WO2020007171A1 - 复式隔离型的led应急灯控制电路 - Google Patents

复式隔离型的led应急灯控制电路 Download PDF

Info

Publication number
WO2020007171A1
WO2020007171A1 PCT/CN2019/090954 CN2019090954W WO2020007171A1 WO 2020007171 A1 WO2020007171 A1 WO 2020007171A1 CN 2019090954 W CN2019090954 W CN 2019090954W WO 2020007171 A1 WO2020007171 A1 WO 2020007171A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically connected
circuit
resistor
capacitor
terminal
Prior art date
Application number
PCT/CN2019/090954
Other languages
English (en)
French (fr)
Inventor
孙尚友
Original Assignee
深圳市威诺华照明电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市威诺华照明电器有限公司 filed Critical 深圳市威诺华照明电器有限公司
Publication of WO2020007171A1 publication Critical patent/WO2020007171A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the invention relates to the field of safety protection, in particular to a double-isolated LED emergency light control circuit.
  • the first type of circuit is an electrically isolated circuit that meets safety standards. However, in the case of power failure, the LED emergency light cannot be controlled by the wall switch.
  • the second type of circuit is a non-electrically isolated circuit. In the case of a power failure, the LED emergency light can be controlled on and off through a wall switch, but it does not meet safety standards.
  • the embodiment of the present invention provides a double-isolated LED emergency light control circuit.
  • the technical solution is as follows:
  • the invention provides a double-isolated LED emergency light control circuit.
  • the double-isolated LED emergency light control circuit includes a first isolation circuit, a second isolation circuit, a third isolation circuit, an LED module, a charging protection circuit, A boost constant current circuit, a detection control circuit, a voltage stabilization circuit, a battery, and a switch, the first isolation circuit, the second isolation circuit, and the third isolation circuit are respectively electrically connected to a mains power, and the first The isolation circuit is also electrically connected to the LED module, the charging protection circuit, the detection control circuit, and the voltage stabilization circuit, respectively; the charging protection circuit is also connected to the battery and the second isolation circuit, respectively.
  • the battery is also electrically connected to the voltage stabilization circuit, and the second isolation circuit is also electrically connected to the third isolation circuit, the boost constant current circuit, and the detection control circuit, respectively
  • the third isolation circuit is also electrically connected to the detection control circuit and the voltage stabilization circuit, the detection control circuit is also electrically connected to the boost constant current circuit, and the boost constant current circuit is also with
  • the battery is electrically connected, the first end of the switch is electrically connected to the first isolation circuit and the third isolation circuit, and the second end of the switch is electrically connected to the first isolation circuit and the
  • the second isolation circuit is electrically connected;
  • the first isolation circuit includes a transformer T20A, and the transformer T20A is electrically isolated;
  • the second isolation circuit includes the transformer T70, and the transformer T70 is electrically isolated;
  • the third isolation circuit includes a photocoupler U70, and the photocoupler U70 is electrically isolated; the electrical isolation function of the transformer T20A, the transformer T70, and the photocoupler U70 is used to isolate the duplex
  • the first isolation circuit converts a mains AC into the DC VA, VB, and VC that meet requirements.
  • the first isolation circuit includes an AC rectifying and filtering circuit, a driving circuit, a DC rectifying and filtering circuit, and a high-frequency transformer T20.
  • the AC rectifying and filtering circuit is electrically connected to the mains and the driving circuit, respectively.
  • the driving circuit is electrically connected to the high-frequency transformer T20, the high-frequency transformer T20 is electrically connected to the DC rectification filter circuit, and the DC rectification filter circuit is respectively connected to the LED module, the charging protection circuit, The detection control circuit and the voltage stabilization circuit are electrically connected.
  • the AC rectifying and filtering circuit includes a diode D10, a diode D11, a diode D12, a diode D13, a capacitor C10, and a capacitor C11.
  • the anode of the diode D10 and the anode of the diode D12, the mains, and the capacitor C10 are respectively The first terminal is electrically connected, and the anode of the diode D10 is electrically connected to the anode of the diode D11 and the driving circuit 10; the anode of the diode D12 is respectively connected to the anode of the diode D13 and the capacitor C11.
  • the first end of the diode D12 is electrically connected to the primary common ground.
  • the negative pole of the diode D13 is also connected to the second end of the capacitor C10, the anode of the diode D11, and the mains. Electrical connection; the second end of the capacitor C11 is also electrically connected to the negative electrode of the diode D11 and the driving circuit 10, and the AC rectification filter circuit is used to rectify and filter the mains power into pulsating DC power.
  • the driving circuit includes a transistor Q20, an integrated circuit U20, a diode D20, a diode D21, a capacitor C20, a capacitor C22, a capacitor C23, a resistor R21, a resistor R22, a resistor R23, a resistor R24, a resistor R26, a resistor Rs21, and a transformer.
  • the auxiliary winding T20B of T20, the first end of the resistor R21 is electrically connected to the first end of the capacitor C20, the first end of the resistor R26, the transformer T20A, and the AC rectification filter circuit, respectively.
  • the second terminal of the resistor R21 is also electrically connected to the negative terminal of the diode D20, the first terminal of the capacitor C22, and the integrated circuit U20, respectively.
  • the positive terminal of the diode D20 and the first terminal of the resistor R22 are electrically connected.
  • the second end of the resistor R22 is also electrically connected to the auxiliary winding T20B and the first end of the resistor R23, and the auxiliary winding T20B is respectively connected to the first end of the resistor R24 and the
  • the second terminal of the capacitor C22, the first terminal of the capacitor C23, the integrated circuit U20, the first terminal of the resistor Rs21, and the primary common ground are electrically connected, and the second terminal of the resistor R23 is also connected to all
  • the second terminal of the resistor R24, the integrated circuit U20 is electrically connected, the second end of the resistor Rs21 is also electrically connected to the source of the transistor Q20, the integrated circuit U20 is also electrically connected to the gate of the transistor Q20, and the drain of the transistor Q20 is A pole is electrically connected to the anode of the diode D21 and the transformer T20A, and a cathode of the diode D21 is electrically connected to the second terminal of the capacitor C20 and the second terminal of the resistor R26
  • the DC rectification filter circuit is located at the secondary side of the double-isolated LED emergency light control circuit.
  • the DC rectification filter circuit includes a diode D22, a diode D24, a diode D25, a capacitor C24, a capacitor C25, and a capacitor C26. Capacitor C92.
  • the anode of the diode D24 is electrically connected to the anode of the diode D25 and the transformer T20A.
  • the transformer T20A and the anode of the diode D22 are electrically connected.
  • the transformer T20A and the capacitor are electrically connected.
  • the first terminal of C26 is electrically connected, the first terminal of the capacitor C26 is grounded, the second terminal of the capacitor C26 is electrically connected to the anode of the diode D24, the anode of the diode D24 and the charging protection circuit
  • the voltage stabilizing circuit is electrically connected; the anode of the diode D25 is electrically connected to the first end of the capacitor C25, and the anode of the diode D25 is also electrically connected to the detection control circuit; the diode D22
  • the negative terminal of the capacitor C24 is electrically connected to the first terminal of the capacitor C24 and the first terminal of the capacitor C92, the negative terminal of the diode D22 is also electrically connected to the LED module, and the second terminal of the capacitor C24 is electrically connected. Minute Do not electrically connect the second terminal of the capacitor C92 and the second terminal of the capacitor C25, and the second terminal of the capacitor C24 is also grounded.
  • the second isolation circuit uses the battery to provide an interrupted power source for the third isolation circuit
  • the second isolation circuit includes: a transformer T70, a switch Q70, a diode D70, a resistor R76, a capacitor C71, a capacitor C72, a diode D71, a voltage regulator Z71, a resistor R75, and a capacitor C70; the transformer T70 is electrically isolated, The entire emergency light circuit is electrically isolated into primary and secondary; the anode of the diode D71 is electrically connected to the mains, the anode of the diode D71 is also electrically connected to the first isolation circuit, and the anode of the diode D72 It is electrically connected to the third isolation circuit.
  • the anode of the diode D72 is also connected to the anode of the voltage regulator tube Z71, the first terminal of the resistor R75, the first terminal of the capacitor C72, and the resistor.
  • the first terminal of R76 is electrically connected
  • the second terminal of the resistor R76 is electrically connected to the first terminal of the capacitor C71 and the negative electrode of the diode D70, respectively, and the anode of the diode D70 and the transformer T70 are electrically connected.
  • the positive pole of the voltage regulator Z71 is electrically connected to the second terminal of the resistor R75, the second terminal of the capacitor C72, the second terminal of the capacitor C71, and the transformer T70.
  • the positive pole of the zener tube Z71 is also common with the primary
  • the ground is electrically connected;
  • the transformer T70 is electrically connected to the first terminal of the capacitor C70, the second terminal of the capacitor C70 is grounded, and the second terminal of the capacitor C70 is also connected to the source of the switch Q70.
  • Electrically connected, the transformer T70 and the drain of the switching tube Q70 are electrically connected, the gate of the switching tube Q70 is electrically connected to the detection control circuit, the switching tube Q70 and the capacitor C70 Located at the secondary, the diode D70, the resistor R76, the capacitor C71, the capacitor C72, the diode D71, the voltage regulator Z71, and the resistor R75 are located in the double-isolated LED emergency Primary of the lamp control circuit.
  • the diode D71 when the primary is connected to the mains, the diode D71 is reverse-biased to isolate the high-voltage mains; when the primary is not connected to the mains, the diode D71 is forward-biased and turned on.
  • the interrupted voltage current generated by the second isolation circuit is passed through the diode D71 to provide an interrupted power source for the third isolation circuit.
  • the primary power supply of the third isolation circuit is provided by the second isolation circuit, and is used to sense whether there is a commercial power supply, and to sense whether the switch is closed, and to output all power through the photocoupler U70.
  • the sensed information is passed to the detection and control circuit for processing to achieve corresponding control functions;
  • the third isolation circuit includes: an optocoupler U70, a transistor Q71, a transistor Q72, a resistor R70, a resistor R72, a resistor R73, a resistor R74, and a capacitor C73.
  • the first end of the resistor R70 is electrically connected to the mains.
  • the first terminal of the resistor R70 is also electrically connected to the first isolation circuit, and the second terminal of the resistor R70 is respectively connected to the first terminal of the resistor R72, the first terminal of the capacitor C73, and the transistor Q72.
  • the second terminal of the resistor R72 is electrically connected to the second terminal of the capacitor C73, the emitter of the transistor Q72, and the first terminal of the resistor R74, and the resistor R74 is electrically connected.
  • the first end of is also electrically connected to the primary common ground, and the second end of the resistor R74 is electrically connected to the negative electrode of the light emitting diode in the optocoupler U70; the collector of the transistor Q72 is respectively connected to the resistor R73 The first terminal of the transistor Q71 is electrically connected to the gate of the transistor Q71, and the second terminal of the resistor R73 is electrically connected to the source of the transistor Q71 and the second isolation circuit, respectively, and the drain of the transistor Q71 and The anode of the light-emitting diode in the optocoupler U70 is electrically connected; The first end of the photosensitive tube in U70 is electrically connected to the detection control circuit.
  • the first end of the photosensitive tube in U70 is also electrically connected to the voltage stabilization circuit.
  • the second end of the photosensitive tube is electrically connected to the detection control circuit.
  • the photocoupler U70 isolates the third isolation circuit into a primary and a secondary.
  • the light-emitting diode, the transistor Q71, The transistor Q72, the resistor R70, the resistor R72, the resistor R73, the resistor R74, and the capacitor C73 are located at the primary of the double-isolated LED emergency light control circuit, and the photocoupler U70
  • the light-sensitive tube is located at the secondary side of the multiple-isolated LED emergency light control circuit.
  • the detection control circuit includes: a single-chip microcomputer U60, a transistor Q61, a transistor Q50, a transistor Q62, a diode D61, a voltage regulator Z61, a capacitor C61, a capacitor C62, a capacitor C63, a resistor R50, a resistor R60, a resistor R61, a resistor R62, resistor R63, resistor R64, resistor R65, resistor R67, and resistor R68.
  • the first terminal of the resistor R63 is electrically connected to the third isolation circuit, and the first terminal of the resistor R63 is also connected to the microcontroller U60.
  • the second end of the resistor R63 is electrically connected to the collector of the transistor Q62, the first end of the capacitor C61, and the single-chip microcomputer U60, and the first end of the resistor R64 is connected to all The third isolation circuit, the first end of the resistor R65, and the negative pole of the diode D61 are electrically connected.
  • the second end of the resistor R65 is electrically connected to the single-chip microcomputer U60.
  • the positive pole of the diode D61 and The first end of the resistor R67, the first end of the resistor R68, the first end of the capacitor C62, and the negative pole of the voltage regulator Z61 are electrically connected, and the second end of the resistor R67 and the The first isolation circuit is electrically connected to the capacitor C62.
  • the second terminal is electrically connected to the first terminal of the resistor R62 and the base of the transistor Q62 respectively; the second terminal of the resistor R64 is connected to the positive electrode of the voltage regulator tube Z61 and the first terminal of the resistor R68, respectively.
  • Two terminals, the second terminal of the resistor R62, the emitter of the transistor Q62, the second terminal of the capacitor C61, the first terminal of the capacitor C63, the source of the transistor Q61, and the resistor R61 The first end of the resistor R64 is also electrically connected to the microcontroller U60, and the second end of the capacitor C63 is connected to the second end of the resistor R61 and the resistor R60 respectively.
  • the first end is electrically connected, and the second end of the capacitor C63 is also electrically connected to the single chip U60; the single chip U60 is electrically connected to the second isolation circuit, and the single chip U60 is further connected to the booster
  • the constant current circuit 06 is electrically connected.
  • the single-chip microcomputer U60 is also electrically connected to the gate of the transistor Q61.
  • the drain of the transistor Q61 is connected to the gate of the transistor Q50 and the first terminal of the resistor R50.
  • the LED module is electrically connected, and the second ends of the resistor R50 are respectively connected to the source of the transistor Q50.
  • the second isolation circuit, the charging protection circuit, and the voltage stabilizing circuit are electrically connected.
  • the drain of the transistor Q50 is electrically connected to the second end of the resistor R60 and the boost constant current circuit. Connection; the detection control circuit is at a secondary level of the double-isolated LED emergency light control circuit, and the detection control circuit is configured to detect output information of the third isolation circuit and detect the first isolation circuit Whether there is output; once the mains power is connected to the first isolation circuit, the single-chip microcomputer U60 is reset and the program is executed from the beginning; detecting the voltage of the battery to control the working state of the LED module; outputting a driving signal to the On the network PA; output signals to the network N1, the network EN, and the network PE to control the working states of the boost constant current circuit and the LED module.
  • the LED module includes a diode D90, a capacitor C90, a switch Q91, and an LED.
  • the anode of the diode D90 is electrically connected to the first isolation circuit.
  • the anode of the diode D90 and the capacitor C90 are electrically connected.
  • the first terminal of the capacitor, the positive electrode of the LED, and the boost constant current circuit are electrically connected, the second terminal of the capacitor C90 is grounded, and the second terminal of the capacitor C90 is also connected to the source of the switching transistor Q91. Electrically connected, the drain of the switching tube Q91 is electrically connected to the negative electrode of the LED, and the gate of the switching tube Q91 is electrically connected to the detection control circuit.
  • the charging protection circuit includes a charging integrated circuit U30, a protection integrated circuit U41, a resistor R31, a resistor R41, a capacitor C30, a capacitor C31, and a capacitor C41, and the charging integrated circuit U30 is electrically connected to the first isolation circuit,
  • the charging integrated circuit U30 is also electrically connected to the first terminal of the capacitor C30, and the second terminal of the capacitor C30 is respectively connected to the first terminal of the resistor R31, the first terminal of the capacitor C31, and the The protection integrated circuit U41 is electrically connected.
  • the second end of the capacitor C30 is also grounded.
  • the charging integrated circuit U30 is also grounded.
  • the second end of the capacitor C31 is connected to the charging integrated circuit U30 and the resistor R41.
  • the first terminal, the first pole of the battery, and the detection control circuit are electrically connected, and the second terminal of the resistor R41 is electrically connected to the first terminal of the capacitor C41 and the protection integrated circuit U41, respectively.
  • the second end of the capacitor C41 is electrically connected to the protection integrated circuit U41 and the second pole of the battery, respectively, and the charging protection circuit is used to control the charging current and charging state of the battery.
  • the step-up constant current circuit includes an integrated circuit U50, a diode D50, an inductor L50, a resistor Rs50, a capacitor C51, and a capacitor C52.
  • the first ends of the capacitor C51 are respectively connected to the integrated circuit U50 and the detection control circuit.
  • the second end of the capacitor C51 is electrically connected to the first end of the resistor Rs50 and the integrated circuit U50, and the second end of the capacitor C51 is also grounded.
  • the integrated circuit U50 and the The detection control circuit is electrically connected; the second end of the resistor Rs50 is electrically connected to the integrated circuit U50 and the negative electrode of the LED; the first end of the inductor L50 is electrically connected to the detection control circuit.
  • the second end of the inductor L50 is electrically connected to the positive electrode of the integrated circuit U50 and the diode D50, and the negative electrode of the diode D50 is respectively connected to the integrated circuit U50, the LED module, and the capacitor.
  • the first terminal of C52 is electrically connected, the second terminal of the capacitor C52 is grounded, and the boosted constant current circuit converts the voltage and current provided by the battery into a constant current higher than the voltage of the battery. To fit the LED module jobs.
  • the working state of the boost constant current circuit is controlled by the detection control circuit.
  • the voltage stabilizing circuit includes an integrated circuit U80, a diode D81, a voltage stabilizing tube Z81, a resistor R80, capacitors C80, and C81, and a first end of the resistor R80 is electrically connected to the first isolation circuit.
  • the second end of the resistor R80 is electrically connected to the negative pole of the voltage regulator tube Z81 and the positive pole of the diode D81, and the negative pole of the diode D81 is respectively connected to the first end of the capacitor C80 and the battery.
  • the first electrode and the integrated circuit U80 are electrically connected, and the positive electrode of the voltage regulator tube Z81 is electrically connected to the second terminal of the capacitor C80, the integrated circuit U80, and the first terminal of the capacitor C81, respectively.
  • the positive pole of the voltage regulator tube Z81 is also grounded, and the second end of the capacitor C81 is electrically connected to the integrated circuit U80, the third isolation circuit, and the detection control circuit, respectively.
  • the detection control circuit and the optocoupler U70 provide a stable voltage.
  • the double-isolated LED emergency light control circuit further includes a mains transformer T13 and a resistor R014, a first end of the mains transformer T13 and a first end of the resistor R014 and a switch of the switch respectively.
  • the first terminal is electrically connected
  • the second terminal of the mains transformer T13 is electrically connected to the second terminal of the resistor R014, the first isolation circuit, and the third isolation circuit, respectively.
  • the two ends are electrically connected to the first isolation circuit and the second isolation circuit, respectively.
  • the battery is located on the secondary side of the dual-isolated LED emergency light control circuit.
  • the wall switch is used to control the emergency lights.
  • the first isolation circuit, the second isolation circuit, and the third isolation circuit each include an isolation device.
