the plurality of optical fibers are single-core optical fibers, multi-core optical fibers, or a combination of single-core optical fibers and multi-core optical fibers, and as long as they are coupled and packaged with the optical writing waveguide block, the alignment of the plug end and the coupling hole can be adopted the way.
  • the multiple optical fibers are arranged in a two-dimensional array in the optical fiber fixing block, which can meet the requirements of high-density multi-channel coupling.
  • the number of waveguides forming one coupling hole is the same as the number of cores of the optical fiber to which the coupling hole is inserted, so as to realize the coupling of the coupling hole with a single-core fiber or a multi-core fiber.
  • the number of waveguides connected in the coupling hole is the same as the number of the cores, so as to achieve precise coupling between the core and the waveguide of each optical fiber.
  • the optical fiber component and the optical writing waveguide block are fastened by bonding between the second end surface and the first end surface, and the coupling hole and the plug end are connected to achieve rapid alignment, which does not need to be adopted. Alignment of other coupling methods improves packaging convenience and cost. It will not cause the bonding process to be unstable due to colloid or process, and the optical fiber component and the optical writing waveguide block will not be displaced to affect the coupling accuracy.
  • an embodiment of the present application provides an optical module.
  • the optical module includes an optical chip and the optical coupling device described above.
  • the main body of the optical writing waveguide block includes a coupling surface.
  • the coupling surface and the waveguide are located at The ends of the second end surface are oppositely disposed, and the coupling surface is bonded to the optical chip to realize the coupling between the optical chip and the optical writing waveguide block.
  • the optical chip in the optical module is quickly coupled and packaged through the optical writing waveguide block and the optical fiber component, which reduces the packaging difficulty and improves the competitiveness on the premise of realizing high-density multi-channel.
  • no other coupling auxiliary device is needed, which reduces packaging cost and light loss.
  • a mode field diameter of a waveguide in the optical writing waveguide block used for coupling with the optical chip is equal to a mode field diameter of an optical chip.
  • the coupling mode of the optical chip and the optical writing waveguide block is one or more of edge coupling, evanescent wave coupling, grating coupling, laser coupling, and detection array coupling.
  • the plurality of waveguides in the optical writing waveguide block are arranged linearly or two-dimensionally at the ends of the coupling surface, and the diameter of the waveguide is gradually reduced from the second end toward the coupling surface.
  • an embodiment of the present application provides a communication device including a circuit board and the optical module according to the second aspect, and the optical chip and the optical writing waveguide block are disposed on the circuit board.
  • the communication device may be a router, an optical backplane, a cabinet, or the like.
  • the present application also provides a method for manufacturing an optical coupling device.
  • the optical coupling device includes an optical fiber fixing block, a plurality of optical fibers, and a glass block.
  • the method includes:
  • a laser is used to write a one-to-one waveguide corresponding to the cores of the plurality of optical fibers in the direction of the coupling surface facing the second end face in the glass block, and a part of the waveguide end is provided with the second end face.
  • the one-to-one corresponding coupling holes of the plug-in ends form an optical writing waveguide block; wherein the second segment surface and the coupling surface are oppositely disposed, and the coupling surface is used for coupling with an optical chip;
  • the second end surface of the optical writing waveguide block is opposite to the first end surface of the optical fiber component, and the plug-in ends are correspondingly inserted into the coupling holes one by one.
  • the laser is used to write a one-to-one waveguide corresponding to the cores of the plurality of optical fibers in the direction of the coupling end facing the second end face in the glass block, and a recess is formed on an end portion of the waveguide.
  • the step of coupling the one-to-one correspondence between the second end surface and the plug-in end includes: presetting in the glass block an identification surface spaced apart from the second end surface, the identification surface to the second The area between the end faces is a positioning area. After the part of the waveguide is laser-engraved to the position of the identification surface, the laser parameters for writing the part of the waveguide are adjusted and the writing of the positioning area is continued so that the positioning area is different from An etching rate where the waveguide is located;
  • the engraved glass block is immersed in an acidic solution, and the glass in the positioning area after the immersion is corroded to form a coupling hole recessed in the end surface of the second end.
  • the end of the optical fiber is directly used as the plug end, and a coupling hole is formed in the glass block when the waveguide is formed.
  • the manufacturing is simple, greatly reducing the production process and cost, and the optical fiber component and the optical writing waveguide
  • the block can be coupled when the plug end is coupled with the coupling hole, improving the coupling accuracy, and avoiding the instability and displacement of the optical fiber component and the optical write waveguide block due to colloid or process in subsequent packaging.
  • the optical coupling device assists the coupling and alignment of the optical fiber component and the optical wave writing waveguide block through the insertion of the optical fiber component and the optical wave writing waveguide block through a plug end and the coupling hole. , Reducing the difficulty of coupling and aligning the high-density optical fiber with the waveguide, and improving the packaging efficiency of the optical fiber component and the optical wave writing waveguide block.
  • FIG. 1 is a schematic structural diagram of an optical coupling device according to an embodiment of the present application.
  • FIG. 2 is an enlarged schematic view of a part of the structure of the optical coupling device shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a plug state of an optical fiber component and an optical writing waveguide block of the optical coupling device shown in FIG. 1, and the figure shows only a plug state of an optical fiber and a waveguide;
  • FIG. 4 is a schematic diagram of the state of fiber and waveguide connection when the optical fiber component shown in FIG. 1 uses a multi-core fiber;
  • FIG. 5 is a schematic diagram of another embodiment of the coupling hole shown in FIG. 3;
  • FIG. 6 is a schematic structural diagram of the optical fiber assembly shown in FIG. 1, in which the plug-in ends are located on opposite sides of other optical fiber ends;
  • FIG. 7 is a schematic diagram of an embodiment of the optical fiber component shown in FIG. 6;
  • FIG. 8 is a schematic diagram of another embodiment of the optical fiber component shown in FIG. 6;
  • FIG. 9 is a schematic diagram of an optical module according to an embodiment of the present application.
  • FIG. 10 is a schematic internal plan view of the optical chip and the optical fiber component and the optical writing waveguide block in the optical module shown in FIG. 9 after being coupled and packaged;
  • FIG. 11 is a flowchart of a manufacturing method of an optical coupling device according to an embodiment of the present application.
  • FIG. 12 is a manufacturing state diagram of the optical writing waveguide block in the manufacturing method of the optical coupling device shown in FIG. 11;
  • FIG. 13 is a schematic diagram of an implementation manner of a communication device according to an embodiment of the present application.
  • FIG. 1 is an embodiment of the present application, which provides an optical coupling device for packaging and coupling of optical modules in an optical interconnection network.
