WO2020008911A1 - 制御装置および制御方法、車両、並びにプログラム - Google Patents

制御装置および制御方法、車両、並びにプログラム Download PDF

Info

Publication number
WO2020008911A1
WO2020008911A1 PCT/JP2019/024657 JP2019024657W WO2020008911A1 WO 2020008911 A1 WO2020008911 A1 WO 2020008911A1 JP 2019024657 W JP2019024657 W JP 2019024657W WO 2020008911 A1 WO2020008911 A1 WO 2020008911A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
terminal
unit
information
vehicle
Prior art date
Application number
PCT/JP2019/024657
Other languages
English (en)
French (fr)
Inventor
博允 内山
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to DE112019003423.5T priority Critical patent/DE112019003423T5/de
Priority to US17/250,291 priority patent/US11589198B2/en
Publication of WO2020008911A1 publication Critical patent/WO2020008911A1/ja
Priority to US18/159,464 priority patent/US11997573B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/48Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for in-vehicle communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present disclosure relates to a control device and a control method, a vehicle, and a program, and particularly relates to a control device and a control method, a vehicle, and a program that realize highly reliable communication in the vehicle.
  • Patent Document 1 since only communication parameters are switched, it is not possible to sufficiently improve the reliability of communication only by switching communication parameters in consideration of a geographical effect. There was a possibility that a delay or the like would occur.
  • the present disclosure has been made in view of such a situation, and in particular, achieves highly reliable communication by controlling communication based on geographical information.
  • a control device and a vehicle include a position prediction unit that predicts a position of the own terminal having a communication function, and information that acquires geographic information around the position of the own terminal predicted by the position prediction unit.
  • a control device and a vehicle including: an acquisition unit; and a communication control unit that controls communication between the own terminal and another terminal having the communication function other than the own terminal based on the geographic information.
  • a control method includes a position prediction process of predicting a position of the own terminal having a communication function, and an information acquisition process of acquiring geographic information around the position of the own terminal predicted by the position prediction process. And a control process for controlling communication between the own terminal and another terminal having the communication function other than the own terminal based on the geographic information.
  • a program includes a position prediction unit that predicts a position of the own terminal having a communication function, and an information acquisition unit that obtains geographic information around the position of the own terminal predicted by the position prediction unit.
  • a program that causes a computer to function as a communication control unit that controls communication between the own terminal and another terminal having the communication function other than the own terminal based on the geographic information.
  • the position of the own terminal having a communication function is predicted, geographic information around the predicted position of the own terminal is obtained, and based on the geographic information, the own terminal, Communication with another terminal having the communication function other than the own terminal is controlled.
  • FIG. 2 is a diagram illustrating V2X communication as an outline of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a system configuration that implements V2X communication. It is a figure explaining a V2X operation scenario. It is a figure explaining a V2X operation scenario.
  • FIG. 1 is a diagram illustrating a configuration example of a first embodiment in a communication system according to the present disclosure.
  • FIG. 1 is a diagram illustrating a configuration example of a vehicle control system that realizes functions of a vehicle.
  • FIG. 7 is a diagram illustrating a configuration example of a first embodiment of the communication management unit in FIG. 6.
  • FIG. 7 is a diagram illustrating a configuration example of an RSU in FIG. 6.
  • FIG. 5 is a flowchart illustrating a communication management process according to the first embodiment. It is a figure explaining the selection method of a terminal. It is a flowchart explaining the communication control process which changed the communication parameter.
  • FIG. 7 is a diagram for explaining examples of various situations in V2X. It is a flowchart explaining the communication control processing which changed the structure of the communication link based on geographical information. It is a flowchart explaining the communication control processing which restricted the area of the beam steering in beam forming.
  • FIG. 8 is a diagram illustrating a communication control process for preparing a backup communication line when it is determined that Blockage occurs during beamforming communication in V2V communication.
  • FIG. 9 is a diagram illustrating a configuration example of a second embodiment in a communication system according to the present disclosure.
  • FIG. 17 is a diagram illustrating a configuration example of the server in FIG. 16.
  • FIG. 7 is a diagram for describing a configuration example of a second embodiment of the communication management unit in FIG. 6.
  • 13 is a flowchart illustrating a communication management process according to the second embodiment.
  • FIG. 4 is a diagram illustrating a dynamic map. It is a figure explaining a three-dimensional map.
  • FIG. 13 is a diagram illustrating a configuration example of a third embodiment in a communication system according to the present disclosure.
  • FIG. 23 is a diagram for describing a configuration example of a server in FIG. 22.
  • FIG. 7 is a diagram illustrating a configuration example of a third embodiment of the communication management unit in FIG. 6.
  • FIG. 9 is a flowchart illustrating a communication management process in beamforming communication using a dynamic map. It is a figure explaining the communication management processing in beamforming communication using a dynamic map. It is a flowchart explaining the communication management process which switched between beam forming communication and other communication using the dynamic map.
  • FIG. 9 is a diagram illustrating a communication management process that switches between beamforming communication and other communication using a dynamic map.
  • FIG. 3 is a diagram illustrating a configuration example of a general-purpose computer.
  • the communication target X here includes, for example, a vehicle (Vehicle), an infrastructure (Infrastructure), a network (Network), and a pedestrian (Pedestrian) as shown in FIG.
  • V2V Vehicle to vehicle communication
  • the description will be given assuming that the vehicle 11 itself is a terminal having a communication function.
  • the vehicle 11 is owned by a passenger (driver) of the vehicle 11. This includes mobile terminals represented by smartphones.
  • the vehicles 11-11 to 11-13 will be simply referred to as the vehicle 11 unless otherwise required, and the other configurations will be similarly referred to.
  • V2I Vehicle to Infrastructure communication
  • the communication target X is the RSU 12
  • the RSU 12 is a terminal having a communication function provided along a road or at an intersection.
  • the communication target X is a network represented by a cloud computer, a network server, or the like, that is, for example, the communication L3 between the network 13 and the vehicle 11 in FIG. 1 is V2N (Vehicle to network). Called communication.
  • V2N Vehicle to network
  • the communication target X is the network 13
  • the communication target X is a server computer on the network.
  • the communication target X is a pedestrian (Pedestrian: a terminal carried by the pedestrian), that is, for example, the communication L4 between the pedestrian 14 and the vehicle 11 in FIG. 1 is a V2P (Vehicle to Pedestrian) communication. Called.
  • Pedestrian a terminal carried by the pedestrian
  • the description will be given on the assumption that the pedestrian 14 is not a pedestrian itself but a terminal having a communication function possessed by the pedestrian 14.
  • the description will be made on the assumption that the communication target X is a terminal or a computer having a communication function, regardless of the vehicle 11, the RSU 12, the network 13, and the pedestrian 14.
  • the overall image of the V2X communication system has a configuration in which the communication modes (V2V communication, V2I communication, V2N communication, V2P communication) with the various communication targets X described above are combined.
  • the configuration shown in FIG. Become.
  • the V2X communication system shown in FIG. 2 includes vehicles 11-11 to 11-13, RSU 12, network 13, pedestrian 14, and base stations 31-1 and 31-2.
  • the network 13 in FIG. 1 includes the V2X control server 32 and the application management server 33 in FIG.
  • the V2X control server 32 functions as a core network server, and communicates with the vehicles 11-11 to 11-13, the RSU 12, the network 13, the pedestrian 14, and the base stations 31-1, 31-2 via the communication L31 to L40. Control mutual communication.
  • the application management server 33 manages application programs installed in each terminal of the vehicles 11-11 to 11-13 and the pedestrian 14.
  • the application management server 33 downloads the application program to the vehicles 11-12 via the communications L34 to L36, and manages updates and the like.
  • the base stations 31-1 and 31-2 implement Uu link communication (communication between terminal base stations).
  • the base station 31-2 communicates with each of the vehicles 11-12 and 11-13 via communication L39 and L40 formed by Uu (inter-terminal base station) link communication. Realize.
  • the communication targets X may be configured to communicate with each other in a plurality of communication modes.
  • the SURSU 12 is provided along a road on which the vehicle 11 runs, at an intersection, or the like, and connects the network 13 and the vehicle 11 via the base station 31-1 to communicate with each other.
  • the RSU 12 causes the vehicle 11-11 to download an application program from the application management server 33 or receive a data relay, for example, via the communication L31 to L34.
  • the RSU 12 includes a base station type having a function similar to that of the base station 31 and a UE (User Equipment) type having a function similar to a terminal provided in the vehicle 11.
  • a base station type having a function similar to that of the base station 31
  • a UE (User Equipment) type having a function similar to a terminal provided in the vehicle 11.
  • LTE-based V2X As wireless communication for automobiles, mainly DSRC (Dedicated Short Range Communication) based on IEEE802.11p has been developed, but in recent years, LTE (Long Term Evolution) based in-vehicle communication (V2X Communication), “LTE-based V2X” was standardized.
  • LTE-based V2X communication supports the exchange of basic safety messages, etc.
  • V2X communication use cases include various examples for V2V communication, V2I communication, V2N communication, and V2P communication.
  • V2V communication is communication between the vehicles 11, for example, based on mutual information of the vehicles 11, a forward vehicle approach warning, an intersection collision prevention warning, an emergency vehicle warning, an overtaking stop warning, and a road construction warning, and Use cases such as cooperative control processing during platooning are exemplified.
  • the forward vehicle approach warning is an alert that is presented when detecting the approach of a vehicle ahead.
  • the intersection collision prevention warning is a warning presented to prevent a collision between vehicles entering the intersection.
  • the emergency vehicle approach warning is a warning that is presented when an approach of an emergency vehicle is detected.
  • the overtaking stop warning is a warning that is presented immediately before changing lanes for overtaking when the approach of a vehicle behind the lane to be changed is detected to prompt the driver to stop overtaking.
  • the road construction warning warns of road construction ahead.
  • the cooperative control process during platooning is control for traveling while maintaining the positional relationship of the platooning state of a plurality of vehicles.
  • V2I communication is communication with, for example, RSU 12, which is an infrastructure. Therefore, examples of use cases of V2I communication include, for example, distribution of road safety information distributed from a server, use of traffic signal cooperation, presentation of auxiliary information for searching for parking information (parking assistance), charging processing (charging). Use cases such as utilizing it for
  • V2N communication is communication with the network 13. Therefore, the use cases of V2N communication include, for example, providing a dynamic map described later for use in navigation, transmitting control information to realize remote driving, distributing contents, etc. There are use cases such as use for entertainment.
  • VV2P communication is communication with a terminal carried by the pedestrian 14. Therefore, as a use case of the V2P communication, for example, a use case of notifying a traffic weak person to a terminal of a pedestrian 14 who is a traffic weak person having visual or hearing impairment and supporting walking of a traffic weak person is exemplified. No.
  • NR V2X communication supports new use cases that require high reliability, low delay, high-speed communication, and high capacity, which cannot be supported by LTE-based V2X communication until now.
  • use cases in which high effects are expected by using NR V2X communication include, for example, provision of a dynamic map and remote driving.
  • sensor use cases for sensor data sharing and platooning where sensor data is exchanged by V2V communication (vehicle-to-vehicle communication) or V2I communication (road-to-vehicle communication).
  • V2V communication vehicle-to-vehicle communication
  • V2I communication road-to-vehicle communication
  • Typical use cases of NR V2X communication include Vehicles Platooning, Extended Sensors, Advanced Driving, and Remote Driving.
  • Vehicles Platooning is a use case of platooning in which a plurality of vehicles form a platoon and run in the same direction, and is a technology for exchanging information for controlling platooning from a vehicle that leads the platooning. By exchanging such information, it is possible to further reduce the inter-vehicle distance during platooning.
  • Extended Sensors is a technology that makes it possible to exchange sensor-related information (raw data before data processing and processed data) between vehicles.
  • Sensor-related information is collected through local sensors, live video images between nearby vehicles, RSUs, and pedestrians, the application management server 33, and the like.
  • the vehicle 11 can obtain information that cannot be obtained by its own sensor information, and can recognize / recognize a wider environment. Because of the need to exchange a lot of information, communication requires high data rates.
  • Advanced Driving is a technology that enables semi-automatic driving and fully automatic driving.
  • Each vehicle 11 can adjust the trajectory and operation of the vehicle 11 while synchronizing and cooperating by sharing the recognition / recognition information obtained from its own sensor or the like to the surrounding vehicles.
  • the respective vehicles 11 can also share their driving intentions and intentions with surrounding vehicles by using Advanced @ Driving.
  • Remote Driving is a remote control technology that uses a remote driver and application programs via V2X communication. Remote control is used for people who cannot drive or for danger areas. It is also possible to use cloud computing-based maneuvers for public transportation where routes and driving routes are determined to some extent. Communication requires high reliability and low transmission delay.
  • the target links include Uu link communication which is a link between infrastructure and infrastructure such as the base station 31 and RSU (Road Side Unit) 12, and PC5 link which is a link between terminals.
  • the main points of enhancement are side link resources such as channel format (Flexible numerology, Short TTI (Transmission Time Interval), multi-antenna support, Waveform, etc.), side link feedback communication (HARQ, CSI (Channel Status Information)), etc. It supports an allocation method, vehicle position information estimation technology, relay communication between terminals, unicast communication, multicast communication, multicarrier communication, carrier aggregation, MIMO / beamforming, and high frequency frequencies (eg, 6 GHz or more).
  • channel format Frexible numerology, Short TTI (Transmission Time Interval), multi-antenna support, Waveform, etc.
  • HARQ Side Link Feedback communication
  • CSI Channel Status Information
  • V2X operation scenario An example of an operation scenario of V2X communication will be described with reference to FIGS.
  • V2N communication was simple only with DL (Download) / UL (Upload) communication between base station terminals, but various communication paths are conceivable in V2V communication.
  • the communication destination is the pedestrian (Pedestrian: terminal owned by the pedestrian) 14 or the RSU 12.
  • the first scenario Sn1 is a terminal-to-terminal link (side link: PC5 link) between the vehicle 11-31 and each of the vehicles 11-32 to 11-34. Is formed.
  • the preceding vehicle 11-31 transmits information to the following vehicles 11-32 to 11-34 via the communication L71 formed by the terminal-to-terminal link (side link: PC5 link). I do.
  • the second scenario Sn2 is transmitted between the vehicle 11-41 and each of the vehicles 11-42 to 11-44 via the base station 31 and at each terminal.
  • Communication L81 and L82 formed of Uu links by an interface between certain vehicles 11 are formed.
  • the preceding vehicle 11-41 transmits information to the following vehicles 11-42 to 11-44 via the Uu link communication L81, L82 via the base station 31. .
  • the third scenario Sn3 is, for example, as shown in the lower part of FIG. 3, between the vehicle 11-51 and each of the vehicles 11-52 through 11-54, and between the terminals between the vehicle 11-51 and the RSU 12.
  • a communication L91 composed of a link (side link: PC5 link) and a communication L92, L93 composed of a Uu link between the RSU 12 and the base station 31, and between the base station 31 and the vehicles 11-52 to 11-54, respectively. Is formed.
  • the preceding vehicle 11-51 is connected to the following vehicles 11-52 to 11-54 by the terminal-to-terminal link between the vehicle 11-51 and the RSU 12 (side link: PC5 link).
  • Information is transmitted via a communication L91 comprising a Uu link between the RSU 12 and the base station 31 and a communication L93 comprising a Uu link between the base station 31 and the vehicles 11-52 to 11-54.
  • the fourth scenario Sn4 is, for example, as shown in the upper part of FIG. 4, between the vehicle 11-61 and each of the vehicles 11-62 to 11-64, between the vehicle 11-61 and the base station 31,
  • communication L103 formed of a Uu link are formed between the RSU 12 and the vehicles 11-62 to 11-64. Is what is done.
  • the succeeding vehicle 11-61 moves between the vehicle 11-61 and the base station 31 and between the base station 31 and the RSU 12 with respect to the preceding vehicles 11-62 to 11-64.
  • Information is transmitted via communications L101 and L102 formed of terminal-to-terminal links (side links: PC5 link) and communication L103 formed of Uu links between the RSU 12 and the vehicles 11-62 to 11-64.
  • the fifth scenario Sn5 is a terminal between the vehicle 11-71 and each of the vehicles 11-72 to 11-74, and a terminal between the vehicle 11-71 and the RSU 12.
  • a communication L111 consisting of an inter-link (side link: PC5 link) and a communication L112 consisting of a terminal-to-terminal link (side link: PC5 link) between the RSUL 82 and each of the vehicles 11-72 to 11-74 are formed. Things.
  • the succeeding vehicle 11-71 has an inter-terminal link (side link: PC5 link) between the vehicles 11-82 with respect to the preceding vehicles 11-72 to 11-74.
  • Information is transmitted via a communication L111 and a communication L112 composed of a terminal-to-terminal link (side link: PC5 link) between the RSUL 82 and the vehicles 11-72 to 11-74.
  • the sixth scenario Sn6 includes a communication L121 formed by a terminal-to-terminal link (side link: PC5 link) between the vehicles 11-81 and 11-82, and a vehicle 11-82.
  • the communication L122 is formed by a terminal-to-terminal link (side link: PC5 link) with each of the vehicles 11-83 to 11-85.
  • the succeeding vehicle 11-81 transmits to the preceding vehicle 11-82 via the communication L121 formed by the terminal-to-terminal link (side link: PC5 link), and the vehicle 11-81 82 transmits information to the preceding vehicles 11-83 to 11-85 via a communication L122 formed by a terminal-to-terminal link (side link: PC5 link).
  • the link between the terminals has been basically realized by Single antenna transmission, Transmission ⁇ diversity transmission, or the like.
  • connection and recovery of efficient communication using geographical information in a vehicle-mounted communication (V2X communication) environment are realized, and communication with higher reliability is realized.
  • the communication system 41 in FIG. 5 includes vehicles 11-91 to 11-n and RSUs 12-1 to 12-m.
  • the vehicle 11-91 is represented as the own vehicle, and the other vehicles are represented as vehicles 11-92 to 11-n.
  • the vehicle 11-91 can communicate with the vehicles 11-92 through 11-n, for example, by V2V communication.
  • the vehicle 11 is a terminal, and the vehicle 11 that is the host vehicle is also referred to as a host terminal, and the other vehicles 11, the RSU 12, and the pedestrian 14 are also referred to as other terminals.
  • the vehicle 11-91 transmits its own position information to the other vehicles 11-92 to 11-n, and acquires the position information of the other vehicles 11-92 to 11-n and the RSUs 12-1 to 12-m. I do.
  • the RSU 12 transmits its own position information to the vehicle 11 and other RSUs 12.
  • the RSU 12 implements V2I communication with the vehicles 11-91 to 11-n, and relays communication between the vehicle 11-91 and each of the vehicles 11-92 to 11-n (relay). I do. Further, although not shown in FIG. 5, the RSU 12 relays communication between the vehicle 11 and the network 13 or the pedestrian 14 as described with reference to FIG.
  • the vehicle 11-91 adjusts its mutual communication parameters based on the positional relationship with the other vehicles 11-92 to 11-n and the RSUs 12-1 to 12-m, that is, based on geographical information, and is always optimal. Maintain a state where communication can be performed in an appropriate state. As a result, highly reliable and low-delay V2X communication is realized.
  • FIG. 6 it is a block diagram showing a schematic configuration example of functions of a vehicle control system 100 which is an example of a moving object control system that realizes the functions of the vehicle 11.
  • the vehicle provided with the vehicle control system 100 is distinguished from other vehicles, the vehicle is referred to as own vehicle or own vehicle.
  • the vehicle control system 100 includes an input unit 101, a data acquisition unit 102, a communication unit 103, an in-vehicle device 104, an output control unit 105, an output unit 106, a drive system control unit 107, a drive system system 108, a body system control unit 109, and a body.
  • a system system 110, a storage unit 111, and an automatic operation control unit 112 are provided.
  • the input unit 101, the data acquisition unit 102, the communication unit 103, the output control unit 105, the drive system control unit 107, the body system control unit 109, the storage unit 111, and the automatic operation control unit 112 Interconnected.
  • the communication network 121 may be, for example, an in-vehicle communication network or a bus that conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). Become. In addition, each part of the vehicle control system 100 may be directly connected without passing through the communication network 121.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • LAN Local Area Network
  • FlexRay registered trademark
  • the description of the communication network 121 is omitted.
  • the input unit 101 and the automatic operation control unit 112 communicate via the communication network 121, it is simply described that the input unit 101 and the automatic operation control unit 112 perform communication.
  • the input unit 101 includes a device used by a passenger to input various data, instructions, and the like.
  • the input unit 101 includes an operation device such as a touch panel, a button, a microphone, a switch, and a lever, and an operation device that can be input by a method other than a manual operation using a voice, a gesture, or the like.
  • the input unit 101 may be a remote control device using infrared rays or other radio waves, or an externally connected device such as a mobile device or a wearable device compatible with the operation of the vehicle control system 100.
  • the input unit 101 generates an input signal based on data, instructions, and the like input by the passenger, and supplies the input signal to each unit of the vehicle control system 100.
  • the data acquisition unit 102 includes various sensors for acquiring data used for processing of the vehicle control system 100, and supplies the acquired data to each unit of the vehicle control system 100.
  • the data acquisition unit 102 includes various sensors for detecting the state of the own vehicle and the like.
  • the data acquisition unit 102 includes a gyro sensor, an acceleration sensor, an inertial measurement device (IMU), an operation amount of an accelerator pedal, an operation amount of a brake pedal, a steering angle of a steering wheel, an engine speed, A sensor or the like for detecting a motor rotation speed, a wheel rotation speed, or the like is provided.
  • IMU inertial measurement device
  • the data acquisition unit 102 includes various sensors for detecting information outside the vehicle.
  • the data acquisition unit 102 includes an imaging device such as a Time of Flight (ToF) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the data acquisition unit 102 includes an environment sensor for detecting weather or weather, and a surrounding information detection sensor for detecting an object around the own vehicle.
  • the environment sensor includes, for example, a raindrop sensor, a fog sensor, a sunshine sensor, a snow sensor, and the like.
  • the surrounding information detection sensor includes, for example, an ultrasonic sensor, a radar, a LiDAR (Light Detection and Ranging, Laser Imaging and Ranging), a sonar, and the like.
  • the data acquisition unit 102 includes various sensors for detecting the current position of the vehicle. More specifically, for example, the data acquisition unit 102 includes a GNSS receiver that receives a GNSS signal from a Global Navigation Satellite System (GNSS) satellite.
  • GNSS Global Navigation Satellite System
  • the data acquisition unit 102 includes various sensors for detecting information in the vehicle.
  • the data acquisition unit 102 includes an imaging device that captures an image of the driver, a biological sensor that detects biological information of the driver, a microphone that collects sounds in the vehicle compartment, and the like.
  • the biological sensor is provided on, for example, a seat surface or a steering wheel, and detects biological information of a passenger sitting on a seat or a driver holding a steering wheel.
  • the communication unit 103 communicates with the in-vehicle device 104, various devices outside the vehicle, a server, a base station, and the like, and transmits data supplied from each unit of the vehicle control system 100, and transmits received data to the vehicle control system. 100 parts.
  • the communication protocol supported by the communication unit 103 is not particularly limited, and the communication unit 103 can support a plurality of types of communication protocols.
  • the communication unit 103 performs wireless communication with the in-vehicle device 104 using a wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB).
  • the communication unit 103 may be connected to a USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), or MHL ( Mobile (High-definition Link) and the like, perform wired communication with the in-vehicle device 104.
  • USB Universal Serial Bus
  • HDMI registered trademark
  • MHL Mobile (High-definition Link)
  • the communication unit 103 communicates with a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network, or a network unique to a business operator) via a base station or an access point. Perform communication. Further, for example, the communication unit 103 communicates with a terminal (for example, a pedestrian or store terminal, or an MTC (Machine Type Communication) terminal) using a P2P (Peer @ To @ Peer) technology, using a terminal existing near the own vehicle. Perform communication.
  • a device for example, an application server or a control server
  • an external network for example, the Internet, a cloud network, or a network unique to a business operator
  • the communication unit 103 communicates with a terminal (for example, a pedestrian or store terminal, or an MTC (Machine Type Communication) terminal) using a P2P (Peer @ To @ Peer) technology, using a terminal existing near the own vehicle. Perform communication.
  • P2P Packe
  • the communication unit 103 performs V2V (Vehicle-to-Vehicle) communication, V2I (Vehicle-to-Infrastructure) communication, V2N (Vehicle-to-Network) communication, Also, V2X communication such as V2P (Vehicle to Pedestrian) communication is performed.
  • the communication unit 103 includes a beacon receiving unit, receives radio waves or electromagnetic waves transmitted from a wireless station installed on the road, and acquires information such as the current position, traffic congestion, traffic regulation, or required time. I do. The communication unit 103 performs communication based on a communication method managed by the communication management unit 144 and various communication parameters.
  • the in-vehicle device 104 includes, for example, a mobile device or a wearable device possessed by the passenger, an information device carried or attached to the own vehicle, a navigation device for searching for a route to an arbitrary destination, and the like.
  • the output control unit 105 controls the output of various information to the occupant of the vehicle or to the outside of the vehicle.
  • the output control unit 105 generates an output signal including at least one of visual information (for example, image data) and auditory information (for example, audio data), and supplies the output signal to the output unit 106.
  • the output control unit 105 combines image data captured by different imaging devices of the data acquisition unit 102 to generate a bird's-eye view image or a panoramic image, and outputs an output signal including the generated image. It is supplied to the output unit 106.
  • the output control unit 105 generates sound data including a warning sound or a warning message for a danger such as collision, contact, or entry into a dangerous zone, and outputs an output signal including the generated sound data to the output unit 106.
  • Supply for example, the output control unit 105 generates sound data including a warning sound or a warning message for a danger such as collision, contact, or entry into a dangerous zone
  • the output unit 106 includes a device capable of outputting visual information or auditory information to a passenger of the own vehicle or outside the vehicle.
  • the output unit 106 includes a display device, an instrument panel, an audio speaker, headphones, a wearable device such as an eyeglass-type display worn by a passenger, a projector, a lamp, and the like.
  • the display device included in the output unit 106 can display visual information in a driver's visual field such as a head-up display, a transmissive display, and a device having an AR (Augmented Reality) display function, in addition to a device having a normal display.
  • the display device may be used.
  • the drive system control unit 107 controls the drive system 108 by generating various control signals and supplying them to the drive system 108. In addition, the drive system control unit 107 supplies a control signal to each unit other than the drive system 108 as needed, and notifies the control state of the drive system 108 and the like.
  • the drive system 108 includes various devices related to the drive system of the vehicle.
  • the drive system 108 includes a driving force generating device for generating driving force such as an internal combustion engine or a driving motor, a driving force transmitting mechanism for transmitting driving force to wheels, a steering mechanism for adjusting a steering angle, It includes a braking device that generates a braking force, an ABS (Antilock Brake System), an ESC (Electronic Stability Control), an electric power steering device, and the like.
  • the body control unit 109 controls the body system 110 by generating various control signals and supplying them to the body system 110. Further, the body system control unit 109 supplies a control signal to each unit other than the body system system 110 as necessary, and notifies the control state of the body system system 110 and the like.
  • the body system 110 includes various body-system devices mounted on the vehicle body.
  • the body system 110 includes a keyless entry system, a smart key system, a power window device, a power seat, a steering wheel, an air conditioner, and various lamps (for example, a head lamp, a back lamp, a brake lamp, a blinker, a fog lamp, and the like). Etc. are provided.
  • the storage unit 111 includes, for example, a magnetic storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), and a HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, and a magneto-optical storage device. .
  • the storage unit 111 stores various programs and data used by each unit of the vehicle control system 100.
  • the storage unit 111 stores map data such as a three-dimensional high-accuracy map such as a dynamic map, a global map that is less accurate than the high-accuracy map and covers a wide area, and a local map that includes information around the own vehicle. Is stored.
  • the automatic driving control unit 112 performs control relating to automatic driving such as autonomous driving or driving support. Specifically, for example, the automatic driving control unit 112 may perform collision avoidance or impact mitigation of the own vehicle, follow-up traveling based on the following distance, vehicle speed maintenance traveling, a collision warning of the own vehicle, a lane departure warning of the own vehicle, and the like. It performs cooperative control for the purpose of realizing the functions of ADAS (Advanced Driver Assistance System), including: In addition, for example, the automatic driving control unit 112 performs cooperative control for the purpose of automatic driving in which the vehicle runs autonomously without depending on the operation of the driver.
  • the automatic operation control unit 112 includes a detection unit 131, a self-position estimation unit 132, a situation analysis unit 133, a planning unit 134, and an operation control unit 135.
  • the detection unit 131 detects various types of information necessary for controlling automatic driving.
  • the detection unit 131 includes an outside information detection unit 141, an inside information detection unit 142, a vehicle state detection unit 143, and a communication management unit 144.
  • the outside-of-vehicle information detection unit 141 performs detection processing of information outside the host vehicle based on data or signals from each unit of the vehicle control system 100. For example, the outside-of-vehicle information detection unit 141 performs detection processing, recognition processing, tracking processing, and detection processing of the distance to the object around the own vehicle. Objects to be detected include, for example, vehicles, people, obstacles, structures, roads, traffic lights, traffic signs, road markings, and the like. Further, for example, the outside-of-vehicle information detection unit 141 performs a process of detecting an environment around the own vehicle. The surrounding environment to be detected includes, for example, weather, temperature, humidity, brightness, road surface conditions, and the like.
  • the out-of-vehicle information detection unit 141 uses the self-position estimation unit 132, the map analysis unit 151 of the situation analysis unit 133, the traffic rule recognition unit 152, the situation recognition unit 153, and the operation control unit 135 to output data indicating the result of the detection processing. To the emergency avoidance unit 171 and the like.
  • the in-vehicle information detection unit 142 performs a process of detecting information in the vehicle based on data or signals from each unit of the vehicle control system 100.
  • the in-vehicle information detection unit 142 performs a driver authentication process and a recognition process, a driver state detection process, a passenger detection process, an in-vehicle environment detection process, and the like.
  • the state of the driver to be detected includes, for example, physical condition, arousal level, concentration level, fatigue level, gaze direction, and the like.
  • the environment in the vehicle to be detected includes, for example, temperature, humidity, brightness, odor, and the like.
  • the in-vehicle information detection unit 142 supplies data indicating the result of the detection processing to the situation recognition unit 153 of the situation analysis unit 133, the emergency avoidance unit 171 of the operation control unit 135, and the like.
  • the vehicle state detection unit 143 performs detection processing of the state of the own vehicle based on data or signals from each unit of the vehicle control system 100.
  • the state of the subject vehicle to be detected includes, for example, speed, acceleration, steering angle, presence / absence and content of abnormality, driving operation state, power seat position and inclination, door lock state, and other in-vehicle devices. State and the like are included.
  • the vehicle state detection unit 143 supplies data indicating the result of the detection processing to the situation recognition unit 153 of the situation analysis unit 133, the emergency avoidance unit 171 of the operation control unit 135, and the like.
  • the communication management unit 144 performs communication based on geographical information related to communication based on information on its own location and position information on a terminal such as another vehicle, an infrastructure, a network, or a pedestrian serving as a communication target X.
  • a highly reliable communication is realized by controlling the communication method and communication parameters of the unit 103. Note that the detailed configuration of the communication management unit 144 will be described later with reference to FIG.
  • the self-position estimating unit 132 estimates the position and orientation of the own vehicle based on data or signals from each unit of the vehicle control system 100 such as the outside-of-vehicle information detecting unit 141 and the situation recognizing unit 153 of the situation analyzing unit 133. Perform processing. Further, the self-position estimating unit 132 generates a local map used for estimating the self-position (hereinafter, referred to as a self-position estimation map) as necessary.
  • the self-position estimation map is, for example, a high-accuracy map using a technique such as SLAM (Simultaneous Localization and Mapping).
  • the self-position estimating unit 132 supplies data indicating the result of the estimation processing to the map analyzing unit 151, the traffic rule recognizing unit 152, the situation recognizing unit 153, and the like of the situation analyzing unit 133. Further, the self-position estimating unit 132 causes the storage unit 111 to store the self-position estimating map.
  • the situation analysis unit 133 performs analysis processing of the situation of the own vehicle and the surroundings.
  • the situation analysis unit 133 includes a map analysis unit 151, a traffic rule recognition unit 152, a situation recognition unit 153, and a situation prediction unit 154.
  • the map analysis unit 151 performs various types of maps stored in the storage unit 111 while using data or signals from various units of the vehicle control system 100 such as the self-position estimation unit 132 and the outside-of-vehicle information detection unit 141 as needed. Performs analysis processing and builds a map containing information necessary for automatic driving processing.