  • the isolation device electrically isolates the double-isolated LED emergency light control circuit into a primary and a secondary.
  • the primary circuit is used to connect the mains power, and the switch is set. At the primary level, emergency lights are set at the secondary level.
  • the second isolation circuit is used to provide a discontinuous power supply for the third isolation circuit when the primary is not connected to the mains.
  • the third isolation circuit is used to inductively detect whether there is a mains supply, and inductively detect whether a wall switch is closed, and output the sensed information through the photocoupler U70 to the detection control circuit for processing to achieve corresponding control.
  • FIG. 1 is a circuit diagram (circuit block diagram) of a double-isolated LED emergency light control circuit according to an exemplary embodiment of the present invention
  • FIG. 2 is a circuit diagram (a specific implementation circuit diagram) of a double-isolated LED emergency light control circuit according to an exemplary embodiment of the present invention
  • FIG. 3 is a circuit diagram of a detection control circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a voltage of an interrupted power supply provided by the second isolation circuit to the third isolation circuit
  • FIG. 6 is an enlarged schematic diagram of the high-frequency signal in FIG. 4 and is a detailed feature of the high-frequency signal.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features. Therefore, the defined “first” and “second” features may explicitly or implicitly include one or more of the features. In the description of the present invention, unless otherwise stated, "a plurality" means two or more.
  • a network is a line connected by a wire to an interface or a port of a component, and generally has the same potential or signals with the same waveform. There is no resistance or loss. Referring to Figures 1 and 2, name the following networks:
  • Power network AC1, AC2, VB +, 3V, VA, VB, VC, VD, VR, PB, Wait;
  • Signal network PA, PE, EN, N1, SN, D1, D2, D3, D4, D5, etc.
  • primary refers to the part of the circuit on the left side of the thick red dashed line in the figure (non-dotted box, marked as “primary")
  • secondary refers to the part of the circuit on the right side of the red thick dashed line in the figure (non Dotted box, identified as 'Secondary').
  • FIG. 1 and FIG. 2 there is shown a circuit diagram of a dual-isolated LED emergency light control circuit according to an embodiment of the present application, in which FIG. 1 is a circuit block diagram and FIG. 2 is a specific implementation diagram.
  • the double-isolated LED emergency light control circuit includes: a first isolation circuit 01, a second isolation circuit 02, a third isolation circuit 03, an LED module 04, and a boost constant current circuit.
  • the mains power is electrically connected to the first isolation circuit 01, the second isolation circuit 02, and the third isolation circuit 03.
  • the first isolation circuit 01 is also connected to the LED module 04, the charging protection circuit 05, the detection control circuit 07, and the voltage regulator. Circuit 08 is electrically connected.
  • the charging protection circuit 05 is also electrically connected to the battery 12 and the second isolation circuit 02, respectively.
  • the battery 12 is also electrically connected to the voltage stabilizing circuit 08.
  • the second isolation circuit 02 is also electrically connected to the third isolation circuit 03, the boost constant current circuit 06, and the detection control circuit 07, and the third isolation circuit 03 is also electrically connected to the detection control circuit 07 and the voltage stabilization circuit 08 to detect
  • the control circuit 07 is also electrically connected to the boost constant current circuit 06
  • the boost constant current circuit 06 is also electrically connected to the battery 12
  • the first end of the switch 15 is electrically connected to the first isolation circuit 01 and the third isolation circuit 03, respectively.
  • the second end of the switch 15 is electrically connected to the first isolation circuit 01 and the second isolation circuit 02, respectively.
  • the first isolation circuit 01 includes a transformer T20A, and the transformer T20A is electrically isolated.
  • the second isolation circuit 02 includes a transformer T70, and the transformer T70 is electrically isolated.
  • the third isolation circuit 03 includes an optocoupler U70. Etc.
  • the optocoupler U70 is electrically isolated. Through the electrical isolation of the transformer T20A, the transformer T70, and the optocoupler U70, the double-isolated LED emergency light circuit is isolated into primary and secondary, and the primary and secondary are electrically isolated, which meets relevant safety requirements.
  • the primary circuit is used to connect to mains power
  • the secondary circuit is used to connect to the LED module 04
  • the battery 12 is disposed on the secondary.
  • the second isolation circuit 02 is used to provide an intermittent power source for the third isolation circuit 03 when the primary is not connected to the mains; when the primary is not connected to the mains, through the opening of the switch 15 or Turn off, and then control the working state of the LED module 04 through the transformation of the third isolation circuit 03.
  • the second isolation circuit 02 uses the battery 12 to provide an interrupted power source for the third isolation circuit 03 when the primary is not electrically connected to the mains, and the waveform characteristics of the interrupted power source conform to the shape shown in FIG. 5 Characteristics, the second isolation circuit 02 includes a switching tube Q70, and the driving waveform of the switching tube Q70 conforms to the shape characteristics shown in FIG. 4 and FIG. 6.
  • the switch 15 is used to control the working state of the LED module 04 through the third isolation circuit 03 when the primary is not connected to the mains.
  • the first isolation circuit 01 includes an AC rectification filter circuit 09, a driving circuit 10, a DC rectification filter circuit 11, and a high-frequency transformer T20.
  • the AC rectification filter circuit 09 is electrically connected to the mains and drive circuit 10, the drive circuit 10 is electrically connected to the high frequency transformer T20, the high frequency transformer T20 is electrically connected to the DC rectification filter circuit 11, and the DC rectification filter circuit 11 and
  • the LED module 04, the charging protection circuit 05, the detection control circuit 07, and the voltage stabilization circuit 08 are electrically connected.
  • the transformer T20 is electrically isolated, electrically isolates the first isolation circuit 01 into a primary and a secondary, the AC rectification filter circuit 09 and the driving circuit 10 are located at the primary, and the DC rectification filter circuit 11 is located at the secondary level.
  • the AC rectification and filtering circuit 09 rectifies and filters the mains power into a pulsating direct current VR.
  • the driving circuit 10, the transformer T20, and the DC rectifying and filtering circuit 11 constitute an isolated constant current circuit, and converts the pulsating power source VR into a DC voltage that meets requirements. And current, this kind of DC voltage and current that can meet the demand are divided into 3 channels: VA, VB and VC.
  • VA provides suitable constant current power for LED module 04
  • VB provides power for charging battery 12 and also provides power for voltage stabilization circuit 08
  • VC provides detection signals for detection control circuit 07 and also provides MCU 60 for detection control circuit 07 Reset signal.
  • Transformer T20 is an electrically isolated high-frequency transformer. It has three windings, of which two windings of T20A are the main windings, T20B is the auxiliary winding, and T20B is located at the beginning of the entire circuit.
  • the AC rectifying and filtering circuit 09 includes a diode D10, a diode D11, a diode D12, a diode D13, a capacitor C10, and a capacitor C11, and rectifies and filters the mains power into a pulsating DC power VR.
  • the anode of the diode D10 is electrically connected to the anode of the diode D12, the mains, and the first terminal of the capacitor C10.
  • the anode of the diode D10 is electrically connected to the anode of the diode D11 and the driving circuit 10, respectively.
  • the anode of the diode D12 is respectively connected to the diode D13.
  • the positive terminal of the capacitor and the first terminal of the capacitor C11 are electrically connected, and the anode of the diode D12 is also connected to the primary common ground.
  • the anode of the diode D13 is also electrically connected to the second terminal of the capacitor C10, the anode of the diode D11, and the mains.
  • the second terminal of the capacitor C11 is also electrically connected to the negative electrode of the diode D11 and the driving circuit 10.
  • Drive circuit 10 includes transistor Q20, integrated circuit U20, diode D20, diode D21, capacitor C20, capacitor C22, capacitor C23, resistor R21, resistor R22, resistor R23, resistor R24, resistor R26, resistor Rs21, and auxiliary winding T20B of transformer T20 .
  • the first terminal of the resistor R21 is electrically connected to the first terminal of the capacitor C20, the first terminal of the resistor R26, and the transformer T20A.
  • the second terminal of the resistor R21 is also connected to the negative terminal of the diode D20 and the first terminal of the capacitor C22.
  • Circuit U20 is electrically connected.
  • the anode of diode D20 is electrically connected to the first end of resistor R22.
  • the second end of resistor R22 is also electrically connected to the auxiliary winding T20B and the first end of resistor R23.
  • the auxiliary winding T20B is connected to the resistor.
  • the second terminal of the resistor R23 is also electrically connected to the second terminal of the resistor R24 and the integrated circuit U20.
  • the second terminal of the resistor Rs21 is also electrically connected to the source of the transistor Q20.
  • the integrated circuit U20 is also electrically connected to the gate of the transistor Q20.
  • the drain of the transistor Q20 is electrically connected to the anode of the diode D21 and the transformer T20A, and the anode of the diode D21 is electrically connected to the second terminal of the capacitor C20 and the second terminal of the resistor R26.
  • U20 is a single stage, high power factor, primary-side control AC to DC LED driver chip.
  • the U20's power factor correction function operates in the critical conduction mode to achieve a high power factor and reduce the switching loss of the power MOS tube Q20.
  • the LED current can be precisely modulated without the need for optocouplers and secondary-side sensing devices.
  • U20 also achieves Various protection functions, including over-current protection, over-voltage protection, short-circuit protection, and over-temperature protection, to ensure the reliable operation of the system.
  • the DC rectifying and filtering circuit 11 includes a diode D22, a diode D24, a diode D25, a capacitor C24, a capacitor C25, a capacitor C26, and a capacitor C92.
  • the anode of the diode D24 is electrically connected to the anode of the diode D25 and the transformer T20A.
  • the transformer T20A is electrically connected to the anode of the diode D22.
  • the transformer T20A is electrically connected to the first terminal of the capacitor C26.
  • the first terminal of the capacitor C26 is grounded.
  • the second end of C26 is electrically connected to the negative pole of the diode D24, and the negative pole of the diode D24 is electrically connected to the charging protection circuit 05 and the voltage stabilizing circuit 08.
  • the negative electrode of the diode D25 is electrically connected to the first terminal of the capacitor C25, and the negative electrode of the diode D25 is also electrically connected to the detection control circuit 07.
  • the negative terminal of the diode D22 is electrically connected to the first terminal of the capacitor C24 and the first terminal of the capacitor C92, the negative terminal of the diode D22 is also electrically connected to the LED module 04, and the second terminal of the capacitor C24 is respectively connected to the second terminal of the capacitor C92.
  • the second terminal of the capacitor C25 is electrically connected, and the second terminal of the capacitor C24 is also grounded.
  • the DC rectification filter circuits 11 are all located on the secondary side of the entire circuit.
  • Diodes D24 and D25 share a winding.
  • Diode D22 and capacitor C24 and capacitor C92 form a rectifier and filter circuit.
  • the output voltage is VA.
  • VA provides a suitable constant current power source for LED module 04.
  • Diode D24 and capacitor C26 form a rectifier and filter circuit.
  • the output voltage is VB and VB is battery 12. It provides power for charging and also supplies power for the voltage stabilization circuit 08.
  • the diode D25 and the capacitor C25 form a rectifier filter circuit.
  • the output voltage is VC.
  • VC provides a detection signal for the detection control circuit 07. It also provides a reset signal for the microcontroller U60.
  • the second isolation circuit 02 includes a transformer T70, a switch Q70, a diode D70, a resistor R76, a capacitor C71, a capacitor C72, a diode D71, a voltage regulator Z71, a resistor R75, and a capacitor C70.
  • the transformer T70 is electrically isolated, and electrically isolates the entire emergency light circuit into a primary and a secondary.
  • the switch Q70 and the capacitor C70 are located on the secondary side, and the diode D70, the resistor R76, the capacitor C71, the capacitor C72, the diode D71, the voltage regulator Z71, and the resistor R75 are located on the primary side.
  • the anode of the diode D71 is electrically connected to the mains
  • the anode of the diode D71 is also electrically connected to the anode of the diode D12
  • the anode of the diode D72 is electrically connected to the third isolation circuit 03
  • the anode of the diode D72 is also respectively stable.
  • the negative terminal of the pressure tube Z71, the first terminal of the resistor R75, the first terminal of the capacitor C72, and the first terminal of the resistor R76 are electrically connected.
  • the second terminal of the resistor R76 is respectively connected to the first terminal of the capacitor C71 and the negative terminal of the diode D70.
  • the anode of the diode D70 is electrically connected to the transformer T70; the anode of the voltage regulator Z71 is electrically connected to the second terminal of the resistor R75, the second terminal of the capacitor C72, the second terminal of the capacitor C71, and the transformer T70.
  • the positive pole of the pressure tube Z71 is also connected to the primary common ground Electrical connection; the transformer T70 is electrically connected to the first terminal of the capacitor C70, the second terminal of the capacitor C70 is grounded, the second terminal of the capacitor C70 is also electrically connected to the source of the switch Q70, and the transformer T70 and the switch Q70 are electrically connected.
  • the drain is electrically connected, and the gate of the switch Q70 is electrically connected to the detection control circuit 07.
  • the second isolation circuit 02 provides an intermittent power source for the third isolation circuit 03.
  • the switching tube Q70 causes the second isolation circuit 02 to operate in a high-frequency state, and the transformer T70 is in a state of power storage and discharge, so that the energy of the battery 12 is converted into the energy required for the operation of the third isolation circuit 03.
  • the diode D70 is a high-frequency rectifier diode, and conducts high-frequency voltage and current in a single phase.
  • the capacitor C71, the capacitor C72, and the resistor R76 constitute Type filter, which filters the high-frequency voltage to a DC voltage, and the resistor R76 also plays a role of limiting the current.
  • the diode D71 is an isolation diode.
  • the double-isolated LED emergency light control circuit is electrically isolated from the high-voltage mains AC when it is connected to the mains, and provides a forward bias current for the third isolation circuit 03 when it is not connected to the mains. .
  • the voltage regulator Z71 regulates the voltage output by the second isolation circuit 02 to prevent the third isolation circuit 03 from being damaged.
  • the resistor R75 provides a required current load for the second isolation circuit 02.
  • the capacitor C70 is a decoupling capacitor and functions as a battery to avoid mutual interference.
  • the second isolation circuit 02 provides an interrupted power supply for the third isolation circuit 03.
  • the voltage output of this interrupted power supply is the network PB, and the voltage output of the interrupted power supply conforms to the shape and performance parameters shown in FIG. 5.
  • the working current of the second isolation circuit 02 is very large (usually mA level).
  • no mains supply if the battery continues to provide power to the second isolation circuit 02, the battery's power will soon be exhausted. . Therefore, through the control of the detection control circuit 07, an intermittent power supply is provided for the third isolation circuit 03, and the use time of the battery is extended to the maximum extent.
  • the implementation method is: when the detection control circuit 07 detects that there is no mains power supply, the detection control circuit 07 outputs the driving signals shown in FIG. 4 and FIG. 6 on the network PA line, and is converted by the switch Q70, the transformer T70 and other components Finally, the line output of the network PB is provided with an interrupted voltage as shown in FIG. 5 to provide an interrupted power supply for the third isolation circuit 03.
  • the second isolation circuit 02 is actually an open-isolated flyback DC converter circuit: it is electrically isolated by the transformer T70 and becomes an open circuit without a feedback signal (voltage stabilization is performed by the voltage regulator Z71). The primary voltage of the transformer T70 and The phases of the secondary voltages are reversed to form a flyback circuit. In order to ensure the normal operation of this circuit, and in order not to damage the switch Q70, this circuit must set a minimum current load, and the resistor R75 is set for this minimum current load.
  • AC1 and AC2 are the mains AC phase line network.
  • the diode D71 cannot be turned on due to the reverse bias of the diode D71 and is almost insulated, so the voltage AC will not be isolated from the second.
  • the circuit 02 and the third isolation circuit 03 constitute an overvoltage hazard; when the voltage of the phase line AC1 is lower than the voltage of the phase line AC2, the diode D71 basically does not work, and the current flows from the phase line AC2 through the resistor R70 and the transistor B of Q72 Pole and E pole (the voltage between pole B and pole E is very low, only within 1V), the primary common ground
  • the rectifier diode (forward-biased and conducting) in the AC rectification and filtering circuit goes to the phase line AC1 to form a loop.
  • the current thus formed is named I2. Because the resistance of the resistor R70 is very large and the voltage between the B and E poles is very low, so I2 is very small and will not damage the transistor Q72.
  • I2 flows through the resistor R70 and the B and E poles of the transistor Q72, it does not flow through the other components of the second isolation circuit 02 and the third isolation circuit 03, so when the voltage of the phase line AC1 is lower than the phase When the voltage of the line AC2, the high-voltage mains AC does not cause damage to the second isolation circuit 02 and the third isolation circuit 03.
  • the third isolation circuit 03 includes a photocoupler U70, a transistor Q71, a transistor Q72, a resistor R70, a resistor R72, a resistor R73, a resistor R74, and a capacitor C73.
  • the photocoupler U70 isolates the third isolation circuit 03 into a primary and a secondary.
  • the first terminal of the resistor R70 is electrically connected to the mains, the first terminal of the resistor R70 is also electrically connected to the positive electrode of the diode D11, and the second terminal of the resistor R70 is respectively connected to the first terminal of the resistor R72 and the capacitor C73.
  • the first terminal is electrically connected to the base of the transistor Q72.
  • the second terminal of the resistor R72 is electrically connected to the second terminal of the capacitor C73, the emitter of the transistor Q72, and the first terminal of the resistor R74.
  • the first terminal of the resistor R74 is electrically connected.
  • Primary public The second terminal of resistor R74 is electrically connected to the negative terminal of the light-emitting diode in optocoupler U70.
  • the collector of transistor Q72 is electrically connected to the first terminal of resistor R73 and the gate of transistor Q71.
  • the two terminals are respectively electrically connected to the source of the transistor Q71 and the anode of the diode D71, and the drain of the transistor Q71 is electrically connected to the anode of the light-emitting diode in the optocoupler U70.
  • the first end of the photosensitive tube in the optocoupler U70 is electrically connected to the detection control circuit 07.
  • the first end of the photosensitive tube in the optocoupler U70 is also electrically connected to the voltage stabilization circuit 08.
  • the two terminals are electrically connected to the detection control circuit 07.
  • the primary power of the third isolation circuit 03 is provided by the second isolation circuit 02; it is used to sense whether there is a commercial power supply, and to sense whether the switch 15 is closed or open, and passes the
  • the optocoupler U70 outputs the sensed information (output to the line where the network SN is located) and passes it to the detection control circuit 07 for processing to achieve the corresponding control function.
  • the working state of the third isolation circuit 03 has the following four situations:
  • the first case a case where there is a mains supply and the wall switch 15 is closed.
  • the detection control circuit 07 will detect and will not output a high-frequency driving signal at the network PA, that is, the network PA is always low, so the second isolation circuit 02 will not be the third isolation circuit 03. Provide intermittent power.
  • the light-emitting diode of the optocoupler U70 will not be turned on and will not emit light.
  • the photosensitive tube of the optocoupler U70 shows a high-impedance output state.
  • the network SN is a low-voltage signal and is detected by the detection control circuit 07 At this point, the detection control circuit 07 will not start the battery power supply, only the mains power supply mode, and provide the LED module 04 with a suitable voltage and current.
  • the second case a case where there is a mains supply and the wall switch 15 is off.
  • the detection control circuit 07 will detect and output a high-frequency driving signal at the network PA, that is, the level of the network PA conforms to the performance parameters of FIG. 4 and FIG. 6, so the second isolation circuit 02 will be
  • the third isolation circuit 03 provides an intermittent power source.