  • the device includes: an optical fiber assembly 10 including a plurality of optical fibers 12 and an optical fiber fixing block 14, the plurality of optical fibers 12 are fixed to the optical fiber fixing block 14, and the optical fiber fixing block 14 is provided with a first end surface 141, at least partially
  • the optical fiber 12 includes a plug end 121 protruding from the first end surface 141; and
  • the optical writing waveguide block 20 includes a main body 21 and a plurality of waveguides 22 corresponding to the cores of the plurality of optical fibers 12.
  • the plurality of waveguides 22 are disposed in the main body 21, and the main body 21 is provided with a second end surface. 211, the second end surface 211 is concavely provided with a coupling hole 221 corresponding to the plug end 121 in a one-to-one manner, and the coupling hole 221 is formed by the end of the waveguide 22 recessed in the second end surface 211.
  • the waveguide 22 shown in FIG. 1 is only a schematic diagram, and the size and path are not limited.
  • FIG. 2 is an enlarged schematic view of a part of the structure of the optical coupling device shown in FIG. 1.
  • the second end surface 211 is abutted with the first end surface 141, and the insertion ends 121 of the at least part of the optical fiber 12 are correspondingly inserted into the coupling holes 221 one by one.
  • the optical signal transmission between the optical fiber component and the optical writing waveguide block is realized.
  • the positions and numbers of the plug-in ends and the coupling holes can be flexibly selected according to requirements.
  • the optical fiber fixing block 14 is a block structure, and is provided with a perforation (not shown) that penetrates the first end surface 141 and the end surface opposite to the first end surface 141 of the optical fiber fixing block 14.
  • An optical fiber 12 is inserted into each of the through holes, and an end portion of a part of the optical fiber 12 protrudes from the second end surface 141 to form the insertion end 121.
  • the plug end 121 includes a core and a cladding surrounding the core. Further, the length of the surface of the plug end 121 protruding from the first end 141 is less than 1 mm, which ensures that the plug end 121 and the coupling hole 221 are accurately connected, and at the same time, the strength and alignment of the plug end 121 are ensured. degree.
  • the optical fiber fixing block 14 is two blocks with grooves. The two fibers are fastened together, and the grooves are relatively fastened to fix the optical fiber 12, which makes installation of the optical fiber easier.
  • the main body 21 of the optical writing waveguide block 20 may be a glass block.
  • a plurality of the waveguides 22 are disposed in the main body 21 and an end portion is located on the second end surface 211 of the main body 21.
  • the arrangement of the waveguide 22 corresponds to the Arrangement of a plurality of optical fibers 12.
  • the coupling hole 221 is recessed from the end of the waveguide 22 on the second end surface 211 toward the inside of the main body 21. The diameter of the coupling hole 221 can be just enough for the insertion end 121 to be inserted and fixed.
  • the optical fiber provided with the insertion end 121 is directly aligned with the waveguide 22 in the coupling hole 221, and the other optical fibers 12 and the waveguide 22 are directly coupled and aligned with each other.
  • the plurality of optical fibers 12 are single-core optical fibers, multi-core optical fibers, or a combination of single-core optical fibers and multi-core optical fibers; as long as they are coupled and packaged with the optical writing waveguide block 20, the plug end 121 and the coupling can be used Alignment of holes 221.
  • the number of waveguides 22 forming one coupling hole 221 is the same as the number of cores of the optical fiber 12 inserted into the coupling hole 221, that is, one waveguide 22 is satisfied for one fiber core, so that the coupling hole 221 can be adapted to a single unit.
  • the insertion of the core fiber or the multi-core fiber ensures the precise coupling between the core of each optical fiber 12 and the waveguide 22.
  • FIG. 3 it is a schematic diagram of inserting one optical fiber 12 of the optical fiber assembly 10 and one coupling hole 221 of the optical writing waveguide block.
  • the multiple optical fibers 12 are single-core optical fibers, and each optical fiber has only one core. Q, the corresponding coupling hole 221 corresponds to only one waveguide 22.
  • the multiple optical fibers 12 are arranged in a two-dimensional array in the optical fiber fixing block 14, and the purpose of fabricating an optical fiber array using ordinary single-core optical fibers to achieve a high-density multi-channel configuration is achieved, which reduces coupling. Loss and cost.
  • the dimensional tolerance of the hole center distance between the two holes corresponding to the plurality of coupling holes 221 of the plurality of plug ends 121 is controlled to 0.3-0.5um, so as to cooperate with the optical fiber assembly 10 to meet the requirements of high-density multi-channel coupling packaging.
  • FIG. 4 a schematic diagram of the multi-core optical fiber used in the optical fiber assembly 10 is shown.
  • Each optical fiber 12 includes multiple cores Q.
  • a plug end 124 may be provided at the end of the optical fiber 12 to communicate with
  • the coupling holes 224 corresponding to the plug ends 124 are connected to the waveguides 22 corresponding to the number of cores of the multi-core optical fiber.
  • the optical fiber assembly 10 uses a multi-core optical fiber, and the multi-core optical fiber can be fixed to the optical fiber fixing block 14 in a one-dimensional arrangement manner, or fixed in the optical fiber fixing block in a two-dimensional array arrangement manner.
  • Figure 5 shows another possible implementation of the coupling hole.
  • the difference between this embodiment and the foregoing embodiment is that the diameter of the end of the coupling hole 221 at the second end surface 211 is larger than the diameter of the end of the coupling hole 221 connected to the waveguide 22.
  • the plug-in end 121 When docking with the lightwave writing waveguide block 20, it is more convenient for the plug-in end 121 to align the coupling hole from the second end surface 211 and insert the coupling hole into the coupling hole 221.
  • the coupling hole 221 in this embodiment is similar to a horn hole.
  • the insertion end 121 of the optical fiber 12 may be formed into a conical shape corresponding to the coupling hole 221, which is more convenient for insertion with the coupling hole 221.
  • the mode field diameter of the waveguide 22 in the optical writing waveguide block 20 used for coupling with the optical fiber 12 is equal to the mode field diameter of the optical fiber 12, which facilitates the optical fiber assembly 10 and the optical writing.
  • the coupling alignment of the waveguide block 20 does not require the introduction of a device that adjusts the mode field or the rotation to correct the coupling, which improves the coupling efficiency and reduces the coupling loss.
  • FIG. 6 is a schematic structural diagram of the optical fiber component shown in FIG. 1.
  • An end portion 122 of the plurality of optical fibers 12 except for the optical fiber 12 provided with the plug end 121 is flush with the first end surface 141.
  • an end portion (not shown) of the waveguide 22 excluding the waveguide 22 provided with the coupling hole 221 is flush with the second end surface 211.
  • a part of the optical fibers 12 including the plug end 121 is the first optical fiber A, and the other optical fibers of the multiple optical fibers 12 are the second optical fibers B.
  • the first optical fiber A including the insertion end 121 is distributed on opposite sides of the second optical fiber B, so that the optical fiber fixing block 14 is balanced after being inserted, which can improve the optical fiber assembly 10 and the optical writing waveguide.
  • the plugging stability and convenience of the block 20 may be distributed on the first end surface 141 in a three-point manner, and the insertion is more stable. As shown in FIG.
  • the first optical fiber A is distributed on the periphery B of the second optical fiber B.
  • the first optical fiber A including the insertion end 121 is distributed between the second optical fiber B.