  • the map analysis unit 151 converts the constructed map into a traffic rule recognition unit 152, a situation recognition unit 153, a situation prediction unit 154, and a route planning unit 161, an action planning unit 162, and an operation planning unit 163 of the planning unit 134. To supply.
  • the traffic rule recognition unit 152 determines the traffic rules around the own vehicle based on data or signals from each unit of the vehicle control system 100 such as the self-position estimating unit 132, the outside-of-vehicle information detecting unit 141, and the map analyzing unit 151. Perform recognition processing. By this recognition processing, for example, the position and state of the signal around the own vehicle, the contents of traffic regulation around the own vehicle, and the lanes in which the vehicle can travel are recognized.
  • the traffic rule recognition unit 152 supplies data indicating the result of the recognition processing to the situation prediction unit 154 and the like.
  • the situation recognition unit 153 converts data or signals from each unit of the vehicle control system 100 such as the self-position estimation unit 132, the outside-of-vehicle information detection unit 141, the in-vehicle information detection unit 142, the vehicle state detection unit 143, and the map analysis unit 151. Based on this, recognition processing of the situation regarding the own vehicle is performed. For example, the situation recognition unit 153 performs recognition processing on the situation of the own vehicle, the situation around the own vehicle, the situation of the driver of the own vehicle, and the like. Further, the situation recognizing unit 153 generates a local map (hereinafter, referred to as a situation recognizing map) used for recognizing a situation around the own vehicle as needed.
  • the situation recognition map is, for example, an occupancy grid map (Occupancy @ Grid @ Map).
  • the situation of the subject vehicle to be recognized includes, for example, the position, posture, and movement (eg, speed, acceleration, moving direction, etc.) of the subject vehicle, and the presence / absence and content of an abnormality.
  • the situation around the subject vehicle to be recognized includes, for example, the type and position of the surrounding stationary object, the type, position and movement (eg, speed, acceleration, moving direction, etc.) of the surrounding moving object, and the surrounding road.
  • the configuration and the state of the road surface, and the surrounding weather, temperature, humidity, brightness, and the like are included.
  • the state of the driver to be recognized includes, for example, physical condition, arousal level, concentration level, fatigue level, eye movement, driving operation, and the like.
  • the situation recognition unit 153 supplies data indicating the result of the recognition processing (including a situation recognition map as necessary) to the self-position estimation unit 132, the situation prediction unit 154, and the like. Further, the situation recognition unit 153 causes the storage unit 111 to store the situation recognition map.
  • the situation prediction unit 154 performs a process of predicting a situation relating to the own vehicle based on data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151, the traffic rule recognition unit 152, and the situation recognition unit 153. For example, the situation prediction unit 154 performs prediction processing of the situation of the own vehicle, the situation around the own vehicle, the situation of the driver, and the like.
  • the situation of the own vehicle to be predicted includes, for example, the behavior of the own vehicle, occurrence of an abnormality, and a possible driving distance.
  • the situation around the own vehicle to be predicted includes, for example, behavior of a moving object around the own vehicle, a change in a signal state, a change in an environment such as weather, and the like.
  • the situation of the driver to be predicted includes, for example, the behavior and physical condition of the driver.
  • the situation prediction unit 154 together with data from the traffic rule recognition unit 152 and the situation recognition unit 153, shows data indicating the result of the prediction processing, along with the route planning unit 161, the behavior planning unit 162, and the operation planning unit 163 of the planning unit 134. And so on.
  • the route planning unit 161 plans a route to a destination based on data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. For example, the route planning unit 161 sets a route from the current position to a specified destination based on the global map. In addition, for example, the route planning unit 161 changes the route as appropriate based on conditions such as traffic jams, accidents, traffic restrictions, construction, and the like, and the physical condition of the driver. The route planning unit 161 supplies data indicating the planned route to the action planning unit 162 and the like.
  • the action planning unit 162 safely performs the route planned by the route planning unit 161 within the planned time based on data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. Plan your vehicle's behavior to drive. For example, the action planning unit 162 performs planning such as start, stop, traveling direction (for example, forward, backward, left turn, right turn, direction change, etc.), traveling lane, traveling speed, and passing.
  • the behavior planning unit 162 supplies data indicating the planned behavior of the own vehicle to the behavior planning unit 163 and the like.
  • the operation planning unit 163 performs an operation of the own vehicle for realizing the action planned by the action planning unit 162 based on data or a signal from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. To plan. For example, the operation planning unit 163 plans acceleration, deceleration, a traveling trajectory, and the like. The operation planning unit 163 supplies data indicating the planned operation of the own vehicle to the acceleration / deceleration control unit 172 and the direction control unit 173 of the operation control unit 135.
  • the operation control section 135 controls the operation of the own vehicle.
  • the operation control section 135 includes an emergency avoidance section 171, an acceleration / deceleration control section 172, and a direction control section 173.
  • the emergency avoidance unit 171 performs a collision, a contact, an approach to a danger zone, a driver abnormality, a vehicle abnormality, based on the detection results of the outside information detection unit 141, the inside information detection unit 142, and the vehicle state detection unit 143. An emergency situation such as an abnormality is detected. When detecting the occurrence of an emergency, the emergency avoidance unit 171 plans an operation of the own vehicle to avoid an emergency such as a sudden stop or a sudden turn. The emergency avoidance unit 171 supplies data indicating the planned operation of the own vehicle to the acceleration / deceleration control unit 172, the direction control unit 173, and the like.
  • the acceleration / deceleration control unit 172 performs acceleration / deceleration control for realizing the operation of the vehicle planned by the operation planning unit 163 or the emergency avoidance unit 171.
  • the acceleration / deceleration control unit 172 calculates a control target value of a driving force generation device or a braking device for realizing planned acceleration, deceleration, or sudden stop, and drives a control command indicating the calculated control target value. This is supplied to the system control unit 107.
  • the direction control unit 173 performs direction control for realizing the operation of the vehicle planned by the operation planning unit 163 or the emergency avoidance unit 171. For example, the direction control unit 173 calculates a control target value of the steering mechanism for realizing the traveling trajectory or the sharp turn planned by the operation planning unit 163 or the emergency avoidance unit 171, and performs control indicating the calculated control target value. The command is supplied to the drive system control unit 107.
  • the communication management unit 144 includes a communication control unit 211, another terminal information acquisition unit 212, another terminal information storage unit 213, own terminal position information acquisition unit 214, and own terminal position information storage unit 215.
  • the communication control unit 211 includes a local terminal information transmitting unit 221, a position predicting unit 222, a local terminal control unit 223, and a communication establishing unit 224, and controls the entire operation of the communication managing unit 144.
  • the own terminal information transmission unit 221 controls the communication unit 103 to read out the own terminal position information stored in the own terminal position information storage unit 215, and to read the route supplied from the route planning unit 161 of the planning unit 134. The information is acquired and transmitted to the surrounding vehicles 11.
  • the position predicting unit 222 determines the current position and the future time by a predetermined time based on the time-series own terminal position information stored in the own terminal position information storage unit 215 and the route information supplied from the route planning unit 161. Predict the location at. Further, the position prediction unit 222 is based on the time-series position information and route information of the vehicle 11, the RSU 12, the pedestrian 14, and the base station 31, which are other terminals, stored in the other terminal information storage unit 213. And predict the current position. That is, the position predicting unit 222 predicts the current or future position of the own terminal and the other terminal, and thereby predicts the current or future mutual positional relationship as geographical information.
  • the own terminal control unit 223 determines a communication target, a communication method (communication configuration and the like), based on geographical information that is information on a positional relationship between the current and future terminals predicted by the position prediction unit 222. And the communication parameters are specified, and the communication unit 103 is controlled to establish communication.
  • the communication establishing unit 224 controls the communication unit 103 based on information on the vehicle 11 and the pedestrian 14 to establish communication. In addition, when the communication establishment unit 224 receives a request for establishment of communication from the other vehicle 11 via the communication unit 103, the communication establishment unit 224 obtains information of a terminal requesting communication establishment, and is required to establish communication. The communication unit 103 is controlled based on the information of the vehicle 11 and the pedestrian 14 to establish communication.
  • the other terminal information acquisition unit 212 controls the communication unit 103, and includes information on the supported communication method, position information, and route information transmitted from the surrounding vehicle 11 and the RSU 12.
  • the other terminal information is received and stored in the other terminal information storage unit 213.
  • the route includes a route that is expected to move by a navigation system or an automatic driving system.
  • the own terminal position information acquiring unit 214 acquires the own position estimation result output from the own position estimating unit 132 as own terminal position information, and causes the own terminal position information storage unit 215 to store the result.
  • the own terminal control unit 223 of the communication control unit 211 stores the position information of the vehicle 11 serving as another vehicle and the RSU 12 stored in the other terminal information storage unit 213 and the own terminal stored in the own terminal position information storage unit 215.
  • a communication method and communication parameters are determined in accordance with a mutual positional relationship based on the terminal position information, that is, a geographical environment, and the communication unit 103 is controlled.
  • the RSU 12 includes a control unit 231, a communication unit 232, and a storage unit 233.
  • the control unit 231 includes the communication control unit 241 and controls the entire operation of the RSU 12.
  • the communication control unit 241 includes an own terminal information transmitting unit 251, an own terminal control unit 252, and a communication establishing unit 253, and controls the communication unit 232.
  • the own-terminal information transmitting unit 251 controls the communication unit 232 to store the own-terminal position information stored in the storage unit 233, information on a supported communication method, and information on a route planned by the route planning unit 161. Is read and transmitted to the surrounding vehicles 11 and pedestrians 14. That is, this information becomes other terminal information of the other terminal.
  • the terminal control unit 252 determines the communication method and communication parameters, and controls the communication unit 232.
  • the communication establishing unit 253 controls the communication unit 232 to establish communication with the vehicle 11, the RSU 12, and the terminal of the pedestrian 14.
  • step S11 the other terminal information acquisition unit 212 controls the communication unit 103 to acquire other terminal information transmitted from another terminal such as the vehicle 11 and the RSU 12 of another vehicle as the other terminal information.
  • the other terminal information storage unit 213 stores, as time-series information, position information included in the terminal information and information such as a supported communication method.
  • step S12 the own terminal position information acquisition unit 214 acquires the estimation result of the own position supplied from the own position estimation unit 132 as own terminal position information, and stores it in the own terminal position information storage unit 215 as time-series information. Let it.
  • the position prediction unit 222 stores the time-series position information and route information of the surrounding vehicle 11 and the RSU 12 stored in the other terminal information storage unit 213, and the own terminal position information storage unit 215.
  • the position of each terminal (vehicle 11, RSU 12, pedestrian 14, etc.) is predicted as geographic information from the current time-series own terminal position information and route information.
  • the own terminal control unit 223 acquires the predicted geographical information (geographical information), and becomes a selectable terminal based on the acquired geographical information (geographical information) in consideration of the respective positional relationships.
  • the candidate of the vehicle 11 or the RSU 12 to be obtained is selected.
  • a set of other terminals supported by the communication method and the communication parameters is set as a set Z11, and it is determined that the set can be used based on geographical information.
  • the own terminal control unit 223 selects another terminal of the common set Z21 of the sets Z11 and Z12 as a candidate.
  • NLOS Non-Line-Of-Sight
  • the other terminals that employ the DSRC V2V communication and Cellular 4G V2V communication schemes that allow communication in the NLOS state are selected as candidates.
  • LOS Line of Sight
  • step S14 the own terminal control unit 223 selects, of the other terminals selected as candidates, the other terminal of the supported communication system in the application program adopted in the own terminal as the terminal to communicate with. .
  • the own terminal control unit 223 determines the set as a candidate based on geographical information.
  • the communication method supported by the application program is DSRC V2V communication, among other terminals that employ the communication method of DSRC V2V communication capable of communication in the NLOS state, and the communication method of Cellular 4G V2V communication.
  • the other terminal adopting the DSRC @ V2V communication method is selected as the terminal to communicate with.
  • step S15 the own terminal control unit 223 sets communication parameters required for communication with a terminal selected as another terminal with which to communicate based on geographical information, and starts communication.
  • the communication parameters to be set include, for example, a used frequency band, a resource pool (whether or not to perform millimeter-wave communication, a licensed band, an unlicensed band, a licensed ITS band, a resource pool classified by priority), a communication link (V2V Communication, V2I communication, V2P communication, V2N communication, relay execution), Carrier aggregation, Dual connectivity, multi-antenna communication (TxD, MIMO), beam steering, beamforming angle setting Parameters, parameters related to measurement range of beamforming, parameters related to CSI acquisition, allowable interference amount, carrier sensing parameters (threshold, sensing period), filtering conditions in communication resource selection, resource reselection conditions, MCS (Modulation and coding se t), a maximum transmission power, a transmission packet priority parameter, a parameter relating to a buffer status, a threshold parameter used for collision determination (weight is applied to a threshold according to a geographical environment), and the like.
  • a communication link V2V Communication, V2I communication,
  • step S16 the terminal control unit 223 determines whether a predetermined time has elapsed. If the predetermined time has elapsed, the process proceeds to step S17.
  • step S17 the own terminal position information acquiring unit 214 acquires own terminal position information and causes the own terminal position information storage unit 215 to store it.
  • the own terminal information transmitting unit 221 controls the communication unit 103 to transmit the own terminal position information stored in the own terminal position information storage unit 215 and the information of the supported communication scheme to another terminal.
  • step S18 the other terminal information acquisition unit 212 controls the communication unit 103 to acquire and acquire, as the other terminal information, the other terminal information transmitted from the other terminal such as the vehicle 11 and the RSU 12 as the other vehicle.
  • the other terminal information storage unit 213 stores position information in the other terminal information and information on a supported communication method as time-series information.
  • step S19 the communication control unit 211 determines whether the own terminal or the other terminal is based on the other terminal information stored in the other terminal information storage unit 213 or the own terminal position information stored in the own terminal position information storage unit 215. Predict location and generate geographic information. Then, the communication control unit 211 executes a communication control process based on the predicted geographic information, and adjusts communication parameters.
  • the communication control process based on geographic information is a communication control process according to conditions obtained from various geographic information, and will be described later in detail with reference to FIGS.
  • step S20 the communication control unit 211 determines whether the end of the process has been instructed. If the end of the process has not been instructed, the process proceeds to step S21.
  • step S21 the communication control unit 211 checks the communication status of the communication unit 103, and determines whether or not the communication status is bad and communication is not possible. If it is determined in step S21 that the communication state is not bad and communication is not possible, the process returns to step S16.
  • step S21 if the communication state is poor and communication is not possible, the process returns to step S13, where a terminal to be communicated with is selected again, and communication with another terminal is started. .
  • the communication control process in step S19 is to maintain a stable communication state by realizing adjustment of parameters and switching of a communication method according to the communication state before the communication state becomes poor enough to make communication impossible. To achieve high communication.
  • step S20 when the end is instructed, the process ends.
  • connection procedure is restarted from the beginning, so it may take time until the communication is restarted. And a delay in communication may occur.
  • the communication control process of step S19 is a process of controlling the communication unit 103 based on geographical information in step S21 so that the communication state is not so bad that communication is not possible.
  • step S ⁇ b> 31 the position prediction unit 222 determines the time-series own terminal position information stored in the own-terminal position information storage unit 215 and the time-series other terminal information (positional information) stored in the other terminal information storage unit 213. And route information), and based on the route information of the own terminal, the current and future positions of the own terminal and other terminals are predicted as geographical information.
  • step S32 the own terminal control unit 223 acquires the geographic information predicted by the position prediction unit 222, and based on the acquired geographic information, the other terminal that is communicating is currently or for a predetermined time (for example, It is determined whether or not the NLOS will be reached by 10 seconds) until the future timing (from the present to the future).
  • a predetermined time for example, It is determined whether or not the NLOS will be reached by 10 seconds
  • the communication L151 composed of V2V communication by the vehicles 11-100 and 11-102 in the figure is in a state of straddling areas other than the roads 261-1 and 261-2 as shown in FIG.
  • the communication L151 composed of V2V communication by the vehicles 11-100 and 11-102 is beamforming communication, communication is performed. May be disturbed (represented by crosses in the figure).
  • the own terminal control unit 223 determines from the geographical information that the vehicle 11-100 and 11-102 will be in the NLOS state at a future timing for a predetermined time. Therefore, the process proceeds to step S33.
  • step S33 the own terminal control unit 223 changes the communication parameters at a timing immediately before the NLOS state, in order to cope with the NLOS state.
  • the own terminal control unit 223 changes the frequency band in the communication unit 103 from 6 GHz to 700 MHz, for example, so that the communication L151 using a communication resource robust to NLOS can be performed.
  • the own terminal control unit 223 causes the NLOS to execute robust communication L151 by increasing the transmission power in the communication unit 103.
  • the own terminal control unit 223 changes the communication L151 by changing MCS (Modulajon and Coding Schemes) or the like in the communication unit 103, for example, from 16QAM to QPSK, or when using MIMO, Change to SISO (Single Inpit Single Output) communication.
  • MCS Modulajon and Coding Schemes
  • SISO Single Inpit Single Output
  • step S32 If it is determined in step S32 that the vehicle is not in the NLOS state, the process of step S33 is skipped.
  • step S ⁇ b> 51 the position prediction unit 222 determines the time-series own terminal position information stored in the own terminal position information storage unit 215 and the time-series other terminal information (position information) stored in the other terminal information storage unit 213. And the route information of the own terminal), and based on the route information of the own terminal, information on the current and future positional relationships of the own terminal and other terminals is predicted as geographical information.
  • step S52 the own terminal control unit 223 acquires the geographic information predicted by the position prediction unit 222, and based on the acquired geographic information, the other terminal that is communicating is currently or for a predetermined time (for example, It is determined whether or not the NLOS state will be reached by 10 seconds) until the future timing (from the present to the future).
  • a predetermined time for example, It is determined whether or not the NLOS state will be reached by 10 seconds
  • step S52 If it is determined in step S52 that the NLOS state is set, the process proceeds to step S53.
  • step S53 the own terminal control unit 223 changes the communication link at a timing immediately before the NLOS state, in order to cope with the NLOS state.
  • the own terminal control unit 223 changes the communication link between the vehicles 11-100 and 11-102 from the communication L151 formed of V2V communication to the communication L161 and L162 formed of V2I communication via the RSU 12-1. Change the configuration.
  • step S54 the communication establishing unit 224 controls the communication unit 103 at a timing immediately before the NLOS state is entered (that is, almost simultaneously with step S53), and configures a communication link with a new other terminal.
  • Request that communication be established For example, it requests the RSU 12-1 to configure a communication link.
  • step S61 the communication establishing unit 253 controls the communication unit 232 to determine whether or not a communication link configuration has been requested. If a request has been made, the process proceeds to step S62.
  • step S62 the communication establishing unit 253 controls the communication unit 232 to configure a communication link with the vehicle 11 that has been requested to configure a communication link, and establish communication.
  • the NLOS state is predicted based on geographical information by the above series of processing, change the communication link in advance to change the communication link configuration before the communication state deteriorates Therefore, it is possible to prevent the communication from being deteriorated and being disconnected.
  • the communication link may be changed so as to be communication L163, L164 composed of communication.
  • the beam angle in beamforming can be specified, and the communication link can be specified.
  • switching high-speed switching can be realized.
  • step S ⁇ b> 81 the position prediction unit 222 determines the time-series own terminal position information stored in the own terminal position information storage unit 215, and the time-series other terminal information (positional information stored in the other terminal information storage unit 213). And the route information of the own terminal), and based on the route information of the own terminal, information on the current and future positional relationships of the own terminal and other terminals is predicted as geographical information.
  • step S82 the own terminal control unit 223 acquires the geographic information predicted by the position prediction unit 222, and based on the acquired geographic information, the relative position between the own terminal and the other terminal.
  • the other terminal to be communicated is determined from the relationship, and an area for performing beam steering for the determined other terminal is set.
  • the beam steering area is set based on the traveling direction of.
  • the vehicles 11-103 and 11-104 move upward (in the direction of the intersection of the roads 261-1 and 261-2) in the figure to the road 261- 2 is assumed.
  • the vehicle 11-103 is selected as the communication target based on the positional relationship between the own terminal position information and the position information of the other terminal based on the other terminal information around the vehicle 11-103.
  • the own terminal control unit 223 of the vehicle 11-103 sets, as the beam steering area, a range Z31 where the vehicle 11-104 to be communicated exists in its own traveling direction. More specifically, the own terminal control unit 223 sets, for example, a range Z31 of 10 degrees to 30 degrees on the right side in the drawing with respect to its own traveling direction as an area for beam steering.
  • step S83 the terminal control unit 223 determines whether there is a change in the current beam steering area. If there is a change, the process proceeds to step S84.
  • step S84 the terminal control unit 223 controls the communication unit 103 to transmit the beam steering resource information and the beam ID information to the vehicle 11, which is another terminal to be communicated.
  • the beam steering candidate area may be transmitted to another terminal.
  • the other terminal does not necessarily need to be a communication partner, and communication by broadcast may be used.
  • the information transmitted from these transmitting terminals may be used for peripheral terminals to grasp the surrounding interference situation.
  • SCI Servicelink ⁇ Control ⁇ Information
  • This SCI may be transmitted in a frequency band different from the frequency for performing beamforming.
  • step S91 for example, the communication establishing unit 224 of the vehicle 11 serving as another terminal controls the communication unit 103 to receive the beam steering resource information and the beam ID information.
  • the beam steering candidate area may be transmitted to a nearby vehicle and received.
  • step S92 the own terminal control unit 223 of the vehicle 11 serving as another terminal controls the communication unit 103 to transmit the feedback information of the beam steering resource information and the beam ID information to the (source terminal) vehicle. 11 is transmitted.
  • step S84 the terminal control unit 223 of the vehicle 11 serving as the terminal receives the feedback information of the beam steering resource information and the beam ID information.
  • CSI is performed by both communication establishment units 224 between the own terminal as the transmission source vehicle 11 and the other terminal as the communication target vehicle 11.
  • Channel State Information acquisition is performed, the number of MIMO layers, MCS (Modulation and Coding. Scheme) to be used, and transmission power are determined, and communication by beamforming is established.
  • step S82 If there is no change in the beam steering area in step S82, the processing in steps S83 to S85 is skipped. In this case, since the resource information of the beam steering is not transmitted in step S91, the processes in steps S92 and S93 are skipped, and the current communication is maintained.
  • step S111 the position prediction unit 222 determines the time-series own terminal position information stored in the own terminal position information storage unit 215 and the time-series other terminal information (position information) stored in the other terminal information storage unit 213. And the route information of the own terminal), and based on the route information of the own terminal, information on the current and future positional relationships of the own terminal and other terminals is predicted as geographical information.
  • step S112 the own terminal control unit 223 obtains the geographic information predicted by the position prediction unit 222, and separately communicates with another terminal that is a communication target based on the obtained geographic information. Then, it is determined whether or not it is expected that a blockage of the communication path will occur due to the entry of the “11”.
  • step S112 it is determined that there is a possibility that the communication path will be blocked (Blockage), and the process proceeds to step S113.
  • step S113 the own terminal control unit 223 searches for a communication target of relay communication from the relative positional relationship between the own terminal and another terminal based on the geographic information predicted by the position predicting unit 222. Then, the own terminal control unit 223 controls the communication unit 103 to determine a timing (a start time and an end time) at which a blockage of a communication path may occur with respect to the communication target of the searched relay communication. Request relay communication together with time (or interference time).
  • the RSU 12-2 in FIG. 12 is selected as a communication target of the relay communication.
  • step S131 the communication establishing unit 253 controls the communication unit 232 to determine whether there is a request for relay communication. If there is a request for relay communication, the process proceeds to step S132.
  • step S132 the terminal control unit 252 determines whether or not relay communication can be accepted based on the received request for relay communication.
  • the own terminal control unit 252 determines whether or not relay communication is possible at a timing when interference (Blockage) occurs, for example, whether or not there is a margin in the number of communicable lines or the like.
  • step S132 if the terminal control unit 252 determines that relay communication can be accepted, the process proceeds to step S133.
  • step S133 the terminal control unit 252 controls the communication unit 232 to notify that relay communication can be accepted.
  • step S114 own terminal control section 223 of vehicle 11-103 controls communication section 103, and has received a notification indicating that relay communication can be accepted from a communication target that has requested relay communication? Determine whether or not.
  • step S114 If it is not notified in step S114 that relay communication can be accepted, the process proceeds to step S120.
  • step S120 the terminal control unit 252 determines whether a predetermined time has elapsed since the transmission of the relay communication request. If the predetermined time has not elapsed, the process returns to step S114.
  • step S114 when it is notified in step S114 that the relay communication can be accepted, the process proceeds to step S115.
  • step S115 the terminal control unit 223 receives a notification indicating that relay communication can be accepted. Further, communication establishing section 224 sets a communication target of the relay communication based on the notification indicating that the relay communication can be accepted. That is, here, the RSU 12-2 is set as a communication target.
  • steps S116 and S134 the communication establishing units 224 and 253 each determine whether or not it is the timing to start Blockage, and the same processing is repeated until the timing to start Blockage is reached.
  • the communication establishment units 224 and 253 control the communication units 103 and 232, respectively, to set the relay communication state.
  • the communication establishing units 224 and 253 control the communication units 103 and 232, respectively, to change the RSU 12-2 from the state of the communication L171 including V2V communication.
  • the communication is switched to the communication L181 and L182 formed by the V2I communication through the communication.
  • the communication can be continued by the relay communication via the communication L181 and L182. .
  • steps S118 and S136 the communication establishing units 224 and 253 each determine whether it is the timing to end Blockage, and the same processing is repeated until the timing to end Blockage is reached.
  • steps S118 and S136 when it is time to end Blockage, the process proceeds to steps S119 and S137, respectively.
  • the communication establishing units 224 and 253 control the communication units 103 and 232, respectively, to terminate the set relay communication and return to the original communication.
  • the communication establishment units 224 and 253 control the communication units 103 and 232, respectively, to change the state of the communication L181 and L182 formed of V2I communication from the state of V2V communication. Is switched to the communication L171 composed of
  • step S111 when communication interruption (Blockage) is not expected, and when a predetermined time has elapsed in step S120, the processing of steps S113 to S120 is skipped.
  • step S131 If there is no request for relay communication in step S131, and if relay communication is not accepted in step S132, the processing in steps S133 to S137 is skipped.
  • Second embodiment >> In the above, the example of controlling the communication based on the predicted geographical information has been described. However, according to the geographical information, the information of the actual communication state of the other terminal is made into a database, and is stored in the database. Based on this, a mapping table may be generated in which communication types, parameters, and communication qualities corresponding to the position information are mapped, and the optimum communication may be selected by using the mapping table.
  • FIG. 16 is a mapping in which information based on an actual communication state of another terminal is made into a database according to geographical information, and a communication type, a parameter, and a communication quality according to position information are mapped based on the database.
  • a table is generated, the mapping table is distributed to each vehicle 11 (each terminal), and the communication system 41 is configured to select the optimum communication based on the information of the mapping table corresponding to the predicted position. It is a structural example.
  • FIG. 16 components having the same functions as those of the communication system 41 of FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • FIG. 16 differs from the communication system 41 of FIG. 5 in that a server 271 is provided.
  • the server 271 generates a communication information database, generates a mapping table in which communication types, parameters, and communication qualities are mapped according to the position information, and distributes the mapping table to the vehicle 11.
  • the vehicle 11 receives the distribution of the mapping table, stores the mapping table in advance, and manages the communication state by referring to the mapping table based on the current position information of the own terminal when moving.
  • the communication management unit 144 in the vehicle control system of the vehicle 11 has also been changed so that communication management based on the mapping table can be performed. The details will be described later with reference to FIG.
  • the server 271 includes a control unit 281, a communication unit 282, a communication information database storage unit 283, and a mapping table storage unit 284.
  • the control unit 281 includes a communication information database generation unit 291 and a mapping table generation unit 292, and controls the entire operation of the server 271.
  • the communication information database generation unit 291 controls the communication unit 282 to obtain terminal ID information of each terminal, terminal position information, a type of communication (communication method) at the time of transmission at each position, and communication parameters as transmission information. I do.
  • the communication information database generation unit 291 controls the communication unit 282 to acquire terminal ID information, terminal position information, the type of communication system at the time of reception at each position, and whether or not reception is possible as reception information. I do.
  • the communication information database generation unit 291 registers the transmission information and the reception information in the communication information database stored in the communication information database storage unit 283.
  • the mapping table generation unit 292 obtains, based on the communication information database stored in the communication information database storage unit 283, how much communication performance is obtained for each position information when using which communication method and which communication parameter. Then, a mapping table is generated by mapping communication information including communication quality information indicating whether or not the communication information is available, and the mapping table is stored in the mapping table storage unit 284.
  • the control unit 281 controls the communication unit 282 to distribute the mapping table stored in the mapping table storage unit 284 to each terminal including the vehicle 11.
  • the vehicle 11 acquires this mapping table and stores it in advance, and when moving, collates the mapping table based on its own terminal position information, and obtains communication information including the type of communication system, communication parameters, and communication quality. Is read, and communication is controlled based on the read communication information.
  • the communication management unit 144 in FIG. 18 differs from the communication management unit 144 in FIG. 7 in that a communication control unit 301 is provided instead of the communication control unit 211 and a mapping table storage unit 302 is newly provided.