  • the mains AC will not supply power to the second isolation circuit 02 and the third isolation circuit 03.
  • the transistor Q72 is turned off without being forward biased, and the transistor Q71 is turned off with zero bias. Because of the above three reasons for this situation, the light-emitting diode of the optocoupler U70 will not be turned on and will not emit light.
  • the photosensitive tube of the optocoupler U70 shows a high-impedance output state.
  • the network SN is a low-voltage signal and is detected by the detection control circuit 07. Therefore, it will not start the battery power supply, nor will it start the mains power supply mode, nor will it provide a suitable voltage and current for the LED module 04.
  • the third case a case where there is no mains power supply and the wall switch 15 is closed.
  • the detection control circuit 07 will detect and output a high-frequency driving signal at the network PA, that is, the level of the network PA conforms to the performance parameters of FIG. 4 and FIG. 6, so the second isolation circuit 02 will Discontinuous power is provided for the third isolation circuit 03.
  • the transistor Q72 is turned on in a forward bias, and the transistor Q71 is turned on in a negative bias. Because of the above three reasons for this situation, the light-emitting diode of the optocoupler U70 is turned on to emit light, and then the photosensitive tube of the optocoupler U70 is turned on with a low-impedance output state.
  • the network SN is a high-voltage signal and is detected by the detection control circuit 07. At this point, the detection control circuit 07 will start the battery power supply instead of the mains power supply mode, and provide the LED module with a suitable voltage and current.
  • the fourth case a case where there is no mains power supply and the wall switch 15 is off.
  • the detection control circuit 07 will detect and output a high-frequency driving signal at the network PA, that is, the level of the network PA conforms to the performance parameters of FIG. 4 and FIG. 6, so the second isolation circuit 02 will Discontinuous power is provided for the third isolation circuit 03.
  • no mains power supplies power to the second isolation circuit 02 and the third isolation circuit 03.
  • the transistor Q72 is not forward biased, the transistor Q72 is not turned on and is turned off, and the transistor Q71 is turned off without being negatively biased.
  • the network SN is a low-voltage signal and is The detection control circuit 07 detects that the detection control circuit 07 will not start the battery power supply or the mains power supply mode, so it will not provide a suitable voltage and current for the LED module.
  • the detection control circuit 07 includes: a microcontroller U60, a transistor Q61, a transistor Q50, a transistor Q62, a diode D61, a voltage regulator Z61, a capacitor C61, a capacitor C62, a capacitor C63, a resistor R50, a resistor R60, a resistor R61, Resistor R62, resistor R63, resistor R64, resistor R65, resistor R67, and resistor R68.
  • the detection control circuit 07 is at a secondary level of the entire circuit.
  • the first end of the resistor R63 is electrically connected to the first end of the photosensitive tube in the photocoupler U70, the first end of the resistor R63 is also electrically connected to the microcontroller U60, and the second end of the resistor R63 is connected to the transistor Q62.
  • the electrode, the first end of the capacitor C61, and the microcontroller U60 are electrically connected.
  • the first end of the resistor R64 is electrically connected to the second end of the photosensitive tube in the optocoupler U70, the first end of the resistor R65, and the negative end of the diode D61.
  • the second end of R65 is electrically connected to the microcontroller U60.
  • the anode of diode D61 is electrically connected to the first end of resistor R67, the first end of resistor R68, the first end of capacitor C62, and the negative end of voltage regulator Z61.
  • the second end of R67 is electrically connected to the negative pole of diode D25.
  • the second end of capacitor C62 is electrically connected to the first end of resistor R62 and the base of transistor Q62; the second end of resistor R64 is connected to the regulator Z61.
  • the second end of the resistor R64 is also electrically connected to the microcontroller U60
  • the second end of the capacitor C63 is electrically connected to the second end of the resistor R61 and the first end of the resistor R60, and the second end of the capacitor C63 is also electrically connected to the microcontroller U60; the microcontroller U60 and the gate of the switch Q70 Electrically connected, the microcontroller U60 is also electrically connected to the boost constant current circuit 06.
  • the microcontroller U60 is also electrically connected to the gate of the transistor Q61.
  • the drain of the transistor Q61 is connected to the gate of the transistor Q50 and the first end of the resistor R50.
  • the LED module 04 is electrically connected.
  • the second end of the resistor R50 is electrically connected to the source of the transistor Q50, the first end of the capacitor C70, the charging protection circuit 05, and the voltage stabilization circuit 08.
  • the drain of the transistor Q50 is connected to The second terminal of the resistor R60 is electrically connected to the step-up constant current circuit 06.
  • the detection control circuit 07 has the following functions: first, detecting the signal output from the third isolation circuit 03 to the network SN (information output by the photosensitive tube of the optocoupler U70 to the network SN); second, detecting the first isolation circuit 01 Whether there is output (the information is output to the network VC); Third, the voltage of the battery 12 is detected to control the working status of the LED module 04; Fourth, the voltage and current are output to the network PE [provided for the boost constant current circuit 06 Power supply]; Fifth, output control signal to network N1 [for selecting VA or VD as drive voltage and current of LED module 04]; Sixth, output control signal to network EN [for controlling boost constant current circuit 06 Whether it works]; Seventh, output the driving signal [that is, the driving signal shown in Figure 4 and Figure 6, after switching Q70, transformer T70, etc., and finally output the intermittent voltage shown in Figure 5 on the network PB line, which is the third The isolation circuit provides interrupted power.
  • the U60 is a single chip microcomputer and is a core part of the detection and control circuit 07, which is equivalent to a human brain and facial features.
  • the microcontroller U60 has the following main features: suspend and wake up, watchdog timer, A / D converter, PWM function, programmable timer / counter, low voltage reset function, and so on.
  • the pins and functions used by the microcontroller U60 are as follows:
  • Pin 1 is the pin that supplies power. Pin 1 is electrically connected to the first end of resistor R63. Pin 8 is the common pin.
  • the second pin outputs a signal to the network D3, and the second pin is electrically connected to the gate of the transistor Q61.
  • the output signal is high voltage
  • network D3 is high voltage
  • transistor Q61 is forward biased and turned on
  • network N1 is low voltage
  • transistor Q50 is negatively biased and turned on
  • network PE is high voltage
  • network PE is up
  • the voltage constant current circuit 06 provides power; when the output signal is low voltage, the network D3 is low voltage, the transistor Q61 is not biased and does not conduct, the network N1 is high voltage, and the transistor Q50 is not negatively biased and does not conduct.
  • the network PE is a low voltage, and the network PE does not provide power for the boost constant current circuit 06.
  • the network PE When the network PE is at a high voltage, because the voltage of the network PE is actually approximately equal to the voltage of the battery 12 (the transistor Q50 is turned on, its output internal resistance is very small, the DS pole of the transistor Q50 is quite short, and the S pole of the MOS transistor Q50 is again It is connected to the positive electrode VB + of the battery), so the voltage of battery 12 is reflected to the network D2 through the voltage dividing circuit (voltage dividing circuit composed of resistor R60 and resistor R61) and the filtering (filtering out interference) of capacitor C63. To detect the voltage of the battery 12.
  • the voltage dividing circuit voltage dividing circuit composed of resistor R60 and resistor R61
  • the third pin is the signal input pin of the network SN.
  • the third pin is electrically connected to the second end of the resistor R65, and is used to check the following states: whether AC power is input into the first isolation circuit 01, and whether the wall switch 15 is closure.
  • the first isolation circuit 01 When there is mains power and the switch 15 is closed, the first isolation circuit 01 outputs a voltage VC.
  • VC is regulated by the resistors R67 and R68 and the zener diode Z61 to form a voltage D1 (the network D1 is used to represent this voltage D1).
  • the voltage D1 causes the diode D61 to be forward-biased and turned on, and the voltage D1 is added to the network SN.
  • the microcontroller U60 has just finished resetting, the program starts from the beginning, and it will not output the driving signal [ie, the driving signal shown in Figure 4 and Figure 6] to the network PA, and then it will not provide an intermittent power supply for the third isolation circuit 03.
  • the photosensitive tube of the optocoupler U70 will show a high impedance, and the signal on the network SN is a high voltage VC; therefore, the information input by pin 3 is AC power input and the switch 15 is closed.
  • the voltage on VC becomes low voltage
  • the voltage on network D1 is also low
  • the diode D61 is negatively biased and does not conduct
  • the signal on network SN is also changed from high voltage to Low voltage.
  • the signal on the network SN is low voltage, so the information input on pin 3 is that there is a mains input and the switch 15 is turned off.
  • the switch 15 When there is no utility power and the switch 15 is closed, the voltage on the network VC is 0, the voltage on the network D1 is also 0, and the diode D61 is negatively biased but not conducting, and the network VC has no effect on the signal on the network SN; this In this case, there is a high-frequency driving voltage on the network PA, and the third isolation circuit also has a power supply. Since the switch 15 is closed, the photosensitive tube of the photocoupler U70 will be turned on. At this time, the signal on the network SN is high voltage. Therefore, the information input by pin 3 is that there is no mains AC input and the switch 15 is closed.
  • the switch 15 When there is no utility power and the switch 15 is turned off, the voltage on the network VC is 0, the voltage on the network D1 is also 0, and the diode D61 is negatively biased but not conductive, and the network VC has no effect on the signal on the network SN; In this case, there is a high-frequency driving voltage on the network PA, and the third isolation circuit 03 also has a power supply. As the switch 15 is turned off, the photosensitive tube of the photocoupler U70 will also show high impedance and disconnect. At this time, the network The signal on SN is low voltage, so the information input on pin 3 is that there is no AC input and the switch 15 is turned off.
  • Pin 4 is the external reset pin of the microcontroller U60. Pin 4 is electrically connected to the first end of capacitor C61. Resistor R63 and capacitor C61 are external reset resistors and capacitors.
  • the first isolation circuit 01 outputs a voltage VC, and VC forms a voltage D1 by using the voltage divider of the resistors R67 and R68 and the clamping of the zener diode Z61 (using the network D1) Indicates this voltage D1), the voltage D1 passes through a differential circuit composed of a capacitor C62 and a resistor R62 to form a positive pulse voltage D4 (the voltage D4 is represented by the network D4), and the voltage D4 passes through the reverse direction of the transistor Q62 to form the exterior of the microcontroller U60 Reset signal D5 forces the microcontroller U60 to reset.
  • the fifth pin is the output pin of the microcontroller U60.
  • Pin 6 is the A / D conversion input pin of the microcontroller U60. Pin 6 is electrically connected to the second end of capacitor C63, which is used to check the voltage of battery BT1, so as to control the LED module 04 when the battery 12 is powered. Brightness, on or off, and operating time.
  • the 7th pin is the PWM conversion output pin of the microcontroller U60.
  • the 7th pin is electrically connected to the boost constant current circuit 06 and is used to control the brightness, on or off, and operation of the LED module 04 when the battery 12 is powered. time.
  • the LED module 04 includes a diode D90, a capacitor C90, a switch Q91, and a certain number of LEDs.
  • the anode of the diode D90 is electrically connected to the anode of the diode D22.
  • the anode of the diode D90 is electrically connected to the first terminal of the capacitor C90, the anode of the LED, and the boost constant current circuit 06.
  • the second terminal of the capacitor C90 is grounded.
  • the second end is also electrically connected to the source of the switch Q91, the drain of the switch Q91 is electrically connected to the negative electrode of the LED, and the gate of the switch Q91 is electrically connected to the drain of the transistor Q61.
  • LED module 04 is a light source and is the main part of the whole light. These LEDs can be connected in series, in parallel, or even mixed.
  • the driving voltage and current of the LED module 04 comes from two parts: the first part is the output VA of the first isolation circuit 01, and the second part is the output VD of the boost constant current circuit 06. Whether the LED module works is detected by detecting the network N1 of the control circuit 07. The LED module works when N1 is a positive voltage, and the LED module does not work when N1 is a 0 voltage.
  • the battery 12 may be a lithium-ion battery, a nickel-metal hydride battery, or the like.
  • the battery 12 is located on the secondary side of the circuit.
  • the battery 12 provides a suitable voltage and current for the LED module 04 through the boost constant current circuit 06, and is used in an emergency situation.
  • the battery 12 directly provides power to the second isolation circuit 02, and also provides a stable voltage (about 3V, but not limited to) a stable voltage (about 3V, but not limited to) for the detection control circuit 07 and the photosensitive tube of the photocoupler U70 through the voltage stabilization of the voltage stabilization circuit 08.
  • the charging protection circuit 05 includes a charging integrated circuit U30, a protection integrated circuit U41, a resistor R31, a resistor R41, a capacitor C30, a capacitor C31, and a capacitor C41.
  • the charging integrated circuit U30 is electrically connected to the negative electrode of the diode D24.
  • the charging integrated circuit U30 is also electrically connected to the first terminal of the capacitor C30, and the second terminal of the capacitor C30 is respectively connected to the first terminal of the resistor R31 and the first terminal of the capacitor C31.
  • the protection integrated circuit U41 is electrically connected.
  • the second end of the capacitor C30 is also grounded.
  • the charging integrated circuit U30 is also grounded.
  • the second end of the capacitor C31 is connected to the charging integrated circuit U30, the first end of the resistor R41, and the first of the battery 12. And the source of the transistor Q50 are electrically connected, the second end of the resistor R41 is electrically connected to the first end of the capacitor C41 and the protection integrated circuit U41, and the second end of the capacitor C41 is respectively connected to the protection integrated circuit U41 and the battery 12.
  • the second electrode is electrically connected.
  • the charging protection circuit 05 is used to control the charging current and charging state of the battery 12 to prevent the battery 12 from being damaged by the following conditions and ensure its long life and safety: overcharge, overdischarge, output overcurrent, output short circuit, reverse battery connection, Over temperature and so on.
  • Integrated circuit U30 is a complete single cell lithium battery constant current and constant voltage linear charging IC. It is packaged in SOT23-5. It has constant current and constant voltage trickle charging and various protection functions. It also has a soft start function, which can effectively limit the impact. Current.
  • the preset charging voltage is 4.2V (accuracy 1%), the trickle charging voltage is 2.9V, and the trickle size is about 20mA.
  • Integrated circuit U41 is packaged in SOT23-5 and also has a zero-voltage charging function.
  • the step-up constant current circuit 06 includes an integrated circuit U50, a diode D50, an inductor L50, a resistor Rs50, a capacitor C51, a capacitor C52, and the like.
  • the first terminal of the capacitor C51 is electrically connected to the source of the integrated circuit U50 and the transistor Q50, the second terminal of the capacitor C51 is electrically connected to the first terminal of the resistor Rs50 and the integrated circuit U50, and the second terminal of the capacitor C51 is also Grounding, the integrated circuit U50 and the microcontroller U60 are electrically connected; the second end of the resistor Rs50 is electrically connected to the negative electrode of the integrated circuit U50 and the LED; the first end of the inductor L50 is electrically connected to the source of the transistor Q50, and the inductance of the L50;
  • the second terminal is electrically connected to the positive electrode of the integrated circuit U50 and the diode D50, the negative electrode of the diode D50 is electrically connected to the positive electrode of the integrated circuit U50,
  • the step-up constant current circuit 06 converts the voltage and current provided by the battery 12 into a constant current higher than the voltage of the battery 12 to be suitable for the normal operation of the LED module 04.
  • the power of the step-up constant current circuit 06 is provided by the battery 12, and its conversion efficiency reaches 90%.
  • the integrated circuit U50 operates at a constant frequency of 1.2MHz, so it only needs a small inductor L50 and a small filter capacitor C52.
  • the U50 is packaged in a SOT23-6 with a built-in power MOS tube.
  • the U50 has soft start and PWM dimming. Function; U50 has over-voltage, over-current, over-heat protection functions; U50 also has a very low shutdown current (< 1uA).
  • the working state of the step-up constant current circuit 06 is controlled by the detection control circuit 07.
  • the output PE of the detection control circuit 07 controls the power supply of U50 in the step-up constant current circuit 06; the output EN of the detection control circuit 07 is step-up constant.
  • the voltage stabilization circuit 08 includes an integrated circuit U80, a diode D81, a voltage stabilization tube Z81, a resistor R80, a capacitor C80, and a capacitor C81.
  • the first end of the resistor R80 is electrically connected to the negative pole of the diode D24
  • the second end of the resistor R80 is electrically connected to the negative pole of the voltage regulator tube Z81 and the positive pole of the diode D81, respectively
  • the negative pole of the diode D81 is respectively connected to the first end of the capacitor C80 Terminal, the first pole of the battery 12,
  • the integrated circuit U80 is electrically connected, and the positive pole of the voltage regulator tube Z81 is electrically connected to the second terminal of the capacitor C80, the integrated circuit U80, and the first terminal of the capacitor C81, respectively.
  • the positive electrode is also grounded, and the second end of the capacitor C81 is electrically connected to the integrated circuit U80, the first leg of the single-chip microcomputer U60, and the photosensitive tube of the opto
  • the voltage stabilization circuit 08 provides a certain (about 3V) stable voltage for the detection control circuit 07 and the photosensitive tube of the photocoupler U70.
  • the power supply of the voltage stabilization circuit 08 is derived from the battery VB + and the output VB of the first isolation circuit.
  • the first isolation circuit 01 When there is mains power, the first isolation circuit 01 outputs VB.
  • VB passes the resistance R80, passes through the voltage regulator tube Z81, and then provides power to the voltage stabilization circuit 08 through the diode D81.
  • the dual-isolated LED emergency light control circuit further includes a mains transformer T13, a resistor R014, and a switch 15.
  • the first end of the mains transformer T13 is electrically connected to the first end of the resistor R014 and the first end of the switch 15, respectively.
  • the second end of the mains transformer T13 is connected to the second end of the resistor R014, the anode of the diode D11, and the resistor, respectively.
  • the first terminal of R70 is electrically connected, and the second terminal of the switch 15 is electrically connected to the first terminal of the capacitor C10 and the negative electrode of the diode D71, respectively.
  • the mains transformer T13 is equivalent to a secondary of the mains transformer, and its internal resistance is very small. When the mains transformer is not supplied, it is equivalent to a short circuit state (relative to the third isolation circuit). The mains transformer T13 provides the mains power. .
  • the resistance R014 is equivalent to the equivalent input resistance of all electrical appliances connected to T13. Generally, the resistance of R014 is small (relative to the third isolation circuit). Generally R014 is connected in parallel with T13.
  • the switch 15 is actually a wall switch, which is used to control the entire light.
  • the switch 15 in this article refers specifically to a wall switch.
  • the mains transformer T13, resistor Ro14, and switch 15 are located at the primary stage of the control circuit for the LED emergency light of the double isolation type.
  • a first isolation circuit, a second isolation circuit, a third isolation circuit, a detection control circuit, and the like are provided.
  • the wall switch is used to control the emergency light.
  • the first isolation circuit, the second isolation circuit, and the third isolation circuit each include an isolation device.
  • the isolation device electrically isolates the double-isolated LED emergency light control circuit into a primary and a secondary.
  • the primary circuit is used to connect the mains power, and the switch is set. At the primary level, emergency lights are set at the secondary level.
  • the second isolation circuit is used to provide a discontinuous power supply for the third isolation circuit when the primary is not connected to the mains.
  • the third isolation circuit is used to inductively detect whether there is a mains supply, and inductively detect whether a wall switch is closed, and output the sensed information through the photocoupler U70 to the detection control circuit for processing to achieve corresponding control.
  • sequence numbers of the foregoing embodiments of the present invention are merely for description, and do not represent the superiority or inferiority of the embodiments.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk.