  • all the optical fibers 12 may be provided with a plug-in end, and the corresponding waveguide 22 is provided with a coupling hole, and each optical fiber is inserted into the coupling hole.
  • the length of the plug-in end 121 may be different, and the corresponding coupling hole is also adapted to change.
  • the optical fiber assembly 10 and the optical writing waveguide block 20 are fixed through the bonding between the second end surface 211 and the first end surface 141, and are coupled with the coupling hole 221 and the plug end 121. Achieve fast alignment, do not need to adopt other coupling methods, improve packaging convenience and cost. In addition, the optical fiber assembly and the optical writing waveguide block will not be displaced due to the instability of the bonding process due to the colloid or the process, so as to avoid affecting the coupling accuracy.
  • the optical fiber assembly 10 and the optical wave writing waveguide block 20 of the present application assist the coupling alignment of the optical fiber assembly 10 and the optical wave writing waveguide block 20 through the insertion of the plug end 121 and the coupling hole 221, and reduce This makes it difficult to align and couple the optical fiber and waveguide, and meets the requirements of high-density multi-channel coupling packaging while improving the accuracy of coupling.
  • the end of the optical fiber 12 is directly used as the plug end 121 to be inserted into the coupling hole 221 on the waveguide block that is in communication with the waveguide 22, which can reduce the coupling loss, and has a simple structure and low cost.
  • FIG. 9 is an optical module provided by an embodiment of the present application.
  • the optical module 100 includes an optical chip 30 and the above-mentioned optical coupling device.
  • the main body 21 of the optical writing waveguide block 20 includes a coupling surface 212.
  • the coupling surface 212 and the waveguide 22 are located at an end of the second end surface 211. Relative settings.
  • the coupling surface 212 is bonded to the optical chip 30 to realize the coupling between the optical chip 30 and the optical writing waveguide block 20; the optical chip 30 in the optical module 100 is connected to the optical fiber component 10 through the optical writing waveguide block 20.
  • Fast coupling packaging reduces the difficulty of packaging and improves competitiveness on the premise of achieving high-density multi-channel, and does not require other coupling auxiliary devices, reducing packaging costs and optical losses.
  • a mode field diameter of a waveguide in the optical writing waveguide block used for coupling with the optical chip is equal to a diameter of a mode field of the optical chip.
  • the coupling mode of the optical chip 30 and the optical writing waveguide block 20 is one or more of edge coupling, evanescent wave coupling, grating coupling, laser coupling, and detection array coupling.
  • the waveguide An end coupled to the optical chip 30 is located on the coupling surface 212, and the coupling surface is provided so that the optical writing waveguide block 20 can be coupled with the optical chip 30 through the coupling surface in any of the above-mentioned coupling manners.
  • the optical chip 30 and the optical writing waveguide block 20 are edge-coupled.
  • the plurality of waveguides 22 in the optical writing waveguide block 20 are arranged linearly or two-dimensionally at the ends of the coupling surface 212, and the diameter of the waveguide 22 is from the second end surface 211 to the coupling surface 212.
  • the direction is gradually reduced to match the effective receiving area of the optical chip, so as to achieve mode field matching and reduce the loss of light, and then there is no need to intervene in other devices between the optical writing waveguide block and the optical chip to tune the mode field matching.
  • FIG. 11 is a manufacturing method of an optical coupling device provided by an embodiment of the present application. This method can be applied to the embodiment described in the above optical coupling device, as shown in FIGS. 1 to 8.
  • the optical coupling device includes an optical fiber fixing block 14, a plurality of optical fibers 12, and a glass block, that is, a main body 21.
  • the main body 21 includes a coupling surface 212.
  • the method includes:
  • step S1 a plurality of optical fibers 12 are fixed in the optical fiber fixing block 14 and an end portion of a core of the optical fiber 12 protrudes from the first end surface 141 of the optical fiber fixing block 14 to form a plug end 121, thereby forming an optical fiber.
  • Module 10; the optical fiber fixing block 14 may be formed by butting two blocks with multiple grooves, and the grooves of the two blocks are fastened to form holes for positioning the optical fiber, and the cross section of the groove may be V-shaped, which is better. Fixed fiber.
  • step S2 a waveguide 22 corresponding to the core of the optical fiber 12 is engraved in the glass block 21 from the coupling surface 212 toward the second end surface 211 in the glass block 21, and an end portion of the waveguide 22 is fabricated.
  • the coupling holes 221 corresponding to the one-to-one corresponding to the plug-in ends 121 of the second end surface 211 are recessed to form the optical writing waveguide block 20; wherein the second end surface 211 is disposed away from the coupling surface 212, so
  • the coupling surface 212 is used for an optical chip coupling package coupled with the optical writing waveguide block.
  • This step is specifically to preset a marking surface M in the glass block 21 that is spaced apart from the second end surface 211.
  • a schematic diagram of the glass block 21 is from the marking surface M to the second end surface.
  • the area between 211 is the positioning area N.
  • the position of the positioning area N is adjusted after adjusting the laser parameters for writing the part of the waveguide. Having an etch rate different from the position where the waveguide is located;
  • the engraved glass block is immersed in an acidic solution, and the immersion time is about 5 minutes.
  • the engraved part of the glass in the positioning area N after the immersion is corroded to form a coupling hole 221 recessed in the second end surface .
  • step S3 the second end surface 221 of the optical writing waveguide block 20 and the first end surface 141 of the optical fiber component 10 are abutted, and the insertion ends 121 are correspondingly inserted into the coupling holes 221.
  • the method further includes adhesively fixing the first end surface 141 and the second end surface 221 by a gel.
  • the end of the optical fiber 12 is directly used as the plug end 121, and the coupling hole 221 is formed in the glass block when the waveguide 22 is formed, which is simple to manufacture and greatly reduces the production process.
  • the optical fiber component and the optical writing waveguide block can be coupled when the plug end is coupled with the coupling hole, improving the coupling accuracy, and avoiding the failure of the optical fiber component and the optical writing waveguide block to be adhered in the subsequent packaging due to colloids or processes. Stable and shifting, also avoids installing coupling adapters, reducing coupling losses and costs.
  • FIG. 13 is a communication device according to an embodiment of the present application, which includes a circuit board (not shown) and an optical module 100 provided on the circuit board.
  • the optical chip 30 is electrically connected to the circuit board.
  • the optical module is not limited to one.
  • the communication device may be a router, an optical backplane, or a cabinet.
  • the optical backplane is taken as an example in this embodiment, and includes a chassis 300, a backplane 310, and a single board 200.
  • the single board 200 is provided with an electric signal processing unit 210.
  • the function of the optical module is to convert the electric signals of the electric signal processing unit.
  • the optical signals are transmitted to other boards or chassis through the high-density coupling device, and the optical signals transmitted by other boards or chassis may also be converted into electric signals and transmitted to the electric signal processing unit 210.
  • the communication device realizes transmission of large-capacity signals through an optical module, and ensures coupling efficiency.