  • the communication control unit 301 includes a self-terminal information transmission unit 311, a position prediction unit 312, a self-terminal control unit 313, a communication establishment unit 314, and a mapping table acquisition unit 315, and controls the entire operation of the communication management unit 144. I do.
  • the own terminal information transmitting unit 311, the position predicting unit 312, and the communication establishing unit 314 have the same functions as the own terminal information transmitting unit 221, the position predicting unit 222, and the communication establishing unit 224 in FIG. Description is omitted as appropriate.
  • the own terminal control unit 313 controls the position predicting unit 312 to make the positions of the own terminal and the other terminal predicted, and compares the mapping table stored in the mapping table 303 with the predicted position information to determine the position.
  • the communication unit 103 reads communication information registered in association with the information and controls the communication unit 103.
  • the mapping table acquisition unit 315 controls the communication unit 103 to acquire a mapping table distributed from the server 271 and store the mapping table in the mapping table storage unit 302.
  • the mapping table storage unit 302 stores the mapping table acquired by the mapping table acquisition unit 315, and provides communication information corresponding to the own terminal position information by the own terminal control unit 313.
  • mapping table ⁇ Communication control processing using mapping table>
  • the description includes the process of generating the mapping table by the server 271 as a part of the communication control process, but the process of generating the mapping table may be executed independently.
  • the communication management processing is the same as the processing described with reference to the flowchart in FIG.
  • step S151 the communication information database generation unit 291 of the server 271 controls the communication unit 282 to communicate terminal ID information and terminal position information of a terminal configured by each vehicle 11 and communication at the time of transmission in each terminal position information.
  • the type of system and communication parameters are acquired as transmission information.
  • step S152 the communication information database generation unit 291 controls the communication unit 282 to determine the terminal ID information and the terminal position information of each terminal measured in advance, and the type of the communication method at the time of reception in each terminal position information. , And whether or not reception is possible are obtained as reception information.
  • step S153 the communication information database generation unit 291 converts the acquired transmission information and reception information into a database and registers it as a communication information database stored in the communication information database storage unit 283.
  • step S154 based on the communication information database stored in the communication information database storage unit 283, the mapping table generation unit 292 determines, for each position information, A mapping table in which communication information including communication quality information indicating whether communication performance can be obtained is generated and stored in the mapping table storage unit 284.
  • step S155 the control unit 281 distributes the mapping table stored in the mapping table storage unit 284 to the terminal including each vehicle 11.
  • step S171 the mapping table acquisition unit 315 of the communication management unit 144 in the vehicle control system 100 configuring the vehicle 11 controls the communication unit 103 to acquire the mapping table distributed by the server 271 as geographic information. Is stored in the mapping table storage unit 302.
  • step S172 the position prediction unit 312 determines the time-series own terminal position information stored in the own terminal position information storage unit 215 and the time-series other terminal information (position information) stored in the other terminal information storage unit 213. And the route information of the own terminal), and based on the route information of the own terminal, information on the current and future positional relationships of the own terminal and other terminals is predicted as geographical information.
  • step S173 the own terminal control unit 313 obtains the predicted geographic information, checks the mapping table based on the location information based on the obtained geographic information, and determines the communication method corresponding to the communication method.
  • the type, parameter, and communication quality information are included in step S173.
  • step S174 the communication establishing unit 314 selects an optimal communication target terminal based on the acquired communication information, controls the communication unit 103 according to a corresponding communication method and communication parameters, and sets a communication target terminal. To establish communication.
  • step S175 the communication establishing unit 314 controls the communication unit 103 to establish communication.
  • the communication information including the information on the type of communication system, the parameter, and the communication quality is read from the mapping table based on the position information, and the optimum communication target with the highest communication quality is selected based on the communication information. By doing so, it is possible to realize highly reliable communication.
  • Third embodiment communication information corresponding to position information is distributed in advance as a mapping table, the mapping table is collated based on geographical information, and an optimum communication target is selected based on communication information read from the mapping table.
  • an optimal communication target may be selected using dynamic three-dimensional map information called a dynamic map.
  • the dynamic map is a map obtained by adding a time axis to a three-dimensional map (3D map), and is a map in which a plurality of layers (layers) are set according to the magnitude of a change in time series.
  • the dynamic map M1 in FIG. 20 is a three-dimensional map including four types of layers including a first layer (Layer 1) to a fourth layer (Layer 4).
  • the number of layers is not limited to this, and may be four or more or four or less.
  • the first layer is a high-precision road map with little change in time series.
  • the second layer is a map in which buildings, signs, and the like that change next to the road are arranged.
  • the third layer is a map including road surface conditions, traffic signals, traffic congestion information, and the like that change depending on the conditions.
  • the fourth layer is a map indicating the position of the vehicle 11, the pedestrian, the bicycle, and the like, which change every moment. That is, in the dynamic map, layers according to the frequency of change are set in time series.
  • This dynamic map is distributed to the vehicle 11 while being sequentially updated by the server, and the vehicle 11 controls communication while estimating a communication state based on the dynamic map.
  • the vehicle 11 specifies the propagation path from the road map on which the vehicle 11 is traveling and the arrangement of the three-dimensional structures such as buildings, and estimates the communication state.
  • the vehicle 11 obtains, for example, a three-dimensional map M11 as shown in FIG. 21 from the information of the first layer and the second layer constituting the dynamic map M1, and communicates with the communication state on the propagation path for communication. Is estimated.
  • the vehicle 11 generates a three-dimensional map as shown in FIG. 21 from information of the dynamic map M1 as shown in FIG. 20, specifies a communication route with a communication target, and corresponds to the specified communication route.
  • a communication state is estimated from the propagation path, and a communication target, a communication method, a communication parameter, and the like are determined based on the estimation result.
  • FIG. 22 is a configuration example of a configuration example 41 of a communication system using a dynamic map.
  • FIG. 22 components having the same functions as those of the communication system 41 of FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • FIG. 22 differs from the communication system 41 of FIG. 5 in that a server 321 and a road information distribution server 322 are provided.
  • the server 321 acquires the respective position information from the vehicles 11-181 to 11-n, acquires the road information distributed from the road information distribution server 322, generates a dynamic map, and generates a dynamic map. -N.
  • the road information distribution server 322 generates road information such as traffic congestion, traffic signals, and road surface conditions, and supplies the server 321 with the road information.
  • the server 321 includes a control unit 341, a fixed map information storage unit 342, a road map information storage unit 343, a dynamic information acquisition unit 344, and a communication unit 345.
  • the control unit 341 includes a processor, a memory, and the like, and controls the entire operation of the server 321.
  • the control unit 341 includes a dynamic map generation unit 361, and distributes the dynamic map generated by the dynamic map generation unit 361 to the vehicle 11 by controlling the communication unit 345.
  • the dynamic map generation unit 361 includes information on three-dimensional structures such as signs and buildings stored in the fixed map information storage unit 342, a road map stored in the road map information storage unit 343, and a dynamic information acquisition unit 344.
  • a dynamic map is generated on the basis of the dynamic road information acquired by the above and the position information of the vehicle 11 and the pedestrian 14.
  • the fixed map information storage unit 342 stores information of a three-dimensional structure such as a building as a fixed map, and supplies the fixed map to the control unit 341.
  • the road map information storage unit 343 stores the road map information and supplies it to the control unit 341.
  • the dynamic information acquisition unit 344 includes a road information acquisition unit 351 and a mobile unit information acquisition unit 352, acquires road information and mobile unit information, and supplies the information to the control unit 341.
  • the road information acquisition unit 351 acquires, as road information, traffic congestion information, operation state information such as a traffic signal, and road surface condition information supplied from the road information distribution server 322, and supplies the information to the control unit 341.
  • the moving body information acquiring unit 352 acquires positional information from a terminal serving as a moving body such as the vehicle 11 or the pedestrian 14 as moving body information and supplies the acquired information to the control unit 341.
  • the communication unit 345 is controlled by the control unit 341, and transmits / receives various data to / from a terminal of a mobile body such as the vehicle 11 or the pedestrian 14, the server 321, and the road information distribution server 322.
  • the communication management unit 144 includes a communication control unit 381, a dynamic map reception unit 382, a communication target determination unit 383, an own terminal position information acquisition unit 384, and a channel characteristic estimation unit 385.
  • the communication control unit 381 includes a local terminal information transmitting unit 391, a position predicting unit 392, a local terminal control unit 393, and a communication establishing unit 394, and controls the entire operation of the communication managing unit 144.
  • the communication establishing unit 394 is the same as the communication establishing unit 224, and a description thereof will be omitted.
  • the own terminal information transmitting unit 391 controls the communication unit 103 to transmit the own terminal position information acquired by the own terminal position information acquiring unit 384 to the server 321.
  • the position prediction unit 392 predicts the current and future position information of the own terminal as geographical information based on the own terminal position information acquired by the own terminal position information acquisition unit 384 and the route information of the own terminal. Then, the signal is supplied to the channel characteristic estimation unit 385. At this time, for example, a Kalman filter or the like may be used to predict a position using a plurality of pieces of position information. Note that the position prediction unit 392 may acquire the position information of the own terminal by the dynamic map receiving unit 382 instead of the own terminal position information acquired by the own terminal position information acquisition unit 384.
  • the own terminal control unit 393 controls the communication unit 103 based on the propagation characteristic estimation result based on the dynamic map, specifies a communication target, a communication method, and a communication parameter, controls the communication unit 103, and performs communication. Is established.
  • the dynamic map receiving unit 382 receives a dynamic map distributed from the server 321 through V2N communication.
  • a dynamic map a map using three-dimensional information of surrounding buildings or the like may be used.
  • the dynamic map is provided from the server 321 by V2N communication, but the dynamic map may be provided via the base station 31, the RSU 12, or the like. Further, it may be provided as application data or may be provided as a communication parameter in communication control.
  • the communication target determination unit 383 determines the transmission target of the V2X communication based on the surrounding vehicles and infrastructure obtained from the dynamic map, the pedestrian terminal information, and the like, and the own terminal position information.
  • the own terminal position information acquiring unit 384 acquires the own position estimated by the own position estimating unit 132 as the own terminal position, and supplies the acquired own position to the propagation path characteristic estimating unit 385 and the communication control unit 381.
  • the propagation path characteristic estimating unit 385 estimates the propagation path characteristics of the transmission source and the transmission destination in the virtual space based on the dynamic map, the communication target, the own terminal position information, and the geographic information predicted by the position prediction unit 392. Then, a communication method is determined based on the estimation result.
  • the propagation path characteristic estimating unit 385 may estimate the propagation path characteristic between the transmission and the reception using the geographic information of the three-dimensional map as the dynamic map. For example, the information on the three-dimensional structure of the building between the transmission and the reception may be obtained. Then, the propagation path characteristics are estimated by estimating the reflection characteristics of radio waves.
  • the propagation path characteristic estimation unit 385 may estimate the propagation path characteristic by limiting the layer information of the dynamic map.
  • the channel characteristic estimator 385 estimates channel characteristics based on only the most static layer information in the dynamic map, and when performing detailed estimation, only the static layer is used. Instead, the propagation path characteristics may be estimated in consideration of a dynamic layer.
  • the propagation path characteristic estimation unit 385 determines an appropriate communication method in a given virtual communication environment. For this reason, the propagation path characteristic estimating unit 385 simulates the propagation path characteristics in virtual space using the variation sets of various transmission methods.
  • the communication parameters used in the simulation are, for example, the communication parameters set in the first embodiment.
  • the estimated channel characteristics include an estimated SINR at the receiving terminal, a path loss value, fading, and shadowing.
  • the interference level given to another terminal, the resource occupancy, and the congestion degree information of the band may be considered in estimating the channel characteristics.
  • step S191 the control unit 341 determines whether a predetermined time has elapsed. If the predetermined time has elapsed, the process proceeds to step S192.
  • step S192 the road information acquisition unit 351 controls the communication unit 345 to access the road information distribution server 322, acquires road information, and supplies the road information to the dynamic map generation unit 361 of the control unit 341.
  • the dynamic map generation unit 361 acquires road information corresponding to the information of the third layer in the dynamic map M1 in FIG.
  • step S193 the moving body information acquisition unit 352 controls the communication unit 345 to acquire position information supplied from the vehicle 11 or the pedestrian 14, and as the moving body information, the dynamic map generation unit 361 of the control unit 341. To supply. Through this processing, the dynamic map generation unit 361 acquires moving object information corresponding to the information of the fourth layer in the dynamic map M1 in FIG.
  • step S194 the dynamic map generation unit 361 reads out the fixed map information stored in the fixed map information storage unit 342. Through this processing, the dynamic map generation unit 361 acquires fixed map information corresponding to the information of the second layer in the dynamic map M1 in FIG.
  • step S195 the dynamic map generation unit 361 reads the road map information stored in the road map information storage unit 343. Through this processing, the dynamic map generation unit 361 acquires road map information corresponding to the information of the first layer in the dynamic map M1 in FIG.
  • step S196 the dynamic map generation unit 361 determines the road map information corresponding to the information of the first layer, the fixed map information corresponding to the information of the second layer, the road information corresponding to the information of the third layer, and the fourth layer.
  • a dynamic map is generated by using the moving object information corresponding to the information of (1).
  • step S197 the control unit 341 controls the communication unit 345 to transmit the dynamic map generated by the dynamic map generation unit 361 to the vehicle 11.
  • step S198 the control unit 341 determines whether or not an end has been instructed. If the end has not been instructed, the process returns to step S191.
  • step S191 If the predetermined time has not elapsed in step S191, the processing in steps S192 to S197 is skipped.
  • step S211 the dynamic map receiving unit 382 of the communication management unit 144 in the vehicle 11 controls the communication unit 103 to determine whether or not the dynamic map has been transmitted. Proceeds to step S212.
  • step S212 the dynamic map receiving unit 386 receives the dynamic map via the communication unit 103, and supplies the dynamic map to the communication target determination unit 383 and the propagation path characteristic estimation unit 385.
  • step S213 the propagation path characteristic estimating unit 385 predicts the position of its own terminal (transmitting terminal) and the position of another terminal (receiving terminal) to be communicated based on the dynamic map.
  • the communication target determination unit 383 determines a terminal to be a communication target from other nearby terminals based on the dynamic map, and supplies the terminal to the propagation path characteristic estimation unit 385.
  • own terminal position information acquiring section 384 supplies the estimation result of own position estimating section 132 to propagation path characteristic estimating section 385 as own terminal position information.
  • the position prediction unit 392 supplies the current or future predicted position information to the channel characteristic estimation unit 385 based on the route information planned by the route planning unit 161 and the own terminal position information.
  • the propagation path characteristic estimating unit 385 calculates the position of the own terminal (transmitting terminal) on the dynamic map based on the position information of the other terminal to be communicated, the own terminal position information, and the prediction result of the current or future position information. Predict the position of another terminal (receiving terminal) to be communicated.
  • the prediction of the position of the own terminal (transmitting terminal) specified by the propagation path characteristic estimating unit 385 and the position of another terminal (receiving terminal) to be communicated is made only from the own terminal position information and the dynamic map. be able to. That is, in this case, since the dynamic map itself is the position prediction result, it can be considered that the server 321 itself that generates the dynamic map realizes a function corresponding to the position prediction unit 392. For this reason, the position prediction unit 392 may be omitted.
  • step S214 the propagation path characteristic estimating unit 385 acquires a peripheral three-dimensional map corresponding to the own terminal position information and the position information of another terminal to be communicated based on the dynamic map.
  • step S215 the propagation path characteristic estimating unit 385 estimates the propagation path characteristic based on the own terminal position information, the position information of another terminal to be communicated, and the surrounding three-dimensional map.
  • the propagation path characteristic estimation unit 385 estimates an assumed reception SINR at the time of performing beam steering, and performs, for example, a simulation of the reception SINR at the time of performing 360-degree beam steering around the own terminal (transmission terminal). May be implemented.
  • a ray tracing simulation may be used.
  • vehicles 11-201 and 11-202 are traveling leftward in the figure along a road 441 along a building W1 which is a structure such as a wall.
  • a building W1 which is a structure such as a wall.
  • the beam in the straight traveling direction indicated by the range Z153 is obtained. It is recognized that the estimated reception SINR by steering is good. When beam steering is performed for a range Z151 shifted by about 45 degrees from the straight traveling direction, it is recognized that the estimated reception SINR is relatively improved due to the range Z152 caused by the influence of the reflection by the building W1. .
  • the propagation path characteristic estimation unit 385 shows the range of about ⁇ 15 degrees with respect to the straight traveling direction and the range Z152 as shown by the range Z133.
  • the range of ⁇ 15 degrees around the ⁇ 45 degree direction with respect to the straight traveling direction is determined as the range in which the beam steering is performed.
  • step S216 the channel characteristic estimating unit 385 determines the range of the beam steering based on the channel characteristic that is the estimation result.
  • step S217 the propagation path characteristic estimating unit 385 supplies information on the determined beam steering range to the communication control unit 381.
  • the terminal control unit 393 of the communication control unit 381 controls the communication unit 103 to perform beam steering on the determined range.
  • step S218 the communication control unit 381 determines whether or not an end of the process has been instructed. If the end has not been instructed, the process returns to step S211 and the subsequent processes are repeated.
  • the simulation may be performed by a method other than those described above.
  • the own terminal transmitting terminal
  • a frequency band May be changed from 6 GHz to 700 MHz
  • the propagation path characteristics when communication is performed using communication resources that are robust in the NLOS state may be estimated.
  • MCS and the like are changed at the same time, for example, when a change such as taking QPSK from 16QAM is performed, when MIMO is used, when MIMO is used, SMI communication is changed to MIMO.
  • the communication method may be selected by variously obtaining the transmission path characteristics by a simulation in a case where the communication method is changed.
  • the propagation path characteristics are estimated by simulation using a dynamic map as geographical information, and the communication method with the best communication condition can be selected in advance. It is possible to select a guaranteed communication method at a stage before the communication state deteriorates, switch the communication method, and continue the communication.
  • steps S231 to S238, and steps S241 to S244, and S251 in the flowchart of FIG. 27 are the same as the processes in steps S191 to S198 and steps S211 to S214, and S218 in FIG. I do.
  • step S245 the propagation path characteristic estimating unit 385 obtains a path loss value in a time series when beamforming is performed as propagation path characteristic estimation using a dynamic map.
  • step S246 the propagation path characteristic estimating unit 385 determines that the propagation path is obstructed based on the time-series moving body information of the vehicle 11, which is the moving body, based on the information of the dynamic map, in particular, the information of the fourth layer. It is determined whether the NLOS state to be blocked occurs.
  • the LOS It is estimated that the path loss value is good because the state is Line Of Sight).
  • the large truck 451 is running upward on the road 462-2 orthogonal to the road 462-1 in the figure.
  • the heavy truck 451' interrupts between the vehicles 11-221 and 11-222 to block (blockage). It is presumed that the NLOS state due to ()) occurs, and that the path loss value at this time deteriorates significantly.
  • the heavy truck 451 ′′ passes between the vehicles 11-221 and 11-222, and the NLOS state is resolved. Then, it is presumed that the LOS state without the obstacle is again on the propagation path, and the path loss value is also improved.
  • the channel characteristic estimating unit 385 regards that the NLOS state occurs, and the process proceeds to step S247.
  • step S247 the propagation path characteristic estimating unit 385 transmits the information of the start timing of the NLOS state, the timing of the end of the NLOS state, and the information of the communication method in the NLOS state to the vehicle 11-222 in FIG. Is notified to the communication control unit 381 to transmit.
  • the communication control unit 381 for example, information for instructing to stop performing the beam forming in the millimeter wave band and to switch the communication method to the omnidirectional communication using a low frequency of 6 GHz or less is notified.
  • the communication control unit 381 controls the communication unit 103 to switch to the omnidirectional communication method in the NLOS state start timing information, the NLOS state end timing, and the NLOS state. Is notified.
  • the notification is made through Sidelink Control Channel which is a control channel in the side link.
  • the communication management unit 144 of the vehicle 11-222 in FIG. 28 controls the communication unit 103 to provide information on the timing of starting the NLOS state, the timing of terminating the NLOS state, and the omnidirectionality in the NLOS state. Information indicating that the communication method is to be switched to the communication method.
  • step S248 the propagation path characteristic estimating unit 385 determines whether or not it is time to enter the respective states, and the same processing is repeated until the timing reaches the NLSO state due to blockage.
  • step S248 when it is time to enter the NLSO state due to blockage, the process proceeds to step S249.
  • step S249 the propagation path characteristic estimating unit 385 instructs the communication control unit 381 to stop performing beamforming in the millimeter wave band, and switches the communication method to omnidirectional communication using a low frequency of 6 GHz or less. Send a command to do so.
  • the terminal control unit 393 controls the communication unit 103 to stop performing beamforming in the millimeter wave band, and switches the communication method to omnidirectional communication using a low frequency of 6 GHz or less.
  • the beamforming in the millimeter wave band is stopped, and a low frequency of 6 GHz or less is used.
  • the communication method can be switched to omnidirectional communication.
  • the communication can be continued by the omnidirectional communication.
  • step S250 the propagation path characteristic estimating unit 385 determines whether or not it is time to end the NLSO state due to interference (Blockage), and until the timing at which the NLSO state due to interference (Blockage) ends is reached. A similar process is repeated.
  • step S250 when it is time to end the NLSO state due to interference (Blockage), the process proceeds to step S251.
  • step S251 the propagation path characteristic estimating unit 385 sends a command to the communication control unit 381 to return to the execution of the beam forming in the millimeter wave band.
  • the terminal control unit 393 controls the communication unit 103 to return to performing beamforming in the millimeter wave band.
  • the communication management unit 144 in the vehicle 11-222 on the receiving side also executes the same processing as the processing in steps S248 to S251 based on the information notified through the side link control channel Sidelink Control Channel. You.
  • the beamforming communication at the timing when the NLOS occurs is performed. Is stopped in advance so that an omnidirectional communication method is established, and only at the timing of NLOS, it is possible to quickly switch to omnidirectional communication.
  • the information is stored as area buffer status information. Then, based on available resource information (which may be provided from the base station or may be grasped by sensing) and buffer status information of peripheral terminals, buffer management of the own terminal is performed.
  • the processing (transmission) of the buffer by the own terminal should be avoided as much as possible.
  • the buffer status of the peripheral terminal becomes low in the traveling direction, the buffer status of the peripheral terminal becomes low as much as possible, and the buffer of the own terminal is processed in the area.
  • Example of execution by software can be executed by hardware, but can also be executed by software.
  • a program constituting the software may execute various functions by installing a computer built into dedicated hardware or installing various programs. It is installed from a recording medium to a possible general-purpose computer, for example.
  • FIG. 29 shows a configuration example of a general-purpose computer.
  • This personal computer includes a CPU (Central Processing Unit) 1001.
  • An input / output interface 1005 is connected to the CPU 1001 via a bus 1004.
  • a ROM (Read Only Memory) 1002 and a RAM (Random Access Memory) 1003 are connected to the bus 1004.
  • the input / output interface 1005 includes an input unit 1006 including an input device such as a keyboard and a mouse for inputting operation commands by a user, an output unit 1007 for outputting a processing operation screen and an image of a processing result to a display device, and programs and various data.
  • LAN Local Area Network
  • a magnetic disk including a flexible disk
  • an optical disk including a CD-ROM (Compact Disc-Only Memory), a DVD (Digital Versatile Disc)), a magneto-optical disk (including an MD (Mini Disc)), or a semiconductor
  • a drive 1010 that reads and writes data from and to a removable medium 1011 such as a memory is connected.
  • the CPU 1001 is read from a program stored in the ROM 1002 or a removable medium 1011 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, is installed in the storage unit 1008, and is loaded from the storage unit 1008 into the RAM 1003. Execute various processes according to the program.
  • the RAM 1003 also appropriately stores data necessary for the CPU 1001 to execute various processes.
  • the CPU 1001 loads a program stored in the storage unit 1008 into the RAM 1003 via the input / output interface 1005 and the bus 1004 and executes the program, for example. Is performed.
  • the program executed by the computer (CPU 1001) can be provided by being recorded on, for example, a removable medium 1011 as a package medium or the like. Further, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 1008 via the input / output interface 1005 by attaching the removable medium 1011 to the drive 1010. Further, the program can be received by the communication unit 1009 via a wired or wireless transmission medium and installed in the storage unit 1008. In addition, the program can be installed in the ROM 1002 or the storage unit 1008 in advance.
  • the program executed by the computer may be a program in which processing is performed in chronological order according to the order described in this specification, or may be performed in parallel or at a necessary timing such as when a call is made. It may be a program that performs processing.
  • a system means a set of a plurality of components (devices, modules (parts), and the like), and it does not matter whether all components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device housing a plurality of modules in one housing are all systems. .
  • the present disclosure can adopt a configuration of cloud computing in which one function is shared by a plurality of devices via a network and processed jointly.
  • each step described in the above-described flowchart can be executed by a single device, or can be shared and executed by a plurality of devices.
  • one step includes a plurality of processes
  • the plurality of processes included in the one step may be executed by one device or may be shared and executed by a plurality of devices.
  • a position prediction unit that predicts the position of the own terminal having a communication function
  • An information acquisition unit that acquires geographic information around the position of the own terminal predicted by the position prediction unit
  • a control device comprising: a communication control unit configured to control communication between the own terminal and another terminal having the communication function other than the own terminal based on the geographic information.
  • another terminal position information acquisition unit that acquires the position information of the other terminal at predetermined time intervals, Further comprising: own terminal position information acquisition unit for acquiring the position information of the own terminal at predetermined time intervals, The control device according to ⁇ 1>, wherein the position prediction unit predicts a current or future position of the own terminal based on the position information of the own terminal and the position information of the other terminal.
  • ⁇ 3> The control device according to ⁇ 1> or ⁇ 2>, wherein the communication control unit controls the communication by setting communication parameters in the communication.
  • ⁇ 4> The control device according to any one of ⁇ 1> to ⁇ 3>, wherein the communication control unit controls the communication by setting a configuration of a communication link in the communication.
  • ⁇ 5> The control device according to any one of ⁇ 1> to ⁇ 4>, wherein the communication control unit controls the communication by setting a range of beam steering for beamforming in the communication.
  • ⁇ 6> The control device according to any one of ⁇ 1> to ⁇ 5>, wherein the communication control unit controls the communication by setting relay communication in the communication.
  • the communication control unit may perform communication in the communication based on geographic information around the own terminal, at a timing when the communication is interrupted, in response to presence or absence of the interference in the communication.
  • the control device according to any one of ⁇ 1> to ⁇ 6>, wherein the communication is controlled by setting the method to be switched.
  • the communication control unit sets the communication method to be switched to the relay communication at the timing when the interference occurs, thereby performing the communication.
  • the control device according to ⁇ 7>.
  • a mapping table storage unit that stores a mapping table in which communication information including communication results of the own terminal and the other terminal is mapped in association with position information;
  • the communication control unit refers to the mapping table based on geographic information around the own terminal and controls the communication based on optimal communication information among corresponding communication information.
  • the mapping table stores the location information, the communication type, the parameter, and the communication quality related to transmission / reception between the own terminal and the other terminal by another information processing apparatus.
  • the control device according to ⁇ 9> which is generated by being associated and mapped.
  • ⁇ 11> a channel characteristic estimating unit for estimating a channel characteristic in the communication based on a three-dimensional map as geographical information around the terminal;
  • the control device according to any one of ⁇ 1> to ⁇ 8>, wherein the communication control unit controls the communication based on the propagation path characteristics estimated by the propagation path characteristic estimation unit.
  • the communication control unit controls the communication by setting a range of beam steering in the communication based on the channel characteristics estimated by the channel characteristic estimation unit.
  • the communication control unit based on the propagation path characteristics estimated by the propagation path characteristic estimation unit, is configured to switch a communication method at a timing when interference occurs in the communication, The control device according to ⁇ 11>, which controls the communication.
  • the communication control unit sets the communication method to be switched to the omnidirectional communication method at a timing when the interference is occurring, thereby performing the communication.
  • ⁇ 15> The control device according to ⁇ 11>, wherein the three-dimensional map is a dynamic map including a plurality of layers according to a level of change with respect to time.
  • the dynamic map is generated by another information processing device, Further including a dynamic map acquisition unit for acquiring a dynamic map generated by the other information processing device, The control device according to ⁇ 15>, wherein the propagation path characteristic estimation unit estimates propagation path characteristics in the communication based on the dynamic map acquired by the dynamic map acquisition unit.
  • position prediction processing for predicting the position of the own terminal having a communication function;
  • Information acquisition processing for acquiring geographic information around the position of the terminal itself predicted by the position prediction processing,
  • a control method including a control process of controlling communication between the own terminal and another terminal having the communication function other than the own terminal based on the geographic information.
  • a position prediction unit that predicts the position of the own terminal having a communication function,
  • An information acquisition unit that acquires geographic information around the position of the own terminal predicted by the position prediction unit,
  • a program that causes a computer to function as a communication control unit that controls communication between the own terminal and another terminal having the communication function other than the own terminal based on the geographic information.
  • a position prediction unit that predicts the position of the own terminal having a communication function
  • An information acquisition unit that acquires geographic information around the position of the own terminal predicted by the position prediction unit, Based on the geographic information, the own terminal, a communication control unit that controls communication with another terminal having the communication function other than the own terminal, A vehicle control unit that controls an operation of the vehicle based on information obtained by the communication function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示は、信頼性の高い通信を実現できるようにする制御装置および制御方法、車両、並びにプログラムに関する。 自端末の周辺の地理情報に基づいて、通信対象、通信方式、および通信パラメータを制御することにより、他端末との通信を制御する。本開示は、車載通信に適用することができる。