Abstract

本发明公开了一种复式隔离型的LED应急灯控制电路,属于安全保护技术领域。复式隔离型的LED应急灯控制电路包括第一隔离电路、第二隔离电路、第三隔离电路、LED模组、升压恒流电路、检测控制电路、稳压电路、电池、充电保护电路、和开关SW等。第一隔离电路中包括变压器T20A,变压器T20A为电隔离的变压器;第二隔离电路中包括变压器T70,变压器T70为电隔离的变压器;第三隔离电路中包括光耦U70,光耦U70是电隔离的光耦。通过变压器T20A、变压器T70和光耦U70的电隔离作用,将复式隔离型的LED应急灯电路隔离成为初级和次级。解决了在符合安规的情况下在市电停电之后,开关无法控制应急灯的问题。

Description

复式隔离型的LED应急灯控制电路 技术领域
本发明涉及安全保护领域,特别涉及一种复式隔离型的LED应急灯控制电路。
背景技术
目前存在两种类型的LED应急灯控制电路,第一种类型的电路是电隔离的电路,符合安全标准,但是在市电停电的情况下不能通过墙壁开关来控制LED应急灯的亮和灭;第二种类型的电路是非电隔离的电路,在市电停电的情况下能通过墙壁开关来控制LED应急灯的亮和灭,但是不符合安全标准。
发明内容
为了解决现有技术中在符合安规的情况下,在市电停电之后开关无法控制应急灯的问题,本发明实施例提供了一种复式隔离型的LED应急灯控制电路。所述技术方案如下:
本发明提供一种复式隔离型的LED应急灯控制电路,所述复式隔离型的LED应急灯控制电路包括第一隔离电路、第二隔离电路、第三隔离电路、LED模组、充电保护电路、升压恒流电路、检测控制电路、稳压电路、电池和开关,所述第一隔离电路、所述第二隔离电路、所述第三隔离电路分别和市电电性连接,所述第一隔离电路还分别和所述LED模组、所述充电保护电路、所述检测控制电路、所述稳压电路电性连接;所述充电保护电路还分别和所述电池、所述第二隔离电路电性连接;所述电池还和所述稳压电路电性连接,所述第二隔离电路还分别和所述第三隔离电路、所述升压恒流电路、所述检测控制电路电性连接,所述第三隔离电路还和所述检测控制电路、所述稳压电路电性连接,所述检测控制电路还和所述升压恒流电路电性连接,所述升压恒流电路还和所述电池电性连接,所述开关的第一端分别和所述第一隔离电路、所述第三隔离电路电性连接,所述开关的第二端分别和所述第一隔离电路、所述第二隔离电路电性连接;所述第一隔离电路中包括变压器T20A,所述变压器T20A为电隔离的;所述第二隔离电路中包括所述变压器T70,所述变压器T70为电隔离的;所述第三隔离电路中包括光耦U70,所述光耦U70是电隔离的;通过所述变压器T20A、所述变压器T70和所述光耦U70的电隔离作用,将所述复式隔离型的LED应急灯控制电路隔离成为初级和次级;所述电池设置在次级;所述第二隔离电路用于在初级未连接到市电时,利用所述电池为所述第三隔离电路提供间断电源;在初级未连接到市电时,通过所述开关的开通或者断开、所述第三隔离电路的变换,控制所述LED模组的工作状态。
可选地,所述第一隔离电路,将市电AC变换成满足需求的所述直流VA、VB和VC。
可选地,所述第一隔离电路包括AC整流滤波电路、驱动电路、DC整流滤波电路以及高频变压器T20,所述AC整流滤波电路分别和市电、所述驱动电路电性连接,所述驱动电路和所述高频变压器T20电性连接,所述高频变压器T20和所述DC整流滤波电路电性连接,所述DC整流滤波电路分别和所述LED模组、所述充电保护电路、所述检测控制电路、所述稳压电路电性连接。
可选地,AC整流滤波电路包括二极管D10、二极管D11、二极管D12、二极管D13、电容C10和电容C11,所述二极管D10的正极分别和所述二极管D12的负极、市电、所述电容C10的第一端电性连接,所述二极管D10的负极分别和所述二极管D11的负极、所述驱动电路10电性连接;所述二极管D12的正极分别和所述二极管D13的正极、所述电容C11的第一端电性连接,所述二极管D12的正极还和初级公共地电性连接,所述二极管D13的负极还分别和所述电容C10的第二端、所述二极管D11的正极、市电电性连接;所述电容C11的第二端还和所述二极管D11的负极、所述驱动电路10电性连接,所述AC整流滤波电路用于将市电整流滤波成为脉动直流电。
可选地,所述驱动电路包括晶体管Q20、集成电路U20、二极管D20、二极管D21、电容C20、电容C22、电容C23、电阻R21、电阻R22、电阻R23、电阻R24、电阻R26、电阻Rs21、变压器T20的辅助绕组T20B,所述电阻R21的第一端分别和所述电容C20的第一端、所述电阻R26的第一端、所述变压器T20A、所述AC整流滤波电路电性连接,所述电阻R21的第二端还分别和所述二极管D20的负极、所述电容C22的第一端、所述集成电路U20电性连接,所述二极管D20的正极和所述电阻R22的第一端电性连接,所述电阻R22的第二端还分别和所述辅助绕组T20B、所述电阻R23的第一端电性连接,所述辅助绕组T20B分别和所述电阻R24的第一端、所述电容C22的第二端、所述电容C23的第一端、所述集成电路U20、所述电阻Rs21的第一端、初级公共地电性连接,所述电阻R23的第二端还和所述电阻R24的第二端、所述集成电路U20电性连接,所述电阻Rs21的第二端还和所述晶体管Q20的源极电性连接,所述集成电路U20还和所述晶体管Q20的栅极电性连接,所述晶体管Q20的漏极分别和所述二极管D21的正极、所述变压器T20A电性连接,所述二极管D21的负极分别和所述电容C20的第二端、所述电阻R26的第二端电性连接。
可选地,所述DC整流滤波电路位于所述复式隔离型的LED应急灯控制电路的次级,所述DC整流滤波电路包括二极管D22、二极管D24、二极管D25、电容C24、电容C25、电容C26、电容C92,所述二极管D24的正极分别和所述二极管D25的正极、所述变压器T20A电性连接,所述变压器T20A和所述二极管D22的正极电性连接,所述变压器T20A和所述电容C26的第一端电性连接,所述电容C26的第一端接地,所述电容C26的第二端和所述二极管D24的负极电性连接,所述二极管D24的负极和所述充电保护电路、所述稳压电路电性连接;所述二极管D25的负极和所述电容C25的第一端电性连接,所述二极管D25的负极还和所述检测控制电路电性连接;所述二极管D22的负极分别和所述电容C24的第一端、所述电容C92的第一端电性连接,所述二极管D22的负极还和所述LED模组电性连接,所述电容C24的第二端分别和所述电容C92的第二端、所述电容C25的第二端电性连接,所述电容C24的第二端还接地。
可选地,在所述初级未电连接到市电AC时,所述第二隔离电路利用所述电池为所述第三隔离电路提供间断电源;
所述第二隔离电路包括:变压器T70、开关管Q70、二极管D70、电阻R76、电容C71、电容C72、二极管D71、稳压管Z71、电阻R75和电容C70;所述变压器T70是电隔离的, 将整个应急灯电路电隔离成为初级和次级;所述二极管D71的负极和市电电性连接,所述二极管D71的负极还和所述第一隔离电路电性连接,所述二极管D72的正极和所述第三隔离电路电性连接,所述二极管D72的正极还分别和所述稳压管Z71的负极、所述电阻R75的第一端、所述电容C72的第一端、所述电阻R76的第一端电性连接,所述电阻R76的第二端分别和所述电容C71的第一端、所述二极管D70的负极电性连接,所述二极管D70的正极和所述变压器T70电性连接;所述稳压管Z71的正极分别和所述电阻R75的第二端、所述电容C72的第二端、所述电容C71的第二端、所述变压器T70电性连接,所述稳压管Z71的正极还和初级公共地电性连接;所述变压器T70和所述电容C70的第一端电性连接,所述电容C70的第二端接地,所述电容C70的第二端还和所述开关管Q70的源极电性连接,所述变压器T70和所述开关管Q70的漏极电性连接,所述开关管Q70的栅极和所述检测控制电路电性连接,所述的开关管Q70和所述电容C70位于次级,所述的二极管D70、所述电阻R76、所述电容C71、所述电容C72、所述二极管D71、所述稳压管Z71和所述电阻R75位于所述复式隔离型的LED应急灯控制电路的初级。
可选地,当所述初级接入市电时,所述二极管D71反向偏置而隔离高压市电;当所述初级没有接入市电时,所述二极管D71正向偏置而导通,使第二隔离电路产生的间断电压电流流经二极管D71为第三隔离电路提供间断电源。
可选地,所述第三隔离电路的初级电源是由第二隔离电路来提供的,用来感应是否有市电供应,并且感应所述开关是否闭合,并且通过所述光耦U70来输出所感应到的信息传递到所述检测控制电路进行处理,实现相应的控制功能;
所述第三隔离电路包括:光耦U70、晶体管Q71、晶体管Q72、电阻R70、电阻R72、电阻R73、电阻R74、电容C73,所述电阻R70的第一端和市电电性连接,所述电阻R70的第一端还和所述第一隔离电路电性连接,所述电阻R70的第二端分别和所述电阻R72的第一端、所述电容C73的第一端、所述晶体管Q72的基极电性连接,所述电阻R72的第二端分别和所述电容C73的第二端、所述晶体管Q72的发射极、所述电阻R74的第一端电性连接,所述电阻R74的第一端还和初级公共地电性连接,所述电阻R74的第二端和所述光耦U70内的发光二极管的负极电性连接;所述晶体管Q72的集电极分别和所述电阻R73的第一端、所述晶体管Q71的栅极电性连接,所述电阻R73的第二端分别和晶体管Q71的源极、所述第二隔离电路电性连接,所述晶体管Q71的漏极和所述光耦U70内的发光二极管的正极电性连接;所述光耦U70内的光敏管的第一端和所述检测控制电路电性连接,所述光耦U70内的光敏管的第一端还和所述稳压电路电性连接,所述光耦U70内的光敏管的第二端和所述检测控制电路电性连接,所述光耦U70将所述第三隔离电路隔离成为初级和次级,所述光耦U70内的发光二极管、所述晶体管Q71、所述晶体管Q72、所述电阻R70、所述电阻R72、所述电阻R73、所述电阻R74和所述电容C73位于所述复式隔离型的LED应急灯控制电路的初级,所述光耦U70内的光敏管位于所述复式隔离型的LED应急灯控制电路的次级。
可选地,所述检测控制电路包括:单片机U60、晶体管Q61、晶体管Q50、晶体管Q62、二极管D61、稳压管Z61、电容C61、电容C62、电容C63、电阻R50、电阻R60、电阻R61、 电阻R62、电阻R63、电阻R64、电阻R65、电阻R67和电阻R68,所述电阻R63的第一端和所述第三隔离电路电性连接,所述电阻R63的第一端还和所述单片机U60电性连接,所述电阻R63的第二端分别和所述晶体管Q62的集电极、所述电容C61的第一端、所述单片机U60电性连接,所述电阻R64的第一端分别和所述第三隔离电路、所述电阻R65的第一端、所述二极管D61的负极电性连接,所述电阻R65的第二端和所述单片机U60电性连接,所述二极管D61的正极分别和所述电阻R67的第一端、所述电阻R68的第一端、所述电容C62的第一端、所述稳压管Z61的负极电性连接,所述电阻R67的第二端和所述第一隔离电路电性连接,所述电容C62的第二端分别和所述电阻R62的第一端、所述晶体管Q62的基极电性连接;所述电阻R64的第二端分别和所述稳压管Z61的正极、所述电阻R68的第二端、所述电阻R62的第二端、所述晶体管Q62的发射极、所述电容C61的第二端、所述电容C63的第一端、所述晶体管Q61的源极、所述电阻R61的第一端电性连接,所述电阻R64的第二端还和所述单片机U60电性连接,所述电容C63的第二端分别和所述电阻R61的第二端、所述电阻R60的第一端电性连接,所述电容C63的第二端还和所述单片机U60电性连接;所述单片机U60和所述第二隔离电路电性连接,所述单片机U60还和所述升压恒流电路06电性连接,所述单片机U60还和所述晶体管Q61的栅极电性连接,所述晶体管Q61的漏极分别和所述晶体管Q50的栅极、所述电阻R50的第一端、所述LED模组电性连接,所述电阻R50的第二端分别和所述晶体管Q50的源极、所述第二隔离电路、所述充电保护电路、所述稳压电路电性连接,所述晶体管Q50的漏极分别和所述电阻R60的第二端、所述升压恒流电路电性连接;所述检测控制电路处于所述复式隔离型的LED应急灯控制电路的次级,所述检测控制电路的用于:检测所述第三隔离电路的输出信息及检测所述第一隔离电路是否有输出;市电一接通到所述第一隔离电路,所述单片机U60复位,程序从头执行;检测所述电池的电压,控制所述LED模组的工作状态;输出驱动信号到所述网络PA上;输出信号到所述网络N1、网络EN和网络PE上,控制所述升压恒流电路的和所述LED模组的工作状态。
可选地,在初级没有接入市电的情况下,所述第二隔离电路为第三隔离电路提供的间断电源,其频率为fL=0.1Hz~10Hz,其中高电平时间为tH=0.1mS~100mS,低电平时间为tL=0.1S~10S;所述检测控制电路输出到网络PA上的信号,所述信号的高频频率fH=20kHz~600kHz,高频持续总时间tH=0.1mS~100mS,其中低频频率fL=0.1Hz~10Hz。
可选地,所述LED模组包括二极管D90、电容C90、开关管Q91以及LED,所述二极管D90的正极和所述第一隔离电路电性连接,所述二极管D90的负极和所述电容C90的第一端、所述LED的正极、所述升压恒流电路电性连接,所述电容C90的第二端接地,所述电容C90的第二端还和所述开关管Q91的源极电性连接,所述开关管Q91的漏极和所述LED的负极电性连接,所述开关管Q91的栅极和所述检测控制电路电性连接。
可选地,充电保护电路包括充电集成电路U30、保护集成电路U41、电阻R31、电阻R41、电容C30、电容C31、电容C41,所述充电集成电路U30和所述第一隔离电路电性连接,所述充电集成电路U30还和所述电容C30的第一端电性连接,所述电容C30的第二端分别和所述电阻R31的第一端、所述电容C31的第一端、所述保护集成电路U41电性连接,所述电容 C30的第二端还接地,所述充电集成电路U30还接地,所述电容C31的第二端分别和所述充电集成电路U30、所述电阻R41的第一端、所述电池的第一极、所述检测控制电路电性连接,所述电阻R41的第二端分别和所述电容C41的第一端、所述保护集成电路U41电性连接,所述电容C41的第二端分别和所述保护集成电路U41、所述电池的第二极电性连接,所述充电保护电路用来控制所述电池的充电电流和充电状态。
可选地,升压恒流电路包括集成电路U50、二极管D50、电感L50、电阻Rs50、电容C51和电容C52,所述电容C51的第一端分别和所述集成电路U50、所述检测控制电路电性连接,所述电容C51的第二端分别和所述电阻Rs50的第一端、所述集成电路U50电性连接,所述电容C51的第二端还接地,所述集成电路U50和所述检测控制电路电性连接;所述电阻Rs50的第二端分别和所述集成电路U50、所述LED的负极电性连接;所述电感L50的第一端和所述检测控制电路电性连接,所述电感L50的第二端分别和所述集成电路U50、所述二极管D50的正极电性连接,所述二极管D50的负极分别和所述集成电路U50、所述LED模组、所述电容C52的第一端电性连接,所述电容C52的第二端接地,所述升压恒流电路将所述电池提供的电压电流,通过变换成为比所述电池的电压更高的恒定电流,以适合所述LED模组正常工作。
可选地,所述升压恒流电路的工作状态是由所述检测控制电路来控制的。
可选地,所述稳压电路包括集成电路U80、二极管D81、稳压管Z81、电阻R80、电容C80、C81,所述电阻R80的第一端和所述第一隔离电路电性连接,所述电阻R80的第二端和分别和所述稳压管Z81的负极、所述二极管D81的正极电性连接,所述二极管D81的负极分别和所述电容C80的第一端、所述电池的第一极、所述集成电路U80电性连接,所述稳压管Z81的正极分别和所述电容C80的第二端、所述集成电路U80、所述电容C81的第一端电性连接,所述稳压管Z81的正极还接地,所述电容C81的第二端分别和所述集成电路U80、所述第三隔离电路、所述检测控制电路电性连接,所述稳压电路为所述检测控制电路和光耦U70提供稳定电压。
可选地,所述复式隔离型的LED应急灯控制电路还包括市电变压器T13、电阻R014,所述市电变压器T13的第一端分别和所述电阻R014的第一端、所述开关的第一端电性连接,所述市电变压器T13的第二端分别和所述电阻R014的第二端、所述第一隔离电路、所述第三隔离电路电性连接,所述开关的第二端分别和所述第一隔离电路、所述第二隔离电路电性连接。
可选地,所述电池位于所述复式隔离型的LED应急灯控制电路的次级。
本发明实施例提供的技术方案带来的有益效果是:
通过设置第一隔离电路、第二隔离电路、第三隔离电路和检测控制电路,在符合安规的情况下,在市电停电之后,利用墙壁开关控制应急灯。第一隔离电路、第二隔离电路和第三隔离电路中分别包括隔离器件,隔离器件将复式隔离型的LED应急灯控制电路电隔离成为初级和次级,初级电路用于连接市电,开关设置在初级,应急灯设置在次级。第二隔离电路用于在初级未连接到市电时,利用电池为第三隔离电路提供间断电源。第三隔离电路用于感应 检测是否有市电供应,并且感应检测墙壁开关是否闭合,并且通过所述光耦U70来输出所感应到的信息传递到所述检测控制电路进行处理,实现相应的控制功能。总之,在符合安规的情况下,在市电停电之后,墙壁开关仍然可以通过第三隔离电路控制应急灯,解决了在符合安规的情况下在市电停电之后墙壁开关无法控制应急灯的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一示例性实施例示出的一种复式隔离型的LED应急灯控制电路的电路图(电路框图);
图2是本发明一示例性实施例示出的一种复式隔离型的LED应急灯控制电路的电路图(具体实施电路图);
图3是本发明一个实施例提供的检测控制电路的电路图;
图4是检测控制电路07的输出信号的示意图;
图5是第二隔离电路向第三隔离电路提供的间断电源的电压示意图;
图6是图4中高频信号的放大示意图,是高频信号的细部特征。
具体实施方式
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含所指示的技术特征的数量。由此,限定的“第一”、“第二”的特征可以明示或隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
网络,就是导线与接口或者元器件的端口连接起来的线路,一般具有相同的电位,或者具有相同波形的信号,不存在电阻,不存在损耗。参考图1和图2,命名下列网络:
电源网络:AC1、AC2、VB+、3V、VA、VB、VC、VD、VR、PB、
Figure PCTCN2019090954-appb-000001
等;
信号网络:PA、PE、EN、N1、SN、D1、D2、D3、D4、D5等。
参考图1和图2,初级是指图中红色的粗虚线左侧的部分电路(非虚线框,标识为‘初级’),次级是指图中红色的粗虚线右侧的部分电路(非虚线框,标识为‘次级’)。
参考图1和图2,其示出了本申请一个实施例提供的复式隔离型的LED应急灯控制电路的电路图,其中图1是电路方框图,图2是具体实施图。如图1和图2所示,所述复式隔离型的LED应急灯控制电路包括:第一隔离电路01、第二隔离电路02、第三隔离电路03、LED模组04、升压恒流电路06、检测控制电路07、稳压电路08、电池12、充电保护电路05和开关15。市电分别和第一隔离电路01、第二隔离电路02、第三隔离电路03电性连接,第一隔离电路01还分别和LED模组04、充电保护电路05、检测控制电路07、稳压电路08电性连接。充电保护电路05还分别和电池12、第二隔离电路02电性连接。电池12还和稳压电 路08电性连接。第二隔离电路02还分别和第三隔离电路03、升压恒流电路06、检测控制电路07电性连接,第三隔离电路03还和检测控制电路07、稳压电路08电性连接,检测控制电路07还和升压恒流电路06电性连接,升压恒流电路06还和电池12电性连接,开关15的第一端分别和第一隔离电路01、第三隔离电路03电性连接,开关15的第二端分别和第一隔离电路01、第二隔离电路02电性连接。所述第一隔离电路01中包括变压器T20A,变压器T20A为电隔离的;所述第二隔离电路02中包括变压器T70,变压器T70为电隔离的;所述第三隔离电路03中包括光耦U70等,光耦U70是电隔离的。通过所述变压器T20A、变压器T70和光耦U70的电隔离作用,将复式隔离型的LED应急灯电路隔离成为初级和次级,初级和次级是电隔离的,符合相关安规要求。所述初级电路用于连接市电,所述次级电路用于连接LED模组04,所述电池12设置在次级。所述第二隔离电路02用于在初级未连接到市电时,利用所述电池12为第三隔离电路03提供间断电源;在初级未连接到市电时,通过所述开关15的开通或者断开,再经过所述第三隔离电路03的变换,控制LED模组04的工作状态。
所述第二隔离电路02,在初级未电连接到市电时,利用所述电池12为所述第三隔离电路03提供间断电源,并且所述间断电源的波形特征符合图5所示的形状特征,第二隔离电路02包括开关管Q70,所述开关管Q70的驱动波形符合图4和图6所示的形状特征。所述开关15用于在所述初级未连接到市电时,通过所述第三隔离电路03控制所述LED模组04的工作状态。
其中,所述第一隔离电路01包括AC整流滤波电路09、驱动电路10、DC整流滤波电路11以及高频变压器T20。AC整流滤波电路09分别和市电、驱动电路10电性连接,驱动电路10和高频变压器T20电性连接,高频变压器T20和DC整流滤波电路11电性连接,DC整流滤波电路11分别和LED模组04、充电保护电路05、检测控制电路07、稳压电路08电性连接。
所述变压器T20为电隔离的,将所述第一隔离电路01电隔离成为初级和次级,所述AC整流滤波电路09和所述驱动电路10位于初级,所述DC整流滤波电路11位于次级。所述AC整流滤波电路09将市电整流滤波成为脉动直流电VR,所述驱动电路10、变压器T20和DC整流滤波电路11构成隔离恒流电路,将所述脉动电源VR变换成满足需求的直流电压和电流,这种能够满足需求的直流电压和电流分为3路:VA、VB和VC。VA为LED模组04提供合适的恒流电源;VB为电池12充电提供电源,还为稳压电路08提供电源;VC为检测控制电路07提供检测信号,还为检测控制电路07的单片机U60提供复位信号。
变压器T20是电隔离的高频变压器,共有三个绕组,其中的T20A的两个绕组为主绕组,T20B为辅助绕组,T20B位于整个电路的初级。
AC整流滤波电路09包括二极管D10、二极管D11、二极管D12、二极管D13、电容C10和电容C11,将市电整流滤波成为脉动直流电VR。二极管D10的正极分别和二极管D12的负极、市电、电容C10的第一端电性连接,二极管D10的负极分别和二极管D11的负极、驱动电路10电性连接;二极管D12的正极分别和二极管D13的正极、电容C11的第一端电性 连接,二极管D12的正极还和初级公共地
Figure PCTCN2019090954-appb-000002
电性连接,二极管D13的负极还分别和电容C10的第二端、二极管D11的正极、市电电性连接。电容C11的第二端还和二极管D11的负极、驱动电路10电性连接。
驱动电路10包括晶体管Q20、集成电路U20、二极管D20、二极管D21、电容C20、电容C22、电容C23、电阻R21、电阻R22、电阻R23、电阻R24、电阻R26、电阻Rs21、变压器T20的辅助绕组T20B。电阻R21的第一端分别和电容C20的第一端、电阻R26的第一端、变压器T20A电性连接,电阻R21的第二端还分别和二极管D20的负极、电容C22的第一端、集成电路U20电性连接,二极管D20的正极和电阻R22的第一端电性连接,电阻R22的第二端还分别和辅助绕组T20B、电阻R23的第一端电性连接,辅助绕组T20B分别和电阻R24的第一端、电容C22的第二端、电容C23的第一端、集成电路U20、电阻Rs21的第一端、初级公共地
Figure PCTCN2019090954-appb-000003
电性连接。电阻R23的第二端还和电阻R24的第二端、集成电路U20电性连接,电阻Rs21的第二端还和晶体管Q20的源极电性连接,集成电路U20还和晶体管Q20的栅极电性连接,晶体管Q20的漏极分别和二极管D21的正极、变压器T20A电性连接,二极管D21的负极分别和电容C20的第二端、电阻R26的第二端电性连接。
U20是一个单级、高功率因数,原边控制交流转直流LED驱动芯片。U20的功率因数校正功能,在临界导通模式下运行,实现了高功率因数并减少功率MOS管Q20的开关损耗,无需光耦及副边感应器件就可以精确地调制LED电流,U20同时实现了各种保护功能,包括过流保护、过压保护,短路保护和过热保护等,以确保系统可靠的工作。
DC整流滤波电路11包括二极管D22、二极管D24、二极管D25、电容C24、电容C25、电容C26、电容C92。二极管D24的正极分别和二极管D25的正极、变压器T20A电性连接,变压器T20A和二极管D22的正极电性连接,变压器T20A和电容C26的第一端电性连接,电容C26的第一端接地,电容C26的第二端和二极管D24的负极电性连接,二极管D24的负极和充电保护电路05、稳压电路08电性连接。二极管D25的负极和电容C25的第一端电性连接,二极管D25的负极还和检测控制电路07电性连接。二极管D22的负极分别和电容C24的第一端、电容C92的第一端电性连接,二极管D22的负极还和LED模组04电性连接,电容C24的第二端分别和电容C92的第二端、电容C25的第二端电性连接,电容C24的第二端还接地。DC整流滤波电路11都位于整个电路的次级。二极管D24和D25共用一个绕组。二极管D22和电容C24、电容C92构成整流滤波电路,输出电压为VA,VA为LED模组04提供合适的恒流电源;二极管D24和电容C26构成整流滤波电路,输出电压为VB,VB为电池12充电提供电源,还为稳压电路08提供电源;二极管D25和电容C25构成整流滤波电路,输出电压为VC,VC为检测控制电路07提供检测信号,还为单片机U60提供复位信号。
可选地,所述第二隔离电路02包括:变压器T70、开关管Q70、二极管D70、电阻R76、电容C71、电容C72、二极管D71、稳压管Z71、电阻R75和电容C70。所述变压器T70是电隔离的,将整个应急灯电路电隔离成为初级和次级。所述的开关管Q70和电容C70位于次级,所述的二极管D70、电阻R76、电容C71、电容C72、二极管D71、稳压管Z71和电阻R75位于初级。具体的,二极管D71的负极和市电电性连接,二极管D71的负极还和二极管 D12的负极电性连接,二极管D72的正极和第三隔离电路03电性连接,二极管D72的正极还分别和稳压管Z71的负极、电阻R75的第一端、电容C72的第一端、电阻R76的第一端电性连接,电阻R76的第二端分别和电容C71的第一端、二极管D70的负极电性连接,二极管D70的正极和变压器T70电性连接;稳压管Z71的正极分别和电阻R75的第二端、电容C72的第二端、电容C71的第二端、变压器T70电性连接,稳压管Z71的正极还和初级公共地
Figure PCTCN2019090954-appb-000004
电性连接;变压器T70和电容C70的第一端电性连接,电容C70的第二端接地,电容C70的第二端还和开关管Q70的源极电性连接,变压器T70和开关管Q70的漏极电性连接,开关管Q70的栅极和检测控制电路07电性连接。
所述第二隔离电路02为所述第三隔离电路03提供间断电源。在初级没有接入市电的情况下,所述第二隔离电路02为第三隔离电路03提供的间断电源,其波形符合图5所示的形状特征,其频率为fL=0.1Hz~10Hz,其中高电平时间为tH=0.1mS~100mS,低电平时间为tL=0.1S~10S;所述开关管Q70的驱动波形符合图4和图6所示,其中高频频率fH=20kHz~600kHz,高频持续总时间tH=0.1mS~100mS,其中低频频率fL=0.1Hz~10Hz。
所述开关管Q70使所述第二隔离电路02工作于高频状态,使变压器T70处于蓄电和放电的状态,从而使电池12的能量转换成为第三隔离电路03工作所需要的能量。所述二极管D70为高频整流二极管,使高频电压电流单相导通。所述电容C71、电容C72和电阻R76构成
Figure PCTCN2019090954-appb-000005
型滤波器,将高频电压滤波为直流电压,其中的电阻R76还起着限制电流的作用。所述二极管D71为隔离二极管,复式隔离型的LED应急灯控制电路接入市电时电隔离高压的市电AC,没有接入市电时为所述第三隔离电路03提供正向偏置电流。所述稳压管Z71对所述第二隔离电路02输出的电压进行稳压,防止所述第三隔离电路03损坏。所述电阻R75,为所述第二隔离电路02提供所需的电流负载。所述电容C70为去耦电容,起到一个电池的作用,避免相互间的干扰。
第二隔离电路02为第三隔离电路03提供间断电源,这个间断电源的电压输出是网络PB,且间断电源的电压输出符合图5所示的形状和性能参数。在没有市电供应的情况下,必须为第三隔离电路03提供必要的合适的电源。第二隔离电路02的工作电流是很大的(一般为mA级),在没有市电供应的情况下,如果电池持续为第二隔离电路02提供电源,电池的电量很快就会消耗殆尽。因此,通过检测控制电路07的控制,为第三隔离电路03提供间断电源,最大极限地延长电池的使用时间。实施方法是:当检测控制电路07检测到没有市电供应时,检测控制电路07在网络PA的线路输出如图4和图6所示的驱动信号,经过开关管Q70、变压器T70等元器件变换,最终在网络PB的线路输出如图5的间断电压,为第三隔离电路03提供间断电源。
第二隔离电路02实际上为开放隔离型反激式直流变换电路:通过变压器T70电隔离,没有反馈信号而成为开放式电路(用稳压管Z71进行电压稳定),变压器T70的原边电压和副边电压的相位相反而成为反激式电路。为了保证本电路正常工作,为了不至于损坏开关管Q70,本电路必须设置最小电流负载,而电阻R75就是为这个最小电流负载而设置的。
市电AC的电压很高,如果不隔离,一定会损坏第二隔离电路02和第三隔离电路03。AC1和AC2是市电AC相线的网络,当相线AC1的电压高于相线AC2的电压时,由于二极管D71反偏而不能导通,几近绝缘,那么电压AC不会对第二隔离电路02和第三隔离电路03构成过电压危害;当相线AC1的电压低于相线AC2的电压时,二极管D71基本不起作用,电流从相线AC2,流经电阻R70、三极管Q72的B极和E极(B极-E极之间的电压很低,只有1V以内)、初级公共地
Figure PCTCN2019090954-appb-000006
AC整流滤波电路中的整流二极管(正偏而导通),到相线AC1,形成回路,这样形成的电流,取名为I2。因为电阻R70的阻值很大,B极-E极之间的电压很低,所以I2很小,不至于损坏三极管Q72。综上所述,I2除了流经电阻R70、三极管Q72的B极和E极,不流经第二隔离电路02和第三隔离电路03的其它元器件,所以当相线AC1的电压低于相线AC2的电压时,高压的市电AC对第二隔离电路02和第三隔离电路03不构成损害。
可选地,所述第三隔离电路03包括:光耦U70、晶体管Q71、晶体管Q72、电阻R70、电阻R72、电阻R73、电阻R74、电容C73。所述光耦U70将所述第三隔离电路03隔离成为初级和次级,所述光耦U70内的发光二极管、晶体管Q71、晶体管Q72、电阻R70、电阻R72、电阻R73、电阻R74和电容C73位于电路的初级,所述光耦U70内的光敏管位于电路的次级。具体的,电阻R70的第一端和市电电性连接,电阻R70的第一端还和二极管D11的正极电性连接,电阻R70的第二端分别和电阻R72的第一端、电容C73的第一端、晶体管Q72的基极电性连接,电阻R72的第二端分别和电容C73的第二端、晶体管Q72的发射极、电阻R74的第一端电性连接,电阻R74的第一端还和初级公共地
Figure PCTCN2019090954-appb-000007
电性连接,电阻R74的第二端和光耦U70内的发光二极管的负极电性连接;晶体管Q72的集电极分别和电阻R73的第一端、晶体管Q71的栅极电性连接,电阻R73的第二端分别和晶体管Q71的源极、二极管D71的正极电性连接,晶体管Q71的漏极和光耦U70内的发光二极管的正极电性连接。光耦U70内的光敏管的第一端和检测控制电路07电性连接,光耦U70内的光敏管的第一端还和稳压电路08电性连接,光耦U70内的光敏管的第二端和检测控制电路07电性连接。
所述第三隔离电路03的初级电源是由所述第二隔离电路02来提供的;用来感应是否有市电供应,并且感应所述开关15是闭合的还是断开的,并且通过所述光耦U70来输出所感应到的信息(输出到网络SN所在的线路)传递到所述检测控制电路07进行处理,实现相应的控制功能。
所述第三隔离电路03的工作状态有下列四种情况:
第一种情况:有市电供应、且墙壁开关15是闭合的情况。在这种情况下,检测控制电路07会检测到,且不会在网络PA处输出高频驱动信号,即网络PA始终为低电平,因此第二隔离电路02不会为第三隔离电路03提供间断电源。在这种情况下,又由于第二隔离电路02中二极管D71的隔离作用,第三隔离电路03中没有电源供应。因为这种情况的上述2种原因,光耦U70的发光二极管不会导通进而不会发光,光耦U70的光敏管呈现高阻抗输出状态,网络SN为低电压信号并被检测控制电路07检测到,检测控制电路07便不会启动电池供电,只能启动市电供电模式,为LED模组04提供合适的电压电流。