Abstract

本申请实施例提供一种光耦合装置、光模块和通讯设备。其中,光耦合装置包括:光纤组件,包括多条光纤和光纤固定块,所多条光纤固定至光纤固定块,光纤固定块设有第一端面,至少部分所述光纤包括插接端,所述插接端凸出于所述第一端面;和光写波导块,包括主体和与多条光纤的纤芯对应的多个波导,多个波导设于所述主体内,主体设有第二端面,第二端面上凹设有与所述插接端一一对应的耦合孔,耦合孔由所述波导的端部内凹于所述第二端面形成;所第二端面与第一端面对接,至少部分光纤的插接端一一对应插设在耦合孔内,以使所述多条光纤的纤芯和所述多个波导一一对应耦合对准,实现所述光纤组件与光写波导块的光信号传输。

Description

光耦合装置及其封装方法、光模块及通讯设备 技术领域
本申请涉及光通信技术领域,尤其涉及一种光耦合装置、光模块及通讯设备。
背景技术
日益增长的数据需求对传输网络的容量、带宽提出了更高的要求,高速大容量的通信设备互联成为了构建高速大容量传输网络的基础。光模块是数据传输网络重要组成部分,其主要是通过光纤进行低损耗远距离传输,光信号在光纤与光芯片之间传输,通过光芯片实现光电和电光信号的转换。光信号在光纤与光芯片之间需要进行耦合,而大容量的数据光互联需要具有多通道和高的光纤通道密度,而高通道密度在耦合封装时耦合对准难度较大,影响耦合效率。
发明内容
本申请实施例提供一种高密多通道光耦合装置、光模块和通讯设备,提高耦合对准难度。
第一方面,本申请所述的光耦合装置,包括:光纤组件,包括多条光纤和光纤固定块,所述多条光纤固定至所述光纤固定块,所述光纤固定块设有第一端面,至少部分所述光纤包括插接端,所述插接端凸出于所述第一端面;和光写波导块,包括主体和与所述多条光纤的纤芯对应的多个波导,所述多个波导设于所述主体内,所述主体设有第二端面,所述第二端面上凹设有与所述插接端一一对应的耦合孔,所述耦合孔由所述波导的端部内凹于所述第二端面形成;所述第二端面与所述第一端面对接,所述至少部分光纤的插接端一一对应插设在所述耦合孔内,以使所述多条光纤的纤芯和所述多个波导一一对应耦合对准,实现所述光纤组件与光写波导块的光信号传输。其中,所述插接端和耦合孔的位置和数目可根据需求灵活选取。本申请实施例中直接采用光纤的端部作为插接端与波导块上的与波导连通的耦合孔插接,结构简单成本较低,可以避免采用额外的耦合装置导致的损耗,;而且通过所述光纤组件和所述光波写波导块通过插接端和所述耦合孔的插接,来辅助光纤组件和所述光波写波导块的耦合对准,降低了高密度光纤与波导的耦合对准的难度,提升了光纤组件和所述光波写波导块封装效率,进而提升耦合精度。
可选地,所述耦合孔位于所述第二端面的端部的孔径大于与所述波导连接的端部的孔径。也就是说耦合孔类似于喇叭形状,更便于光纤组件和所述光波写波导块对接时,所述插接端插入所述耦合孔内。进一步的,所述插接端凸出所述第一端面的长度小于1毫米,保证设有插接端的光纤具有足够的强度和准直度,以实现高精度的辅助耦合对准。
可选地,所述光写波导块内的波导用于与所述光纤耦合的一侧的模场直径与所述光纤的模场直径相等,如此便于光纤组件与所述光写波导块的耦合对准,并提高耦合效率,减小耦合的损耗。
可选地,所述多条光纤中包括插接端的部分光纤为第一光纤,所述多条光纤中的其它光纤为第二光纤,所述第一光纤分布在所述第二光纤的外围,或者所述第一光纤分布在所 述第二光纤之间;或者第一光纤分布在所述第二光纤的相对两侧。本实施例中所述第一光纤分布相对所述第二光纤的分布,可以提高光纤组件与光写波导块的插接稳固性和方便性。
可选地,所述多条光纤中除去所述设有插接端的光纤以外的光纤端部与所述第一端面平齐,所述多个波导中除去设有耦合孔的波导的端部与所述第二端面平齐。当插接端与耦合孔插接后,所述第一端面与所述第二端面封装贴合,而除去所述设有插接端的光纤以外的光纤端部与除去设有耦合孔的波导的端部可以尽可能的贴合,减少光的传输的损耗。
可选地,所述多条光纤为单芯光纤、多芯光纤,或者单芯光纤与多芯光纤和组合,只要与光写波导块耦合封装,就可以采用插接端和耦合孔的对准方式。
可选地,所述多条光纤在所述光纤固定块内呈二维阵列排布,可以满足高密度多通道耦合的要求。
可选地,形成一个所述耦合孔的波导数量与插接该耦合孔的所述光纤的纤芯数量相同,以实现所述耦合孔与单芯光纤或者多芯光纤的插接,当光纤为多芯时,所述耦合孔内连接的波导数量与所述纤芯数量相同,以实现每个光纤的纤芯与波导的耦合精准。
可选地,所述光纤组件与光写波导块的通过所述第二端面与所述第一端面之间的粘接固定,结合耦合孔与插接端的插接实现快速对准,不需要采用其他耦合方式对准,提高封装便利性和成本。不会因胶体或者工艺的原因导致粘接过程不稳而使光纤组件和光写波导块移位影响耦合精度。
第二方面,本申请实施例提供一种光模块,所述光模块包括光芯片及以上所述光耦合装置,所述光写波导块的主体包括耦合面,所述耦合面与所述波导位于第二端面的端部相对设置,所述耦合面与所述光芯片粘接实现所述光芯片与所述光写波导块的耦合。所述光模块中的光芯片通过光写波导块与光纤组件快速耦合封装,在实现高密度多通道的前提下降低封装难度,提高竞争力。而且不需要其他的耦合辅助装置,减小封装成本和光的损耗。
可选地,所述光写波导块内的波导用于与所述光芯片耦合的一侧的模场直径与光芯片出光模场直径相等。
可选地,所述光芯片与所述光写波导块的耦合方式为边缘耦合、倏逝波耦合、光栅耦合、激光耦合、探测阵列耦合中的一种或者多种。
可选地,所述光写波导块内的多个波导位于所述耦合面的端部呈线状排布或者二维排布,且所述波导直径由第二端面向耦合面方向逐渐减小,以实现模场匹配,降低光的损耗。
第三方面,本申请实施例提供一种通讯设备,包括电路板和第二方面所述的光模块,所述光芯片和光写波导块设于所述电路板上。所述通讯设备可以是路由器、光背板、机柜等。
第四方面,本申请还提供一种光耦合装置的制作方法,所述光耦合装置包括光纤固定块、多条光纤和玻璃块,所述方法包括:
将多条光纤固定于所述光纤固定块内并使部分所述多条光纤的端部凸出所述光纤固定块的第一端面形成插接端,以形成光纤组件;
采用激光在所述玻璃块内由耦合面向第二端面的方向刻写与所述多条光纤的纤芯一一对应的波导,并在部分波导端部上制作设于所述第二端面的与所述插接端一一对应的耦合孔,以形成光写波导块;其中,所述第二段面和所述耦合面相对设置,所述耦合面用于与 光芯片耦合;
将所述光写波导块的第二端面与所述光纤组件的第一端面相对接,所述插接端一一对应插设在所述耦合孔内。