Description

制御装置および制御方法、車両、並びにプログラム
 本開示は、制御装置および制御方法、車両、並びにプログラムに関し、特に、車両における信頼性の高い通信を実現するようにした制御装置および制御方法、車両、並びにプログラムに関する。
 近年、将来の自動運転を実現すべく、車載通信が注目を集めている。
 車載通信のうち、車車間通信において、センサ等から得られる周辺環境に応じて通信パラメータを決定するものが提案されている(特許文献1参照)。
特開2013-51520号公報
 しかしながら、特許文献1の技術においては、通信パラメータを切り替えるのみであるため、地理的な影響を考慮すると、通信パラメータを切り替えるのみでは、十分な通信の信頼性を向上させることができず、これにより遅延等が発生する恐れがあった。
 本開示は、このような状況に鑑みてなされたものであり、特に、地理的な情報に基づいて通信を制御することで、信頼性の高い通信を実現する。
 本開示の一側面の制御装置および車両は、通信機能を有する自端末の位置を予測する位置予測部と、前記位置予測部により予測された前記自端末の位置の周辺の地理情報を取得する情報取得部と、前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信を制御する通信制御部とを含む制御装置および車両である。
 本開示の一側面の制御方法は、通信機能を有する自端末の位置を予測する位置予測処理と、前記位置予測処理により予測された前記自端末の位置の周辺の地理情報を取得する情報取得処理と、前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信を制御する制御処理とを含む制御方法である。
 本開示の一側面のプログラムは、通信機能を有する自端末の位置を予測する位置予測部と、前記位置予測部により予測された前記自端末の位置の周辺の地理情報を取得する情報取得部と、前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信を制御する通信制御部としてコンピュータを機能させるプログラムである。
 本開示の一側面においては、通信機能を有する自端末の位置が予測され、予測された前記自端末の位置の周辺の地理情報が取得され、前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信が制御される。
 本開示の一側面によれば、特に、地理的な情報に基づいて通信を制御することで、信頼性の高い通信を実現することが可能となる。
本開示の概要であるV2X通信を説明する図である。 V2X通信を実現するシステム構成例を説明する図である。 V2Xオペレーションシナリオを説明する図である。 V2Xオペレーションシナリオを説明する図である。 本開示の通信システムにおける第1の実施の形態の構成例を説明する図である。 車両の機能を実現する車両制御システムの構成例を説明する図である。 図6の通信管理部の第1の実施の形態の構成例を説明する図である。 図6のRSUの構成例を説明する図である。 第1の実施の形態における通信管理処理を説明するフローチャートである。 端末の選択方法を説明する図である。 通信パラメータを変更するようにした通信制御処理を説明するフローチャートである。 V2Xにおける様々な状況の例を説明する図である。 地理的な情報に基づいて、通信リンクの構成を変更するようにした通信制御処理を説明するフローチャートである。 ビームフォーミングにおけるビームステアリングのエリアを制限するようにした通信制御処理を説明するフローチャートである。 V2V通信において、ビームフォーミング通信を行っていた際に、Blockageが発生すると判断された際にバックアップ通信回線を準備する通信制御処理を説明する図である。 本開示の通信システムにおける第2の実施の形態の構成例を説明する図である。 図16のサーバの構成例を説明する図である。 図6の通信管理部の第2の実施の形態の構成例を説明する図である。 第2の実施の形態における通信管理処理を説明するフローチャートである。 ダイナミックマップを説明する図である。 3次元マップを説明する図である。 本開示の通信システムにおける第3の実施の形態の構成例を説明する図である。 図22のサーバの構成例を説明する図である。 図6の通信管理部の第3の実施の形態の構成例を説明する図である。 ダイナミックマップを利用したビームフォーミング通信における通信管理処理を説明するフローチャートである。 ダイナミックマップを利用したビームフォーミング通信における通信管理処理を説明する図である。 ダイナミックマップを利用してビームフォーミング通信と他の通信とを切り換えるようにした通信管理処理を説明するフローチャートである。 ダイナミックマップを利用してビームフォーミング通信と他の通信とを切り換えるようにした通信管理処理を説明する図である。 汎用のコンピュータの構成例を説明する図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
 1.本開示の概要
 2.第1の実施の形態
 3.第2の実施の形態
 4.第3の実施の形態
 5.ソフトウェアにより実行させる例
 <<1.本開示の概要>>
 本開示の説明にあたって、まず、本開示の概要について説明する。
 将来の自動運転の実現のため、近年、車載通信(V2X通信)への期待が高まってきている。V2X通信とは、Vehicle to X通信の略称であり、車とX(=通信対象:以下、単に通信対象Xとも称する)とが行う通信である。
 ここでの通信対象Xは、例えば、図1で示されるように、車両(Vehicle)、インフラストラクチャ(Infrastructure)、ネットワーク(Network)、および歩行者(Pedestrian)等が挙げられる。
 通信対象Xが、車両(Vehicle)である場合、すなわち、図1の車両11-1,11-2間の通信L1は、V2V(Vehicle to Vehicle)通信(車車間通信)と称される。
 尚、通信対象Xが車両11である場合については、車両11そのものが通信機能を備えた端末であるものとして説明を進めるものとするが、例えば、車両11の搭乗者(運転者)が所持するスマートフォンに代表される携帯端末をも含むものである。
 また、以降においては、車両11-11乃至11-13について、特に区別する必要がない場合、単に、車両11と称するものとし、他の構成も同様に称する。
 さらに、通信対象Xが、車両11が走行する道路沿いや交差点等に設けられているインフラストラクチャ(Infrastructure)としてのRSU(Road Side Unit:路側器)である場合、すなわち、例えば、図1のRSU12と車両11との間の通信L2は、V2I(Vehicle to Infrastructure)通信(路車間通信)と称される。
 尚、通信対象XがRSU12である場合については、RSU12が道路沿いや交差点に設けられる通信機能を備えた端末であるものとして説明を進める。
 また、通信対象Xが、クラウドコンピュータやネットワークサーバなどに代表されるネットワーク(Network)の場合、すなわち、例えば、図1のネットワーク13と車両11との間の通信L3は、V2N(Vehicle to Network)通信と称される。
 尚、通信対象Xがネットワーク13である場合については、ネットワーク上のサーバコンピュータであるものとして説明を進める。
 さらに、通信対象Xが、歩行者(Pedestrian:歩行者が所持する端末)の場合、すなわち、例えば、図1の歩行者14と車両11との間の通信L4は、V2P(Vehicle to Pedestrian)通信と称される。
 尚、通信対象Xが歩行者14である場合については、歩行者14は、歩行者そのものではなく、歩行者14が所持する通信機能を備えた端末であるものとして説明を進める。
 すなわち、以降において、通信対象Xは、車両11、RSU12、ネットワーク13、および歩行者14のいずれであっても、通信機能を備えた端末またはコンピュータであるものとして説明を進める。
 <V2X通信システムの全体像>
 V2X通信システムの全体像は、上述した様々な通信対象Xとの通信形態(V2V通信、V2I通信、V2N通信、V2P通信)が組み合わされた構成となり、例えば、図2で示されるような構成となる。
 図2のV2X通信システムは、車両11-11乃至11-13、RSU12、ネットワーク13、歩行者14、および基地局31-1,31-2より構成される。
 図1のネットワーク13は、図2のおけるV2X制御サーバ32、およびアプリケーション管理サーバ33より構成される。
 V2X制御サーバ32は、コアネットワークサーバとして機能し、通信L31乃至L40を介して、車両11-11乃至11-13、RSU12、ネットワーク13、歩行者14、および基地局31-1,31-2の相互の通信を制御する。
 アプリケーション管理サーバ33は、車両11-11乃至11-13、および歩行者14における各端末にインストールされるアプリケーションプログラムを管理する。アプリケーション管理サーバ33は、例えば、通信L34乃至L36を介して、車両11-12に対してアプリケーションプログラムをダウンロードさせると共に、アップデート等を管理する。
 基地局31-1,31-2は、Uuリンク通信(端末基地局間通信)を実現する。例えば、図2においては、基地局31-2は、車両11-12,11-13のそれぞれとの間でUu(端末基地局間)リンク通信からなる通信L39,L40を介して、相互通信を実現する。
 尚、車両11-12,11-13については、それぞれが通信L39,L40によりUuリンク通信を実現すると共に、通信L37で示されるようなV2V通信が実現され、さらに通信L38で示されるような歩行者14との間でV2P通信が実現される。従って、通信対象Xは、相互に、複数の通信形態により通信するように構成されてもよい。
 RSU12は、車両11が走行する道路沿いや交差点等に設けられており、基地局31-1を介して、ネットワーク13と、車両11とを接続して通信させる。RSU12は、車両11-11に対して、例えば、通信L31乃至L34を介して、アプリケーション管理サーバ33からアプリケーションプログラムをダウンロードさせたり、データリレーを受け付ける。
 RSU12は、基地局31と類似した機能を備えた基地局型と、車両11に設けられた端末と類似した機能を備えたUE(User Equipment)型とが存在する。
 (LTE-based V2Xのユースケース)
 自動車向けの無線通信としては、これまで主に、IEEE802.11pベースのDSRC(Dedicated Short Range Communication)の開発が進められてきたが、近年になり、LTE(Long Term Evolution)ベースの車載通信(V2X通信)である”LTE-based V2X”の標準規格化が行われた。
 LTEベースのV2X通信では、基本的なセーフティメッセージ等のやり取りなどがサポートされている。
 V2X通信のユースケースは、V2V通信、V2I通信、V2N通信、およびV2P通信のそれぞれについて、様々な例が挙げられている。
 V2V通信は、車両11相互の通信であるので、例えば、車両11の相互の情報に基づいて、前方車両接近警報、交差点衝突防止警告、緊急車両警告、追い越し中止警告、および道路工事警告、並びに、隊列走行時の協働制御処理等のユースケースが挙げられる。
 前方車両接近警報は、前方の車両の接近を検知したときに提示される警報である。
 交差点衝突防止警告は、交差点に進入する車両間の衝突を防止するために提示される警告である。
 緊急車両接近警告は、緊急車両の接近を検知したときに提示される警告である。
 追い越し中止警告は、追い越しのための車線変更直前に、変更しようとする車線の後方の車両の接近を検知したときに追い越しの中止を促すために提示される警告である。道路工事警告は、前方の道路工事を警告する。
 さらに、隊列走行時の協働制御処理は、複数の車両による隊列状態の位置関係を維持して走行するための制御である。
 また、V2I通信は、インフラストラクチャである、例えば、RSU12との通信である。そこで、V2I通信のユースケースとしては、例えば、サーバから配信される道路安全情報の配信、信号機連携の利用、駐車場情報を探すための補助情報の提示(駐車場補助)、課金処理(課金)に活用するといったユースケースが挙げられる。
 さらに、V2N通信は、ネットワーク13との通信である。そこで、V2N通信のユースケースとしては、例えば、後述するダイナミックマップを提供してナビゲーションに利用したり、制御情報を送信することで、リモートドライビングを実現させたり、コンテンツを配信するなどして、車内エンターテイメントに利用するといったユースケースが挙げられる。
 また、V2P通信は、歩行者14の所持する端末との通信である。そこで、V2P通信のユースケースとしては、例えば、視覚や聴覚に障害を持つ交通弱者となる歩行者14の端末に対して交通弱者警告を通知して、交通弱者の歩行をサポートするといったユースケースが挙げられる。
 (NR V2X通信のユースケース)
 一方で、さらなるV2X通信の改善をめざし、近年5G(5th Generation)技術(NR:New Radio)を用いたNR V2X通信の検討が行われている。
 NR V2X通信では、これまでLTEベースのV2X通信ではサポートできなかったような、高信頼性、低遅延、高速通信、およびハイキャパシティを必要とする新たなユースケースをサポートする。
 上述した例において、NR V2X通信を用いることで、高い効果が期待されるユースケースとしては、例えば、ダイナミックマップの提供や、リモートドライビング等が挙げられる。この他にも、V2V通信(車車間通信)やV2I通信(路車間通信)でセンサデータのやり取りを行うようなセンサデータシェアリングや隊列走行向けのプラトゥーニングユースケースが挙げられる。これらのNR V2X通信のユースケース及び要求事項は3GPP TR22.886に記載されている。
 NR V2X通信の代表的なユースケースとしては、Vehicles Platooning、Extended Sensors、Advanced Driving、およびRemote Drivingが挙げられる。
 Vehicles Platooningは、複数の車両が隊列となり、同じ方向に走行する、隊列走行のユースケースであり、隊列走行を主導する車から隊列走行を制御するための情報をやり取りする技術である。これらの情報のやりとりにより、隊列走行の車間距離をより詰めることが可能となる。
 Extended Sensorsは、センサ関連の情報(データ処理前のRawデータや処理されたデータ)を車車間などで交換することを可能とする技術である。センサ関連の情報は、ローカルセンサや、周辺の車両やRSUや歩行者間のライブビデオイメージやアプリケーション管理サーバ33等を通して集められる。車両11は、これらの情報交換により、自身のセンサ情報では得られない情報を入手することができ、より広範囲の環境を認知/認識することが可能となる。多くの情報を交換する必要があるため、通信には高いデータレートが求められる。
 Advanced Drivingは、準自動走行や、完全自動走行を可能とする技術である。それぞれの車両11はRSUが自身のセンサ等から得られた認知/認識情報を周辺車両へとシェアすることで、車両11の軌道や操作を同期、協調しながら調整することができる。それぞれの車両11は、Advanced Drivingを利用することで、ドライビングの意図や意思を周辺車両とシェアすることも可能である。
 Remote Drivingは、遠隔操縦者やV2X通信によるアプリケーションプログラムを用いた遠隔操縦技術である。運転ができない人や、危険地域に対して遠隔操作が用いられる。ルートや走行する道がある程度決まっているような公共交通機関に対してはクラウドコンピューティングべースの操縦を用いることも可能である。高い信頼性と低い伝送遅延が通信には求められる。
 (物理レイヤエンハンスメント)
 上記の要求事項を達成するために、LTE V2Xから物理レイヤのさらなるエンハンスメントが必要となる。対象となるリンクは、基地局31やRSU(Road Side Unit)12などのインフラストラクチャと端末間リンクであるUuリンク通信や端末間同士のリンクであるPC5リンクが挙げられる。
 主なエンハンスメントのポイントは、例えば、チャネルフォーマット(Flexible numerology, short TTI(Transmission Time Interval)、マルチアンテナ対応、Waveform等)、サイドリンクフィードバック通信(HARQ,CSI(Channel Status Information))等、サイドリンクリソース割り当て方式、車両位置情報推定技術、端末間リレー通信、ユニキャスト通信、マルチキャスト通信のサポート、マルチキャリア通信、キャリアアグリゲーション、MIMO/ビームフォーミング、並びに、高周波周波数対応(例: 6GHz以上)である。
 <V2Xオペレーションシナリオ>
 次に、図3,図4を参照して、V2X通信のオペレーションシナリオの例について説明する。
 V2N通信においては基地局端末間のDL(Download)/UL(Upload)通信のみでシンプルであったが、V2V通信では様々な通信経路が考えられる。
 ここではV2V通信の例を用いたオペレーションシナリオ例を紹介するが、V2P通信やV2I通信も同様の通信オペレーションが可能である。その場合、通信先が歩行者(Pedestrian:歩行者の所持する端末)14やRSU12となる。
 第1のシナリオSn1は、例えば、図3の上段で示されるように、車両11-31と、車両11-32乃至11-34のそれぞれとの間で、端末間リンク(サイドリンク:PC5リンク)からなる通信L71が形成されるものである。
 第1のシナリオSn1においては、先行する車両11-31が、後続の車両11-32乃至11-34に対して、端末間リンク(サイドリンク:PC5リンク)からなる通信L71を介して情報を送信する。
 第2のシナリオSn2は、例えば、図3の中段で示されるように、車両11-41と、車両11-42乃至11-44のそれぞれとの間で、基地局31を介して、それぞれ端末である車両11間のインタフェースによるUuリンクからなる通信L81,L82が形成されるものである。
 第2のシナリオSn2においては、先行する車両11-41が、後続の車両11-42乃至11-44に対して、基地局31を介して、Uuリンクからなる通信L81,L82により情報を送信する。
 第3のシナリオSn3は、例えば、図3の下段で示されるように、車両11-51と、車両11-52乃至11-54のそれぞれとの間で、車両11-51とRSU12間の端末間リンク(サイドリンク:PC5リンク)からなる通信L91、並びに、RSU12と基地局31間、および基地局31と車両11-52乃至11-54間のそれぞれの間にUuリンクからなる通信L92,L93が形成されるものである。
 そして、第3のシナリオSn3においては、先行する車両11-51が、後続の車両11-52乃至11-54に対して、車両11-51とRSU12間の端末間リンク(サイドリンク:PC5リンク)からなる通信L91、並びに、RSU12と基地局31間のUuリンクからなる通信L92、および基地局31と車両11-52乃至11-54間のUuリンクからなる通信L93を介して情報を送信する。
 第4のシナリオSn4は、例えば、図4の上段で示されるように、車両11-61と、車両11-62乃至11-64とのそれぞれの間で、車両11-61と基地局31間、および、基地局31とRSU12間の端末間リンク(サイドリンク:PC5リンク)からなる通信L101,L102、並びに、RSU12と車両11-62乃至11-64間のそれぞれにUuリンクからなる通信L103が形成されるものである。
 そして、第4のシナリオSn4においては、後続の車両11-61が、先行の車両11-62乃至11-64に対して、車両11-61と基地局31間、および、基地局31とRSU12間の端末間リンク(サイドリンク:PC5リンク)からなる通信L101,L102、並びに、RSU12と車両11-62乃至11-64間のUuリンクからなる通信L103を介して情報を送信する。
 第5のシナリオSn5は、例えば、図4の中段で示されるように、車両11-71と、車両11-72乃至11-74とのそれぞれとの間で、車両11-71とRSU12間の端末間リンク(サイドリンク:PC5リンク)からなる通信L111、およびRSUL82と車両11-72乃至11-74間のそれぞれとの間の端末間リンク(サイドリンク:PC5リンク)からなる通信L112が形成されるものである。
 そして、第5のシナリオSn5においては、後続の車両11-71が、先行の車両11-72乃至11-74に対して、車両11-82間の端末間リンク(サイドリンク:PC5リンク)からなる通信L111、およびRSUL82と車両11-72乃至11-74間の端末間リンク(サイドリンク:PC5リンク)からなる通信L112を介して情報を送信する。
 第6のシナリオSn6は、例えば、図4の下段で示されるように、車両11-81,11-82間での端末間リンク(サイドリンク:PC5リンク)からなる通信L121、車両11-82と車両11-83乃至11-85のそれぞれとの間の端末間リンク(サイドリンク:PC5リンク)からなる通信L122が形成されるものである。
 そして、第6のシナリオSn6においては、後続の車両11-81が、先行の車両11-82に対して端末間リンク(サイドリンク:PC5リンク)からなる通信L121を介して送信し、車両11-82が、さらに先行する車両11-83乃至11-85に対して端末間リンク(サイドリンク:PC5リンク)からなる通信L122を介して情報を送信する。
 これまでのNRV2Xにおいては、上述した一連のシナリオの例でも見られるように、端末間リンクは基本的にSingle antenna送信やTransmission diversity送信等により実現されてきた。
 しかしながら、これまでのNRV2Xにおいては、複数アンテナを送受信間で用いるMIMO(Multiple Input and Multiple Output)やビームフォーミングに関する通信は行われてきていなかった。
 特に、V2X通信環境下におけるビームフォーミングでは、短時間にビームフォーミングのリンクを確立する必要があり、効率的なコネクションの確立方法が必要となる。また、端末間リンク(サイドリンク)にビームフォーミング技術を用いた場合、通信の特性は周辺の地理的環境に応じた影響を受け易いため、リンクが切れた際のリカバリ対策等については、地理的環境に応じた処理が必要となる。
 そこで、本開示においては、車載通信(V2X通信)環境における地理的な情報を用いた効率的な通信の接続やリカバリを実現し、より信頼性の高い通信を実現する。
 <<2.第1の実施の形態>>
 次に、図5を参照して、本開示の通信システムの第1の実施の形態について説明する。
 図5の通信システム41は、車両11-91乃至車両11-n、およびRSU12-1乃至12-mより構成される。図5の通信システム41においては、車両11-91が、自車とし、それ以外の他車となる車両を車両11-92乃至11-nとして表現している。車両11-91は、車両11-92乃至11-nと、例えば、V2V通信により相互に通信することができる。本明細書においては、車両11は端末であり、自車である車両11については、自端末とも称し、それ以外の車両11、RSU12、および歩行者14については、他端末とも称する。
 車両11-91は、自らの位置情報を他の車両11-92乃至11-nに送信すると共に、他の車両11-92乃至11-n、およびRSU12-1乃至12-mの位置情報を取得する。
 RSU12は、自らの位置情報を車両11や他のRSU12に送信する。また、RSU12は、車両11-91乃至11-nとの間でV2I通信を実現し、例えば、車両11-91と、車両11-92乃至11-nのそれぞれの間の通信を中継(リレー)する。さらに、RSU12は、図5においては図示しないが、図1を参照して説明したように、車両11と、ネットワーク13や歩行者14との通信も中継(リレー)する。
 車両11-91は、他の車両11-92乃至11-n、およびRSU12-1乃至12-mとの位置関係、すなわち、地理的な情報に基づいて、相互の通信パラメータを調整し、常に最適な状態で通信できる状態を維持する。これにより、信頼性の高い、低遅延なV2X通信を実現する。
 <車両の機能を実現する車両制御システムの構成例>
 次に、図6を参照して、車両11の機能を実現する移動体制御システムの一例である車両制御システム100の概略的な機能の構成例を示すブロック図である。
 なお、以下、車両制御システム100が設けられている車両を他の車両と区別する場合、自車又は自車両と称する。
 車両制御システム100は、入力部101、データ取得部102、通信部103、車内機器104、出力制御部105、出力部106、駆動系制御部107、駆動系システム108、ボディ系制御部109、ボディ系システム110、記憶部111、及び、自動運転制御部112を備える。入力部101、データ取得部102、通信部103、出力制御部105、駆動系制御部107、ボディ系制御部109、記憶部111、及び、自動運転制御部112は、通信ネットワーク121を介して、相互に接続されている。通信ネットワーク121は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、又は、FlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークやバス等からなる。なお、車両制御システム100の各部は、通信ネットワーク121を介さずに、直接接続される場合もある。
 なお、以下、車両制御システム100の各部が、通信ネットワーク121を介して通信を行う場合、通信ネットワーク121の記載を省略するものとする。例えば、入力部101と自動運転制御部112が、通信ネットワーク121を介して通信を行う場合、単に入力部101と自動運転制御部112が通信を行うと記載する。
 入力部101は、搭乗者が各種のデータや指示等の入力に用いる装置を備える。例えば、入力部101は、タッチパネル、ボタン、マイクロフォン、スイッチ、及び、レバー等の操作デバイス、並びに、音声やジェスチャ等により手動操作以外の方法で入力可能な操作デバイス等を備える。また、例えば、入力部101は、赤外線若しくはその他の電波を利用したリモートコントロール装置、又は、車両制御システム100の操作に対応したモバイル機器若しくはウェアラブル機器等の外部接続機器であってもよい。入力部101は、搭乗者により入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム100の各部に供給する。
 データ取得部102は、車両制御システム100の処理に用いるデータを取得する各種のセンサ等を備え、取得したデータを、車両制御システム100の各部に供給する。
 例えば、データ取得部102は、自車の状態等を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ジャイロセンサ、加速度センサ、慣性計測装置(IMU)、及び、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数、モータ回転数、若しくは、車輪の回転速度等を検出するためのセンサ等を備える。
 また、例えば、データ取得部102は、自車の外部の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ、及び、その他のカメラ等の撮像装置を備える。また、例えば、データ取得部102は、天候又は気象等を検出するための環境センサ、及び、自車の周囲の物体を検出するための周囲情報検出センサを備える。環境センサは、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ等からなる。周囲情報検出センサは、例えば、超音波センサ、レーダ、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ソナー等からなる。
 さらに、例えば、データ取得部102は、自車の現在位置を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、GNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信するGNSS受信機等を備える。
 また、例えば、データ取得部102は、車内の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、運転者を撮像する撮像装置、運転者の生体情報を検出する生体センサ、及び、車室内の音声を集音するマイクロフォン等を備える。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座っている搭乗者又はステアリングホイールを握っている運転者の生体情報を検出する。
 通信部103は、車内機器104、並びに、車外の様々な機器、サーバ、基地局等と通信を行い、車両制御システム100の各部から供給されるデータを送信したり、受信したデータを車両制御システム100の各部に供給したりする。なお、通信部103がサポートする通信プロトコルは、特に限定されるものではなく、また、通信部103が、複数の種類の通信プロトコルをサポートすることも可能である。
 例えば、通信部103は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)、又は、WUSB(Wireless USB)等により、車内機器104と無線通信を行う。また、例えば、通信部103は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)、又は、MHL(Mobile High-definition Link)等により、車内機器104と有線通信を行う。
 さらに、例えば、通信部103は、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)との通信を行う。また、例えば、通信部103は、P2P(Peer To Peer)技術を用いて、自車の近傍に存在する端末(例えば、歩行者若しくは店舗の端末、又は、MTC(Machine Type Communication)端末)との通信を行う。さらに、例えば、通信部103は、V2V(車車間(Vehicle to Vehicle))通信、V2I(路車間(Vehicle to Infrastructure))通信、V2N(自車とネットワークとの間(Vehicle to Network))通信、及び、V2P(歩車間(Vehicle to Pedestrian))通信等のV2X通信を行う。また、例えば、通信部103は、ビーコン受信部を備え、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行規制又は所要時間等の情報を取得する。通信部103は、通信管理部144により管理される通信方式や様々な通信パラメータに基づいた通信を行う。