第二种情况:有市电供应、且墙壁开关15是断开的情况。在这种情况下,检测控制电路07会检测到,且会在网络PA处输出高频驱动信号,即网络PA的电平符合图4和图6的性能参数,因此第二隔离电路02会为第三隔离电路03提供间断电源。在这种情况下,市电AC不会对第二隔离电路02和第三隔离电路03提供电源。在这种情况下,晶体管Q72没有正向偏置而处于关断状态,晶体管Q71处于零偏置也处于关断状态。因为这种情况的上述3种原因,光耦U70的发光二极管不会导通进而不会发光,光耦U70的光敏管呈现高阻抗输出状态,网络SN为低电压信号并被检测控制电路07检测到,不会启动电池供电,也不会启动市电供电模式,也不会为LED模组04提供合适的电压电流。
第三种情况:没有市电供应、且墙壁开关15是闭合的情况。在这种情况下,检测控制电路07会检测到,且会在网络PA处输出高频驱动信号,即网络PA的电平符合的图4和图6的性能参数,因此第二隔离电路02会为第三隔离电路03提供间断电源。在这种情况下,晶体管Q72的正向偏置而导通,晶体管Q71处于负向偏置而导通。因为这种情况的上述3种原因,光耦U70的发光二极管导通而发光,进而光耦U70的光敏管呈现低阻抗输出状态而导通,网络SN为高电压信号并被检测控制电路07检测到,检测控制电路07便会启动电池供电,而不会启动市电供电模式,为LED模组提供合适的电压电流。
第四种情况:没有市电供应、且墙壁开关15是断开的情况。在这种情况下,检测控制电路07会检测到,且会在网络PA处输出高频驱动信号,即网络PA的电平符合的图4和图6的性能参数,因此第二隔离电路02会为第三隔离电路03提供间断电源。在这种情况下,没有市电对第二隔离电路02和第三隔离电路03提供电源。在这种情况下,晶体管Q72没有正向偏置,晶体管Q72不会导通而处于关断状态,晶体管Q71没有处于负向偏置而关断。因为这种情况的上述3种原因,光耦U70的发光二极管不会导通,更不会发光,进而光耦U70的光敏管呈现高阻抗输出状态而断开,网络SN为低电压信号并被检测控制电路07检测到,检测控制电路07不会启动电池供电,也不会启动市电供电模式,因而不会为LED模组提供合适的电压电流。
可选地,所述检测控制电路07包括:单片机U60、晶体管Q61、晶体管Q50、晶体管Q62、二极管D61、稳压管Z61、电容C61、电容C62、电容C63、电阻R50、电阻R60、电阻R61、电阻R62、电阻R63、电阻R64、电阻R65、电阻R67和电阻R68。所述检测控制电路07处于整个电路的次级。具体的,电阻R63的第一端和光耦U70内的光敏管的第一端电性连接,电阻R63的第一端还和单片机U60电性连接,电阻R63的第二端分别和晶体管Q62的集电极、电容C61的第一端、单片机U60电性连接,电阻R64的第一端分别和光耦U70内的光敏管的第二端、电阻R65的第一端、二极管D61的负极电性连接,电阻R65的第二端和单片机U60电性连接,二极管D61的正极分别和电阻R67的第一端、电阻R68的第一端、电容C62的第一端、稳压管Z61的负极电性连接,电阻R67的第二端和二极管D25的负极电性连接,电容C62的第二端分别和电阻R62的第一端、晶体管Q62的基极电性连接;电阻R64的第二端分别和稳压管Z61的正极、电阻R68的第二端、电阻R62的第二端、晶体管Q62的发射极、电容C61的第二端、电容C63的第一端、晶体管Q61的源极、电阻R61 的第一端电性连接,电阻R64的第二端还和单片机U60电性连接,电容C63的第二端分别和电阻R61的第二端、电阻R60的第一端电性连接,电容C63的第二端还和单片机U60电性连接;单片机U60和开关管Q70的栅极电性连接,单片机U60还和升压恒流电路06电性连接,单片机U60还和晶体管Q61的栅极电性连接,晶体管Q61的漏极分别和晶体管Q50的栅极、电阻R50的第一端、LED模组04电性连接,电阻R50的第二端分别和晶体管Q50的源极、电容C70的第一端、充电保护电路05、稳压电路08电性连接,晶体管Q50的漏极分别和电阻R60的第二端、升压恒流电路06电性连接。
所述检测控制电路07具有以下功能:第一,检测第三隔离电路03的输出到网络SN的信号(光耦U70的光敏管输出到网络SN上的信息);第二,检测第一隔离电路01是否有输出(其信息输出到网络VC上);第三,检测电池12的电压,控制LED模组04的工作状态;第四,输出电压电流到网络PE【为升压恒流电路06提供电源】;第五,输出控制信号到网络N1【用来选择是VA还是VD作为LED模组04的驱动电压电流】;第六,输出控制信号到网络EN【用来控制升压恒流电路06是否工作】;第七,输出驱动信号【即图4和图6所示的驱动信号,经过开关管Q70、变压器T70等变换,最终在网络PB的线路输出如图5的间断电压,为第三隔离电路提供间断电源。驱动波形符合图4和图6所示,其中高频频率fH=20kHz~600kHz,高频持续总时间tH=0.1mS~100mS,其中低频频率fL=0.1Hz~10Hz】到网络PA上。
所述U60是单片机,是所述检测控制电路07的核心部分,相当于人的大脑和五官。单片机U60具有以下主要特征:暂停和唤醒,看门狗定时器,A/D转换器,PWM功能,可编程定时/计数器,低电压复位功能,等等。单片机U60的所用到的引脚及其所用到的功能如下:
第1脚是供应电源的引脚,第1脚和电阻R63的第一端电性连接,第8脚是公共引脚
Figure PCTCN2019090954-appb-000008
第2脚输出信号到网络D3,第2脚和晶体管Q61的栅极电性连接。当输出信号为高电压时,网络D3为高电压,晶体管Q61正向偏置而导通,网络N1为低电压,晶体管Q50负向偏置而导通,网络PE为高电压,网络PE为升压恒流电路06提供电源;当输出信号为低电压时,网络D3为低电压,晶体管Q61没有偏置而不导通,网络N1为高电压,晶体管Q50没有负向偏置而不导通,网络PE为低电压,网络PE不为升压恒流电路06提供电源。网络PE为高电压的情况下,因为网络PE的电压实际上约等于电池12的电压(晶体管Q50导通,其输出内阻很小,晶体管Q50的D-S极相当短路,MOS管Q50的S极又与电池的正极VB+相连接),所以通过分压电路(电阻R60和电阻R61组成的分压电路)的分压,以及电容C63的滤波(滤除干扰),将电池12的电压反映到网络D2上,来检测电池12的电压。
第3脚是网路SN的信号输入脚,第3脚和电阻R65的第二端电性连接,用来检查下列状态:是否有市电AC输入到第一隔离电路01中,墙壁开关15是否闭合。
当有市电,且开关15闭合时,第一隔离电路01便输出电压VC,VC通过电阻R67和R68分压以及稳压二极管Z61稳压,形成电压D1(用网络D1来表示这个电压D1),电压D1使二极管D61正偏而导通,电压D1便加到了网络SN上了。此种情况,单片机U60刚刚完 成复位,程序从头开始,不会输出驱动信号【即图4和图6所示的驱动信号】到网络PA上,进而不会为第三隔离电路03提供间断电源,光耦U70的光敏管就会呈现高阻抗,网络SN上的信号就是高电压的VC;因此第3脚输入的信息是有市电AC输入且开关15闭合。
当有市电,且开关15断开时,VC上的电压变为低电压,网络D1上的电压也为低,二极管D61负偏而不导通,网络SN上的信号也由高电压转为低电压,在此转换过程中以及转换后的不久的时间内,网络PA上没有高频驱动电压,第三隔离电路03也就没有电源供应,光耦U70的光敏管也就会呈现高阻抗,网络SN上的信号为低电压,因此第3脚输入的信息是有市电输入且开关15断开。
当有没有市电,且开关15闭合时,网络VC上的电压为0,网络D1上的电压也为0,二极管D61负偏而不导通,网络VC对网络SN上的信号没有影响;这种情况,网络PA上就有高频驱动电压,第三隔离电路也就有电源供应,由于开关15闭合从而光耦U70的光敏管就会导通,此时网络SN上的信号为高电压,因此第3脚输入的信息是没有市电AC输入且开关15闭合。
当有没有市电,且开关15断开时,网络VC上的电压为0,网络D1上的电压也为0,二极管D61负偏而不导通,网络VC对网络SN上的信号没有影响;这种情况,网络PA上就有高频驱动电压,第三隔离电路03也就有电源供应,由于开关15断开从而光耦U70的光敏管也就会呈现高阻抗而断开,此时网络SN上的信号为低电压,因此第3脚输入的信息是没有市电AC输入且开关15断开。
第4脚是单片机U60外部复位脚,第4脚和电容C61的第一端电性连接。电阻R63和电容C61是外部复位电阻和电容。当有市电AC,且开关15刚闭合时,第一隔离电路01便输出电压VC,VC通过电阻R67和电阻R68的分压以及稳压二极管Z61的钳位,形成电压D1(用网络D1来表示这个电压D1),电压D1经过电容C62和电阻R62组成的微分电路形成一个正脉冲电压D4(用网络D4来表示这个电压D4),电压D4再经过晶体管Q62的反向便形成单片机U60的外部复位信号D5,强制单片机U60复位。
第5脚是单片机U60的输出脚,第5脚和开关管Q70的栅极电性连接,输出图4和图6所示的驱动信号,其中高频频率fH=20kHz~600kHz,高频持续总时间tH=0.1mS~100mS,其中低频频率fL=0.1Hz~10Hz。即图3和图5所示的驱动信号,经过开关管Q70、变压器T70等变换,最终在网络PB的线路输出如图5的间断电压,为第三隔离电路03提供间断电源。
第6脚是单片机U60的A/D转换输入脚,第6脚和电容C63的第二端电性连接,用来检查电池BT1的电压,从而控制LED模组04在电池12供电的情况下的亮度、开启或关断、以及工作时间。
第7脚是单片机U60的PWM转换输出脚,第7脚和升压恒流电路06电性连接,用来控制LED模组04在电池12供电的情况下的亮度、开启或关断、以及工作时间。
可选地,所述LED模组04包括二极管D90、电容C90、开关管Q91以及一定数量的LED。二极管D90的正极和二极管D22的负极电性连接,二极管D90的负极和电容C90的第一端、 LED的正极、升压恒流电路06电性连接,电容C90的第二端接地,电容C90的第二端还和开关管Q91的源极电性连接,开关管Q91的漏极和LED的负极电性连接,开关管Q91的栅极和晶体管Q61的漏极电性连接。
LED模组04是光源,是整灯的主要部分。这些LED可以串联,也可以并联,甚至可以混合联接。LED模组04的驱动电压电流来源于两部分:第一部分是第一隔离电路01的输出VA,第二部分是升压恒流电路06输出VD。LED模组是否工作是通过检测控制电路07的网络N1来实现的,N1为正电压时LED模组工作,N1为0电压时LED模组不工作。
可选地,所述电池12可以是锂离子电池、也可以是镍氢电池等等。电池12位于电路的次级。电池12通过升压恒流电路06为LED模组04提供合适的电压电流,在应急的情况下使用。电池12直接为第二隔离电路02提供电源,还通过稳压电路08的稳压为检测控制电路07和光耦U70的光敏管提供一定电压(3V左右,但不限于)的稳定电压。
可选地,所述充电保护电路05包括充电集成电路U30、保护集成电路U41、电阻R31、电阻R41、电容C30、电容C31、电容C41。充电集成电路U30和二极管D24的负极电性连接,充电集成电路U30还和电容C30的第一端电性连接,电容C30的第二端分别和电阻R31的第一端、电容C31的第一端、保护集成电路U41电性连接,电容C30的第二端还接地,充电集成电路U30还接地,电容C31的第二端分别和充电集成电路U30、电阻R41的第一端、电池12的第一极、晶体管Q50的源极电性连接,电阻R41的第二端分别和电容C41的第一端、保护集成电路U41电性连接,电容C41的第二端分别和保护集成电路U41、电池12的第二极电性连接。
所述充电保护电路05用来控制电池12的充电电流和充电状态,防止电池12受到下列情况损害,确保其长寿命和安全:过充、过放、输出过流、输出短路、电池反接、过温等。
集成电路U30是一款完整的单节锂电池恒流恒压线性充电IC,采用SOT23-5封装,具有恒流恒压涓流充电以及各种保护功能,还具有软启动功能,能有效限制冲击电流。预设4.2V充电电压(精度1%),涓流充电电压为2.9V,涓流大小为20mA左右。
集成电路U41采用SOT23-5封装,还具有电池零电压充电功能。
可选地,所述升压恒流电路06包括集成电路U50、二极管D50、电感L50、电阻Rs50、电容C51、电容C52等。电容C51的第一端分别和集成电路U50、晶体管Q50的源极电性连接,电容C51的第二端分别和电阻Rs50的第一端、集成电路U50电性连接,电容C51的第二端还接地,集成电路U50和单片机U60电性连接;电阻Rs50的第二端分别和集成电路U50、LED的负极电性连接;电感L50的第一端和晶体管Q50的源极电性连接,电感L50的第二端分别和集成电路U50、二极管D50的正极电性连接,二极管D50的负极分别和集成电路U50、LED的正极、电容C52的第一端电性连接,电容C52的第二端接地。
所述升压恒流电路06将电池12提供的电压电流,通过变换成为比电池12的电压更高的恒定电流,以适合LED模组04正常工作。升压恒流电路06的电源是由电池12提供的,其转换效率达到90%。
集成电路U50的工作频率为恒频1.2MHz,因此只需要很小的电感L50,只需很小的滤波电容C52;U50采用SOT23-6封装,内置功率MOS管;U50具有软启动和PWM调光功能;U50具有过压、过流、过热等保护功能;U50还具有很低的关断电流(<1uA)。
升压恒流电路06的工作状态是由检测控制电路07来控制的,检测控制电路07的输出PE控制升压恒流电路06中U50的电源供应;检测控制电路07的输出EN为升压恒流电路06的使能或去能的控制信号,EN为高电平时则使能升压恒流电路06,EN为低电平时则去能升压恒流电路06。
可选地,稳压电路08包括集成电路U80、二极管D81、稳压管Z81、电阻R80、电容C80、电容C81。电阻R80的第一端和二极管D24的负极电性连接,电阻R80的第二端和分别和稳压管Z81的负极、二极管D81的正极电性连接,二极管D81的负极分别和电容C80的第一端、电池12的第一极、集成电路U80电性连接,稳压管Z81的正极分别和电容C80的第二端、集成电路U80、电容C81的第一端电性连接,稳压管Z81的正极还接地,电容C81的第二端分别和集成电路U80、单片机U60的第1脚、光耦U70的光敏管电性连接。
稳压电路08为检测控制电路07和光耦U70的光敏管提供一定(3V左右)的稳定电压。
稳压电路08的电源来源于电池的VB+和第一隔离电路的输出VB。当有市电时,所述第一隔离电路01输出VB,VB通过电阻R80,经过稳压管Z81,再通过二极管D81为稳压电路08提供电源;当没有市电时,所述第一隔离电路01不输出VB(即VB=0),二极管D81反偏截止而不导通,这时电池12直接为稳压电路08提供电源。
可选地,复式隔离型的LED应急灯控制电路还包括市电变压器T13、电阻R014和开关15。市电变压器T13的第一端分别和电阻R014的第一端、开关15的第一端电性连接,市电变压器T13的第二端分别和电阻R014的第二端、二极管D11的正极、电阻R70的第一端电性连接,开关15的第二端分别和电容C10的第一端、二极管D71的负极电性连接。
市电变压器T13相当于市电变压器的一个次级,其内阻很小,在没有市电时供应时相当于短路状态(相对于第三隔离电路),市电变压器T13提供的即为市电。
电阻R014相当于与T13相连接的所有用电器的等效输入电阻,一般地,R014的阻值很小(相对于第三隔离电路)。一般地R014与T13并联。
开关15实际上是墙壁开关,用来控制整灯的,本文开关15专指墙壁开关。
市电变压器T13、电阻Ro14和开关15位于复式隔离型的LED应急灯控制电路的初级。