可选地,所述采用激光在所述玻璃块内由耦合面向第二端面的方向刻写与所述多条光纤的纤芯一一对应的波导,并在部分波导的端部上制作凹设于所述第二端面与所述插接端一一对应的耦合孔的步骤包括:在所述玻璃块内预设与所述第二端面间隔相对的标识面,所述标识面到所述第二端面之间的区域为定位区,在激光刻写所述部分波导至所述标识面所在位置后,调节刻写该部分波导的激光参数后继续刻写所述定位区,以使所述定位区具有不同于所述波导所在位置的蚀刻速率;
将刻写后的所述玻璃块放入酸性溶液内浸泡,浸泡后的定位区的玻璃被腐蚀掉形成凹设于第二端端面的耦合孔。所述光耦合装置的制作方法中,直接将光纤的端部作为插接端,在形成波导时在玻璃块上形成耦合孔,制作简单,大大降低了生产流程和成本,而且光纤组件和光写波导块在插接端和耦合孔插接时就可以进行耦合,提高耦合精度,可以避免在后续的封装中因胶体或者工艺的原因导致光纤组件和光写波导块粘接不稳而移位。
本申请实施例所述的光耦合装置通过所述光纤组件和所述光波写波导块通过插接端和所述耦合孔的插接,来辅助光纤组件和所述光波写波导块的耦合对准,降低了高密度光纤与波导的耦合对准的难度,提升了光纤组件和所述光波写波导块封装效率。
附图说明
图1是本申请实施例的光耦合装置的结构示意图;
图2是图1所示的光耦合装置的部分结构放大示意图;
图3是图1所示的光耦合装置的光纤组件和光写波导块插接状态示意图,图中只表示出一个光纤和一个波导的插接状态;
图4是图1所示的光纤组件采用多芯光纤时,光纤与波导插接状态示意图;
图5是图3所示的耦合孔的另一实施方式示意图;
图6是图1所示的光纤组件的结构示意图,其中插接端位于其它光纤端部的相对两侧;
图7是图6所示的光纤组件的一种实施方式示意图;
图8是图6所示的光纤组件的另一种实施方式示意图;
图9是本申请实施例的光模块的示意图;
图10是图9所示的光模块中光芯片和光纤组件与光写波导块耦合封装后的内部平面示意图;
图11是本申请实施例的光耦合装置的制作方法流程图;
图12是图11所示的光耦合装置的制作方法中光写波导块的制作状态图;
图13为本申请实施例提供的通讯设备的实施方式的示意图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述。
图1是本申请实施例提供一种光耦合装置,用于光互联网络中光模块的封装耦合。该装置包括:光纤组件10,包括多条光纤12和光纤固定块14,所述多条光纤12固定至所述光纤固定块14,所述光纤固定块14设有第一端面141,至少部分所述光纤12包括插接端121,所述插接端121凸出于所述第一端面141;和
光写波导块20,包括主体21和与所述多条光纤12的纤芯对应的多个波导22,所述多个波导22设于所述主体21内,所述主体21设有第二端面211,所述第二端面211上凹设有与所述插接端121一一对应的耦合孔221,所述耦合孔221由所述波导22的端部内凹于所述第二端面211形成。其中,图1中所示的波导22只是示意图,不限制尺寸和路径。
图2是图1所示的光耦合装置的部分结构放大示意图。所述第二端面211与所述第一端面141对接,所述至少部分光纤12的插接端121一一对应插设在所述耦合孔221内。实现所述光纤组件与光写波导块的光信号传输。其中,所述插接端和耦合孔的位置和数目可根据需求灵活选取。
具体的,所述光纤固定块14为块体结构,其设有贯穿光纤固定块14的第一端面141和与第一端面141相对的端面的穿孔(图未示)。每个穿孔内插接一个光纤12,其中部分光纤12的端部伸出所述第二端面141形成所述插接端121。插接端121包括纤芯和包裹纤芯的包层。进一步的,所述插接端121凸出所述第一端141的表面的长度小于1毫米,保证插接端121与耦合孔221的准确插接同时可以保证插接端121的强度和准直度。其它实施例中,所述光纤固定块14为两个设有凹槽的块体,通过两个块体的扣合,凹槽相对扣合将光纤12固定,如此更便于光纤的安装。
所述光写波导块20的主体21可以是玻璃块,多个所述波导22设于主体21内且端部位于主体21的第二端面211上,所述波导22的排布对应于所述多条光纤12的排布。所述耦合孔221由波导22位于第二端面211的端部向主体21内部凹设。所述耦合孔221的直径恰好可以供所述插接端121插入和固定。在插接端121插于所述耦合孔221后,设有插接端121的光纤直接与耦合孔221内的波导22对准,其他光纤12与波导22直接一对一的耦合对准。
进一步的,所述多条光纤12为单芯光纤、多芯光纤,或者单芯光纤与多芯光纤组合;只要与光写波导块20耦合封装,就可以采用所述的插接端121和耦合孔221的对准方式。形成一个所述耦合孔221的波导22数量与插接该耦合孔221的所述光纤12的纤芯数量相同,也就是说满足一个纤芯对应一个波导22,以实现所述耦合孔221适应单芯光纤或者多芯光纤的插接,保证每个光纤12的纤芯与波导22的耦合精准。
本实施例中,如图3,为光纤组件10的一个光纤12与光写波导块的一个耦合孔221插接的示意图,所述多条光纤12为单芯光纤,每个光纤只有一个纤芯Q,与之对应的耦合孔221只对应一个波导22。更进一步的,结合图2,所述多条光纤12在所述光纤固定块14内呈二维阵列排布,实现用普通单芯光纤制作光纤阵列来实现高密多通道配置的目的,降低了耦合损耗和成本。对应多个所述插接端121的多个耦合孔221的两个孔之间的孔中心距离的尺寸公差控制在0.3~0.5um,以配合光纤组件10满足高密度多通道耦合封装要求。在另一实施方式中,如图4,为所述光纤组件10采用多芯光纤的示意图,每个光纤12包括多个纤芯Q,同样可以在光纤12端部设置插接端124,与所述插接端124对应的耦合孔 224连接与多芯光纤的纤芯数量相对应的波导22。所述光纤组件10采用多芯光纤,多芯光纤可以采用一维排布方式与光纤固定块14固定,或者采用二维阵列排布方式固定在光纤固定块内。
图5给出了耦合孔的另一可能的实现方式。该实施例中与上述实施例不同的是,位于所述第二端面211的所述耦合孔221端部的孔径大于与所述波导22连接的耦合孔221的端部的孔径,在光纤组件10和所述光波写波导块20对接时,更便于所述插接端121从第二端面211找准耦合孔并插入所述耦合孔221内。只要耦合孔221的部分直径尺寸可以实现固定插接端121,防止插接端121偏移位置即可。本实施例中的耦合孔221类似喇叭孔。在其它实施方式中,光纤12的插接端121可以对应所述耦合孔221做成圆锥状,更便于与耦合孔221的插接。
进一步的,所述光写波导块20内的波导22用于与所述光纤12耦合的一侧的模场直径与所述光纤12的模场直径相等,如此便于光纤组件10与所述光写波导块20的耦合对准,不需要引入调整模场的器件或者旋转调正耦合,提高耦合效率,并减小耦合的损耗。