 車内機器104は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、自車に搬入され若しくは取り付けられる情報機器、及び、任意の目的地までの経路探索を行うナビゲーション装置等を含む。
 出力制御部105は、自車の搭乗者又は車外に対する各種の情報の出力を制御する。例えば、出力制御部105は、視覚情報(例えば、画像データ)及び聴覚情報(例えば、音声データ)のうちの少なくとも1つを含む出力信号を生成し、出力部106に供給することにより、出力部106からの視覚情報及び聴覚情報の出力を制御する。具体的には、例えば、出力制御部105は、データ取得部102の異なる撮像装置により撮像された画像データを合成して、俯瞰画像又はパノラマ画像等を生成し、生成した画像を含む出力信号を出力部106に供給する。また、例えば、出力制御部105は、衝突、接触、危険地帯への進入等の危険に対する警告音又は警告メッセージ等を含む音声データを生成し、生成した音声データを含む出力信号を出力部106に供給する。
 出力部106は、自車の搭乗者又は車外に対して、視覚情報又は聴覚情報を出力することが可能な装置を備える。例えば、出力部106は、表示装置、インストルメントパネル、オーディオスピーカ、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ、ランプ等を備える。出力部106が備える表示装置は、通常のディスプレイを有する装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)表示機能を有する装置等の運転者の視野内に視覚情報を表示する装置であってもよい。
 駆動系制御部107は、各種の制御信号を生成し、駆動系システム108に供給することにより、駆動系システム108の制御を行う。また、駆動系制御部107は、必要に応じて、駆動系システム108以外の各部に制御信号を供給し、駆動系システム108の制御状態の通知等を行う。
 駆動系システム108は、自車の駆動系に関わる各種の装置を備える。例えば、駆動系システム108は、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、舵角を調節するステアリング機構、制動力を発生させる制動装置、ABS(Antilock Brake System)、ESC(Electronic Stability Control)、並びに、電動パワーステアリング装置等を備える。
 ボディ系制御部109は、各種の制御信号を生成し、ボディ系システム110に供給することにより、ボディ系システム110の制御を行う。また、ボディ系制御部109は、必要に応じて、ボディ系システム110以外の各部に制御信号を供給し、ボディ系システム110の制御状態の通知等を行う。
 ボディ系システム110は、車体に装備されたボディ系の各種の装置を備える。例えば、ボディ系システム110は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、パワーシート、ステアリングホイール、空調装置、及び、各種ランプ(例えば、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカ、フォグランプ等)等を備える。
 記憶部111は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイス等を備える。記憶部111は、車両制御システム100の各部が用いる各種プログラムやデータ等を記憶する。例えば、記憶部111は、ダイナミックマップ等の3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ、及び、自車の周囲の情報を含むローカルマップ等の地図データを記憶する。
 自動運転制御部112は、自律走行又は運転支援等の自動運転に関する制御を行う。具体的には、例えば、自動運転制御部112は、自車の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、自車の衝突警告、又は、自車のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行う。また、例えば、自動運転制御部112は、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行う。自動運転制御部112は、検出部131、自己位置推定部132、状況分析部133、計画部134、及び、動作制御部135を備える。
 検出部131は、自動運転の制御に必要な各種の情報の検出を行う。検出部131は、車外情報検出部141、車内情報検出部142、車両状態検出部143、および通信管理部144を備える。
 車外情報検出部141は、車両制御システム100の各部からのデータ又は信号に基づいて、自車の外部の情報の検出処理を行う。例えば、車外情報検出部141は、自車の周囲の物体の検出処理、認識処理、及び、追跡処理、並びに、物体までの距離の検出処理を行う。検出対象となる物体には、例えば、車両、人、障害物、構造物、道路、信号機、交通標識、道路標示等が含まれる。また、例えば、車外情報検出部141は、自車の周囲の環境の検出処理を行う。検出対象となる周囲の環境には、例えば、天候、気温、湿度、明るさ、及び、路面の状態等が含まれる。車外情報検出部141は、検出処理の結果を示すデータを自己位置推定部132、状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153、並びに、動作制御部135の緊急事態回避部171等に供給する。
 車内情報検出部142は、車両制御システム100の各部からのデータ又は信号に基づいて、車内の情報の検出処理を行う。例えば、車内情報検出部142は、運転者の認証処理及び認識処理、運転者の状態の検出処理、搭乗者の検出処理、及び、車内の環境の検出処理等を行う。検出対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線方向等が含まれる。検出対象となる車内の環境には、例えば、気温、湿度、明るさ、臭い等が含まれる。車内情報検出部142は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
 車両状態検出部143は、車両制御システム100の各部からのデータ又は信号に基づいて、自車の状態の検出処理を行う。検出対象となる自車の状態には、例えば、速度、加速度、舵角、異常の有無及び内容、運転操作の状態、パワーシートの位置及び傾き、ドアロックの状態、並びに、その他の車載機器の状態等が含まれる。車両状態検出部143は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
 通信管理部144は、自己位置の情報と、通信対象Xとなる他車、インフラストラクチャ、ネットワーク、歩行者等の端末との位置情報に基づいて、通信に係る地理的な情報に応じて、通信部103の通信方式や通信パラメータを制御して、信頼性の高い通信を実現する。尚、通信管理部144の詳細な構成については、図7を参照して後述する。
 自己位置推定部132は、車外情報検出部141、及び、状況分析部133の状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、自車の位置及び姿勢等の推定処理を行う。また、自己位置推定部132は、必要に応じて、自己位置の推定に用いるローカルマップ(以下、自己位置推定用マップと称する)を生成する。自己位置推定用マップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いた高精度なマップとされる。自己位置推定部132は、推定処理の結果を示すデータを状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153等に供給する。また、自己位置推定部132は、自己位置推定用マップを記憶部111に記憶させる。
 状況分析部133は、自車及び周囲の状況の分析処理を行う。状況分析部133は、マップ解析部151、交通ルール認識部152、状況認識部153、及び、状況予測部154を備える。
 マップ解析部151は、自己位置推定部132及び車外情報検出部141等の車両制御システム100の各部からのデータ又は信号を必要に応じて用いながら、記憶部111に記憶されている各種のマップの解析処理を行い、自動運転の処理に必要な情報を含むマップを構築する。マップ解析部151は、構築したマップを、交通ルール認識部152、状況認識部153、状況予測部154、並びに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
 交通ルール認識部152は、自己位置推定部132、車外情報検出部141、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、自車の周囲の交通ルールの認識処理を行う。この認識処理により、例えば、自車の周囲の信号の位置及び状態、自車の周囲の交通規制の内容、並びに、走行可能な車線等が認識される。交通ルール認識部152は、認識処理の結果を示すデータを状況予測部154等に供給する。
 状況認識部153は、自己位置推定部132、車外情報検出部141、車内情報検出部142、車両状態検出部143、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、自車に関する状況の認識処理を行う。例えば、状況認識部153は、自車の状況、自車の周囲の状況、及び、自車の運転者の状況等の認識処理を行う。また、状況認識部153は、必要に応じて、自車の周囲の状況の認識に用いるローカルマップ(以下、状況認識用マップと称する)を生成する。状況認識用マップは、例えば、占有格子地図(Occupancy Grid Map)とされる。
 認識対象となる自車の状況には、例えば、自車の位置、姿勢、動き(例えば、速度、加速度、移動方向等)、並びに、異常の有無及び内容等が含まれる。認識対象となる自車の周囲の状況には、例えば、周囲の静止物体の種類及び位置、周囲の動物体の種類、位置及び動き(例えば、速度、加速度、移動方向等)、周囲の道路の構成及び路面の状態、並びに、周囲の天候、気温、湿度、及び、明るさ等が含まれる。認識対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線の動き、並びに、運転操作等が含まれる。
 状況認識部153は、認識処理の結果を示すデータ(必要に応じて、状況認識用マップを含む)を自己位置推定部132及び状況予測部154等に供給する。また、状況認識部153は、状況認識用マップを記憶部111に記憶させる。
 状況予測部154は、マップ解析部151、交通ルール認識部152及び状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、自車に関する状況の予測処理を行う。例えば、状況予測部154は、自車の状況、自車の周囲の状況、及び、運転者の状況等の予測処理を行う。
 予測対象となる自車の状況には、例えば、自車の挙動、異常の発生、及び、走行可能距離等が含まれる。予測対象となる自車の周囲の状況には、例えば、自車の周囲の動物体の挙動、信号の状態の変化、及び、天候等の環境の変化等が含まれる。予測対象となる運転者の状況には、例えば、運転者の挙動及び体調等が含まれる。
 状況予測部154は、予測処理の結果を示すデータを、交通ルール認識部152及び状況認識部153からのデータとともに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
 ルート計画部161は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、目的地までのルートを計画する。例えば、ルート計画部161は、グローバルマップに基づいて、現在位置から指定された目的地までのルートを設定する。また、例えば、ルート計画部161は、渋滞、事故、通行規制、工事等の状況、及び、運転者の体調等に基づいて、適宜ルートを変更する。ルート計画部161は、計画したルートを示すデータを行動計画部162等に供給する。
 行動計画部162は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、ルート計画部161により計画されたルートを計画された時間内で安全に走行するための自車の行動を計画する。例えば、行動計画部162は、発進、停止、進行方向(例えば、前進、後退、左折、右折、方向転換等)、走行車線、走行速度、及び、追い越し等の計画を行う。行動計画部162は、計画した自車の行動を示すデータを動作計画部163等に供給する。
 動作計画部163は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、行動計画部162により計画された行動を実現するための自車の動作を計画する。例えば、動作計画部163は、加速、減速、及び、走行軌道等の計画を行う。動作計画部163は、計画した自車の動作を示すデータを、動作制御部135の加減速制御部172及び方向制御部173等に供給する。
 動作制御部135は、自車の動作の制御を行う。動作制御部135は、緊急事態回避部171、加減速制御部172、及び、方向制御部173を備える。
 緊急事態回避部171は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143の検出結果に基づいて、衝突、接触、危険地帯への進入、運転者の異常、車両の異常等の緊急事態の検出処理を行う。緊急事態回避部171は、緊急事態の発生を検出した場合、急停車や急旋回等の緊急事態を回避するための自車の動作を計画する。緊急事態回避部171は、計画した自車の動作を示すデータを加減速制御部172及び方向制御部173等に供給する。
 加減速制御部172は、動作計画部163又は緊急事態回避部171により計画された自車の動作を実現するための加減速制御を行う。例えば、加減速制御部172は、計画された加速、減速、又は、急停車を実現するための駆動力発生装置又は制動装置の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
 方向制御部173は、動作計画部163又は緊急事態回避部171により計画された自車の動作を実現するための方向制御を行う。例えば、方向制御部173は、動作計画部163又は緊急事態回避部171により計画された走行軌道又は急旋回を実現するためのステアリング機構の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
 <車両の機能を実現する車両制御システムにおける通信管理部の構成例>
 次に、図7を参照して、通信管理部144の詳細な構成例について説明する。
 通信管理部144は、通信制御部211、他端末情報取得部212、他端末情報記憶部213、自端末位置情報取得部214、および自端末位置情報記憶部215を備えている。
 通信制御部211は、自端末情報送信部221、位置予測部222、自端末制御部223、および通信確立部224を備えており、通信管理部144の動作の全体を制御している。
 自端末情報送信部221は、通信部103を制御して、自端末位置情報記憶部215に記憶されている自端末位置情報を読み出すと共に、計画部134のルート計画部161より供給されるルートの情報を取得して、周囲の車両11に対して送信する。
 位置予測部222は、自端末位置情報記憶部215に記憶されている時系列の自端末位置情報やルート計画部161より供給されるルートの情報に基づいて、現在の位置や所定の時間だけ未来における位置を予測する。また、位置予測部222は、他端末情報記憶部213に記憶されている、他端末である車両11、RSU12、歩行者14、および基地局31の、時系列の位置情報やルートの情報に基づいて、現在の位置を予測する。すなわち、位置予測部222は、自端末と他端末との現在、または未来の位置を予測することにより、現在、または、未来における相互の位置関係を地理的な情報として予測する。
 自端末制御部223は、位置予測部222により予測された現在、または、未来の端末間の位置関係の情報である地理的な情報に基づいて、通信対象、通信方式(通信の構成等)、および通信パラメータを特定し、通信部103を制御して、通信を確立させる。
 通信確立部224は、車両11や歩行者14の情報に基づいて、通信部103を制御して、通信を確立する。また、通信確立部224は、通信部103を介して、他車となる車両11より通信の確立を要求された場合、通信の確立を要求する端末の情報を取得し、通信の確立が求められた車両11や歩行者14の情報に基づいて、通信部103を制御して、通信を確立する。
 他端末情報取得部212は、通信部103を制御して、周囲の他車となる車両11、およびRSU12より送信されるサポートしている通信方式の情報、位置情報、および、ルートの情報を含む他端末情報を受信して、他端末情報記憶部213に記憶させる。尚、ここでいうルートとは、ナビゲーションシステムや自動運転システムにより移動することが予想されるルートを含む。
 自端末位置情報取得部214は、自己位置推定部132より出力される自己位置推定結果を自端末位置情報として取得し、自端末位置情報記憶部215に記憶させる。
 通信制御部211の自端末制御部223は、他端末情報記憶部213に記憶されている他車となる車両11、およびRSU12の位置情報、および自端末位置情報記憶部215に記憶されている自端末位置情報に基づいた、相互の位置関係、すなわち、地理的環境に応じて、通信方式や通信パラメータを決定し、通信部103を制御する。
 <RSUの構成例>
 次に、図8を参照して、RSU12の構成例について説明する。
 RSU12は、制御部231、通信部232、および記憶部233を備えている。
 制御部231は、通信制御部241を備えており、RSU12の動作の全体を制御する。通信制御部241は、自端末情報送信部251、自端末制御部252、および通信確立部253を備えており、通信部232を制御する。
 自端末情報送信部251は、通信部232を制御して、記憶部233に記憶されている自端末位置情報、サポートしている通信方式の情報、およびルート計画部161により計画されたルートの情報を読み出して、周囲の車両11や歩行者14に対して送信する。すなわち、この情報が他端末における他端末情報となる。
 自端末制御部252は、通信方式や通信パラメータを決定し、通信部232を制御する。
 通信確立部253は、通信部232を制御して、車両11、RSU12および歩行者14の端末との通信を確立する。
 <通信管理処理>
 次に、図9のフローチャートを参照して、自車である車両11が、他車となる車両11、またはRSU12との通信を行う場合の通信管理処理について説明する。
 ステップS11において、他端末情報取得部212は、通信部103を制御して、他端末情報となる他車の車両11およびRSU12などの他端末から送信される他端末情報を取得させ、取得した他端末情報に含まれる位置情報やサポートしている通信方式等の情報を時系列の情報として他端末情報記憶部213に記憶させる。
 ステップS12において、自端末位置情報取得部214は、自己位置推定部132より供給される自己位置の推定結果を自端末位置情報として取得し、時系列の情報として自端末位置情報記憶部215に記憶させる。
 ステップS13において、位置予測部222は、他端末情報記憶部213に記憶されている周囲の車両11およびRSU12の時系列の位置情報、およびルート情報、並びに自端末位置情報記憶部215に記憶されている時系列の自端末位置情報およびルート情報とから、それぞれの端末(車両11、RSU12、および歩行者14等)の位置を地理的な情報として予測する。自端末制御部223は、予測された地理的な情報(地理情報)を取得し、取得した地理的な情報(地理情報)に基づいて、それぞれの位置関係を考慮して、選択可能な端末となり得る車両11またはRSU12の候補を選択する。
 すなわち、図10の上段で示されるように、自端末において、通信方式や通信パラメータにおいて、サポートしている他端末の集合を集合Z11とし、地理的な情報に基づいて使用可能と判断される他端末の集合を集合Z12として表現する場合、自端末制御部223は、集合Z11,Z12の共通集合Z21の他端末を、候補として選択する。
 例えば、自端末が、DSRC V2V通信、Cellular 4G V2V通信、およびCellular 5G mmWave V2V通信の通信方式をサポートしている場合、これらの通信方式を採用する他端末は、いずれも集合Z11に含まれる。
 一方、地理的な情報に基づいて、これらの端末がいずれも、遮蔽物などにより物理的に囲まれているなど、直線的な電波の伝搬が困難な地理的な状態(以降、単に、NLOS(Non Line Of Sight)状態とも称する)である場合、NLOS状態での通信が可能なDSRC V2V通信、およびCellular 4G V2V通信の通信方式を採用した他端末が候補として選択されることになる。尚、以降において、通信経路上に遮蔽物等が存在せず、電波の伝搬に特段の問題が無い状態については、NLOS状態に対して、LOS(Line Of Sight)状態とも称する。
 ステップS14において、自端末制御部223は、候補として選択された他端末のうち、自端末において採用しているアプリケーションプログラムにおいて、サポートされている通信方式の他端末を、通信すべき端末として選択する。
 すなわち、図10の下段で示されるように、自端末のアプリケーションプログラムにおいて、サポートされている他端末の集合を集合Z13とする場合、自端末制御部223は、地理的な情報に基づいて候補として選択された他端末の集合である共通集合Z21のうち、集合Z13との共通集合Z31(=集合Z11,Z12,Z13の共通集合)に属する端末を通信すべき端末として選択する。
 すなわち、例えば、アプリケーションプログラムによりサポートされている通信方式が、DSRC V2V通信であった場合、NLOS状態での通信が可能なDSRC V2V通信、およびCellular 4G V2V通信の通信方式を採用した他端末のうち、DSRC V2V通信の通信方式を採用している他端末が通信すべき端末として選択されることになる。
 ステップS15において、自端末制御部223は、地理的な情報に基づいて、通信すべき他端末として選択された端末との通信に必要とされる通信パラメータを設定し、通信を開始する。
 ここで、設定される通信パラメータは、例えば、使用周波数帯域、リソースプール(ミリ波通信の実施可否、ライセンスバンド、アンライセンスバンド、ライセンスITSバンド、優先度分けされたリソースプール)、通信リンク(V2V通信、V2I通信、V2P通信、V2N通信、リレーの実施可否)、Carrier aggregationの実施可否、Dual connectivityの実施可否、複数アンテナ通信(TxD,MIMO)の実施可否、ビームステアリング、ビームフォーミングの角度設定に関するパラメータ、ビームフォーミングのMeasurementの範囲に関するパラメータ、CSI acquisitionに関するパラメータ、許容干渉量、キャリアセンシングパラメータ(閾値、センシング期間)、通信用リソースセレクションにおけるフィルタリング条件、リソースリセレクション条件、MCS(Modulation and coding set)、最大送信電力、送信パケットの優先度パラメータ、バッファステータスに関するパラメータ、衝突判断に用いる閾値パラメータ(地理的環境に応じて閾値にウエイトをかける)等である。
 ステップS11乃至S15の一連の処理により、初期の通信が開始される状態となる。
 ステップS16において、自端末制御部223は、所定の時間が経過したか否かを判定し、所定の時間が経過した場合、処理は、ステップS17に進む。
 ステップS17において、自端末位置情報取得部214は、自端末位置情報を取得し、自端末位置情報記憶部215に記憶させる。自端末情報送信部221は、通信部103を制御して、自端末位置情報記憶部215に記憶されている自端末位置情報やサポートされている通信方式の情報を他端末に対して送信させる。
 ステップS18において、他端末情報取得部212は、通信部103を制御して、他端末情報として、他車となる車両11およびRSU12などの他端末から送信される他端末情報を取得させ、取得した他端末情報における位置情報やサポートしている通信方式の情報を時系列の情報として他端末情報記憶部213に記憶させる。
 ステップS19において、通信制御部211は、他端末情報記憶部213に記憶されている他端末情報や自端末位置情報記憶部215に記憶されている自端末位置情報に基づいて自端末や他端末の位置を予測して、地理的な情報を生成する。そして、通信制御部211は、予測された地理的な情報に基づいて、通信制御処理を実行し、通信パラメータを調整する。
 地理的な情報に基づいた通信制御処理については、様々な地理的な情報により得られる条件に応じた通信制御処理であり、図11乃至図15を参照して、詳細を後述する。
 ステップS20において、通信制御部211は、処理の終了が指示されたか否かを判定し、処理の終了が指示されない場合、処理は、ステップS21に進む。
 ステップS21において、通信制御部211は、通信部103の通信状況を確認し、通信状態が不良となり、通信ができない状態となっているか否かを判定する。ステップS21において、通信状態が不良ではなく、通信ができない状態ではない場合、処理は、ステップS16に戻る。
 また、ステップS21において、通信状態が不良となり、通信ができない状態である場合、処理は、ステップS13に戻り、再び通信先となる端末が選択されて、他端末との通信を開始できる状態にする。
 ステップS19の通信制御処理は、通信できないほど通信状態が不良となる前に通信状態に応じたパラメータの調整や通信方式の切り替えを実現することで、安定した通信状態を維持することで、信頼性の高い通信を実現させる。
 そして、ステップS20において、終了が指示されると処理が終了する。
 以上の処理により、地理的な情報と、アプリケーションプログラムにおいて対応する通信方式の条件に基づいて、通信品質を維持し易い他端末との通信を実現させることが可能となる。
 結果として、信頼性の高い通信を実現することが可能となる。
 <通信パラメータを変更する通信制御処理>
 ところで、図9のフローチャートを参照して説明した通信管理処理における、ステップS21において、通信状態が不良であると判定された場合、ステップS13以降において、通信状態の不良に起因して新たな他端末との通信を再開させるための処理がなされる。
 しかしながら、この場合、再接続のための他端末の情報は持ち合わせているものの、接続手続を最初からやり直すため、通信が再開されるまでに時間が掛かる恐れがあるので、通信状態が不安定な状態となり、通信における遅延を発生させる可能性がある。
 ステップS19の通信制御処理は、ステップS21において、通信できないほど通信状態が不良とならないように、地理的な情報に基づいて、通信部103を制御する処理である。
 そこで、ここでは、図11のフローチャートを参照して、通信部103を制御するための通信制御処理のうち、地理的な情報に基づいて、通信パラメータを変更するようにした通信制御処理について説明する。
 ステップS31において、位置予測部222は、自端末位置情報記憶部215に記憶されている時系列の自端末位置情報、他端末情報記憶部213に記憶されている時系列の他端末情報(位置情報およびルート情報を含む)、自端末のルート情報に基づいて、現在、および未来における自端末および他端末の位置を地理的な情報として予測する。
 ステップS32において、自端末制御部223は、位置予測部222により予測された地理的な情報を取得し、取得した地理的な情報に基づいて、通信中の他端末が現在または所定時間(例えば、10秒)だけ将来のタイミングまでにおいて(現在から将来までにおいて)、NLOSとなるか否かを判定する。
 例えば、図12の状況St11における車両11-100が自車両である場合について考える。
 図12の状況St11においては、現在において、車両11-100が、道路261-1を図中右方向に移動しながら、先行する車両11-102との間でV2V通信が実現されているものとする。
 しかしながら、所定の時間だけ将来のタイミングにおいて、車両11-102が、点線の矢印で示されるように、道路261-2に左折してしまうことが予測された。このため、図中の車両11-100,11-102によるV2V通信からなる通信L151は、図12で示されるように道路261-1,261-2以外の領域を跨ぐような状態となる。道路261-1,261-2以外の領域においては、建物などが存在することを考慮すると、車両11-100,11-102によるV2V通信からなる通信L151がビームフォーミング通信であるような場合、通信が妨害される可能性がある(図中ではバツ印で表現されている)。
 このとき、自端末制御部223は、地理的な情報から所定時間だけ将来のタイミングにおいて、車両11-100,11-102間がNLOS状態になると判定する。このため、処理は、ステップS33に進む。
 ステップS33において、自端末制御部223は、NLOS状態となる状況に対応するため、NLOS状態となる直前のタイミングにおいて、通信パラメータを変更する。
 より具体的には、自端末制御部223は、例えば、通信部103における周波数帯域を6GHzから700MHzへと変更し、NLOSにロバスト性のある通信リソースを用いた通信L151を実施できるようにする。自端末制御部223は、通信部103における送信電力を上げることでNLOSに対してロバストな通信L151を実施させるようにする。同時に、自端末制御部223は、通信L151を、通信部103におけるMCS(Modulajon and Coding Schemes)等を変更して、例えば、16QAMからQPSKに変更させたり、MIMOを使用している場合、MIMOからSISO(Single Inpit Single Output)通信へと変更させる。