本发明通过设置第一隔离电路、第二隔离电路、第三隔离电路和检测控制电路等,在符合安规的情况下,在市电停电之后,利用墙壁开关控制应急灯。第一隔离电路、第二隔离电路和第三隔离电路中分别包括隔离器件,隔离器件将复式隔离型的LED应急灯控制电路电隔离成为初级和次级,初级电路用于连接市电,开关设置在初级,应急灯设置在次级。第二隔离电路用于在初级未连接到市电时,利用电池为第三隔离电路提供间断电源。第三隔离电路用于感应检测是否有市电供应,并且感应检测墙壁开关是否闭合,并且通过所述光耦U70来输出所感应到的信息传递到所述检测控制电路进行处理,实现相应的控制功能。总之,在符 合安规的情况下,在市电停电之后,墙壁开关仍然可以通过第三隔离电路控制应急灯,解决了在符合安规的情况下在市电停电之后墙壁开关无法控制应急灯的问题。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种复式隔离型的LED应急灯控制电路,其特征在于:所述复式隔离型的LED应急灯控制电路包括第一隔离电路、第二隔离电路、第三隔离电路、LED模组、充电保护电路、升压恒流电路、检测控制电路、稳压电路、电池和开关,所述第一隔离电路、所述第二隔离电路、所述第三隔离电路分别和市电电性连接,所述第一隔离电路还分别和所述LED模组、所述充电保护电路、所述检测控制电路、所述稳压电路电性连接;所述充电保护电路还分别和所述电池、所述第二隔离电路电性连接;所述电池还和所述稳压电路电性连接,所述第二隔离电路还分别和所述第三隔离电路、所述升压恒流电路、所述检测控制电路电性连接,所述第三隔离电路还和所述检测控制电路、所述稳压电路电性连接,所述检测控制电路还和所述升压恒流电路电性连接,所述升压恒流电路还和所述电池电性连接,所述开关的第一端分别和所述第一隔离电路、所述第三隔离电路电性连接,所述开关的第二端分别和所述第一隔离电路、所述第二隔离电路电性连接;所述第一隔离电路中包括变压器T20A,所述变压器T20A为电隔离的;所述第二隔离电路中包括所述变压器T70,所述变压器T70为电隔离的;所述第三隔离电路中包括光耦U70,所述光耦U70是电隔离的;通过所述变压器T20A、所述变压器T70和所述光耦U70的电隔离作用,将所述复式隔离型的LED应急灯控制电路隔离成为初级和次级;所述电池设置在次级;所述第二隔离电路用于在初级未连接到市电时,利用所述电池为所述第三隔离电路提供间断电源;在初级未连接到市电时,通过所述开关的开通或者断开、所述第三隔离电路的变换,控制所述LED模组的工作状态。
  2. 根据权利要求1所述的复式隔离型的LED应急灯控制电路,其特征在于:所述第一隔离电路,将市电AC变换成满足需求的所述直流VA、VB和VC。
  3. 根据权利要求1所述的复式隔离型的LED应急灯控制电路,其特征在于:所述第一隔离电路包括AC整流滤波电路、驱动电路、DC整流滤波电路以及高频变压器T20,所述AC整流滤波电路分别和市电、所述驱动电路电性连接,所述驱动电路和所述高频变压器T20电性连接,所述高频变压器T20和所述DC整流滤波电路电性连接,所述DC整流滤波电路分别和所述LED模组、所述充电保护电路、所述检测控制电路、所述稳压电路电性连接。
  4. 根据权利要求3所述的复式隔离型的LED应急灯控制电路,其特征在于:AC整流滤波电路包括二极管D10、二极管D11、二极管D12、二极管D13、电容C10和电容C11,所述二极管D10的正极分别和所述二极管D12的负极、市电、所述电容C10的第一端电性连接,所述二极管D10的负极分别和所述二极管D11的负极、所述驱动电路10电性连接;所述二极管D12的正极分别和所述二极管D13的正极、所述电容C11的第一端电性连接,所述二极管D12的正极还和初级公共地电性连接,所述二极管D13的负极还分别和所述电容C10的第二端、所述二极管D11的正极、市电电性连接;所述电容C11的第二端还和所述二极管D11的负极、所述驱动电路10电性连接,所述AC整流滤波电路用于将市电整流滤波成为脉动直流电。
  5. 根据权利要求3所述的复式隔离型的LED应急灯控制电路,其特征在于:所述驱动电路包括晶体管Q20、集成电路U20、二极管D20、二极管D21、电容C20、电容C22、电容C23、电阻R21、电阻R22、电阻R23、电阻R24、电阻R26、电阻Rs21、变压器T20的辅 助绕组T20B,所述电阻R21的第一端分别和所述电容C20的第一端、所述电阻R26的第一端、所述变压器T20A、所述AC整流滤波电路电性连接,所述电阻R21的第二端还分别和所述二极管D20的负极、所述电容C22的第一端、所述集成电路U20电性连接,所述二极管D20的正极和所述电阻R22的第一端电性连接,所述电阻R22的第二端还分别和所述辅助绕组T20B、所述电阻R23的第一端电性连接,所述辅助绕组T20B分别和所述电阻R24的第一端、所述电容C22的第二端、所述电容C23的第一端、所述集成电路U20、所述电阻Rs21的第一端、初级公共地电性连接,所述电阻R23的第二端还和所述电阻R24的第二端、所述集成电路U20电性连接,所述电阻Rs21的第二端还和所述晶体管Q20的源极电性连接,所述集成电路U20还和所述晶体管Q20的栅极电性连接,所述晶体管Q20的漏极分别和所述二极管D21的正极、所述变压器T20A电性连接,所述二极管D21的负极分别和所述电容C20的第二端、所述电阻R26的第二端电性连接。
  6. 根据权利要求3所述的复式隔离型的LED应急灯控制电路,其特征在于:所述DC整流滤波电路位于所述复式隔离型的LED应急灯控制电路的次级,所述DC整流滤波电路包括二极管D22、二极管D24、二极管D25、电容C24、电容C25、电容C26、电容C92,所述二极管D24的正极分别和所述二极管D25的正极、所述变压器T20A电性连接,所述变压器T20A和所述二极管D22的正极电性连接,所述变压器T20A和所述电容C26的第一端电性连接,所述电容C26的第一端接地,所述电容C26的第二端和所述二极管D24的负极电性连接,所述二极管D24的负极和所述充电保护电路、所述稳压电路电性连接;所述二极管D25的负极和所述电容C25的第一端电性连接,所述二极管D25的负极还和所述检测控制电路电性连接;所述二极管D22的负极分别和所述电容C24的第一端、所述电容C92的第一端电性连接,所述二极管D22的负极还和所述LED模组电性连接,所述电容C24的第二端分别和所述电容C92的第二端、所述电容C25的第二端电性连接,所述电容C24的第二端还接地。
  7. 根据权利要求1所述的复式隔离型的LED应急灯控制电路,其特征在于:在所述初级未电连接到市电AC时,所述第二隔离电路利用所述电池为所述第三隔离电路提供间断电源;
    所述第二隔离电路包括:变压器T70、开关管Q70、二极管D70、电阻R76、电容C71、电容C72、二极管D71、稳压管Z71、电阻R75和电容C70;所述变压器T70是电隔离的,将整个应急灯电路电隔离成为初级和次级;所述二极管D71的负极和市电电性连接,所述二极管D71的负极还和所述第一隔离电路电性连接,所述二极管D72的正极和所述第三隔离电路电性连接,所述二极管D72的正极还分别和所述稳压管Z71的负极、所述电阻R75的第一端、所述电容C72的第一端、所述电阻R76的第一端电性连接,所述电阻R76的第二端分别和所述电容C71的第一端、所述二极管D70的负极电性连接,所述二极管D70的正极和所述变压器T70电性连接;所述稳压管Z71的正极分别和所述电阻R75的第二端、所述电容C72的第二端、所述电容C71的第二端、所述变压器T70电性连接,所述稳压管Z71的正极还和初级公共地电性连接;所述变压器T70和所述电容C70的第一端电性连接,所述电容C70的第二端接地,所述电容C70的第二端还和所述开关管Q70的源极电性连接,所述变压器T70和所述开关管Q70的漏极电性连接,所述开关管Q70的栅极和所述检测控制电路电性连接, 所述的开关管Q70和所述电容C70位于次级,所述的二极管D70、所述电阻R76、所述电容C71、所述电容C72、所述二极管D71、所述稳压管Z71和所述电阻R75位于所述复式隔离型的LED应急灯控制电路的初级。
  8. 根据权利要求7所述的复式隔离型的LED应急灯控制电路,其特征在于:当所述初级接入市电时,所述二极管D71反向偏置而隔离高压市电;当所述初级没有接入市电时,所述二极管D71正向偏置而导通,使第二隔离电路产生的间断电压电流流经二极管D71为第三隔离电路提供间断电源。
  9. 根据权利要求1所述的复式隔离型的LED应急灯控制电路,其特征在于:所述第三隔离电路的初级电源是由第二隔离电路来提供的,用来感应是否有市电供应,并且感应所述开关是否闭合,并且通过所述光耦U70来输出所感应到的信息传递到所述检测控制电路进行处理,实现相应的控制功能;
    所述第三隔离电路包括:光耦U70、晶体管Q71、晶体管Q72、电阻R70、电阻R72、电阻R73、电阻R74、电容C73,所述电阻R70的第一端和市电电性连接,所述电阻R70的第一端还和所述第一隔离电路电性连接,所述电阻R70的第二端分别和所述电阻R72的第一端、所述电容C73的第一端、所述晶体管Q72的基极电性连接,所述电阻R72的第二端分别和所述电容C73的第二端、所述晶体管Q72的发射极、所述电阻R74的第一端电性连接,所述电阻R74的第一端还和初级公共地电性连接,所述电阻R74的第二端和所述光耦U70内的发光二极管的负极电性连接;所述晶体管Q72的集电极分别和所述电阻R73的第一端、所述晶体管Q71的栅极电性连接,所述电阻R73的第二端分别和晶体管Q71的源极、所述第二隔离电路电性连接,所述晶体管Q71的漏极和所述光耦U70内的发光二极管的正极电性连接;所述光耦U70内的光敏管的第一端和所述检测控制电路电性连接,所述光耦U70内的光敏管的第一端还和所述稳压电路电性连接,所述光耦U70内的光敏管的第二端和所述检测控制电路电性连接,所述光耦U70将所述第三隔离电路隔离成为初级和次级,所述光耦U70内的发光二极管、所述晶体管Q71、所述晶体管Q72、所述电阻R70、所述电阻R72、所述电阻R73、所述电阻R74和所述电容C73位于所述复式隔离型的LED应急灯控制电路的初级,所述光耦U70内的光敏管位于所述复式隔离型的LED应急灯控制电路的次级。
  10. 根据权利要求1所述的复式隔离型的LED应急灯控制电路,其特征在于:所述检测控制电路包括:单片机U60、晶体管Q61、晶体管Q50、晶体管Q62、二极管D61、稳压管Z61、电容C61、电容C62、电容C63、电阻R50、电阻R60、电阻R61、电阻R62、电阻R63、电阻R64、电阻R65、电阻R67和电阻R68,所述电阻R63的第一端和所述第三隔离电路电性连接,所述电阻R63的第一端还和所述单片机U60电性连接,所述电阻R63的第二端分别和所述晶体管Q62的集电极、所述电容C61的第一端、所述单片机U60电性连接,所述电阻R64的第一端分别和所述第三隔离电路、所述电阻R65的第一端、所述二极管D61的负极电性连接,所述电阻R65的第二端和所述单片机U60电性连接,所述二极管D61的正极分别和所述电阻R67的第一端、所述电阻R68的第一端、所述电容C62的第一端、所述稳压管Z61的负极电性连接,所述电阻R67的第二端和所述第一隔离电路电性连接,所述电容C62的第 二端分别和所述电阻R62的第一端、所述晶体管Q62的基极电性连接;所述电阻R64的第二端分别和所述稳压管Z61的正极、所述电阻R68的第二端、所述电阻R62的第二端、所述晶体管Q62的发射极、所述电容C61的第二端、所述电容C63的第一端、所述晶体管Q61的源极、所述电阻R61的第一端电性连接,所述电阻R64的第二端还和所述单片机U60电性连接,所述电容C63的第二端分别和所述电阻R61的第二端、所述电阻R60的第一端电性连接,所述电容C63的第二端还和所述单片机U60电性连接;所述单片机U60和所述第二隔离电路电性连接,所述单片机U60还和所述升压恒流电路06电性连接,所述单片机U60还和所述晶体管Q61的栅极电性连接,所述晶体管Q61的漏极分别和所述晶体管Q50的栅极、所述电阻R50的第一端、所述LED模组电性连接,所述电阻R50的第二端分别和所述晶体管Q50的源极、所述第二隔离电路、所述充电保护电路、所述稳压电路电性连接,所述晶体管Q50的漏极分别和所述电阻R60的第二端、所述升压恒流电路电性连接;所述检测控制电路处于所述复式隔离型的LED应急灯控制电路的次级,所述检测控制电路的用于:检测所述第三隔离电路的输出信息及检测所述第一隔离电路是否有输出;市电一接通到所述第一隔离电路,所述单片机U60复位,程序从头执行;检测所述电池的电压,控制所述LED模组的工作状态;输出驱动信号到所述网络PA上;输出信号到所述网络N1、网络EN和网络PE上,控制所述升压恒流电路的和所述LED模组的工作状态。
  11. 根据权利要求7或10所述的复式隔离型的LED应急灯控制电路,其特征在于:在初级没有接入市电的情况下,所述第二隔离电路为第三隔离电路提供的间断电源,其频率为fL=0.1Hz~10Hz,其中高电平时间为tH=0.1mS~100mS,低电平时间为tL=0.1S~10S;所述检测控制电路输出到网络PA上的信号,所述信号的高频频率fH=20kHz~600kHz,高频持续总时间tH=0.1mS~100mS,其中低频频率fL=0.1Hz~10Hz。
  12. 根据权利要求1所述的复式隔离型的LED应急灯控制电路,其特征在于:所述LED模组包括二极管D90、电容C90、开关管Q91以及LED,所述二极管D90的正极和所述第一隔离电路电性连接,所述二极管D90的负极和所述电容C90的第一端、所述LED的正极、所述升压恒流电路电性连接,所述电容C90的第二端接地,所述电容C90的第二端还和所述开关管Q91的源极电性连接,所述开关管Q91的漏极和所述LED的负极电性连接,所述开关管Q91的栅极和所述检测控制电路电性连接。
  13. 根据权利要求1所述的复式隔离型的LED应急灯控制电路,其特征在于:充电保护电路包括充电集成电路U30、保护集成电路U41、电阻R31、电阻R41、电容C30、电容C31、电容C41,所述充电集成电路U30和所述第一隔离电路电性连接,所述充电集成电路U30还和所述电容C30的第一端电性连接,所述电容C30的第二端分别和所述电阻R31的第一端、所述电容C31的第一端、所述保护集成电路U41电性连接,所述电容C30的第二端还接地,所述充电集成电路U30还接地,所述电容C31的第二端分别和所述充电集成电路U30、所述电阻R41的第一端、所述电池的第一极、所述检测控制电路电性连接,所述电阻R41的第二端分别和所述电容C41的第一端、所述保护集成电路U41电性连接,所述电容C41的第二端 分别和所述保护集成电路U41、所述电池的第二极电性连接,所述充电保护电路用来控制所述电池的充电电流和充电状态。
  14. 根据权利要求1所述的复式隔离型的LED应急灯控制电路,其特征在于:升压恒流电路包括集成电路U50、二极管D50、电感L50、电阻Rs50、电容C51和电容C52,所述电容C51的第一端分别和所述集成电路U50、所述检测控制电路电性连接,所述电容C51的第二端分别和所述电阻Rs50的第一端、所述集成电路U50电性连接,所述电容C51的第二端还接地,所述集成电路U50和所述检测控制电路电性连接;所述电阻Rs50的第二端分别和所述集成电路U50、所述LED的负极电性连接;所述电感L50的第一端和所述检测控制电路电性连接,所述电感L50的第二端分别和所述集成电路U50、所述二极管D50的正极电性连接,所述二极管D50的负极分别和所述集成电路U50、所述LED模组、所述电容C52的第一端电性连接,所述电容C52的第二端接地,所述升压恒流电路将所述电池提供的电压电流,通过变换成为比所述电池的电压更高的恒定电流,以适合所述LED模组正常工作。
  15. 根据权利要求14所述的复式隔离型的LED应急灯控制电路,其特征在于:所述升压恒流电路的工作状态是由所述检测控制电路来控制的。
  16. 根据权利要求1所述的复式隔离型的LED应急灯控制电路,其特征在于,所述稳压电路包括集成电路U80、二极管D81、稳压管Z81、电阻R80、电容C80、C81,所述电阻R80的第一端和所述第一隔离电路电性连接,所述电阻R80的第二端和分别和所述稳压管Z81的负极、所述二极管D81的正极电性连接,所述二极管D81的负极分别和所述电容C80的第一端、所述电池的第一极、所述集成电路U80电性连接,所述稳压管Z81的正极分别和所述电容C80的第二端、所述集成电路U80、所述电容C81的第一端电性连接,所述稳压管Z81的正极还接地,所述电容C81的第二端分别和所述集成电路U80、所述第三隔离电路、所述检测控制电路电性连接,所述稳压电路为所述检测控制电路和光耦U70提供稳定电压。
  17. 根据权利要求1所述的复式隔离型的LED应急灯控制电路,其特征在于:所述复式隔离型的LED应急灯控制电路还包括市电变压器T13、电阻R014,所述市电变压器T13的第一端分别和所述电阻R014的第一端、所述开关的第一端电性连接,所述市电变压器T13的第二端分别和所述电阻R014的第二端、所述第一隔离电路、所述第三隔离电路电性连接,所述开关的第二端分别和所述第一隔离电路、所述第二隔离电路电性连接。
  18. 根据权利要求1任一所述的复式隔离型的LED应急灯控制电路,其特征在于:所述电池位于所述复式隔离型的LED应急灯控制电路的次级。
PCT/CN2019/090954 2018-07-04 2019-06-12 复式隔离型的led应急灯控制电路 WO2020007171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810723142.9 2018-07-04
CN201810723142.9A CN108684107B (zh) 2018-07-04 2018-07-04 复式隔离型的led应急灯控制电路

Publications (1)

Publication Number Publication Date
WO2020007171A1 true WO2020007171A1 (zh) 2020-01-09

Family

ID=63813053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090954 WO2020007171A1 (zh) 2018-07-04 2019-06-12 复式隔离型的led应急灯控制电路

Country Status (2)

Country Link
CN (1) CN108684107B (zh)
WO (1) WO2020007171A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900976A (zh) * 2020-08-10 2020-11-06 河南许继仪表有限公司 一种高速通信隔离电路
CN114423113A (zh) * 2021-12-23 2022-04-29 广东新昇电业科技股份有限公司 一种交流电切换及应急灯工作模式控制电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108684107B (zh) * 2018-07-04 2024-02-09 深圳市威诺华照明电器有限公司 复式隔离型的led应急灯控制电路
CN113438772B (zh) * 2021-06-21 2022-10-18 深圳市晶导电子有限公司 应急照明电路及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176797A (zh) * 2010-12-06 2011-09-07 周宇超 合并式照明与应急led日光灯
CN207410559U (zh) * 2017-10-12 2018-05-25 江苏光启新能源科技有限公司 应急照明控制电路
CN108684107A (zh) * 2018-07-04 2018-10-19 深圳市威诺华照明电器有限公司 复式隔离型的led应急灯控制电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10337148A1 (de) * 2003-08-13 2005-03-17 Sander Elektronik Ag Notbeleuchtung
JP6341046B2 (ja) * 2014-10-03 2018-06-13 三菱電機株式会社 充電回路および非常灯点灯装置
CN105554957B (zh) * 2016-01-29 2018-01-09 深圳市诚丰浩电子有限公司 Led照明应急一体灯及控制系统
CN209046908U (zh) * 2018-07-04 2019-06-28 深圳市威诺华照明电器有限公司 复式隔离型的led应急灯控制电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176797A (zh) * 2010-12-06 2011-09-07 周宇超 合并式照明与应急led日光灯
CN207410559U (zh) * 2017-10-12 2018-05-25 江苏光启新能源科技有限公司 应急照明控制电路
CN108684107A (zh) * 2018-07-04 2018-10-19 深圳市威诺华照明电器有限公司 复式隔离型的led应急灯控制电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900976A (zh) * 2020-08-10 2020-11-06 河南许继仪表有限公司 一种高速通信隔离电路
CN114423113A (zh) * 2021-12-23 2022-04-29 广东新昇电业科技股份有限公司 一种交流电切换及应急灯工作模式控制电路

Also Published As

Publication number Publication date
CN108684107B (zh) 2024-02-09
CN108684107A (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
WO2020007171A1 (zh) 复式隔离型的led应急灯控制电路
WO2018107619A1 (zh) 基于pfc与llc谐振的智能全桥正弦波电压转换电路
KR20170124109A (ko) 스타트업 셀 회로의 시스템 및 방법
WO2018107623A1 (zh) 一种基于pfc双全桥的智能型正弦波电压转换电路
CN108521223B (zh) 开关电源电路
WO2018120483A1 (zh) 基于pfc交错反激全桥的智能型正弦波电压转换电路
JP2008104274A (ja) スイッチング電源装置
CN102263515A (zh) 一种ac-dc电源转换芯片及电源转换电路
WO2015096613A1 (zh) 在线互动式不间断电源及其控制方法
CN106208759A (zh) 一种带有源功率因数校正的开关电源
WO2018107622A1 (zh) 一种基于pfc双全桥的智能型修正波电压转换电路
WO2018107620A1 (zh) 一种基于pfc反激全桥的智能型修正波电压转换电路
CN112994168A (zh) 检测电池负载插拔状态的充电电路及充电器
CN111509825A (zh) 45w宽频带电压自适应pps超级快充移动电源结构
JP2011200117A (ja) スイッチング電源装置及びそれを用いた照明器具
WO2018126555A1 (zh) 基于pfc、全桥和半桥的智能型正弦波电压转换电路
JP2008104275A (ja) 無負荷時発振停止機能付きの定電流制御型dc−dcコンバータ回路
CN103094975A (zh) 一种蓄电池充电电路及led灯具
CN202178715U (zh) 一种ac-dc电源转换芯片及电源转换电路
EP4167455A1 (en) Switch-mode converter, control method for the same, and control circuit for the same
CN217183010U (zh) 一种电源电路及电源适配器
CN108024420B (zh) Led低压驱动电路和led灯具
CN116191586A (zh) 一种应急灯储能电感绕组快速充电回路
CN209046908U (zh) 复式隔离型的led应急灯控制电路
CN216356075U (zh) 应用于电动工具电池包充电器的充电管理电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831460

Country of ref document: EP

Kind code of ref document: A1