进一步的,图6是图1所示的光纤组件的结构示意图。所述多条光纤12中除去所述设有插接端121的光纤12以外的光纤12的端部122与所述第一端面141平齐。相应的,所述多个波导22中除去设有耦合孔221的波导22的端部(图未示)与所述第二端面211平齐。当插接端121与耦合孔221插接后,所述第一端面141与所述第二端面211封装贴合,而未设有插接端的光纤12的端部122与未设有耦合孔221的波导22的端部可以尽可能的近距离耦合,减少光的传输的损耗。
参阅图6,本实施例中,所述多条光纤12中包括插接端121的部分光纤为第一光纤A,所述多条光纤中的其它光纤为第二光纤B。本实施例中,包括插接端121的第一光纤A分布在所述第二光纤B的相对两侧,使所述光纤固定块14插接后保持平衡,可以提高光纤组件10与光写波导块20的插接稳固性和方便性。当然,第一光纤A可以成三点式分布在第一端面141上,插接更加稳固。如图7所示的光纤组件的插接端与其它光纤端部的一种实施方式,所述第一光纤A分布在所述第二光纤B的外围B。或者如图8所示的光纤组件的插接端与其它光纤端部的另一种实施方式,所述包括插接端121的的第一光纤A分布在所述第二光纤B之间。在其它实施方式中,所有的所述光纤12都可以设有插接端,对应的波导22都设有耦合孔,每一个光纤都插入耦合孔内。当然所述插接端121的长度可以不等,对应的耦合孔也做适应的变化。
本实施例中,所述光纤组件10与光写波导块20的通过所述第二端面211与所述第一端面141之间的粘接固定,结合耦合孔221与插接端121的插接实现快速对准,不需要采用其他耦合方式对准,提高封装便利性和成本。而且,不会因胶体或者工艺的原因导致粘接过程不稳而使光纤组件和光写波导块发生移位,避免影响耦合精度。
本申请的所述光纤组件10和所述光波写波导块20通过插接端121和所述耦合孔221的插接,来辅助光纤组件10和所述光波写波导块20的耦合对准,降低了光纤与波导的耦合对准的难度,满足高密度多通道耦合封装要求同时提升耦合的精度。而且直接采用光纤12的端部作为插接端121与波导块上的与波导22连通的耦合孔221插接,可以减小耦合的损耗,而且结构简单成本较低。
图9是本申请实施例提供一种光模块。所述光模块100包括光芯片30及以上所述光耦合装置,所述光写波导块20的主体21包括耦合面212,所述耦合面212与所述波导22位于第二端面211的端部相对设置。所述耦合面212与所述光芯片30粘接实现所述光芯片30与所述光写波导块20的耦合;所述光模块100中的光芯片30通过光写波导块20与光纤组件10快速耦合封装,在实现高密度多通道的前提下降低封装难度,提高竞争力,而且不需要其他的耦合辅助装置,减小封装成本和光的损耗。
本实施例中,所述光写波导块内的波导用于与所述光芯片耦合的一侧的模场直径与光芯片出光模场直径相等。便于光芯片与所述光写波导块的耦合,并提高耦合效率,减小耦合的损耗。所述光芯片30与所述光写波导块20的耦合方式为边缘耦合、倏逝波耦合、光栅耦合、激光耦合、探测阵列耦合中的一种或者多种,需要说明的是,所述波导22与光芯片30耦合的端部位于所述耦合面212上,耦合面的设置可以实现光写波导块20通过耦合面与光芯片30的以上述任意耦合方式进行耦合。如图10所示,本实施例中,所述光芯片30与所述光写波导块20为边缘耦合。
其中,所述光写波导块20内的多个波导22位于所述耦合面212的端部呈线状排布或者二维排布,且所述波导22直径由第二端面211向耦合面212方向逐渐减小,以匹配所述光芯片的有效接收面积,以实现模场匹配,降低光的损耗,进而不需要在光写波导块和光芯片之间介入其他装置来调和模场的匹配。
图11是本申请实施例提供一种光耦合装置的制作方法。这个方法可以应用于上述光耦合装置所描述的实施例,如图1至图8。所述光耦合装置包括光纤固定块14、多条光纤12和玻璃块,即为主体21,所述主体21包括耦合面212,所述方法包括:
步骤S1,将多条光纤12固定于光纤固定块14内并使部分所述光纤12的纤芯的端部凸出所述光纤固定块14的第一端面141形成插接端121,进而形成光纤组件10;所述光纤固定块14可以为两个具有多个凹槽的块体对接形成,两个块体的凹槽扣合形成定位光纤的孔,凹槽的截面可以是V型,更好的固定光纤。
步骤S2,采用激光在所述玻璃块21内由所述耦合面212向第二端面211方向刻写与所述光纤12的纤芯一一对应的波导22,并在部分波导22的端部上制作凹设于所述第二端面211的与所述插接端121一一对应的耦合孔221,以形成光写波导块20;其中,所述第二端面211远离所述耦合面212设置,所述耦合面212用于与所述光写波导块耦合的光芯片耦合封装。
本步骤具体为在所述玻璃块21内预设与所述第二端面211间隔相对的标识面M,如图12为所述玻璃块21的示意图,所述标识面M到所述第二端面211之间的区域为定位区N,在激光刻写所述部分波导22至所述标识面M所在位置后,调节刻写该部分波导的激光参数后继续刻写所述定位区N,以使定位区N具有不同于所述波导所在位置的蚀刻速率;
将刻写后的所述玻璃块放入酸性溶液内浸泡,浸泡的时间约为5分钟,浸泡后的定位区N的被刻写部分的玻璃被腐蚀掉形成凹设于第二端端面的耦合孔221。
步骤S3,将所述光写波导块20的第二端面221与所述光纤组件10的第一端面141相对接,所述插接端121一一对应插设在所述耦合孔221内。
还包括通过胶体将所述第一端面141与第二端面221粘接固定。
所述光耦合装置的制作方法中,直接将光纤12的端部作为插接端121,在形成波导22 时在玻璃块上形成耦合孔221,制作简单,大大降低了生产流程。而且,光纤组件和光写波导块在插接端和耦合孔插接时就可以进行耦合,提高耦合精度,可以避免在后续的封装中因胶体或者工艺的原因导致光纤组件和光写波导块粘接不稳而移位,同样避免安装耦合转接装置,减少耦合损耗和成本。
图13是本申请实施例提供的一种通讯设备,包括电路板(图未示)和设于所述电路板上的的光模块100,所述光芯片30与所述电路板电连接,所述光模块不限定一个。所述通讯设备可以是路由器、光背板、或者机柜。本实施例中以光背板为例,包括机箱300、背板310及单板200,所述单板200上设有电信号处理单元210,光模块的功能是将电信号处理单元的电信号转化成光信号,经由高密耦合装置传送到其他单板或机框,也可以将其他单板或机框传入的光信号转化成电信号传给电信号处理单元210。所述通讯设备通过光模块实现大容量的信号的传输,并且保证耦合效率。
以上是本申请实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请实施例的保护范围。

Claims (16)

  1. 一种光耦合装置,其特征在于,包括:
    光纤组件,包括多条光纤和光纤固定块,所述多条光纤固定至所述光纤固定块,所述光纤固定块设有第一端面,至少部分所述光纤包括插接端,所述插接端凸出所述第一端面;和
    光写波导块,包括主体和与所述多条光纤的纤芯对应的多个波导,所述多个波导设于所述主体内,所述主体设有第二端面,所述第二端面上凹设有与所述插接端一一对应的耦合孔,所述耦合孔由所述波导的端部内凹于所述第二端面形成;
    所述第二端面与所述第一端面对接,所述至少部分光纤的插接端一一对应插设在所述耦合孔内。
  2. 如权利要求1所述的光耦合装置,其特征在于,所述耦合孔位于所述第二端面的端部的孔径大于与所述波导连接的端部的孔径。
  3. 如权利要求1或2所述的光耦合装置,其特征在于,所述光写波导块内的波导用于与所述光纤耦合的一侧的模场直径与所述光纤的模场直径相等。
  4. 如权利要求1-3任一项所述的光耦合装置,其特征在于,所述多条光纤中包括插接端的部分光纤为第一光纤,其它光纤为第二光纤,所述第一光纤分布在所述第二光纤的外围,或者所述第一光纤分布在所述第二光纤之间;或者第一光纤分布在所述第二光纤的相对两侧。
  5. 如权利要求1-4任一项所述的光耦合装置,其特征在于,所述多条光纤中除去所述设有插接端的光纤以外的光纤端部与所述第一端面平齐,所述多个波导中除去设有耦合孔的波导的端部与所述第二端面平齐。
  6. 如权利要求1-5任一项所述的光耦合装置,其特征在于,所述插接端凸出所述第一端面的长度小于1毫米。
  7. 如权利要求1-6任一项所述的光耦合装置,其特征在于,形成一个所述耦合孔的波导数量与插接该耦合孔的所述光纤的纤芯数量相同。
  8. 如权利要求7所述的光耦合装置,其特征在于,所述多条光纤为单芯光纤、多芯光纤,或者单芯光纤与多芯光纤的组合。
  9. 如权利要求8所述的光耦合装置,其特征在于,所述多条光纤在所述光纤固定块内呈二维阵列排布。
  10. 如权利要求1-9任一项所述的光耦合装置,其特征在于,所述光纤组件与光写波导块通过所述第二端面与所述第一端面之间的粘接固定。
  11. 一种光模块,其特征在于,所述光模块包括光芯片及权利要求1-10任一项所述光耦合装置,所述光写波导块的主体包括耦合面,所述耦合面与所述波导位于第二端面的端部相对设置,所述耦合面与所述光芯片粘接实现所述光芯片与所述光写波导块的耦合。
  12. 如权利要求11所述的光模块,其特征在于,所述光芯片与所述光写波导块的耦合方式为边缘耦合、倏逝波耦合、光栅耦合、激光耦合、探测阵列耦合中的一种或者多种。
  13. 如权利要求11所述的光模块,其特征在于,所述光写波导块内的多个波导位于所 述耦合面的端部呈线状排布或者二维排布,且所述波导直径由第二端面向耦合面方向逐渐减小。
  14. 一种通讯设备,其特征在于,包括电路板和权利要求11-13任一项所述的光模块,所述光模块设于所述电路板上。
  15. 一种光耦合装置的制作方法,其特征在于,所述光耦合装置包括光纤固定块、多条光纤和玻璃块,所述方法包括:
    将多条光纤固定于所述光纤固定块内并使部分所述多条光纤的端部凸出所述光纤固定块的第一端面形成插接端,以形成光纤组件;
    采用激光在所述玻璃块内由耦合面向第二端面的方向刻写与所述多条光纤的纤芯一一对应的波导,并在部分波导端部上制作凹设于所述第二端面的与所述插接端一一对应的耦合孔,以形成光写波导块,其中,所述第二端面和所述耦合面相对设置,所述耦合面用于与光芯片耦合;
    将所述光写波导块的第二端面与所述光纤组件的第一端面相对接,所述插接端一一对应插设在所述耦合孔内。
  16. 如权利要求15所述的光耦合装置的制作方法,其特征在于,所述采用激光在所述玻璃块内由耦合面向第二端面的方向刻写与所述多条光纤的纤芯一一对应的波导,并在部分波导的端部上制作凹设于所述第二端面与所述插接端一一对应的耦合孔的步骤包括:在所述玻璃块内预设与所述第二端面间隔相对的标识面,所述标识面到所述第二端面之间的区域为定位区,在激光刻写所述部分波导至所述标识面所在位置后,调节刻写该部分波导的激光参数后继续刻写所述定位区,以使定位区具有不同于所述波导所在位置的蚀刻速率;
    将刻写后的所述玻璃块放入酸性溶液内浸泡,浸泡后的定位区的被刻写部分的玻璃被腐蚀掉形成凹设于第二端端面的耦合孔。
PCT/CN2018/095511 2018-07-12 2018-07-12 光耦合装置及其封装方法、光模块及通讯设备 WO2020010585A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18925780.1A EP3809177B1 (en) 2018-07-12 2018-07-12 Optical coupling device, packaging method for same, optical module, and communication apparatus
PCT/CN2018/095511 WO2020010585A1 (zh) 2018-07-12 2018-07-12 光耦合装置及其封装方法、光模块及通讯设备
CN201880095175.1A CN112368617A (zh) 2018-07-12 2018-07-12 光耦合装置及其封装方法、光模块及通讯设备
US17/146,365 US11391892B2 (en) 2018-07-12 2021-01-11 Optical coupling apparatus, method for packaging optical coupling apparatus, optical module, and communications device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095511 WO2020010585A1 (zh) 2018-07-12 2018-07-12 光耦合装置及其封装方法、光模块及通讯设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/146,365 Continuation US11391892B2 (en) 2018-07-12 2021-01-11 Optical coupling apparatus, method for packaging optical coupling apparatus, optical module, and communications device

Publications (1)

Publication Number Publication Date
WO2020010585A1 true WO2020010585A1 (zh) 2020-01-16

Family

ID=69142998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095511 WO2020010585A1 (zh) 2018-07-12 2018-07-12 光耦合装置及其封装方法、光模块及通讯设备

Country Status (4)