 尚、ステップS32において、NLOS状態ではないと判定された場合、ステップS33の処理はスキップされる。
 以上の処理により、直近の将来においてNLOS状態になることが予測されると、通信パラメータが調整されることにより、通信状態の不良を抑制することが可能となる。
 結果として、信頼性の高い通信を実現することが可能となる。
 <通信リンクの構成を変更する通信制御処理>
 次に、図13のフローチャートを参照して、通信部103を制御するための通信制御処理のうち、地理的な情報に基づいて、通信リンクの構成を変更するようにした通信制御処理について説明する。
 ステップS51において、位置予測部222は、自端末位置情報記憶部215に記憶されている時系列の自端末位置情報、他端末情報記憶部213に記憶されている時系列の他端末情報(位置情報およびルート情報を含む)、自端末のルート情報に基づいて、現在、および将来における自端末および他端末の位置関係の情報を地理的な情報として予測する。
 ステップS52において、自端末制御部223は、位置予測部222により予測された地理的な情報を取得し、取得した地理的な情報に基づいて、通信中の他端末が現在または所定時間(例えば、10秒)だけ将来のタイミングまでにおいて(現在から将来までにおいて)、NLOS状態となるか否かを判定する。
 ステップS52において、NLOS状態となると判定された場合、処理は、ステップS53に進む。
 ステップS53において、自端末制御部223は、NLOS状態となる状況に対応するため、NLOS状態となる直前のタイミングにおいて、通信リンクを変更する。
 ここでも、図12の状況St11における車両11-100が自車両である場合について考える。
 状況St11においては、道路261-1,261-2の交差点の図中左上側にRSU12-1が設けられている。そこで、自端末制御部223は、車両11-100,11-102との通信をV2V通信からなる通信L151から、RSU12-1を経由したV2I通信からなる通信L161,L162となるように通信リンクの構成を変更する。
 そこで、ステップS54において、通信確立部224は、NLOS状態となる直前のタイミングにおいて(すなわち、ステップS53とほぼ同時に)、通信部103を制御して、新たな他端末に対して通信リンクを構成し、通信を確立するように要求する。例えば、RSU12-1に対して通信リンクを構成するように要求する。
 ステップS61において、通信確立部253は、通信部232を制御して、通信リンクの構成が要求されたか否かを判定し、要求があった場合、処理は、ステップS62に進む。
 ステップS62において、通信確立部253は、通信部232を制御して、通信リンクを構成するように要求のあった車両11との通信リンクを構成し、通信を確立する。
 以上の一連の処理により、地理的な情報に基づいて、NLOS状態が予測される場合には、通信リンクを事前に変更することで、通信状態が悪くなる前に通信リンクの構成を変更することができるので、通信が悪くなって切断されるようなことを防止することができる。
 結果として、信頼性の高い通信を実現することが可能となる。
 尚、以上においては、V2V通信に基づいた通信リンク構成から、RSU12-1を介したV2I通信に基づいた通信リンク構成に変更される例について説明してきたが、車両11-101を介して、V2V2V通信からなる通信L163,L164となるように通信リンクを変更するようにしてもよい。
 この場合、通信リンクの構成を要求するとき、車両11-102から見た車両11-101の進行方向の情報を提供することで、ビームフォーミングにおけるビームの角度を特定することができ、通信リンクを切り替える際にも、高速な切り替えを実現することが可能となる。
 <ビームフォーミングにおけるビームステアリングのエリアを制限するようにした通信制御処理>
 次に、図14のフローチャートを参照して、通信部103を制御するための通信制御処理のうち、ビームフォーミングを実施する際にビームステアリングのエリアを制限するようにした通信制御処理について説明する。
 ステップS81において、位置予測部222は、自端末位置情報記憶部215に記憶されている時系列の自端末位置情報、他端末情報記憶部213に記憶されている時系列の他端末情報(位置情報およびルート情報を含む)、自端末のルート情報に基づいて、現在、および将来における自端末および他端末の位置関係の情報を地理的な情報として予測する。
 ステップS82において、自端末制御部223は、位置予測部222により予測された地理的な情報を取得し、取得した地理的な情報に基づいて、自端末および他端末の端末間の相対的な位置関係から通信対象となる他端末を決定し、決定した他端末に対するビームステアリングを実施するエリアを設定する。
 すなわち、一般的なビームステアリングは自端末の周囲360度に対して行うものであるが、自端末制御部223は、例えば、通信対象の他端末となる車両11に対して自端末となる車両11の進行方向を基準にビームステアリングのエリアを設定する。
 より詳細には、図12の状況St12で示されるように、車両11-103,11-104が図中の上方(道路261-1,261-2の交差点の方向)に向かって、道路261-2を走行している場合を想定する。
 この場合、車両11-103が周囲の他端末情報に基づいた他端末の位置情報と、自端末位置情報との位置関係に基づいて、通信対象として車両11-104が選択されるものとする。
 このとき、車両11-103の自端末制御部223は、自らの進行方向に対して、通信対象となる車両11-104が存在する範囲Z31をビームステアリングのエリアとして設定する。より詳細には、自端末制御部223は、例えば、自らの進行方向に対して、図中右側の10度乃至30度の範囲Z31をビームステアリングのエリアとして設定する。
 ステップS83において、自端末制御部223は、現状のビームステアリングのエリアに変更があるか否かを判定し、変更がある場合、処理は、ステップS84に進む。
 ステップS84において、自端末制御部223は、通信部103を制御して、ビームステアリングのリソース情報およびビームID情報を通信対象となる他端末となる車両11に送信する。同時にビームステアリングの候補エリアを他端末に送信してもよい。このとき他端末は必ずしも通信相手である必要はなく、ブロードキャストによる通信が用いられてもよい。これらの送信端末から送信された情報は、周辺端末において、周辺の干渉状況把握のために用いられてもよい。これらの情報はサイドリンクにおけるSCI(Sidelink Control Information)を用いて通知される。このSCIはビームフォーミングを行う周波数とは別の周波数帯域で送信されてもよい。
 ステップS91において、例えば、他端末となる車両11の通信確立部224は、通信部103を制御して、ビームステアリングのリソース情報およびビームID情報を受信させる。また、ビームステアリングの候補エリアを周辺車両に送信し、受信させてもよい。
 ステップS92において、他端末となる車両11の自端末制御部223は、通信部103を制御して、ビームステアリングのリソース情報およびビームID情報のフィードバック情報を、送信元となる(自端末の)車両11に送信させる。
 ステップS84において、自端末となる車両11の自端末制御部223は、ビームステアリングのリソース情報およびビームID情報のフィードバック情報を受信する。
 この一連の処理の後、ステップS85,S93の処理において、送信元となる車両11である自端末と通信対象となる車両11である他端末との間で、双方の通信確立部224によりCSI(Channel State Information) acquisitionが実施され、MIMOのレイヤ数や使用するMCS(Modulation and Coding. Scheme)や、送信電力が決定されて、ビームフォーミングによる通信が確立される。
 尚、ステップS82において、ビームステアリングのエリアに変化がない場合、ステップS83乃至S85の処理がスキップされる。この場合、ステップS91において、ビームステアリングのリソース情報も送信されてこないので、ステップS92,S93の処理がスキップされ、現状の通信が維持される。
 以上の処理により、地理的な情報により、通信対象が高確率で存在する範囲のみをビームステアリングの範囲として設定することが可能となり、より迅速に通信対象との通信を確立することができるので遅延の発生などを抑制することが可能となる。また、不要な範囲に対してビームステアリングの範囲を設定する必要がないので、消費電力を低減させることが可能となる。
 結果として、信頼性の高い通信を実現することが可能となる。
 <V2V通信において、ビームフォーミング通信を行っていた際に、Blockageが発生すると判断された際にバックアップ通信回線を準備する通信制御処理>
 次に、図15のフローチャートを参照して、通信部103を制御するための通信制御処理のうち、V2V通信において、ミリ波ビームフォーミング通信を行っていた際に、Blockageが発生すると判断された際にバックアップ通信回線を準備するようにした通信制御処理について説明する。
 ステップS111において、位置予測部222は、自端末位置情報記憶部215に記憶されている時系列の自端末位置情報、他端末情報記憶部213に記憶されている時系列の他端末情報(位置情報およびルート情報を含む)、自端末のルート情報に基づいて、現在、および将来における自端末および他端末の位置関係の情報を地理的な情報として予測する。
 ステップS112において、自端末制御部223は、位置予測部222により予測された地理的な情報を取得し、取得した地理的な情報に基づいて、通信対象である他端末との間に、別途車両11が進入されるなどして、通信経路の妨害(Blockage)が発生することが予想されるか否かを判定する。
 すなわち、例えば、図12の状況St13で示されるように、車両11-105,11-106がビームフォーミング通信による通信L171を確立した状態で、図中の右方向に道路261-1上を走行している状態を想定する。
 ここで、図中上方から車両11-107が、道路261-2を図中下方向に向かって走行し、車両11-105,11-106間を横切って走行することが予測される場合、車両11-107により、車両11-105,11-106間の通信L171の経路上の範囲Z32における妨害(Blockage)が発生することが予想されるものとみなされる。
 すなわち、この場合、ステップS112において、通信経路の妨害(Blockage)が発生する可能性があると判定され、処理は、ステップS113に進む。
 ステップS113において、自端末制御部223は、位置予測部222により予測された地理的な情報に基づいた自端末と他端末の相対的な位置関係からリレー通信の通信対象を検索する。そして、自端末制御部223は、通信部103を制御して、検索されたリレー通信の通信対象に対して、通信経路の妨害(Blockage)が発生する可能性があるタイミング(開始時刻、および終了時刻(または妨害時間))と併せてリレー通信を要求する。
 ここでは、図12のRSU12-2がリレー通信の通信対象に選択されるものとする。
 ステップS131において、通信確立部253は、通信部232を制御して、リレー通信の要求があったか否かを判定し、リレー通信の要求があった場合、処理は、ステップS132に進む。
 ステップS132において、自端末制御部252は、受信したリレー通信の要求に基づいて、リレー通信の受け入れが可能であるか否かを判定する。自端末制御部252は、例えば、通信可能回線数等に余裕があるか否かなど、妨害(Blockage)が発生するタイミングにおいてリレー通信が可能であるか否かを判定する。
 ステップS132において、自端末制御部252は、リレー通信の受け入れが可能であると判定した場合、処理は、ステップS133に進む。
 ステップS133において、自端末制御部252は、通信部232を制御して、リレー通信の受け入れが可能であることを通知する。
 ステップS114において、車両11-103における自端末制御部223は、通信部103を制御して、リレー通信を要求した通信対象からのリレー通信の受け入れが可能であることを示す通知が送信されてきたか否かを判定する。
 ステップS114において、リレー通信の受け入れが可能であることが通知されてこない場合、処理は、ステップS120に進む。
 ステップS120において、自端末制御部252は、リレー通信の要求を送信してから所定時間が経過したか否かを判定し、所定時間が経過していない場合、処理は、ステップS114に戻る。
 すなわち、リレー通信を要求してから所定時間内である場合、リレー通信の要求に対する応答を待ち続ける。
 そして、ステップS114において、リレー通信の受け入れが可能であることが通知されると、処理は、ステップS115に進む。
 ステップS115において、自端末制御部223は、リレー通信の受け入れが可能であることを示す通知を受信する。また、通信確立部224は、リレー通信の受け入れが可能であることを示す通知に基づいて、リレー通信の通信対象を設定する。すなわち、ここでは、RSU12-2が通信対象として設定される。
 ステップS116,S134において、通信確立部224,253は、それぞれBlockage開始のタイミングであるか否かを判定し、Blockage開始のタイミングになるまで、同様の処理が繰り返される。
 ステップS116,S134において、Blockage開始のタイミングになると、処理は、それぞれステップS117,S135に進む。
 ステップS117,S135において、通信確立部224,253は、それぞれ通信部103,232を制御して、設定されたリレー通信状態にする。
 すなわち、図12で示されるように、Blockage開始のタイミングにおいては、通信確立部224,253は、それぞれ通信部103,232を制御して、V2V通信からなる通信L171の状態から、RSU12-2を介したV2I通信からなる通信L181,L182に切り替える。
 この結果、車両11-105,11-106間に車両11-107が入り込んで、通信L171の経路が妨害されても、通信L181,L182を介したリレー通信により通信を継続することが可能となる。
 ステップS118,S136において、通信確立部224,253は、それぞれBlockage終了のタイミングであるか否かを判定し、Blockage終了のタイミングになるまで、同様の処理が繰り返される。
 そして、ステップS118,S136において、Blockage終了のタイミングになると、処理は、それぞれステップS119,S137に進む。
 ステップS119,S137において、通信確立部224,253は、それぞれ通信部103,232を制御して、設定されたリレー通信を終了し、元の通信に戻す。
 すなわち、図12で示されるように、Blockage終了のタイミングにおいては、通信確立部224,253は、それぞれ通信部103,232を制御して、V2I通信からなる通信L181,L182の状態から、V2V通信からなる通信L171に切り替える。
 この結果、車両11-105,11-106間の通信が元の状態に戻される。
 尚、ステップS111において、通信妨害(Blockage)が予想されない場合、およびステップS120において、所定時間が経過した場合、ステップS113乃至S120の処理はスキップされる。
 また、ステップS131において、リレー通信の要求がない場合、および、ステップS132において、リレー通信が受け入れられない場合、ステップS133乃至S137の処理がスキップされる。
 以上の処理により、地理的な情報に基づいて、通信妨害(Blockage)が予想される場合については、事前にリレー通信を用意して、通信妨害がなされるタイミングにのみリレー通信を利用することができるので、通信妨害(Blockage)を事前に回避することで、通信状態を継続させることが可能となる。
 結果として、信頼性の高い通信を実現することが可能となる。
 <<3.第2の実施の形態>>
 以上においては、予測される地理的な情報に基づいて、通信を制御する例について説明してきたが、地理的な情報に合わせて、他端末の実際の通信状態の情報をデータベース化して、データベースに基づいて、位置情報に応じた通信種別、パラメータ、および通信品質をマッピングしたマッピングテーブルを生成しておき、このマッピングテーブルを利用することで、最適な通信を選択できるようにしてもよい。
 図16は、地理的な情報に合わせて、他端末の実際の通信状態に基づいた情報をデータベース化して、データベースに基づいて、位置情報に応じた通信種別、パラメータ、および通信品質をマッピングしたマッピングテーブルを生成しておき、マッピングテーブルを各車両11(各端末)に配信して、予測される位置に対応するマッピングテーブルの情報に基づいて、最適な通信を選択できるようにした通信システム41の構成例である。
 尚、図16において、図5の通信システム41と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図16において、図5の通信システム41と異なる点は、サーバ271が設けられている点である。
 すなわち、サーバ271は、通信情報データベースを生成して、位置情報に応じて通信種別、パラメータ、および通信品質をマッピングしたマッピングテーブルを生成して車両11に配信する。
 車両11は、このマッピングテーブルの配信を受けて、予めマッピングテーブルを記憶しておき、移動時における、その時々の自端末の位置情報によりマッピングテーブルを参照して、通信状態を管理する。
 尚、車両11の車両制御システムにおける通信管理部144についても、マッピングテーブルに基づいた通信管理ができるように変更されているが、その詳細については、図18を参照して詳細を後述する。
 <マッピングテーブルを生成するサーバの構成例>
 次に、図17を参照して、マッピングテーブルを生成するサーバ271の構成例について説明する。
 サーバ271は、制御部281、通信部282、通信情報データベース記憶部283、およびマッピングテーブル記憶部284を備えている。
 制御部281は、通信情報データベース生成部291、およびマッピングテーブル生成部292を備えており、サーバ271の動作の全体を制御している。
 通信情報データベース生成部291は、通信部282を制御して、各端末の端末ID情報、端末位置情報、それぞれの位置での送信時における通信の種類(通信方式)、通信パラメータを送信情報として取得する。
 また、通信情報データベース生成部291は、通信部282を制御して、各端末の端末ID情報、端末位置情報、それぞれの位置における受信時の通信方式の種類、および受信の可否を受信情報として取得する。
 さらに、通信情報データベース生成部291は、送信情報と受信情報とを、通信情報データベース記憶部283に記憶されている通信情報データベースに登録する。
 マッピングテーブル生成部292は、通信情報データベース記憶部283に記憶されている通信情報データベースに基づいて、位置情報毎に、どの通信方式で、どの通信パラメータを用いた場合、どの程度の通信パフォーマンスが得られるかを示す通信品質の情報からなる通信情報をマッピングしたマッピングテーブルを生成し、マッピングテーブル記憶部284に記憶させる。
 制御部281は、通信部282を制御して、マッピングテーブル記憶部284に記憶されているマッピングテーブルを車両11からなる各端末に配信する。
 車両11は、このマッピングテーブルを取得して予め記憶しておき、移動する際、自端末位置情報に基づいて、マッピングテーブルを照合し、通信方式の種類、通信パラメータ、および通信品質からなる通信情報を読み出し、読み出した通信情報に基づいて、通信を制御する。
 <マッピングテーブルを利用して通信を管理する通信管理部の構成例>
 次に、図18を参照して、マッピングテーブルを利用して通信を管理する通信管理部144の構成例について説明する。尚、図18の通信管理部144の構成において、図7の通信管理部144における構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図18の通信管理部144は、通信制御部211に代えて、通信制御部301を備え、新たにマッピングテーブル記憶部302を備えている点で、図7の通信管理部144と異なる。
 通信制御部301は、自端末情報送信部311、位置予測部312、自端末制御部313、通信確立部314、およびマッピングテーブル取得部315を備えており、通信管理部144の動作の全体を制御する。
 尚、自端末情報送信部311、位置予測部312、および通信確立部314は、図7の自端末情報送信部221、位置予測部222、および通信確立部224と同一の機能であるので、その説明は適宜省略する。
 自端末制御部313は、位置予測部312を制御して、自端末および他端末の位置を予測させ、予測された位置情報により、マッピングテーブル303に記憶されているマッピングテーブルを照合して、位置情報に対応付けて登録されている通信情報を読み出して通信部103を制御する。
 マッピングテーブル取得部315は、通信部103を制御して、サーバ271より配信されるマッピングテーブルを取得して、マッピングテーブル記憶部302に記憶させる。
 マッピングテーブル記憶部302は、マッピングテーブル取得部315により取得されたマッピングテーブルを記憶すると共に、自端末制御部313により自端末位置情報に対応する通信情報を提供する。
 <マッピングテーブルを用いた通信制御処理>
 次に、図19のフローチャートを参照して、マッピングテーブルを用いた通信制御処理について説明する。尚、ここでは、通信制御処理の一部としてサーバ271によるマッピングテーブルを生成する処理を含めた説明とするが、マッピングテーブルを生成する処理は、独立して実行されるようにしてもよい。また、通信管理処理については、図9のフローチャートを参照して説明した処理と同様であるので、その説明は省略する。
 ステップS151において、サーバ271の通信情報データベース生成部291は、通信部282を制御して、各車両11により構成される端末の端末ID情報、端末位置情報、それぞれの端末位置情報における送信時における通信方式の種類、通信パラメータを送信情報として取得する。
 ステップS152において、通信情報データベース生成部291は、通信部282を制御して、事前に測定されている各端末の端末ID情報、端末位置情報、それぞれの端末位置情報における受信時の通信方式の種類、および受信の可否を、受信情報として取得する。
 ステップS153において、通信情報データベース生成部291は、取得した送信情報および受信情報をデータベース化し、通信情報データベース記憶部283に記憶されている通信情報データベースとして登録する。
 ステップS154において、マッピングテーブル生成部292は、通信情報データベース記憶部283に記憶されている通信情報データベースに基づいて、位置情報毎に、どの通信方式で、どの通信パラメータを用いた場合、どの程度の通信パフォーマンスが得られるかを示す通信品質の情報からなる通信情報をマッピングしたマッピングテーブルを生成し、マッピングテーブル記憶部284に記憶させる。
 ステップS155において、制御部281は、マッピングテーブル記憶部284に記憶されているマッピングテーブルを各車両11からなる端末に配信する。
 ステップS171において、車両11を構成する車両制御システム100における通信管理部144のマッピングテーブル取得部315は、通信部103を制御して、サーバ271により配信されるマッピングテーブルを地理的な情報として取得し、マッピングテーブル記憶部302に記憶させる。
 ステップS172において、位置予測部312は、自端末位置情報記憶部215に記憶されている時系列の自端末位置情報、他端末情報記憶部213に記憶されている時系列の他端末情報(位置情報およびルート情報を含む)、自端末のルート情報に基づいて、現在、および将来における自端末および他端末の位置関係の情報を地理的な情報として予測する。
 ステップS173において、自端末制御部313は、予測された地理的な情報を取得し、取得した地理的な情報に基づいた位置情報により、マッピングテーブルを照合して、対応する通信情報である通信方式の種類、パラメータ、および通信品質の情報を読み出す。
 ステップS174において、通信確立部314は、取得した通信情報に基づいて、最適な通信対象となる端末を選択し、対応する通信方式と通信パラメータにより通信部103を制御して、通信対象となる端末に対して通信の確立を要求する。
 ステップS175において、通信確立部314は、通信部103を制御して、通信を確立させる。
 以上の処理により、通信方式の種類、パラメータ、および通信品質の情報からなる通信情報を、位置情報に基づいてマッピングテーブルより読み出し、通信情報に基づいて、最も通信品質の高い最適な通信対象を選択することで、信頼性の高い通信を実現することが可能となる。
 <<4.第3の実施の形態>>
 以上においては、予め位置情報に対応する通信情報をマッピングテーブルとして配信し、地理的な情報に基づいて、マッピングテーブルを照合し、マッピングテーブルより読み出される通信情報に基づいて、最適な通信対象を選択できる例について説明してきたが、ダイナミックマップと称する動的な3次元マップ情報を利用して最適な通信対象を選択できるようにしてもよい。
 <ダイナミックマップ>
 ここで、ダイナミックマップについて説明する。ダイナミックマップとは、3次元マップ(3Dマップ)に時間軸を加えたマップであり、また、時系列の変化の大きさに応じて複数の階層(レイヤ)が設定されているマップであり、例えば、図20で示されるようなマップM1である。
 図20のダイナミックマップM1は、第1レイヤ(Layer1)乃至第4レイヤ(Layer4)からなる4種類のレイヤから構成された3次元マップである。尚、レイヤ数は、これに限らず、4種類以上でも4種類以下でもよい。
 ここで、第1レイヤ(Layer1)は、時系列の変化が略ない高精度の道路地図である。また、第2レイヤ(Layer2)は、道路の次に変化の少ない建物や標識などの配置がなされた地図である。さらに、第3レイヤ(Layer3)は、状況により変化する路面状況、交通信号、および渋滞情報などからなるマップである。また、第4レイヤ(Layer4)は、時々刻々と変化する車両11、歩行者、自転車などの位置を示すマップである。すなわち、ダイナミックマップにおいては、時系列に変化の頻度に応じたレイヤが設定されている。
 このダイナミックマップは、サーバにより順次更新されながら車両11に配信されており、車両11は、このダイナミックマップに基づいて、通信状況を推定しながら通信を制御する。
 この際、車両11は、自らが走行する道路地図と、建物などの3次元構造物の配置とから、伝搬経路を特定して、通信状態を推定する。この際、車両11は、ダイナミックマップM1を構成する第1レイヤと第2レイヤの情報から、例えば、図21で示されるような3次元マップM11を取得して、通信に際しての伝搬経路における通信状態を推定する。
 尚、図21においては、道路R1,R2の交差点が図中の中央に描かれており、交差点の角に3次元表示された建物B1乃至B3が存在する様子が描かれている。
 車両11は、図20で示されるようなダイナミックマップM1の情報から、図21で示されるような3次元マップを生成して、通信対象との通信経路を特定し、特定した通信経路に対応する伝搬経路から通信状態を推定し、推定結果に基づいて、通信対象、通信方式、および、通信パラメータ等を決定する。
 この結果、通信状況をある程度把握した上で最適な通信制御を実現することが可能となり、信頼性の高い通信を実現することが可能となる。
 <ダイナミックマップを利用した通信システムの構成例>
 図22は、ダイナミックマップを利用した通信システムの構成例41の構成例である。
 尚、図22において、図5の通信システム41と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図22において、図5の通信システム41と異なる点は、サーバ321、および道路情報配信サーバ322が設けられている点である。
 サーバ321は、車両11-181乃至11-nよりそれぞれの位置情報を取得すると共に、道路情報配信サーバ322より配信される道路情報を取得して、ダイナミックマップを生成し、車両11-181乃至11-nに配信する。
 道路情報配信サーバ322は、交通渋滞、交通信号機、および路面状況などの道路情報を生成し、サーバ321に供給する。
 <ダイナミックマップを生成するサーバの構成例>
 次に、図23を参照して、ダイナミックマップを生成するサーバ321の構成例について説明する。
 サーバ321は、制御部341、固定地図情報記憶部342、道路地図情報記憶部343、動的情報取得部344、および通信部345を備えている。
 制御部341は、プロセッサやメモリなどからなりサーバ321の動作の全体を制御している。また、制御部341は、ダイナミックマップ生成部361を備えており、ダイナミックマップ生成部361により生成されたダイナミックマップを、通信部345を制御して、車両11に配信する。
 ダイナミックマップ生成部361は、固定地図情報記憶部342に記憶されている標識や建物などの3次元構造物の情報、道路地図情報記憶部343に記憶されている道路地図、動的情報取得部344により取得される動的な道路情報と車両11や歩行者14の位置情報に基づいてダイナミックマップを生成する。
 固定地図情報記憶部342は、建物などの3次元構造物の情報を固定地図として記憶しており制御部341に供給する。
 道路地図情報記憶部343は、道路地図情報を記憶しており、制御部341に供給する。
 動的情報取得部344は、道路情報取得部351、および移動体情報取得部352を備えており、道路情報および移動体情報を取得して、制御部341に供給する。
 道路情報取得部351は、道路情報配信サーバ322より供給される渋滞情報、交通信号機などの動作状態の情報、および路面状況などの情報を道路情報として取得して、制御部341に供給する。
 移動体情報取得部352は、車両11や歩行者14などの移動体となる端末からの位置情報を移動体情報として取得して、制御部341に供給する。
 通信部345は、制御部341により制御され、車両11や歩行者14等の移動体の端末、サーバ321、および道路情報配信サーバ322と各種のデータを送受信する。
 <ダイナミックマップを利用した通信管理処理を実行する通信管理部の構成例>
 次に、図24を参照して、ダイナミックマップを利用した通信管理処理を実行する通信管理部144の詳細な構成例について説明する。
 通信管理部144は、通信制御部381、ダイナミックマップ受信部382、通信対象決定部383、自端末位置情報取得部384、および伝搬路特性推定部385を備えている。
 通信制御部381は、自端末情報送信部391、位置予測部392、自端末制御部393、および通信確立部394を備えており、通信管理部144の動作の全体を制御している。尚、通信確立部394は、通信確立部224と同様であるので、その説明は省略する。
 自端末情報送信部391は、通信部103を制御して、自端末位置情報取得部384により取得された自端末位置情報を、サーバ321に対して送信する。
 位置予測部392は、自端末位置情報取得部384により取得される自端末位置情報、および、自端末のルート情報に基づいて、現在、および将来における自端末の位置情報を地理的な情報として予測し、伝搬路特性推定部385に供給する。この際、複数の位置情報を扱った位置の予測には、例えば、カルマンフィルタなどを利用するようにしてもよい。尚、位置予測部392は、自端末位置情報取得部384により取得される自端末位置情報ではなく、ダイナミックマップ受信部382により自端末の位置情報を取得するようにしてもよい。
 自端末制御部393は、ダイナミックマップに基づいた伝搬特性推定結果に基づいて、通信部103を制御して、通信対象、通信方式、および通信パラメータを特定し、通信部103を制御して、通信を確立させる。
 ダイナミックマップ受信部382は、V2N通信により、サーバ321より配信されるダイナミックマップを受信する。ダイナミックマップは周辺の建物等の3次元情報を用いたマップを用いるようにしてもよい。
 尚、本開示においては、ダイナミックマップはV2N通信でサーバ321から提供され例について説明するが、基地局31、RSU12等を介して提供されてもよい。また、アプリケーションデータとして提供されてもよく、通信制御における通信パラメータとして提供されてもよい。
 通信対象決定部383は、ダイナミックマップから得られた周辺車両やインフラストラクチャ、歩行者端末情報等と自端末位置情報に基づいて、V2X通信の送信対象を決定する。
 自端末位置情報取得部384は、自己位置推定部132により推定された自己位置を自端末位置として取得し、伝搬路特性推定部385、および通信制御部381に供給する。
 伝搬路特性推定部385は、ダイナミックマップ、通信対象、自端末位置情報、および位置予測部392により予測された地理的な情報に基づいて、仮想空間における送信元と送信先の伝搬路特性を推定し、推定結果に基づいて、通信手法を決定する。
 伝搬路特性推定部385は、ダイナミックマップとして、3次元マップの地理的情報を用いて、送受信間の伝搬路特性を推定してもよく、例えば、送受信間における建物の3次元構造物の情報を用いて、電波の反射特性を推定するなどにより伝搬路特性を推定する。
 この際、伝搬路特性推定部385は、ダイナミックマップのレイヤ情報を限定して伝搬路特性を推定するようにしてもよい。
 例えば、よりラフな推定を行う場合、伝搬路特性推定部385は、ダイナミックマップにおける最も静的なレイヤ情報のみに基づいて伝搬路特性を推定し、詳細な推定を行う場合、静的なレイヤだけでなく動的なレイヤも考慮して伝搬路特性を推定するようにしてもよい。
 伝搬路特性推定部385は、与えられた仮想的な通信環境において適切な通信手法を決定する。このため、伝搬路特性推定部385は、様々な送信方法のバリエーションセットを用いて、それぞれにおける伝搬路特性を仮想空間上でシミュレーションする。
 シミュレーションにおいて用いられる通信パラメータは、例えば、第1の実施の形態において設定される通信パラメータである。
 推定される伝搬路特性としては、受信端末における推定SINRや、パスロス値、フェージング、およびシャドーイングなどがあげられる。この他にも、他端末へ与える与干渉レベルや、リソース占有率や帯域の混雑度情報を伝搬路特性の推定に考慮してもよい。
 <ダイナミックマップを利用したビームフォーミング通信における通信管理処理>
 次に、図25のフローチャートを参照して、ダイナミックマップを利用したビームフォーミング通信における通信管理処理について説明する。
 ステップS191において、制御部341は、所定時間が経過したか否かを判定し、所定時間が経過した場合、処理は、ステップS192に進む。
 ステップS192において、道路情報取得部351は、通信部345を制御して、道路情報配信サーバ322にアクセスし、道路情報を取得し、交通情報として制御部341のダイナミックマップ生成部361に供給する。この処理により、ダイナミックマップ生成部361は、図20のダイナミックマップM1における第3レイヤの情報に相当する道路情報を取得する。
 ステップS193において、移動体情報取得部352は、通信部345を制御して、車両11や歩行者14から供給される位置情報を取得して、移動体情報として制御部341のダイナミックマップ生成部361に供給する。この処理により、ダイナミックマップ生成部361は、図20のダイナミックマップM1における第4レイヤの情報に相当する移動体情報を取得する。
 ステップS194において、ダイナミックマップ生成部361は、固定地図情報記憶部342に記憶されている固定地図情報を読み出す。この処理により、ダイナミックマップ生成部361は、図20のダイナミックマップM1における第2レイヤの情報に相当する固定地図情報を取得する。
 ステップS195において、ダイナミックマップ生成部361は、道路地図情報記憶部343に記憶されている道路地図情報を読み出す。この処理により、ダイナミックマップ生成部361は、図20のダイナミックマップM1における第1レイヤの情報に相当する道路地図情報を取得する。
 ステップS196において、ダイナミックマップ生成部361は、第1レイヤの情報に相当する道路地図情報、第2レイヤの情報に相当する固定地図情報、第3レイヤの情報に相当する道路情報、および第4レイヤの情報に相当する移動体情報を用いて、ダイナミックマップを生成する。
 ステップS197において、制御部341は、ダイナミックマップ生成部361により生成されたダイナミックマップを、通信部345を制御して、車両11に送信する。
 ステップS198において、制御部341は、終了が指示されたか否かを判定し、終了が指示されていない場合、処理は、ステップS191に戻る。
 また、ステップS191において、所定時間が経過していない場合、ステップS192乃至S197の処理がスキップされる。
 すなわち、サーバ321においては、終了が指示されるまで、ステップS191乃至S198の処理が繰り返されて、所定時間間隔でダイナミックマップが生成されて、順次、車両11に送信される。
 ステップS211において、車両11における通信管理部144のダイナミックマップ受信部382は、通信部103を制御して、ダイナミックマップが送信されてきたか否かを判定し、ダイナミックマップが送信されてきた場合、処理は、ステップS212に進む。
 ステップS212において、ダイナミックマップ受信部386は、通信部103を介して、ダイナミックマップを受信し、通信対象決定部383、および伝搬路特性推定部385に供給する。
 ステップS213において、伝搬路特性推定部385は、ダイナミックマップに基づいて、自端末(送信端末)位置、および通信対象となる他端末(受信端末)の位置を予測する。
 より詳細には、通信対象決定部383がダイナミックマップに基づいて、周辺の他端末より通信対象となる端末を決定し、伝搬路特性推定部385に供給する。また、自端末位置情報取得部384が、自己位置推定部132の推定結果を自端末位置情報として伝搬路特性推定部385に供給する。さらに、位置予測部392は、ルート計画部161により計画されたルート情報と自端末位置情報とに基づいて現在または将来に予測される位置情報を伝搬路特性推定部385に供給する。
 伝搬路特性推定部385は、通信対象となる他端末の位置情報、自端末位置情報、および現在または将来の位置情報の予測結果に基づいて、ダイナミックマップ上における自端末位置(送信端末)、および通信対象となる他端末(受信端末)の位置を予測する。
 尚、伝搬路特性推定部385により特定される自端末位置(送信端末)、および通信対象となる他端末(受信端末)の位置の予測については、自端末位置情報およびダイナミックマップからだけでも予測することができる。すなわち、この場合、ダイナミックマップそのものが位置予測結果となるため、ダイナミックマップを生成するサーバ321そのものが位置予測部392に相当する機能を実現していると考えることができる。このため、位置予測部392は、省略してもよい。
 ステップS214において、伝搬路特性推定部385は、自端末位置情報と、通信対象となる他端末の位置情報とに対応する周辺の3次元マップを、ダイナミックマップに基づいて取得する。
 ステップS215において、伝搬路特性推定部385は、自端末位置情報、通信対象となる他端末の位置情報、および、周辺の3次元マップに基づいて、伝搬路特性を推定する。
 このとき、伝搬路特性推定部385は、ビームステアリングを行った際の想定受信SINRを推定し、例えば、自端末(送信端末)を中心に360度ビームステアリングを行った際の受信SINRのシミュレーションを実施してもよい。
 シミュレーションには、例えば、レイトレーシングシミュレーションを用いるようにしてもよい。
 ここで具体的な例について、図26を参照して説明する。例えば、図26で示されるように、車両11-201,11-202が、壁のような構造物である建造物W1に沿った道441を、図中の左方向に向かって走行しており、自端末である車両11-201が車両11-202とV2V通信を実現する場合について考える。
 この場合、自端末(送信端末)を中心に360度ビームステアリングを行った際の受信SINRのシミュレーションを実施することで、伝搬路特性推定を行った結果、範囲Z153で示される直進方向へのビームステアリングによる推定受信SINRが良好であることが認識されることになる。また、直進方向から45度程度ずらした範囲Z151について、ビームステアリングを実施した場合、建造物W1による反射の影響で生じる範囲Z152により、推定受信SINRが比較的良くなることが認識されることになる。
 そこで、図12で示されるような伝搬路推定結果の場合、伝搬路特性推定部385は、範囲Z133で示されるように、直進方向に対して約±15度の範囲と、範囲Z152で示されるように、直進方向に対して-45度方向を中心に±15度の範囲とを、ビームステアリングを実施する範囲に決定する。
 ステップS216において、伝搬路特性推定部385は、推定結果となる伝搬路特性に基づいて、ビームステアリングの範囲を決定する。
 ステップS217において、伝搬路特性推定部385は、決定したビームステアリングの範囲の情報を通信制御部381に供給する。これにより、通信制御部381の自端末制御部393は、通信部103を制御して、決定された範囲に対してビームステアリングを実施する。
 ステップS218において、通信制御部381は、処理の終了が指示されたか否かを判定し、終了が指示されない場合、処理は、ステップS211に戻り、それ以降の処理が繰り返される。
 尚、シミュレーションについては、上述した以外の手法であってもよく、例えば、自端末(送信端末)が、NLOS状態になる可能性があると判断した場合、無線通信に関するパラメータとして、例えば、周波数帯域を6GHzから700MHzへと変更し、NLOS状態にロバスト性のある通信リソースを用いて通信を実施する場合の伝搬路特性を推定するようにしてもよい。また、送信電力を上げることでロバストな通信を実現する場合、同時にMCS等を変更し、例えば16QAMからQPSKとったような変更を行った場合、MIMOを使用している場合、MIMOからSISO通信へと変更する場合などについてのシミュレーションにより伝送路特性を様々に求めて、通信手法を選択するようにしてもよい。
 以上の処理により、地理的な情報として、ダイナミックマップを用いたシミュレーションにより伝搬路特性の推定を行った上で、通信条件が最もよい通信手法を事前に選択することができるので、通信状態がある程度保証された通信手法を、通信状態が悪化する前の段階で選択し、切り替えて通信を継続することが可能となる。
 結果として、信頼性の高い通信を実現することが可能となる。
 <ダイナミックマップを利用してビームフォーミング通信と他の通信とを切り換えるようにした通信管理処理>
 以上においては、ダイナミックマップを利用して、ビームフォーミングのステアリング範囲を設定する例について説明してきたが、Blockageが発生することが予想される場合については、ビームフォーミング通信から無指向性の通信に切り替えるようにしてもよい。
 そこで、図27のフローチャートを参照して、ダイナミックマップを利用してビームフォーミング通信と他の通信とを切り換えるようにした通信管理処理について説明する。
 尚、図27のフローチャートにおけるステップS231乃至S238、およびステップS241乃至S244,S251の処理は、図25におけるステップS191乃至S198、およびステップS211乃至S214,S218の処理と同一であるので、その説明は省略する。
 ステップS245において、伝搬路特性推定部385は、ダイナミックマップを用いて、伝搬路特性推定としてビームフォーミングを行った際のパスロス値を時系列に求める。
 ステップS246において、伝搬路特性推定部385は、ダイナミックマップの情報における、特に第4レイヤの情報に基づいて、移動体である車両11の時系列の移動体情報に基づいて、伝搬路が妨害(Blockage)されるNLOS状態が発生するか否かを判定する。
 すなわち、図28の左部で示されるように、時刻tにおいて、車両11-221,11-222が、図中の道路452-1上を図中右方向に走行している状態である場合について考える。
 この場合、自端末となる車両11-221が、通信対象となる車両11-222に対してビームフォーミング通信を行っているときには、車両11-221,11-222間には遮蔽物がないLOS(Line Of Sight)状態であるため、パスロス値は良好であることが推定される。
 しかしながら、ダイナミックマップの情報に基づいたシミュレーションにより、道路462-1に対して直交する道路462-2上を図中の上方向に大型トラック451が走行している。このとき、時刻tから所定時間が経過した時刻t’においては、図28の中央部で示されるように、大型トラック451’が、車両11-221,11-222間に割り込むことで妨害(Blockage)によるNLOS状態が発生することが推定されると共に、このときのパスロス値が大幅に悪化することが推定された。
 そして、さらに、時間が経過した時刻t’’においては、図28の右部で示されるように、大型トラック451’’が、車両11-221,11-222間を通り抜けて、NLOS状態が解消して、再び伝搬路上に遮蔽物のないLOS状態となり、パスロス値についても改善されることが推定された。
 このような場合、伝搬路特性推定部385は、NLOS状態が発生するものとみなすことになるので、処理は、ステップS247に進む。
 ステップS247において、伝搬路特性推定部385は、NLOS状態の開始のタイミングの情報、NLOS状態の終了のタイミング、および、NLOS状態における通信方式の情報を通信相手である、図28における車両11-222に対して送信するように通信制御部381に通知する。ここでは、例えば、ミリ波帯でのビームフォーミングの実施を停止し、6GHz以下の低い周波数を用いた無指向性通信に通信方式を切り替えることを指示する情報が通知されるようにする。
 この通知に応じて、通信制御部381は、通信部103を制御して、NLOS状態となる開始のタイミングの情報、NLOS状態が終了するタイミング、および、NLOS状態において無指向性の通信方式に切り替えることを示す情報を通知する。この場合、例えば、サイドリンクにおける制御チャネルであるSidelink Control Channelを通して通知される。
 このとき、図28における車両11-222の通信管理部144は、通信部103を制御して、NLOS状態となる開始のタイミングの情報、NLOS状態が終了するタイミング、および、NLOS状態において無指向性の通信方式に切り替えることを示す情報を受信する。
 ステップS248において、伝搬路特性推定部385は、それぞれ状態となるタイミングであるか否かを判定し、妨害(Blockage)によるNLSO状態となるタイミングになるまで、同様の処理が繰り返される。
 ステップS248において、妨害(Blockage)によるNLSO状態となるタイミングになると、処理は、それぞれステップS249に進む。
 ステップS249において、伝搬路特性推定部385は、通信制御部381に対して、ミリ波帯でのビームフォーミングの実施を停止し、6GHz以下の低い周波数を用いた無指向性通信に通信方式を切り替えるようにする指令を送る。これにより、自端末制御部393は、通信部103を制御して、ミリ波帯でのビームフォーミングの実施を停止し、6GHz以下の低い周波数を用いた無指向性通信に通信方式を切り替える。
 すなわち、図28の中央部で示されるように、妨害(Blockage)によるNLSO状態になる時刻t’においては、ミリ波帯でのビームフォーミングの実施が停止されて、6GHz以下の低い周波数を用いた無指向性通信に通信方式を切り替えられる。
 この結果、車両11-221,11-222間に大型トラック451が入り込んで、通信の経路が妨害(Blockage)されても、無指向性通信により通信を継続することが可能となる。
 ステップS250において、伝搬路特性推定部385は、それぞれ妨害(Blockage)によるNLSO状態が終了となるタイミングであるか否かを判定し、妨害(Blockage)によるNLSO状態が終了となるタイミングになるまで、同様の処理が繰り返される。
 そして、ステップS250において、妨害(Blockage)によるNLSO状態の終了となるタイミングになると、処理は、それぞれステップS251に進む。
 ステップS251において、伝搬路特性推定部385は、通信制御部381に対して、ミリ波帯でのビームフォーミングの実施に戻すように指令を送る。これにより、自端末制御部393は、通信部103を制御して、ミリ波帯でのビームフォーミングの実施に戻す。
 尚、受信側となる車両11-222における通信管理部144においても、サイドリンクにおける制御チャネルであるSidelink Control Channelを通して通知された情報に基づいて、ステップS248乃至S251における処理と同様の処理が実行される。
 以上の処理により、地理的な情報としてダイナミックマップを用いて、時系列の移動体の情報に基づいて、NLOSが発生することが事前に予想されるときに、NLOSが生じたタイミングにおけるビームフォーミング通信を停止して無指向性の通信方式となるように事前に通知して、NLOSとなるタイミングにおいてのみ、無指向性の通信に迅速に切り替えることが可能となる。
 尚、以上においては、ダイナミックマップを用いてビームステアリングの範囲を設定する例や、NLOS状態を予測して通信方式を変更するようにする例について説明してきたが、ダイナミックマップを用いて、バッファ制御を実施するようにしてもよい。
 すなわち、周辺の端末の位置情報、および各端末の持つバッファステータスの情報を取得することで、エリアバッファステータス情報として記憶する。そして、使用可能なリソース情報(基地局から提供されてもよく、センシングで把握してもよい)と周辺の端末のバッファステータス情報に基づいて、自端末のバッファ管理を行うようにする。
 例えば、周辺の端末のバッファステータスが高い場合、自端末によるバッファの処理(送信)はなるべく控えるようにする。
 一方、進行方向において周辺の端末のバッファステータスが低くなると予測される場合、なるべく周辺の端末のバッファステータスが低くなりエリアにおいて自端末のバッファを処理するようにする。
 いずれにおいても、信頼性の高い通信を実現することが可能となる。
 <<5.ソフトウェアにより実行させる例>>
 ところで、上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のコンピュータなどに、記録媒体からインストールされる。
 図29は、汎用のコンピュータの構成例を示している。このパーソナルコンピュータは、CPU(Central Processing Unit)1001を内蔵している。CPU1001にはバス1004を介して、入出力インタフェース1005が接続されている。バス1004には、ROM(Read Only Memory)1002およびRAM(Random Access Memory)1003が接続されている。
 入出力インタフェース1005には、ユーザが操作コマンドを入力するキーボード、マウスなどの入力デバイスよりなる入力部1006、処理操作画面や処理結果の画像を表示デバイスに出力する出力部1007、プログラムや各種データを格納するハードディスクドライブなどよりなる記憶部1008、LAN(Local Area Network)アダプタなどよりなり、インターネットに代表されるネットワークを介した通信処理を実行する通信部1009が接続されている。また、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、もしくは半導体メモリなどのリムーバブルメディア1011に対してデータを読み書きするドライブ1010が接続されている。
 CPU1001は、ROM1002に記憶されているプログラム、または磁気ディスク、光ディスク、光磁気ディスク、もしくは半導体メモリ等のリムーバブルメディア1011ら読み出されて記憶部1008にインストールされ、記憶部1008からRAM1003にロードされたプログラムに従って各種の処理を実行する。RAM1003にはまた、CPU1001が各種の処理を実行する上において必要なデータなども適宜記憶される。
 以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを、入出力インタフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブルメディア1011をドライブ1010に装着することにより、入出力インタフェース1005を介して、記憶部1008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部1009で受信し、記憶部1008にインストールすることができる。その他、プログラムは、ROM1002や記憶部1008に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 尚、図29におけるCPU1001が、図3,図4における自動運転制御部112の機能を実現させる。
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 なお、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本開示は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 尚、本開示は、以下のような構成も取ることができる。
<1> 通信機能を有する自端末の位置を予測する位置予測部と、
 前記位置予測部により予測された前記自端末の位置の周辺の地理情報を取得する情報取得部と、
 前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信を制御する通信制御部とを含む
 制御装置。
<2> 所定時間間隔で前記他端末の位置情報を取得する他端末位置情報取得部と、
 所定時間間隔で前記自端末の位置情報を取得する自端末位置情報取得部とをさらに含み、
 前記位置予測部は、前記自端末の位置情報と、前記他端末の位置情報とに基づいて、現在、または将来の自端末の位置を予測する
 <1>に記載の制御装置。
<3> 前記通信制御部は、前記通信における通信パラメータを設定することにより、前記通信を制御する
 <1>または<2>に記載の制御装置。
<4> 前記通信制御部は、前記通信における通信リンクの構成を設定することにより、前記通信を制御する
 <1>乃至<3>のいずれかに記載の制御装置。
<5> 前記通信制御部は、前記通信におけるビームフォーミングのビームステアリングの範囲を設定することにより、前記通信を制御する
 <1>乃至<4>のいずれかに記載の制御装置。
<6> 前記通信制御部は、前記通信におけるリレー通信を設定することにより、前記通信を制御する
 <1>乃至<5>のいずれかに記載の制御装置。
<7> 前記通信制御部は、前記自端末の周辺の地理情報に基づいた、前記通信における妨害の発生の有無に対応して、前記通信における妨害が発生しているタイミングにおいて、前記通信における通信方式を切り替えるように設定することにより、前記通信を制御する
 <1>乃至<6>のいずれかに記載の制御装置。
<8> 前記通信制御部は、前記通信の通信方式がビームフォーミング通信である場合、前記妨害が発生しているタイミングにおいて、前記通信方式をリレー通信に切り替えるように設定することにより、前記通信を制御する
 <7>に記載の制御装置。
<9> 位置情報に対応付けて前記自端末および前記他端末の通信結果からなる通信情報がマッピングされたマッピングテーブルを記憶するマッピングテーブル記憶部をさらに含み、
 前記通信制御部は、前記自端末の周辺の地理情報に基づいて、前記マッピングテーブルを参照して、対応する通信情報のうち、最適な通信情報に基づいて、前記通信を制御する
 <1>乃至<8>のいずれかに記載の制御装置。
<10> 前記マッピングテーブルは、他の情報処理装置により、前記自端末および前記他端末間の送受信に係る、位置情報、通信種別、パラメータ、および通信品質が登録されたデータベースより、前記位置情報に対応付けてマッピングされることにより生成される
 <9>に記載の制御装置。
<11> 前記自端末の周辺の地理情報としての3次元マップに基づいて、前記通信における伝搬路特性を推定する伝搬路特性推定部をさらに含み、
 前記通信制御部は、前記伝搬路特性推定部により推定された前記伝搬路特性に基づいて、前記通信を制御する
 <1>乃至<8>のいずれかに記載の制御装置。
<12> 前記通信制御部は、前記伝搬路特性推定部により推定された前記伝搬路特性に基づいて、前記通信におけるビームステアリングの範囲を設定することにより、前記通信を制御する
 <11>に記載の制御装置。
<13> 前記通信制御部は、前記伝搬路特性推定部により推定された前記伝搬路特性に基づいた、前記通信における妨害が発生しているタイミングにおいて、通信方式を切り替えるように設定することにより、前記通信を制御する
 <11>に記載の制御装置。
<14> 前記通信制御部は、前記通信方式がビームフォーミング通信である場合、前記妨害が発生しているタイミングにおいて、前記通信方式を無指向性通信方式に切り替えるように設定することにより、前記通信を制御する
 <13>に記載の制御装置。
<15> 前記3次元マップは、時間に対しての変化のレベルに応じた複数のレイヤから構成されるダイナミックマップである
 <11>に記載の制御装置。
<16> 前記ダイナミックマップは、他の情報処理装置により生成され、
 前記他の情報処理装置により生成されたダイナミックマップを取得するダイナミックマップ取得部をさらに含み、
 前記伝搬路特性推定部は、前記ダイナミックマップ取得部により取得された前記ダイナミックマップに基づいて、前記通信における伝搬路特性を推定する
 <15>に記載の制御装置。
<17> 通信機能を有する自端末の位置を予測する位置予測処理と、
 前記位置予測処理により予測された前記自端末の位置の周辺の地理情報を取得する情報取得処理と、
 前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信を制御する制御処理とを含む
 制御方法。
<18> 通信機能を有する自端末の位置を予測する位置予測部と、
 前記位置予測部により予測された前記自端末の位置の周辺の地理情報を取得する情報取得部と、
 前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信を制御する通信制御部
 としてコンピュータを機能させるプログラム。
<19> 通信機能を有する自端末の位置を予測する位置予測部と、
 前記位置予測部により予測された前記自端末の位置の周辺の地理情報を取得する情報取得部と、
 前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信を制御する通信制御部と、
 前記通信機能により取得される情報に基づいて、車両の動作を制御する車両制御部とを含む
 車両。
 11,11-1乃至11-n 車両, 12,12-1乃至12-m RSU, 13 ネットワーク, 14 歩行者, 31 基地局, 103 通信部, 112 自動運転制御部, 131 検出部, 132 自己位置推定部, 144 通信管理部, 134 計画部345, 161 ルート計画部, 211 通信制御部, 212 他端末情報取得部, 213 他端末情報記憶部, 214 自端末位置情報取得部, 215 自端末位置情報記憶部, 221 自端末情報送信部, 222 位置予測部, 223 自端末制御部, 224 通信確立部, 231 制御部, 232 通信部, 233 記憶部, 241 通信制御部, 251 自端末情報送信部, 252 自端末制御部, 253 通信確立部, 271 サーバ, 281 制御部, 282 通信部, 283 通信情報データベース記憶部, 283 マッピングテーブル記憶部, 291 通信情報データベース生成部, 292 マッピングテーブル生成部, 221 自端末情報送信部, 222 位置予測部, 223 自端末制御部, 224 通信確立部, 301 通信制御部, 302 マッピングテーブル記憶部, 311 自端末情報送信部, 312 位置予測部, 313 自端末制御部, 314 通信確立部, 315 マッピングテーブル取得部, 321 サーバ, 341 制御部, 342 固定地図情報記憶部, 343 道路地図情報記憶部, 344 動的情報取得部, 345 通信部, 351 道路情報取得部, 352 移動体情報取得部, 361 ダイナミックマップ生成部, 381 通信制御部, 382 ダイナミックマップ受信部, 383 通信対象決定部, 384 自端末位置情報取得部, 385 伝搬路特性推定部, 391 自端末情報送信部, 392 位置予測部, 393 自端末制御部, 394 通信確立部