Country Link
US (1) US11391892B2 (zh)
EP (1) EP3809177B1 (zh)
CN (1) CN112368617A (zh)
WO (1) WO2020010585A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590950A (zh) * 2011-01-08 2012-07-18 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器
US20130251304A1 (en) * 2012-03-23 2013-09-26 International Business Machines Corporation Flexible fiber to wafer interface
CN103984063A (zh) * 2014-05-27 2014-08-13 武汉光迅科技股份有限公司 一种光纤与集成芯片的耦合对准方法及其耦合对准模块
WO2016197332A1 (zh) * 2015-06-09 2016-12-15 华为技术有限公司 一种光纤连接器
CN106950652A (zh) * 2016-01-06 2017-07-14 中兴通讯股份有限公司 光波导组件
CN107407782A (zh) * 2015-03-20 2017-11-28 奥林巴斯株式会社 光传送模块、内窥镜以及所述光传送模块的制造方法
CN107533201A (zh) * 2015-04-20 2018-01-02 安达满株式会社 多芯光连接器
CN108027478A (zh) * 2015-10-06 2018-05-11 扇港元器件有限公司 接入开口被扩展的光纤连接器插芯
CN108885313A (zh) * 2016-04-12 2018-11-23 日东电工株式会社 光连接器构件和使用该光连接器构件的光连接器组以及由此制得的光布线

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH685174A5 (fr) * 1991-06-26 1995-04-13 Suisse Electronique Microtech Procédé pour coupler une fibre optique à un composant optoélectronique et dispositifs de raccordement obtenus.
JPH05173038A (ja) * 1991-12-26 1993-07-13 Sumitomo Electric Ind Ltd 光導波路と光ファイバの接続機構
US5309537A (en) * 1993-04-05 1994-05-03 Motorola, Inc. Optoelectronic coupling device and method of making
JP3298975B2 (ja) * 1993-04-07 2002-07-08 三菱電線工業株式会社 光結合器と光ファイバとの接続構造および接続方法
AU668648B2 (en) * 1993-05-26 1996-05-09 Sumitomo Electric Industries, Ltd. Optical waveguide module and method of manufacturing the same
DE4344179C1 (de) * 1993-12-23 1994-10-27 Krone Ag Koppelvorrichtung zwischen einer Glasfaser und einem auf einem Substrat integrierten dielektrischen Wellenleiter
JPH08201651A (ja) * 1995-01-27 1996-08-09 Nippon Sheet Glass Co Ltd 光導波路デバイス及びその製造方法
JP2000121889A (ja) * 1998-10-21 2000-04-28 Nec Corp 光モジュール及び該光モジュールの製造方法
JP3850569B2 (ja) * 1998-12-09 2006-11-29 富士通株式会社 フェルールアセンブリ及び光モジュール
US6672773B1 (en) * 2000-12-29 2004-01-06 Amkor Technology, Inc. Optical fiber having tapered end and optical connector with reciprocal opening
JP2004205662A (ja) * 2002-12-24 2004-07-22 Matsushita Electric Works Ltd 光デバイスと光ファイバの結合方法及び光デバイス
JP2004264505A (ja) * 2003-02-28 2004-09-24 Seiko Epson Corp 光ファイバ送受信モジュール、光ファイバ送受信モジュールの製造方法及び電子機器
JP4577376B2 (ja) * 2008-02-21 2010-11-10 ソニー株式会社 光導波路の製造方法
US9322987B2 (en) * 2013-08-27 2016-04-26 International Business Machines Corporation Multicore fiber coupler between multicore fibers and optical waveguides

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590950A (zh) * 2011-01-08 2012-07-18 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器
US20130251304A1 (en) * 2012-03-23 2013-09-26 International Business Machines Corporation Flexible fiber to wafer interface
CN103984063A (zh) * 2014-05-27 2014-08-13 武汉光迅科技股份有限公司 一种光纤与集成芯片的耦合对准方法及其耦合对准模块
CN107407782A (zh) * 2015-03-20 2017-11-28 奥林巴斯株式会社 光传送模块、内窥镜以及所述光传送模块的制造方法
CN107533201A (zh) * 2015-04-20 2018-01-02 安达满株式会社 多芯光连接器
WO2016197332A1 (zh) * 2015-06-09 2016-12-15 华为技术有限公司 一种光纤连接器
CN108027478A (zh) * 2015-10-06 2018-05-11 扇港元器件有限公司 接入开口被扩展的光纤连接器插芯
CN106950652A (zh) * 2016-01-06 2017-07-14 中兴通讯股份有限公司 光波导组件
CN108885313A (zh) * 2016-04-12 2018-11-23 日东电工株式会社 光连接器构件和使用该光连接器构件的光连接器组以及由此制得的光布线

Also Published As

Publication number Publication date
EP3809177A4 (en) 2021-07-07
US11391892B2 (en) 2022-07-19
US20210132304A1 (en) 2021-05-06
EP3809177B1 (en) 2023-09-06
EP3809177A1 (en) 2021-04-21
CN112368617A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
US10782474B2 (en) Detachable optical connectors for optical chips comprising a connector support and methods of fabricating the same
US20180364426A1 (en) Interposer assemblies and arrangements for coupling at least one optical fiber to at least one optoelectronic device
US6238100B1 (en) Optical module and a method for fabricating a same
RU2647212C1 (ru) Герметичная сборка для выравнивания оптического волокна
US11105981B2 (en) Optical connectors and detachable optical connector assemblies for optical chips
CN107407778B (zh) 光学耦合波导
US11852870B2 (en) Optical fiber photonic integrated chip connector interfaces, photonic integrated chip assemblies, and methods of fabricating the same
US20040208453A1 (en) Optical backplane array connector
US20210018697A1 (en) Waveguide substrates and waveguide substrate connector assemblies having waveguides and alignment features and methods of fabricating the same
US20230418004A1 (en) Multi-fiber interface apparatus for photonic integrated circuit
US11609395B2 (en) Waveguide substrates and assemblies including the same
US6386767B1 (en) High density multiple chip fiber array connector
US20180321451A1 (en) Optical coupling apparatus and method
CN110764196B (zh) 用于光纤阵列与平面光波导耦合的无导销可插拔对准结构
WO2020010585A1 (zh) 光耦合装置及其封装方法、光模块及通讯设备
US8419290B2 (en) Optical fiber fixing device and method for assembling optical fiber to optical connector using same
US20230400641A1 (en) Optical connection device, composite optical connection device, and manufacturing method of optical connection device
US20230251427A1 (en) Opto-electrical flexible glass interposer
CN219475879U (zh) 一种光模块
CN215910689U (zh) 一种光模块及模场匹配器
WO2023233534A1 (ja) 光モジュール
JPH02125208A (ja) 光導波路・光ファイバ接続コネクタ
KR100863936B1 (ko) 광 백플레인 장치
KR100407322B1 (ko) 광섬유의 응력발생을 최소화한 광섬유 블럭
CN112596171A (zh) 一种光纤连接器和光纤连接结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018925780

Country of ref document: EP

Effective date: 20210114