Claims (19)

  1.  通信機能を有する自端末の位置を予測する位置予測部と、
     前記位置予測部により予測された前記自端末の位置の周辺の地理情報を取得する情報取得部と、
     前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信を制御する通信制御部とを含む
     制御装置。
  2.  所定時間間隔で前記他端末の位置情報を取得する他端末位置情報取得部と、
     所定時間間隔で前記自端末の位置情報を取得する自端末位置情報取得部とをさらに含み、
     前記位置予測部は、前記自端末の位置情報と、前記他端末の位置情報とに基づいて、現在、または将来の自端末の位置を予測する
     請求項1に記載の制御装置。
  3.  前記通信制御部は、前記通信における通信パラメータを設定することにより、前記通信を制御する
     請求項1に記載の制御装置。
  4.  前記通信制御部は、前記通信における通信リンクの構成を設定することにより、前記通信を制御する
     請求項1に記載の制御装置。
  5.  前記通信制御部は、前記通信におけるビームフォーミングのビームステアリングの範囲を設定することにより、前記通信を制御する
     請求項1に記載の制御装置。
  6.  前記通信制御部は、前記通信におけるリレー通信を設定することにより、前記通信を制御する
     請求項1に記載の制御装置。
  7.  前記通信制御部は、前記自端末の周辺の地理情報に基づいた、前記通信における妨害の発生の有無に対応して、前記通信における妨害が発生しているタイミングにおいて、前記通信における通信方式を切り替えるように設定することにより、前記通信を制御する
     請求項1に記載の制御装置。
  8.  前記通信制御部は、前記通信の通信方式がビームフォーミング通信である場合、前記妨害が発生しているタイミングにおいて、前記通信方式をリレー通信に切り替えるように設定することにより、前記通信を制御する
     請求項7に記載の制御装置。
  9.  位置情報に対応付けて前記自端末および前記他端末の通信結果からなる通信情報がマッピングされたマッピングテーブルを記憶するマッピングテーブル記憶部をさらに含み、
     前記通信制御部は、前記自端末の周辺の地理情報に基づいて、前記マッピングテーブルを参照して、対応する通信情報のうち、最適な通信情報に基づいて、前記通信を制御する
     請求項1に記載の制御装置。
  10.  前記マッピングテーブルは、他の情報処理装置により、前記自端末および前記他端末間の送受信に係る、位置情報、通信種別、パラメータ、および通信品質が登録されたデータベースより、前記位置情報に対応付けてマッピングされることにより生成される
     請求項9に記載の制御装置。
  11.  前記自端末の周辺の地理情報としての3次元マップに基づいて、前記通信における伝搬路特性を推定する伝搬路特性推定部をさらに含み、
     前記通信制御部は、前記伝搬路特性推定部により推定された前記伝搬路特性に基づいて、前記通信を制御する
     請求項1に記載の制御装置。
  12.  前記通信制御部は、前記伝搬路特性推定部により推定された前記伝搬路特性に基づいて、前記通信におけるビームステアリングの範囲を設定することにより、前記通信を制御する
     請求項11に記載の制御装置。
  13.  前記通信制御部は、前記伝搬路特性推定部により推定された前記伝搬路特性に基づいた、前記通信における妨害が発生しているタイミングにおいて、通信方式を切り替えるように設定することにより、前記通信を制御する
     請求項11に記載の制御装置。
  14.  前記通信制御部は、前記通信方式がビームフォーミング通信である場合、前記妨害が発生しているタイミングにおいて、前記通信方式を無指向性通信方式に切り替えるように設定することにより、前記通信を制御する
     請求項13に記載の制御装置。
  15.  前記3次元マップは、時間に対しての変化のレベルに応じた複数のレイヤから構成されるダイナミックマップである
     請求項11に記載の制御装置。
  16.  前記ダイナミックマップは、他の情報処理装置により生成され、
     前記他の情報処理装置により生成されたダイナミックマップを取得するダイナミックマップ取得部をさらに含み、
     前記伝搬路特性推定部は、前記ダイナミックマップ取得部により取得された前記ダイナミックマップに基づいて、前記通信における伝搬路特性を推定する
     請求項15に記載の制御装置。
  17.  通信機能を有する自端末の位置を予測する位置予測処理と、
     前記位置予測処理により予測された前記自端末の位置の周辺の地理情報を取得する情報取得処理と、
     前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信を制御する制御処理とを含む
     制御方法。
  18.  通信機能を有する自端末の位置を予測する位置予測部と、
     前記位置予測部により予測された前記自端末の位置の周辺の地理情報を取得する情報取得部と、
     前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信を制御する通信制御部
     としてコンピュータを機能させるプログラム。
  19.  通信機能を有する自端末の位置を予測する位置予測部と、
     前記位置予測部により予測された前記自端末の位置の周辺の地理情報を取得する情報取得部と、
     前記地理情報に基づいて、前記自端末と、前記自端末以外の前記通信機能を備えた他端末との通信を制御する通信制御部と、
     前記通信機能により取得される情報に基づいて、車両の動作を制御する車両制御部とを含む
     車両。
PCT/JP2019/024657 2018-07-05 2019-06-21 制御装置および制御方法、車両、並びにプログラム WO2020008911A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019003423.5T DE112019003423T5 (de) 2018-07-05 2019-06-21 Steuervorrichtung und steuerverfahren, fahrzeug und programm
US17/250,291 US11589198B2 (en) 2018-07-05 2019-06-21 Control apparatus, control method, and vehicle
US18/159,464 US11997573B2 (en) 2018-07-05 2023-01-25 Control apparatus, control method, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018128059A JP2021158397A (ja) 2018-07-05 2018-07-05 制御装置および制御方法、車両、並びにプログラム
JP2018-128059 2018-07-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/250,291 A-371-Of-International US11589198B2 (en) 2018-07-05 2019-06-21 Control apparatus, control method, and vehicle
US18/159,464 Continuation US11997573B2 (en) 2018-07-05 2023-01-25 Control apparatus, control method, and vehicle

Publications (1)

Publication Number Publication Date
WO2020008911A1 true WO2020008911A1 (ja) 2020-01-09

Family

ID=69059609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024657 WO2020008911A1 (ja) 2018-07-05 2019-06-21 制御装置および制御方法、車両、並びにプログラム

Country Status (4)

Country Link
US (2) US11589198B2 (ja)
JP (1) JP2021158397A (ja)
DE (1) DE112019003423T5 (ja)
WO (1) WO2020008911A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192594A1 (ja) * 2020-03-26 2021-09-30 パナソニック株式会社 無線通信システムおよび無線通信方法
JP2021192495A (ja) * 2020-06-05 2021-12-16 ソフトバンク株式会社 システム、無線通信装置、プログラム、及び通信方法
WO2022014350A1 (ja) * 2020-07-15 2022-01-20 パナソニックIpマネジメント株式会社 通信装置及び通信方法
WO2022219754A1 (ja) * 2021-04-14 2022-10-20 日本電信電話株式会社 通信制御システム、通信制御方法、及びプログラム
WO2022219757A1 (ja) * 2021-04-14 2022-10-20 日本電信電話株式会社 システム、機器、方法、及びプログラム
CN117793650A (zh) * 2024-02-26 2024-03-29 绵阳职业技术学院 车辆区域通信方法、装置、设备及存储介质
EP4307731A4 (en) * 2021-03-10 2024-04-10 Nissan Motor Co., Ltd. INFORMATION PROCESSING DEVICE AND INFORMATION PROCESSING METHOD
EP4307732A4 (en) * 2021-03-10 2024-04-24 Nissan Motor Co., Ltd. INFORMATION PROCESSING DEVICE AND INFORMATION PROCESSING METHOD
JP7547294B2 (ja) 2021-08-24 2024-09-09 Kddi株式会社 移動体通信制御装置、移動体通信制御方法及びコンピュータプログラム

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172327B2 (en) * 2018-07-12 2021-11-09 Qualcomm Incorporated Relaying for vehicular communications
EP3691307B8 (en) * 2019-02-01 2022-02-09 Volkswagen Aktiengesellschaft Method for a wireless communication from a first vehicle to a road infrastructure station and apparatus for the use in a vehicle and adapted vehicle
KR20240116961A (ko) * 2019-04-09 2024-07-30 닛산 지도우샤 가부시키가이샤 정보 처리 장치, 정보 처리 방법, 및 서버
US20220190941A1 (en) * 2019-04-26 2022-06-16 Nippon Telegraph And Telephone Corporation Terminal and communication system
US11368991B2 (en) 2020-06-16 2022-06-21 At&T Intellectual Property I, L.P. Facilitation of prioritization of accessibility of media
US11233979B2 (en) 2020-06-18 2022-01-25 At&T Intellectual Property I, L.P. Facilitation of collaborative monitoring of an event
US11184517B1 (en) 2020-06-26 2021-11-23 At&T Intellectual Property I, L.P. Facilitation of collaborative camera field of view mapping
US11411757B2 (en) 2020-06-26 2022-08-09 At&T Intellectual Property I, L.P. Facilitation of predictive assisted access to content
US11356349B2 (en) 2020-07-17 2022-06-07 At&T Intellectual Property I, L.P. Adaptive resource allocation to facilitate device mobility and management of uncertainty in communications
US11768082B2 (en) 2020-07-20 2023-09-26 At&T Intellectual Property I, L.P. Facilitation of predictive simulation of planned environment
US20220198934A1 (en) * 2020-12-23 2022-06-23 Automotive Research & Testing Center Vehicle-platooning driving decision system and method thereof
US12063668B2 (en) * 2021-09-21 2024-08-13 Qualcomm Incorporated Techniques for beam refinement in vehicle to everything communications systems
US12120664B2 (en) * 2021-09-23 2024-10-15 Qualcomm Incorporated Configuration and signaling techniques for scheduled wireless communications
CN113865600B (zh) * 2021-09-28 2023-01-06 北京三快在线科技有限公司 一种高精地图的构建方法及装置
KR102640437B1 (ko) * 2022-08-23 2024-02-23 한국기술교육대학교 산학협력단 디지털 트윈 기반 빔포밍 방법 및 장치
DE102022212611A1 (de) 2022-11-25 2024-05-29 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Koordinieren einer Fahrsituation durch ein zweites Fortbewegungsmittel
WO2024135331A1 (ja) * 2022-12-21 2024-06-27 ソニーグループ株式会社 通信装置、及び通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110465A1 (ja) * 2008-03-04 2009-09-11 日本電気株式会社 通信機、通信方法、路車間および車車間通信システム、プログラムおよび記録媒体
JP2014090376A (ja) * 2012-10-31 2014-05-15 Mitsubishi Heavy Ind Ltd 無線通信システム、無線通信方法、移動局、プログラム、及び記録媒体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477350B2 (ja) 2011-08-30 2014-04-23 トヨタ自動車株式会社 無線通信装置および無線通信方法
US8571154B1 (en) * 2012-04-19 2013-10-29 Bae Systems Information And Electronic Systems Integration Inc. Control interval expansion of variable time delay control structure for channel matching
US9252896B2 (en) * 2012-12-10 2016-02-02 Qualcomm Incorporated Efficient means of broadcast and relaying information between wireless terminals
WO2014115139A1 (en) * 2013-01-23 2014-07-31 Iatas (Automatic Air Traffic Control) Ltd System and methods for automated airport air traffic control services
US10136263B2 (en) * 2016-02-03 2018-11-20 Denso Corporation Mobile communication system and communication apparatus
WO2018142394A2 (en) * 2017-02-06 2018-08-09 Vayavision Sensing Ltd. Computer aided driving
WO2018168169A1 (en) * 2017-03-15 2018-09-20 Nec Corporation System and method for providing vehicular communication in an advanced wireless network
US10440685B2 (en) * 2017-05-05 2019-10-08 Motorola Mobility Llc Interleaving sequential data in time and frequency domains
US10827434B1 (en) * 2017-07-19 2020-11-03 Sprint Communications Company L.P. Controlling coverage in a wireless communications network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110465A1 (ja) * 2008-03-04 2009-09-11 日本電気株式会社 通信機、通信方法、路車間および車車間通信システム、プログラムおよび記録媒体
JP2014090376A (ja) * 2012-10-31 2014-05-15 Mitsubishi Heavy Ind Ltd 無線通信システム、無線通信方法、移動局、プログラム、及び記録媒体

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192594A1 (ja) * 2020-03-26 2021-09-30 パナソニック株式会社 無線通信システムおよび無線通信方法
JP2021192495A (ja) * 2020-06-05 2021-12-16 ソフトバンク株式会社 システム、無線通信装置、プログラム、及び通信方法
JP7112452B2 (ja) 2020-06-05 2022-08-03 ソフトバンク株式会社 システム、無線通信装置、プログラム、及び通信方法
WO2022014350A1 (ja) * 2020-07-15 2022-01-20 パナソニックIpマネジメント株式会社 通信装置及び通信方法
EP4307731A4 (en) * 2021-03-10 2024-04-10 Nissan Motor Co., Ltd. INFORMATION PROCESSING DEVICE AND INFORMATION PROCESSING METHOD
EP4307732A4 (en) * 2021-03-10 2024-04-24 Nissan Motor Co., Ltd. INFORMATION PROCESSING DEVICE AND INFORMATION PROCESSING METHOD
WO2022219754A1 (ja) * 2021-04-14 2022-10-20 日本電信電話株式会社 通信制御システム、通信制御方法、及びプログラム
WO2022219757A1 (ja) * 2021-04-14 2022-10-20 日本電信電話株式会社 システム、機器、方法、及びプログラム
JP7547294B2 (ja) 2021-08-24 2024-09-09 Kddi株式会社 移動体通信制御装置、移動体通信制御方法及びコンピュータプログラム
CN117793650A (zh) * 2024-02-26 2024-03-29 绵阳职业技术学院 车辆区域通信方法、装置、设备及存储介质
CN117793650B (zh) * 2024-02-26 2024-04-30 绵阳职业技术学院 车辆区域通信方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US11997573B2 (en) 2024-05-28
JP2021158397A (ja) 2021-10-07
DE112019003423T5 (de) 2021-05-27
US11589198B2 (en) 2023-02-21
US20210266715A1 (en) 2021-08-26
US20230179973A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2020008911A1 (ja) 制御装置および制御方法、車両、並びにプログラム
KR102195939B1 (ko) 자율주행 차량의 배터리 충전 방법 및 이를 위한 장치
CN114303180B (zh) 带有通信消息传递的规划和控制框架
KR102241296B1 (ko) 자율주행시스템에서 mec 서버를 통한 데이터 공유 방법 및 이를 위한 장치
KR102223135B1 (ko) 자율주행시스템에서 차량의 오류 판단방법 및 이를 위한 장치
JP6942794B2 (ja) レクリエーション用車両用の車両間通信デバイス及び方法
US20180208195A1 (en) Collaborative risk controller for vehicles using v2v
KR102645298B1 (ko) 자율주행시스템에서 차량간 p2p 방식을 활용한 데이터 처리방법 및 이를 위한 장치
US20220369083A1 (en) Methods of Operating A Wireless Data Bus In Vehicle Platoons
KR20190096873A (ko) 자율주행시스템에서 차량과 서버의 연결 설정방법 및 이를 위한 장치
KR102203475B1 (ko) 자율 주행 시스템에서 차량을 제어하기 위한 방법 및 장치
JP2017062739A (ja) 車両制御装置
KR102112684B1 (ko) 자율주행시스템에서 원격운전을 위한 제어 정보를 전송하는 방법 및 이를 위한 장치
US12080170B2 (en) Systems and methods for managing cooperative maneuvering among connected vehicles
WO2023185773A1 (zh) 智能车及其控制方法、行车系统
CN112583872B (zh) 一种通信方法及装置
KR20210041213A (ko) 자율주행시스템에서 지도정보를 이용하여 객체추적을 하는 방법 및 이를 위한 장치
US11570594B2 (en) Method of facilitating on-demand wireless connectivity using device-to-device resources and data pooling with a vehicle platoon
KR20210052659A (ko) 자율주행 광고차량의 주행경로 설정
JP2020154631A (ja) 遠隔制御装置及び自動運転システム
JP5134656B2 (ja) 車車間通信システムおよび車車間通信方法
KR102179051B1 (ko) 자율 주행 차량과 그 인증 대행 방법
CN115004727A (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2022239319A1 (ja) 通信装置、通信方法、及び、車両
JP7028833B2 (ja) 装置、プロセッサ、制御方法、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831571

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19831571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP