WO2020004442A1 - Thermally conductive silicone composition and thermally conductive sheet - Google Patents

Thermally conductive silicone composition and thermally conductive sheet Download PDF

Info

Publication number
WO2020004442A1
WO2020004442A1 PCT/JP2019/025311 JP2019025311W WO2020004442A1 WO 2020004442 A1 WO2020004442 A1 WO 2020004442A1 JP 2019025311 W JP2019025311 W JP 2019025311W WO 2020004442 A1 WO2020004442 A1 WO 2020004442A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermally conductive
silicone
silicone composition
component
Prior art date
Application number
PCT/JP2019/025311
Other languages
French (fr)
Japanese (ja)
Inventor
山田 邦弘
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2020527566A priority Critical patent/JP7060097B2/en
Publication of WO2020004442A1 publication Critical patent/WO2020004442A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a silicone composition having high heat conductivity and excellent heat dissipation.
  • JP-A-56-28264 discloses a liquid organosilicone carrier, silica fiber, and dendritic zinc oxide.
  • a thixotropic thermal conductive material comprising at least one selected from flaky aluminum nitride and flaky boron nitride is disclosed.
  • Japanese Patent Application Laid-Open No. 2-153959 discloses a silicone grease composition comprising a specific organopolysiloxane mixed with a spherical hexagonal aluminum nitride powder having a certain particle size range.
  • Patent Document 7 discloses a thermally conductive silicone grease obtained by combining a fine particle size aluminum nitride powder and a coarse particle size aluminum nitride powder.
  • Patent Document 8 discloses a thermally conductive grease composition using aluminum nitride powder surface-treated with organosilane, which is a combination of aluminum powder and zinc oxide powder. It has been disclosed.
  • Patent Document 9 discloses a thermally conductive silicone composition using diamond, zinc oxide, and a dispersant for a silicone resin.
  • JP-A-2000-63873 Patent Document 10
  • JP-A-2008-222776 Patent Document 11
  • a heat conductive grease composition obtained by mixing metallic aluminum powder with a base oil such as silicone oil. Is disclosed. However, any of the heat conductive materials and heat conductive greases has become insufficient to generate heat of integrated circuit elements such as recent CPUs.
  • the present invention has been made in view of the above circumstances, and has as its object to provide a thermally conductive silicone composition and a thermally conductive sheet having high thermal conductivity and excellent heat dissipation.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, by using two or more liquid silicone mixtures incompatible with each other as a base oil, the thermal conductivity of the thermally conductive silicone composition has been dramatically improved.
  • the inventors have found that the present invention is improved, and have accomplished the present invention.
  • a thermally conductive silicone composition comprising (A) a liquid silicone and (B) a thermally conductive filler, wherein the component (A) is a mixture of at least two types of liquid silicones, at least two of which are mutually exclusive.
  • a thermally conductive silicone composition characterized by being incompatible.
  • the component (A) has the following average composition formula (I) R 1 a SiO (4-a) / 2 (I) (Wherein, R 1 is independently of each other an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, and 1.8 ⁇ a ⁇ 2.2.) 2.
  • the thermally conductive silicone composition according to 1 which contains an organopolysiloxane having a kinematic viscosity at 25 ° C. of 10 to 500,000 mm 2 / s.
  • Component (A) is a liquid silicone mixture containing (A-1) an alkyl-modified silicone having an alkyl group having 7 to 18 carbon atoms and a liquid silicone incompatible with (A-1).
  • the component (A) is represented by the following general formula (II): (A-4-2) (In the formula, R 2 is an alkyl group having 1 to 6 carbon atoms, R 3 is independently an alkyl group having 1 to 6 carbon atoms, and b is an integer of 5 to 120.) 6.
  • a heat conductive silicone composition and a heat conductive sheet having high heat conductivity and excellent heat dissipation properties can be provided.
  • Component (A) is a mixture of at least two or more liquid silicones, at least two of which are incompatible with each other.
  • a kinematic viscosity at 25 ° C. a liquid silicone mixture is preferably 10 ⁇ 500,000mm 2 / s, more preferably 30 ⁇ 10,000mm 2 / s.
  • silicone composition When the kinematic viscosity of the liquid silicone mixture is lower than the above lower limit, oil bleed may easily occur. On the other hand, if it is larger than the above upper limit, the extensibility of the thermally conductive silicone composition (hereinafter sometimes simply referred to as silicone composition) may be poor.
  • the kinematic viscosity is a value measured at 25 ° C. with an Ostwald viscometer.
  • the component (A) are shown below, but unless otherwise specified, the kinematic viscosity of each of the exemplary components is also preferably in the same range as in the case of the liquid silicone (A).
  • the molecular structure of the liquid silicone constituting the liquid silicone mixture of the component (A) is not particularly limited, and may be any of linear, branched, and cyclic.
  • the liquid silicone constituting the liquid silicone mixture of the component (A) includes the following average composition formula (I) R 1 a SiO (4-a) / 2 (I) (Wherein, R 1 is independently of each other an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, and 1.8 ⁇ a ⁇ 2.2.)
  • the liquid organopolysiloxane represented by these is illustrated.
  • R 1 is independently of each other an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18, preferably 1 to 14 carbon atoms.
  • the monovalent hydrocarbon group include alkyl groups such as methyl, ethyl, propyl, hexyl, octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl; cyclopentyl, cyclohexyl Alkenyl groups such as vinyl group and allyl group; aryl groups such as phenyl group and tolyl group; aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; A group obtained by substituting a part or all of the hydrogen atoms of a group with a halogen atom such as fluorine, bromine or chlorine, a cyano group or the like, for example,
  • a is in the range of 1.8 to 2.2, preferably in the range of 1.9 to 2.1.
  • the obtained silicone composition can have a good viscosity.
  • Examples of the liquid silicone represented by the above formula (I) include the following (A-1) to (A-3). Further, (A-4): a liquid silicone having incompatibility with the liquid silicone of (A-1) to (A-3) can be mentioned.
  • the component (A) is a mixture of at least two or more silicones, and at least two of them are not limited as long as they are incompatible with each other. Specifically, it is preferable to select and combine two or more groups from the groups (A-1), (A-2), (A-3) and (A-4). If selected from two or more groups, three or more groups may be used, and two or more types may be used from each group.
  • the two or more liquid silicones are preferably contained in the (A) liquid silicone mixture in an amount of at least 10% by mass, more preferably 20 to 100% by mass, for each group, from the viewpoint of improving thermal conductivity.
  • the definition of incompatibility means that two layers of oil are mixed in a glass bottle or the like and then separated when left to stand. Specifically, the mixing may be performed in the same volume.
  • the component (A-1) is an organopolysiloxane represented by the following average composition formula (III).
  • R 4 c SiO (4-c) / 2 (III) (Wherein, R 4 is independently of each other an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18, preferably 1 to 14 carbon atoms, including an aryl group and a fluorine-containing group. (At least 5 mol% of R 4 is an alkyl group having 7 to 14 carbon atoms. C is 1.8 to 2.2.)
  • R 4 is independently an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms, an aryl group and a fluorine-containing group. Is not included. Further, at least 5 mol%, preferably 20 to 100 mol% of R 4 is an alkyl group having 7 to 14 carbon atoms. Examples of the alkyl group having 7 to 14 carbon atoms include a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, and a tetradecyl group. The remaining group is preferably a methyl group from the viewpoint of economy.
  • c is from 1.8 to 2.2, preferably from 1.9 to 2.1. When c is within the above range, the obtained silicone composition can have good viscosity with excellent usability.
  • organopolysiloxane represented by the above average composition formula (III) a linear organopolysiloxane represented by the following formula (IV) is preferable.
  • bonding order of each siloxane unit shown in parentheses is not limited to the following. The same applies hereinafter.
  • R 5 is an alkyl group having 7 to 14 carbon atoms
  • R 6 is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • X 1 is 0 to 200
  • X 2 is 1 to 100. Is an integer.
  • R 5 is an alkyl group having 7 to 14 carbon atoms, preferably 10 to 14 carbon atoms, and examples thereof include a decyl group, an undecyl group, a dodecyl group, a tridecyl group, and a tetradecyl group.
  • R 6 is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms. Particularly preferred is a methyl group.
  • X 1 is an integer of 0 to 200, preferably 0 to 100, more preferably 1 to 50, and X 2 is an integer of 1 to 100, preferably 5 to 50.
  • the component (A-2) is an organopolysiloxane represented by the following average composition formula (V).
  • R 7 d SiO (4-d) / 2 (V) (Wherein, R 7 is independently an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, and does not include an alkyl group having 7 or more carbon atoms and a fluorine-containing group. (At least 5 mol% of 7 is an aryl group. D is 1.8 to 2.2.)
  • R 7 is independently an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18, preferably 1 to 14 carbon atoms, and does not include an alkyl group having 7 or more carbon atoms and a fluorine-containing group. . At least 5 mol%, preferably 20 to 100 mol% of R 7 is an aryl group, such as a phenyl group or a tolyl group. The remaining group is preferably a methyl group from an economic viewpoint.
  • d is 1.8 to 2.2, preferably 1.9 to 2.1. When d is within the above range, the obtained silicone composition can have good viscosity with excellent usability.
  • organopolysiloxane represented by the above average composition formula (V) a linear organopolysiloxane represented by the following formula (VI) is preferable.
  • R 7 is an aryl group having 6 to 10 carbon atoms
  • R 8 is an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms.
  • Y 1 is an integer of 0 to 200
  • Y 2 is Is an integer of 1 to 100.
  • R 7 is an aryl group having 6 to 10 carbon atoms, preferably a phenyl group.
  • R 8 is an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms. Particularly preferred is a methyl group.
  • Y 1 is an integer of 0 to 200, preferably 0 to 100, more preferably 1 to 50, and Y 2 is an integer of 1 to 100, preferably 5 to 50.
  • the component (A-3) is an organopolysiloxane represented by the following average composition formula (VII).
  • R 8 e SiO (4-e) / 2 (VII) (Wherein, R 8, independently of one another, an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, .R 8 not containing alkyl and aryl group having 7 or more carbon atoms Are fluorine-containing groups, and e is from 1.8 to 2.2.
  • R 7 is independently an unsubstituted or substituted, saturated or unsaturated monovalent hydrocarbon group having 1 to 18, preferably 1 to 14 carbon atoms, and does not include an alkyl group and an aryl group having 7 or more carbon atoms. Further, at least 5 mol%, preferably 20 to 80 mol% of R 8 is a fluorine-containing group. Examples of the fluorine-containing group include a 3,3,3-trifluoropropyl group, a 2- (perfluorobutyl) ethyl group, and a 2- (perfluorooctyl) ethyl group. The remaining group is preferably a methyl group from an economic viewpoint.
  • e is 1.8 to 2.2, preferably 1.9 to 2.1. When e is within the above range, the obtained silicone composition can have good viscosity with excellent usability.
  • organopolysiloxane represented by the above average composition formula (VII) a linear organopolysiloxane represented by the following formula (VIII) is preferable.
  • R 9 is a fluorine-containing group
  • R 10 is an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms.
  • Z 1 is an integer of 0 to 200, and Z 2 is 1 to 100 It is an integer.
  • R 9 is a fluorine-containing group, preferably a 3,3,3-trifluoropropyl group.
  • R 10 is an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms. Particularly preferred is a methyl group.
  • Z 1 is an integer of 0 to 200, preferably 0 to 100, more preferably 0 to 50, and Z 2 is an integer of 1 to 100, preferably 5 to 50.
  • Examples of the liquid silicone (A-4) incompatible with each of the components (A-1) to (A-3) include (A-4-1) and (A-4-2).
  • A-4-1) is a dimethylpolysiloxane having no alkyl group, aryl group or fluorine-containing group having 7 or more carbon atoms.
  • an organopolysiloxane having a linear structure in which the main chain is composed of repeating diorganosiloxane units and both ends of the molecular chain are blocked with a trimethylsilyl group is preferable.
  • [(A-4-2)] Represented by the following general formula (II) (Wherein R 2 is an alkyl group having 1 to 6 carbon atoms, R 3 is independently an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 6 carbon atoms, and b is It is an integer of 5 to 120.) Hydrolyzable group-containing organopolysiloxane.
  • the hydrolyzable group-containing organopolysiloxane represented by the above formula (II) assists in filling the silicone composition with the thermally conductive filler at a high level. Further, when the silicone composition contains the organopolysiloxane, the surface of the thermally conductive filler is covered with the organopolysiloxane, and the aggregation of the thermally conductive filler is less likely to occur. Since this effect is maintained even at a high temperature, the heat resistance of the silicone composition is improved. Further, the surface of the thermally conductive filler can be subjected to a hydrophobic treatment with the organopolysiloxane.
  • R 2 is an alkyl group having 1 to 6 carbon atoms, for example, an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group. Especially, a methyl group and an ethyl group are preferable.
  • R 3 are independently of each other an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • Examples of the monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a decyl group, an alkyl group such as a dodecyl group, a tetradecyl group, a hexadecyl group and an octadecyl group, a cyclopentyl group, and a cyclohexyl group.
  • Cycloalkyl group such as a group, alkenyl group such as a vinyl group and an allyl group, aryl group such as a phenyl group and a tolyl group, aralkyl group such as a 2-phenylethyl group and a 2-methyl-2-phenylethyl group, or In which some or all of the hydrogen atoms of the above groups have been substituted with halogen atoms such as fluorine, bromine and chlorine, cyano groups, etc., for example, 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl Group, 2- (perfluorooctyl) ethyl group, p-chlorophenyl group and the like. Among them, a methyl group is particularly preferable.
  • b is an integer of 5 to 120, preferably 10 to 90.
  • hydrolyzable group-containing organopolysiloxane (A-4-2) When the hydrolyzable group-containing organopolysiloxane (A-4-2) is contained, its amount is preferably from 10 to 90% by mass, preferably from 20 to 80% by mass, based on the total mass of the liquid silicone mixture (A). % Is more preferred.
  • the thermal conductive filler preferably has a thermal conductivity of 10 W / (m ⁇ K) or more. When the thermal conductivity is less than 10 W / (m ⁇ K), the thermal conductivity of the thermally conductive silicone composition itself becomes small.
  • the upper limit of the thermal conductivity varies depending on the material used for the thermally conductive filler, but there is no particular upper limit.
  • Examples of the thermally conductive filler having a thermal conductivity of 10 W / (m ⁇ K) or more include aluminum powder, copper powder, silver powder, nickel powder, gold powder, aluminum oxide (alumina) powder, zinc oxide powder, and oxide powder. Examples include powders and granular materials such as magnesium powder, aluminum nitride powder, boron nitride powder, silicon nitride powder, diamond powder, and carbon powder, and these can be used alone or in combination of two or more.
  • the shape may be irregular, spherical or any shape, but preferably has an average particle size of 0.1 to 100 ⁇ m, more preferably 0 to 100 ⁇ m. 0.5 to 50 ⁇ m.
  • the average particle size is less than 0.1 ⁇ m, the obtained silicone composition may not have good usability and good viscosity, and may have poor extensibility. May be poor.
  • the average particle diameter is a volume-based cumulative average diameter (D 50 ) measured by Microtrack (laser diffraction confusion method).
  • the amount of component (B) is preferably from 300 to 5,000 parts by mass, more preferably from 500 to 3,000 parts by mass, per 100 parts by mass of component (A). If the amount of the component (B) is less than 300 parts by mass relative to 100 parts by mass of the component (A), the necessary thermal conductivity may not be obtained.
  • the composition may not have good usability and good viscosity, and may have poor extensibility.
  • the silicone composition of the present invention can be a curable silicone composition.
  • description will be made separately for [I] an addition reaction-curable heat-conductive silicone composition, [II] a condensation reaction-curable heat-conductive silicone composition, and [III] an organic peroxide-curable heat-conductive silicone composition. .
  • the component (A-1) in one molecule of the liquid silicone mixture (A) An organopolysiloxane having an alkenyl group bonded to at least two silicon atoms, (AI-2) an organopolysiloxane having an average of two or more hydrogen atoms bonded to silicon atoms in one molecule, and a platinum group It further contains a metal-based curing catalyst.
  • the components (AI-1) and (AI-2) may overlap with the component (A) or may not be incompatible with each other. However, as the liquid silicone mixture (A), The two are selected to be incompatible with each other.
  • the organopolysiloxane having at least two alkenyl groups bonded to at least two silicon atoms in one molecule is represented by the above average composition formula (I) and is preferably at least two in one molecule.
  • the alkenyl group include a vinyl group, an allyl group, a 1-butenyl group, a 1-hexenyl group and the like, and a vinyl group is preferable in terms of ease of synthesis and cost.
  • the alkenyl group bonded to the silicon atom may be present at the terminal or midway of the molecular chain of the organopolysiloxane, but is preferably present at least at the terminal.
  • Examples of the group other than the alkenyl group include those exemplified above for R 1 , but an alkyl group and an aryl group are preferable, and a methyl group and a phenyl group are more preferable.
  • the amount of the organopolysiloxane is 10 to 10% based on the total mass of the liquid silicone mixture (A).
  • the amount is preferably 90% by mass, more preferably 20 to 80% by mass, even more preferably 30 to 70% by mass.
  • the remaining organic groups bonded to silicon atoms other than hydrogen atoms bonded to silicon atoms include: , An alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group and a dodecyl group; an aryl group such as a phenyl group; an aralkyl group such as a 2-phenylethyl group and a 2-phenylpropyl group; Examples thereof include a monovalent hydrocarbon group having no aliphatic unsaturated bond of from 1 to 12, preferably 1 to 8, and a methyl group and a phenyl group are preferable.
  • the molecular structure of the (AI-2) organohydrogenpolysiloxane is not limited, and examples thereof include linear, branched, partially branched linear, cyclic, and dendritic (dendrimer).
  • the organopolysiloxane may be, for example, a homopolymer having these molecular structures, a copolymer having these molecular structures, or a mixture thereof.
  • organohydrogenpolysiloxanes include, for example, dimethylpolysiloxane having dimethylhydrogensiloxy groups at both ends of molecular chains, dimethylsiloxane / methylhydrogensiloxane copolymer having trimethylsiloxy groups at both ends, and dimethylhydrogen at both ends of molecular chains.
  • kinematic viscosity at 25 ° C. of (A-I-2) organohydrogenpolysiloxane is in the range of 1 ⁇ 100,000mm 2 / s, more preferably in the range of 1 ⁇ 5,000mm 2 / s .
  • (AI-2) an organohydrogenpolysiloxane is contained, its compounding amount is an amount necessary for curing, and specifically, alkenyl bonded to a silicon atom in the component (AI-1).
  • the amount of hydrogen atoms bonded to silicon atoms is preferably in the range of 0.1 to 10 mol, more preferably 0.1 to 5 mol, per 1 mol of the group. Is more preferable, and the amount is more preferably in the range of 0.1 to 3 mol. If the amount of this component is less than the lower limit of the above range, the resulting curable silicone composition may not be sufficiently cured, while if it exceeds the upper limit of the above range, the obtained cured silicone product becomes very hard and may cause many cracks on the surface.
  • platinum group metal-based curing catalyst examples include chloroplatinic acid, an alcohol solution of chloroplatinic acid, an olefin complex of platinum, an alkenylsiloxane complex of platinum, and a carbonyl complex of platinum. They can be used in appropriate combination.
  • the blending amount is an amount necessary for curing the present composition in the curable silicone composition, and specifically, based on the component (AI-1).
  • the amount of the platinum metal is preferably in the range of 0.01 to 1,000 ppm by mass, more preferably 0.1 to 500 ppm. If the amount of this component is less than the lower limit of the above range, the resulting curable silicone composition may not be sufficiently cured. The cure rate of the composition tends to not significantly improve.
  • the curable silicone composition contains 2-methyl-3-butyn-2-ol and 2-phenyl-3-butyn-2-ol in order to control the curing rate of the present composition and improve handling efficiency.
  • Acetylene compounds such as all and 1-ethynyl-1-cyclohexanol; ene-yne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; It is preferable to add a curing reaction inhibitor such as a hydrazine compound, a phosphine compound, or a mercaptan compound.
  • the blending amount is not limited, but is preferably 0.0001 to 1.0 part by mass with respect to 100 parts by mass of the component (AI-1).
  • (A-II-1) a Si—OH group is used as a component of the liquid silicone mixture (A).
  • (A-II-2) a silane or siloxane oligomer having a hydrolyzable group bonded to at least three silicon atoms in one molecule, and if necessary, a curing catalyst for a condensation reaction.
  • the components (A-II-1) and (A-II-2) may not be incompatible with the above component (A), but as the liquid silicone mixture (A), the two components are mutually compatible. It is chosen to be incompatible.
  • the hydrolyzable group bonded to the silicon atom examples include an alkoxy group, an alkoxyalkoxy group, an acyloxy group, a ketoxime group, an alkenoxy group, an amino group, an aminoxy group, and an amide group.
  • the silicon atom of the silane or siloxane oligomer may be, for example, a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, or a halogenated group.
  • An alkyl group may be bonded.
  • silane or siloxane oligomer examples include tetraethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, methyltris (methylethylketoxime) silane, vinyltriacetoxysilane, and ethyl orthosilicate.
  • (A-II-1) contains an organopolysiloxane, it is preferably from 10 to 90% by mass, more preferably from 20 to 80% by mass, and further preferably from 30 to 70% by mass, based on the total mass of the liquid silicone mixture (A). preferable.
  • the compounding amount is an amount necessary for curing the present composition, and specifically, 100 parts by mass of the (A-II-1) component.
  • the amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass.
  • the curing catalyst for the condensation reaction is an optional component, and is not essential when, for example, a silane having a hydrolyzable group such as an aminoxy group, an amino group, or a ketoxime group is used.
  • a condensation reaction catalyst include organic titanates such as tetrabutyl titanate and tetraisopropyl titanate; and organic titanium such as diisopropoxybis (acetylacetate) titanium and diisopropoxybis (ethylacetoacetate) titanium.
  • Chelate compounds organic aluminum compounds such as aluminum tris (acetylacetonate) and aluminum tris (ethylacetoacetate); organic zirconium compounds such as zirconium tetra (acetylacetonate) and zirconium tetrabutyrate; dibutyltin dioctoate, dibutyltin dilaurate; Organic tin compounds such as butyltin-2-ethylhexoate; organic compounds such as tin naphthenate, tin oleate, tin butylate, cobalt naphthenate and zinc stearate Metal salts of rubonic acid; amine compounds such as hexylamine and dodecylamine phosphate, and salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; lower fatty acid salts of alkali metals such as potassium acetate; dimethylhydroxylamine, diethylhydroxylamine
  • the blending amount is optional and may be any amount necessary for curing the present composition. Specifically, 100 parts by mass of the component (A-II-1) On the other hand, the amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass.
  • this catalyst is essential, if the amount of the catalyst is less than the lower limit of the above range, the resulting curable silicone composition may not be sufficiently cured, while the amount exceeds the upper limit of the above range. In such a case, the storage stability of the obtained curable silicone composition may be reduced.
  • Organic peroxide-curable heat-conductive silicone composition When the organic peroxide-curable heat-conductive silicone composition is used, (A-I-1) It contains an organopolysiloxane having an alkenyl group bonded to at least two silicon atoms in one molecule, and further contains an organic peroxide.
  • the component (AI-1) may overlap with the component (A) or may not be incompatible. However, as the liquid silicone mixture (A), two types are incompatible with each other. Is chosen to be
  • organic peroxide examples include benzoyl peroxide, di (p-methylbenzoyl) peroxide, di (o-methylbenzoyl) peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-bis ( t-butylperoxy) hexane, di-t-butyl peroxide, t-butylperoxybenzoate and the like.
  • the compounding amount of the organic peroxide is an amount necessary for curing the present composition, and specifically, 0.1 to 5 parts by mass with respect to 100 parts by mass of the component (AI-1). .
  • the method of curing is not limited, and examples thereof include a method in which the composition is molded and then left at room temperature, and a method in which the composition is molded and heated to 50 to 200 ° C.
  • the properties of the silicone cured product thus obtained are not limited, and examples thereof include a gel, a low-hardness rubber, and a high-hardness rubber.
  • the obtained cured silicone material can be sufficiently adhered to a member as a heat dissipation material.
  • the method for producing the silicone composition of the present invention is not particularly limited.
  • the components (A) and (B), and other components as required may be mixed with a trimix, a twin-mix, a planetary mixer (all of which are manufactured by Inoue Seisakusho Co., Ltd., a registered trademark), an ultra mixer ( It can be manufactured by mixing for 30 minutes to 4 hours with a mixer such as a mixer manufactured by Mizuho Industry Co., Ltd., a registered trademark) and Hibis Dispermix (mixer manufactured by Tokushu Kika Kogyo Co., Ltd.). it can. If necessary, mixing may be performed while heating at a temperature in the range of 50 to 200 ° C., preferably 50 to 150 ° C.
  • the absolute viscosity of the silicone composition of the present invention measured at 25 ° C. is preferably from 10 to 600 Pa ⁇ s, more preferably from 50 to 500 Pa ⁇ s, still more preferably from 50 to 400 Pa ⁇ s, and preferably from 50 to 350 Pa ⁇ s. Particularly preferred.
  • the silicone composition can have more excellent viscosity in use and workability. If the absolute viscosity is higher than the above upper limit, workability may be deteriorated. If the absolute viscosity is smaller than the above lower limit, the composition may flow out after being applied on various base materials, and the effect of displacement resistance may not be exhibited.
  • the absolute viscosity can be obtained by adjusting each component at the above-mentioned amount. The absolute viscosity is measured using, for example, Model No. PC-1TL (10 rpm) manufactured by Malcolm Co., Ltd.
  • the silicone composition of the present invention preferably has a high thermal conductivity of 3.0 W / (m ⁇ K) or more at 25 ° C.
  • the upper limit of the thermal conductivity is not particularly limited, it can be generally less than 10 W / (m ⁇ K), particularly less than 8 W / (m ⁇ K).
  • the thermal conductivity can be measured using a thermal conductivity meter, for example, TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.
  • the silicone composition of the present invention can be used as a paste.
  • the manner in which the silicone composition of the present invention is used as a paste is not particularly limited, and may be used in the same manner as a conventional heat-dissipating (thermally conductive) silicone paste.
  • the paste includes what is conventionally called grease.
  • the silicone composition is sandwiched between an electric / electronic component such as an LSI or other heat generating member and a cooling member or a heat radiating member, and heat from the heat generating member is transmitted to the cooling member or the heat radiating member. It can be suitably used in a mode in which heat is radiated.
  • the silicone composition of the present invention has a low viscosity, a high thermal conductivity, and extremely excellent misalignment resistance, so that it is suitably used as a heat-radiating (thermal conductive) paste for high-quality semiconductor devices. can do.
  • the silicone composition of the present invention can also be used as a sheet molding.
  • the curable silicone composition may be cured by a known method.
  • the mode of use is not particularly limited.
  • the silicone composition is sandwiched between an electric / electronic component such as an LSI and other heat generating members, and a cooling member or a heat radiating member, and heat from the heat generating member is transferred. It can be suitably used in a mode in which heat is transferred to a cooling member or a heat radiating member to release heat.
  • (A-3) Liquid silicone having a kinematic viscosity of 1,000 mm 2 / s represented by the following general formula (Z 2 is an integer that satisfies the above viscosity.)
  • (A-4-2) Liquid silicone having a kinematic viscosity of 35 mm 2 / s represented by the following general formula.
  • (A-4-1) and (A-4-2) are not included in any of (A-1) to (A-3), and (A-1), (A-2), and (A-3) ), (A-4-1) and (A-4-2) are incompatible with each other.
  • Component (B) (B-1) Aluminum oxide (alumina powder): average particle size 1.0 ⁇ m (B-2) Aluminum oxide (alumina powder): average particle size 40 ⁇ m
  • the average particle size of the thermally conductive filler of the component (B) is a volume-based cumulative average particle size (D 50 ) measured using a Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.
  • Examples 1 to 8, Comparative Examples 1 to 4 The above components (A) and (B) were charged into a 5 liter planetary mixer (registered trademark, manufactured by Inoue Seisakusho Co., Ltd.) according to the compositions and blending amounts shown in Tables 1 and 2, and added at 150 ° C. After stirring for an hour, a silicone composition was produced. The viscosity and thermal conductivity of each silicone composition obtained by the above method were measured according to the following methods. The results are shown in Tables 1 and 2.
  • Example 5 Except for changing “(A-1) 30 g and (A-2) 30 g” and “(A-4-1) 60 g”, the same operation as in Example 9 was carried out.
  • (A-4-1), (AI-1) and (AI-2) are liquid silicones having compatibility with each other.
  • the thermal conductivity of the heat conductive sheet was measured.
  • the thermal conductivity was measured at 25 ° C. by stacking five 2 mm sheets and similarly using TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.

Abstract

Provided is a thermally conductive silicone composition containing (A) a liquid silicone and (B) a thermally conductive filler, wherein component (A) is a silicone mixture of two or more kinds of substances, and at least two of the substances are incompatible with each other.

Description

熱伝導性シリコーン組成物及び熱伝導性シートThermal conductive silicone composition and thermal conductive sheet
 本発明は、熱伝導性が高く、放熱性に優れたシリコーン組成物に関するものである。 The present invention relates to a silicone composition having high heat conductivity and excellent heat dissipation.
 電子部品の多くは使用中に熱が発生するので、その電子部品を適切に機能させるためには、その電子部品から熱を取り除くことが必要である。特にパーソナルコンピューターに使用されているCPU等の集積回路素子は、動作周波数の高速化により発熱量が増大しており、熱対策が重要な問題となっている。 多 く Most electronic components generate heat during use, so it is necessary to remove heat from the electronic components in order to function properly. In particular, integrated circuit elements such as CPUs used in personal computers are increasing the amount of heat generated due to the increase in operating frequency, and heat measures have become an important issue.
 この熱を除去する手段として多くの方法が提案されている。特に発熱量の多い電子部品では、電子部品とヒートシンク等の部材の間に熱伝導性グリースや熱伝導性シートの熱伝導性材料を介在させて熱を逃がす方法が提案されている(特開昭56-28264号公報:特許文献1、特開昭61-157587号公報:特許文献2参照)。 多 く Many methods have been proposed to remove this heat. In particular, for an electronic component that generates a large amount of heat, a method has been proposed in which a heat conductive grease or a heat conductive material of a heat conductive sheet is interposed between the electronic component and a member such as a heat sink to release heat (Japanese Patent Application Laid-Open (JP-A) No. Sho. JP-A-56-28264: Patent Document 1, JP-A-61-157587: Patent Document 2).
 また、この熱伝導性材料としては、シリコーンオイルをベースとし、酸化亜鉛やアルミナ粉末を配合した放熱グリースが知られている(特公昭52-33272号公報:特許文献3、特公昭59-52195号公報:特許文献4参照)。 Further, as this heat conductive material, a heat radiation grease based on silicone oil and blended with zinc oxide and alumina powder is known (Japanese Patent Publication No. 52-272272: Patent Document 3, Japanese Patent Publication No. 59-52195). Gazette: Patent Document 4).
 さらに、熱伝導性を向上させるため、窒化アルミニウム粉末を用いたものとして、上記特開昭56-28264号公報(特許文献1)には、液状オルガノシリコーンキャリアとシリカファイバー、及びデンドライト状酸化亜鉛、薄片状窒化アルミニウム、薄片状窒化ホウ素から選択される少なくとも1種からなる揺変性熱伝導材料が開示されている。また、特開平2-153995号公報(特許文献5)には、特定のオルガノポリシロキサンに一定粒径範囲の球状六方晶系窒化アルミニウム粉末を配合したシリコーングリース組成物が、特開平3-14873号公報(特許文献6)には、粒径の細かい窒化アルミニウム粉末と粒径の粗い窒化アルミニウム粉末を組み合わせた熱伝導性シリコーングリースが、特開平10-110179号公報(特許文献7)には、窒化アルミニウム粉末と酸化亜鉛粉末を組み合わせた熱伝導性シリコーングリースが、特開2000-63872号公報(特許文献8)には、オルガノシランで表面処理した窒化アルミニウム粉末を用いた熱伝導性グリース組成物が開示されている。 Further, in order to improve the thermal conductivity, as a material using aluminum nitride powder, JP-A-56-28264 (Patent Document 1) discloses a liquid organosilicone carrier, silica fiber, and dendritic zinc oxide. A thixotropic thermal conductive material comprising at least one selected from flaky aluminum nitride and flaky boron nitride is disclosed. Japanese Patent Application Laid-Open No. 2-153959 (Patent Document 5) discloses a silicone grease composition comprising a specific organopolysiloxane mixed with a spherical hexagonal aluminum nitride powder having a certain particle size range. Japanese Patent Application Laid-Open No. 10-110179 (Patent Document 7) discloses a thermally conductive silicone grease obtained by combining a fine particle size aluminum nitride powder and a coarse particle size aluminum nitride powder. Japanese Patent Application Laid-Open Publication No. 2000-63872 (Patent Document 8) discloses a thermally conductive grease composition using aluminum nitride powder surface-treated with organosilane, which is a combination of aluminum powder and zinc oxide powder. It has been disclosed.
 窒化アルミニウムの熱伝導率は70~270W/mKであり、これより熱伝導性の高い材料として熱伝導率900~2,000W/mKのダイヤモンドがある。特開2002-30217号公報(特許文献9)には、シリコーン樹脂に、ダイヤモンド、酸化亜鉛、分散剤を用いた熱伝導性シリコーン組成物が開示されている。 ア ル ミ ニ ウ ム The thermal conductivity of aluminum nitride is 70 to 270 W / mK. As a material having higher thermal conductivity, there is diamond having a thermal conductivity of 900 to 2,000 W / mK. Japanese Patent Application Laid-Open No. 2002-30217 (Patent Document 9) discloses a thermally conductive silicone composition using diamond, zinc oxide, and a dispersant for a silicone resin.
 また、特開2000-63873号公報(特許文献10)や、特開2008-222776号公報(特許文献11)には、シリコーンオイル等の基油に金属アルミニウム粉末を混合した熱伝導性グリース組成物が開示されている。
 しかし、いずれの熱伝導性材料や熱伝導性グリースも、最近のCPU等の集積回路素子の発熱量には不十分なものとなってきている。
JP-A-2000-63873 (Patent Document 10) and JP-A-2008-222776 (Patent Document 11) disclose a heat conductive grease composition obtained by mixing metallic aluminum powder with a base oil such as silicone oil. Is disclosed.
However, any of the heat conductive materials and heat conductive greases has become insufficient to generate heat of integrated circuit elements such as recent CPUs.
特開昭56-28264号公報JP-A-56-28264 特開昭61-157587号公報JP-A-61-157587 特公昭52-33272号公報JP-B-52-33272 特公昭59-52195号公報JP-B-59-52195 特開平2-153995号公報JP-A-2-153959 特開平3-14873号公報JP-A-3-14873 特開平10-110179号公報JP-A-10-110179 特開2000-63872号公報JP-A-2000-63873 特開2002-30217号公報JP-A-2002-30217 特開2000-63873号公報JP-A-2000-63873 特開2008-222776号公報JP 2008-222776 A
 本発明は、上記事情に鑑みなされたもので、熱伝導性が高く、放熱性に優れた熱伝導性シリコーン組成物及び熱伝導性シートを提供することを目的とする。 The present invention has been made in view of the above circumstances, and has as its object to provide a thermally conductive silicone composition and a thermally conductive sheet having high thermal conductivity and excellent heat dissipation.
 本発明者は、上記目的を達成するため鋭意検討した結果、お互いに非相溶性の2種類以上の液状シリコーン混合物をベースオイルとして用いることで、熱伝導性シリコーン組成物の熱伝導率が飛躍的に向上することを知見し、本発明をなすに至ったものである。 The present inventors have conducted intensive studies to achieve the above object, and as a result, by using two or more liquid silicone mixtures incompatible with each other as a base oil, the thermal conductivity of the thermally conductive silicone composition has been dramatically improved. The inventors have found that the present invention is improved, and have accomplished the present invention.
 従って、本発明は下記発明を提供する。
1.(A)液状シリコーンと、(B)熱伝導性充填剤とを含む熱伝導性シリコーン組成物であって、(A)成分が少なくとも2種類以上の液状シリコーン混合物であり、そのうち少なくとも2種類は互いに非相溶性を示すことを特徴とする熱伝導性シリコーン組成物。
2.(A)成分が、下記平均組成式(I)
 R1 aSiO(4-a)/2          (I)
(式中、R1は互いに独立に、炭素数1~18の非置換又は置換の飽和又は不飽和1価炭化水素基であり、1.8≦a≦2.2である。)
で表され、25℃における動粘度が10~500,000mm2/sのオルガノポリシロキサンを含有する1記載の熱伝導性シリコーン組成物。
3.(A)成分が、(A-1)炭素数7~18のアルキル基を有するアルキル変性シリコーンと、(A-1)と非相溶性を示す液状シリコーンとを含有する液状シリコーン混合物である1又は2記載の熱伝導性シリコーン組成物。
4.(A)成分が、(A-2)アリール変性シリコーンと、(A-2)と非相溶性を示す液状シリコーンとを含有する液状シリコーン混合物である1又は2記載の熱伝導性シリコーン組成物。
5.(A)成分が、(A-3)フッ素変性シリコーンと、(A-3)と非相溶性を示す液状シリコーンとを含有する液状シリコーン混合物である1又は2記載の熱伝導性シリコーン組成物。
6.(A)成分が、(A-4-2)下記一般式(II)
Figure JPOXMLDOC01-appb-C000002
(式中、R2は炭素数1~6のアルキル基であり、R3は互いに独立に炭素数1~6のアルキル基であり、bは5~120の整数である。)
で表される加水分解性基含有オルガノポリシロキサンを、(A)液状シリコーン混合物の合計質量に対して10~90質量%含有する1~5のいずれかに記載の熱伝導性シリコーン組成物。
7.(B)成分の配合量が、(A)液状シリコーン混合物100質量部に対して、300~5,000質量部である1~6のいずれかに記載の熱伝導性シリコーン組成物。
8.硬化性である1~7のいずれか1に記載の熱伝導性シリコーン組成物。
9・8記載の熱伝導性シリコーン組成物を成型した熱伝導性シート。
Accordingly, the present invention provides the following inventions.
1. A thermally conductive silicone composition comprising (A) a liquid silicone and (B) a thermally conductive filler, wherein the component (A) is a mixture of at least two types of liquid silicones, at least two of which are mutually exclusive. A thermally conductive silicone composition characterized by being incompatible.
2. The component (A) has the following average composition formula (I)
R 1 a SiO (4-a) / 2 (I)
(Wherein, R 1 is independently of each other an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, and 1.8 ≦ a ≦ 2.2.)
2. The thermally conductive silicone composition according to 1, which contains an organopolysiloxane having a kinematic viscosity at 25 ° C. of 10 to 500,000 mm 2 / s.
3. Component (A) is a liquid silicone mixture containing (A-1) an alkyl-modified silicone having an alkyl group having 7 to 18 carbon atoms and a liquid silicone incompatible with (A-1). 3. The thermally conductive silicone composition according to 2.
4. 3. The thermally conductive silicone composition according to 1 or 2, wherein the component (A) is a liquid silicone mixture containing (A-2) an aryl-modified silicone and (A-2) a liquid silicone incompatible with (A-2).
5. 3. The thermally conductive silicone composition according to 1 or 2, wherein the component (A) is a liquid silicone mixture containing (A-3) a fluorine-modified silicone and (A-3) a liquid silicone incompatible with (A-3).
6. The component (A) is represented by the following general formula (II): (A-4-2)
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 2 is an alkyl group having 1 to 6 carbon atoms, R 3 is independently an alkyl group having 1 to 6 carbon atoms, and b is an integer of 5 to 120.)
6. The thermally conductive silicone composition according to any one of 1 to 5, wherein the organopolysiloxane having a hydrolyzable group represented by the formula (A) is contained in an amount of 10 to 90% by mass based on the total mass of the liquid silicone mixture.
7. 7. The thermally conductive silicone composition according to any one of 1 to 6, wherein the amount of the component (B) is 300 to 5,000 parts by mass based on 100 parts by mass of the liquid silicone mixture (A).
8. 8. The thermally conductive silicone composition according to any one of 1 to 7, which is curable.
9. A heat conductive sheet formed by molding the heat conductive silicone composition according to item 9.
 熱伝導性が高く、放熱性に優れた熱伝導性シリコーン組成物及び熱伝導性シートを提供することができる。 (4) A heat conductive silicone composition and a heat conductive sheet having high heat conductivity and excellent heat dissipation properties can be provided.
 以下、本発明について詳細に説明する。
[(A)成分]
 (A)成分は少なくとも2種類以上の液状シリコーン混合物であり、そのうち少なくとも2種類は互いに非相溶性を示すものである。(A)液状シリコーン混合物の25℃での動粘度は10~500,000mm2/sが好ましく、30~10,000mm2/sがより好ましい。(A)液状シリコーン混合物の動粘度が上記下限値より低いと、オイルブリードが出やすくなるおそれがある。また、上記上限値より大きいと、熱伝導性シリコーン組成物(以下、単にシリコーン組成物と記載する場合がある。)の伸展性が乏しくなるおそれがある。なお、本発明において、動粘度はオストワルド粘度計で測定した25℃の値である。以下(A)成分の例示を示すが、特に明記がない場合、各例示成分の動粘度も上記(A)液状シリコーン混合と同じ範囲が好ましい。(A)成分の液状シリコーン混合物を構成する液状シリコーンとしては、分子構造は特に限定されず、直鎖状、分岐鎖状及び環状等のいずれであってもよい。
Hereinafter, the present invention will be described in detail.
[(A) component]
Component (A) is a mixture of at least two or more liquid silicones, at least two of which are incompatible with each other. (A) a kinematic viscosity at 25 ° C. a liquid silicone mixture is preferably 10 ~ 500,000mm 2 / s, more preferably 30 ~ 10,000mm 2 / s. (A) When the kinematic viscosity of the liquid silicone mixture is lower than the above lower limit, oil bleed may easily occur. On the other hand, if it is larger than the above upper limit, the extensibility of the thermally conductive silicone composition (hereinafter sometimes simply referred to as silicone composition) may be poor. In the present invention, the kinematic viscosity is a value measured at 25 ° C. with an Ostwald viscometer. Examples of the component (A) are shown below, but unless otherwise specified, the kinematic viscosity of each of the exemplary components is also preferably in the same range as in the case of the liquid silicone (A). The molecular structure of the liquid silicone constituting the liquid silicone mixture of the component (A) is not particularly limited, and may be any of linear, branched, and cyclic.
 (A)成分の液状シリコーン混合物を構成する液状シリコーンとしては、下記平均組成式(I)
 R1 aSiO(4-a)/2          (I)
(式中、R1は互いに独立に、炭素数1~18の非置換又は置換の飽和又は不飽和1価炭化水素基であり、1.8≦a≦2.2である。)
で表される液状オルガノポリシロキサンが例示される。
The liquid silicone constituting the liquid silicone mixture of the component (A) includes the following average composition formula (I)
R 1 a SiO (4-a) / 2 (I)
(Wherein, R 1 is independently of each other an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, and 1.8 ≦ a ≦ 2.2.)
The liquid organopolysiloxane represented by these is illustrated.
 上記式(I)中、R1は互いに独立に、炭素数1~18、好ましくは1~14の非置換又は置換の飽和又は不飽和1価炭化水素基である。1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、及びオクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、及びアリル基等のアルケニル基;フェニル基及びトリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;又はこれらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えば、3,3,3-トリフロロプロピル基、2-(パーフロロブチル)エチル基、2-(パーフロロオクチル)エチル基、p-クロロフェニル基等が挙げられる。 In the formula (I), R 1 is independently of each other an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18, preferably 1 to 14 carbon atoms. Examples of the monovalent hydrocarbon group include alkyl groups such as methyl, ethyl, propyl, hexyl, octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl; cyclopentyl, cyclohexyl Alkenyl groups such as vinyl group and allyl group; aryl groups such as phenyl group and tolyl group; aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; A group obtained by substituting a part or all of the hydrogen atoms of a group with a halogen atom such as fluorine, bromine or chlorine, a cyano group or the like, for example, a 3,3,3-trifluoropropyl group or a 2- (perfluorobutyl) ethyl group , 2- (perfluorooctyl) ethyl group, p-chlorophenyl group and the like.
 上記式(I)中、aは1.8~2.2の範囲であり、1.9~2.1の範囲が好ましい。aが上記範囲内にあることにより、得られるシリコーン組成物は良好な粘度を有することができる。 A In the above formula (I), a is in the range of 1.8 to 2.2, preferably in the range of 1.9 to 2.1. When a is within the above range, the obtained silicone composition can have a good viscosity.
 上記式(I)で表される液状シリコーンとして、下記(A-1)~(A-3)が挙げられる。さらに(A-4):(A-1)~(A-3)の液状シリコーンと非相溶性を示す液状シリコーンが挙げられる。(A)成分は少なくとも2種類以上のシリコーン混合物であり、そのうち少なくとも2種類は互いに非相溶性を示すものであればよく、そのような組み合わせであれば、特に限定されない。具体的には、(A-1)、(A-2)、(A-3)、(A-4)のグループの中から、2つ以上のグループから選択して組み合わせることが好ましい。2つ以上のグループから選択されるのであれば、3つ以上のグループからでもよく、各グループから2種類以上用いてもよい。なお、2種類以上選択される液状シリコーンは(A)液状シリコーン混合物中、熱伝導率の向上の点から、グループ毎にそれぞれ10質量%以上含有することが好ましく、20~100質量%が好ましい。なお、非相溶性の定義は、ガラス瓶等に2種類のオイルを混合した後、静置すると2層分離するということであり、具体的には混合は同じ体積とするとよい。 液状 Examples of the liquid silicone represented by the above formula (I) include the following (A-1) to (A-3). Further, (A-4): a liquid silicone having incompatibility with the liquid silicone of (A-1) to (A-3) can be mentioned. The component (A) is a mixture of at least two or more silicones, and at least two of them are not limited as long as they are incompatible with each other. Specifically, it is preferable to select and combine two or more groups from the groups (A-1), (A-2), (A-3) and (A-4). If selected from two or more groups, three or more groups may be used, and two or more types may be used from each group. The two or more liquid silicones are preferably contained in the (A) liquid silicone mixture in an amount of at least 10% by mass, more preferably 20 to 100% by mass, for each group, from the viewpoint of improving thermal conductivity. The definition of incompatibility means that two layers of oil are mixed in a glass bottle or the like and then separated when left to stand. Specifically, the mixing may be performed in the same volume.
[(A-1)成分]
 (A-1)成分は下記平均組成式(III)で表されるオルガノポリシロキサンである。
 R4 cSiO(4-c)/2          (III)
(式中、R4は互いに独立に、炭素数1~18、好ましくは1~14の、非置換又は置換の飽和又は不飽和の1価炭化水素基であり、アリール基及びフッ素含有基は含まない。R4の少なくとも5モル%は炭素数7~14のアルキル基である。cは1.8~2.2である。)
[Component (A-1)]
The component (A-1) is an organopolysiloxane represented by the following average composition formula (III).
R 4 c SiO (4-c) / 2 (III)
(Wherein, R 4 is independently of each other an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18, preferably 1 to 14 carbon atoms, including an aryl group and a fluorine-containing group. (At least 5 mol% of R 4 is an alkyl group having 7 to 14 carbon atoms. C is 1.8 to 2.2.)
 上記式(III)において、R4は互いに独立に、炭素数1~18、好ましくは1~14の、非置換又は置換の飽和又は不飽和1価炭化水素基であり、アリール基及びフッ素含有基は含まない。また、R4の少なくとも5モル%、好ましくは20~100モル%は炭素数7~14のアルキル基である。炭素数7~14のアルキル基としては、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基等が挙げられる。残りの基は、経済面からメチル基が好ましい。
 cは1.8~2.2であり、1.9~2.1が好ましい。cが上記範囲内にあることにより、得られるシリコーン組成物は、使用性に優れた良好な粘度を有することができる。
In the above formula (III), R 4 is independently an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms, an aryl group and a fluorine-containing group. Is not included. Further, at least 5 mol%, preferably 20 to 100 mol% of R 4 is an alkyl group having 7 to 14 carbon atoms. Examples of the alkyl group having 7 to 14 carbon atoms include a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, and a tetradecyl group. The remaining group is preferably a methyl group from the viewpoint of economy.
c is from 1.8 to 2.2, preferably from 1.9 to 2.1. When c is within the above range, the obtained silicone composition can have good viscosity with excellent usability.
 上記平均組成式(III)で表されるオルガノポリシロキサンとしては、下記式(IV)で表される直鎖状オルガノポリシロキサンが好ましい。なお、括弧内に示される各シロキサン単位の結合順序は、下記に制限されるものではない。以下同様。)
Figure JPOXMLDOC01-appb-C000003
(式中、R5は炭素数7~14のアルキル基であり、R6は炭素数1~6の置換又は非置換のアルキル基である。X1は0~200、X2は1~100の整数である。)
As the organopolysiloxane represented by the above average composition formula (III), a linear organopolysiloxane represented by the following formula (IV) is preferable. In addition, the bonding order of each siloxane unit shown in parentheses is not limited to the following. The same applies hereinafter. )
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 5 is an alkyl group having 7 to 14 carbon atoms, R 6 is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms. X 1 is 0 to 200, and X 2 is 1 to 100. Is an integer.)
 R5は炭素数7~14、好ましくは炭素数10~14のアルキル基であり、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基等が挙げられる。R6は炭素数1~6の置換又は非置換のアルキル基である。特に好ましくは、メチル基である。X1は0~200、好ましくは0~100、より好ましくは1~50の整数であり、X2は1~100、好ましくは5~50の整数である。 R 5 is an alkyl group having 7 to 14 carbon atoms, preferably 10 to 14 carbon atoms, and examples thereof include a decyl group, an undecyl group, a dodecyl group, a tridecyl group, and a tetradecyl group. R 6 is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms. Particularly preferred is a methyl group. X 1 is an integer of 0 to 200, preferably 0 to 100, more preferably 1 to 50, and X 2 is an integer of 1 to 100, preferably 5 to 50.
[(A-2)成分]
 (A-2)成分は下記平均組成式(V)で表されるオルガノポリシロキサンである。
  R7 dSiO(4-d)/2          (V)
(式中、R7は互いに独立に、炭素数1~18の非置換又は置換の飽和又は不飽和1価炭化水素基であり、炭素数7以上のアルキル基及びフッ素含有基は含まない。R7の少なくとも5モル%はアリール基である。dは1.8~2.2である。)
[(A-2) component]
The component (A-2) is an organopolysiloxane represented by the following average composition formula (V).
R 7 d SiO (4-d) / 2 (V)
(Wherein, R 7 is independently an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, and does not include an alkyl group having 7 or more carbon atoms and a fluorine-containing group. (At least 5 mol% of 7 is an aryl group. D is 1.8 to 2.2.)
 R7は互いに独立に、炭素数1~18、好ましくは1~14の非置換又は置換の飽和又は不飽和1価炭化水素基であり、炭素数7以上のアルキル基及びフッ素含有基は含まない。また、R7の少なくとも5モル%、好ましくは20~100モル%はアリール基であり、フェニル基、トリル基等が挙げられる。残りの基は経済面からメチル基が好ましい。
 dは1.8~2.2であり、1.9~2.1が好ましい。dが上記範囲内にあることにより、得られるシリコーン組成物は、使用性に優れた良好な粘度を有することができる。
R 7 is independently an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18, preferably 1 to 14 carbon atoms, and does not include an alkyl group having 7 or more carbon atoms and a fluorine-containing group. . At least 5 mol%, preferably 20 to 100 mol% of R 7 is an aryl group, such as a phenyl group or a tolyl group. The remaining group is preferably a methyl group from an economic viewpoint.
d is 1.8 to 2.2, preferably 1.9 to 2.1. When d is within the above range, the obtained silicone composition can have good viscosity with excellent usability.
 上記平均組成式(V)で表されるオルガノポリシロキサンとしては、下記式(VI)で表される直鎖状オルガノポリシロキサンが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式中、R7は炭素数6~10のアリール基であり、R8は炭素数1~6の非置換又は置換のアルキル基である。Y1は0~200の整数であり、Y2は1~100の整数である。)
As the organopolysiloxane represented by the above average composition formula (V), a linear organopolysiloxane represented by the following formula (VI) is preferable.
Figure JPOXMLDOC01-appb-C000004
(Wherein, R 7 is an aryl group having 6 to 10 carbon atoms, R 8 is an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms. Y 1 is an integer of 0 to 200, and Y 2 is Is an integer of 1 to 100.)
 R7は炭素数6~10のアリール基であり、好ましくはフェニル基である。R8は炭素数1~6の非置換又は置換のアルキル基である。特に好ましくは、メチル基である。Y1は0~200、好ましくは0~100、さらに好ましくは1~50の整数であり、Y2は1~100、好ましくは5~50の整数である。 R 7 is an aryl group having 6 to 10 carbon atoms, preferably a phenyl group. R 8 is an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms. Particularly preferred is a methyl group. Y 1 is an integer of 0 to 200, preferably 0 to 100, more preferably 1 to 50, and Y 2 is an integer of 1 to 100, preferably 5 to 50.
[(A-3)成分]
 (A-3)成分は下記平均組成式(VII)で表されるオルガノポリシロキサンである。
  R8 eSiO(4-e)/2          (VII)
(式中、R8は互いに独立に、炭素数1~18の非置換又は置換の飽和又は不飽和1価炭化水素基であり、炭素数7以上のアルキル基及びアリール基を含まない。R8の少なくとも5モル%はフッ素含有基であり、eは1.8~2.2である。
[(A-3) component]
The component (A-3) is an organopolysiloxane represented by the following average composition formula (VII).
R 8 e SiO (4-e) / 2 (VII)
(Wherein, R 8, independently of one another, an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, .R 8 not containing alkyl and aryl group having 7 or more carbon atoms Are fluorine-containing groups, and e is from 1.8 to 2.2.
 R7は互いに独立に、炭素数1~18、好ましくは1~14の非置換又は置換の飽和又は不飽和1価炭化水素基であり、炭素数7以上のアルキル基及びアリール基を含まない。また、R8の少なくとも5モル%、好ましくは20~80モル%がフッ素含有基である。フッ素含有基としては、3,3,3-トリフロロプロピル基、2-(パーフロロブチル)エチル基、2-(パーフロロオクチル)エチル基等が挙げられる。残りの基は経済面からメチル基が好ましい。
 eは1.8~2.2であり、1.9~2.1が好ましい。eが上記範囲内にあることにより、得られるシリコーン組成物は、使用性に優れた良好な粘度を有することができる。
R 7 is independently an unsubstituted or substituted, saturated or unsaturated monovalent hydrocarbon group having 1 to 18, preferably 1 to 14 carbon atoms, and does not include an alkyl group and an aryl group having 7 or more carbon atoms. Further, at least 5 mol%, preferably 20 to 80 mol% of R 8 is a fluorine-containing group. Examples of the fluorine-containing group include a 3,3,3-trifluoropropyl group, a 2- (perfluorobutyl) ethyl group, and a 2- (perfluorooctyl) ethyl group. The remaining group is preferably a methyl group from an economic viewpoint.
e is 1.8 to 2.2, preferably 1.9 to 2.1. When e is within the above range, the obtained silicone composition can have good viscosity with excellent usability.
 上記平均組成式(VII)で表されるオルガノポリシロキサンとしては、下記式(VIII)で表される直鎖状オルガノポリシロキサンが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、R9はフッ素含有基であり、R10は炭素数1~6の非置換又は置換のアルキル基である。Z1は0~200の整数であり、Z2は1~100の整数である。)
As the organopolysiloxane represented by the above average composition formula (VII), a linear organopolysiloxane represented by the following formula (VIII) is preferable.
Figure JPOXMLDOC01-appb-C000005
(Wherein, R 9 is a fluorine-containing group, R 10 is an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms. Z 1 is an integer of 0 to 200, and Z 2 is 1 to 100 It is an integer.)
 R9はフッ素含有基であり、好ましくは3,3,3-トリフロロプロピル基である。R10は炭素数1~6の非置換又は置換のアルキル基である。特に好ましくは、メチル基である。Z1は0~200、好ましくは0~100、さらに好ましくは0~50の整数であり、Z2は1~100、好ましくは5~50の整数である。 R 9 is a fluorine-containing group, preferably a 3,3,3-trifluoropropyl group. R 10 is an unsubstituted or substituted alkyl group having 1 to 6 carbon atoms. Particularly preferred is a methyl group. Z 1 is an integer of 0 to 200, preferably 0 to 100, more preferably 0 to 50, and Z 2 is an integer of 1 to 100, preferably 5 to 50.
[(A-4)成分]
 (A-1)~(A-3)成分それぞれに非相溶な液状シリコーン(A-4)としては、例えば、(A-4-1)、(A-4-2)が挙げられる。
[(A-4) component]
Examples of the liquid silicone (A-4) incompatible with each of the components (A-1) to (A-3) include (A-4-1) and (A-4-2).
[(A-4-1)]
 (A-4-1)は炭素数が7個以上のアルキル基、アリール基、フッ素含有基のいずれも有しないジメチルポリシロキサンである。中でも、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリメチルシリル基で封鎖された直鎖状構造を有するオルガノポリシロキサンが好ましい。
[(A-4-1)]
(A-4-1) is a dimethylpolysiloxane having no alkyl group, aryl group or fluorine-containing group having 7 or more carbon atoms. Among them, an organopolysiloxane having a linear structure in which the main chain is composed of repeating diorganosiloxane units and both ends of the molecular chain are blocked with a trimethylsilyl group is preferable.
[(A-4-2)]
 下記一般式(II)で表される
Figure JPOXMLDOC01-appb-C000006
(式中、R2は炭素数1~6のアルキル基であり、R3は互いに独立に、炭素数1~6の非置換又は置換の飽和又は不飽和1価炭化水素基であり、bは5~120の整数である。)
加水分解性基含有オルガノポリシロキサン。
[(A-4-2)]
Represented by the following general formula (II)
Figure JPOXMLDOC01-appb-C000006
(Wherein R 2 is an alkyl group having 1 to 6 carbon atoms, R 3 is independently an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 6 carbon atoms, and b is It is an integer of 5 to 120.)
Hydrolyzable group-containing organopolysiloxane.
 上記式(II)で表される加水分解性基含有オルガノポリシロキサンは、シリコーン組成物中に熱伝導性充填剤を高充填することを補助する。さらに、シリコーン組成物が該オルガノポリシロキサンを含有することにより、熱伝導性充填剤の表面が該オルガノポリシロキサンで覆われ、熱伝導性充填剤同士の凝集が起こりにくくなる。この効果は高温下でも持続するため、シリコーン組成物の耐熱性が向上する。また、このオルガノポリシロキサンによって熱伝導性充填剤の表面を疎水化処理することもできる。 加 水 The hydrolyzable group-containing organopolysiloxane represented by the above formula (II) assists in filling the silicone composition with the thermally conductive filler at a high level. Further, when the silicone composition contains the organopolysiloxane, the surface of the thermally conductive filler is covered with the organopolysiloxane, and the aggregation of the thermally conductive filler is less likely to occur. Since this effect is maintained even at a high temperature, the heat resistance of the silicone composition is improved. Further, the surface of the thermally conductive filler can be subjected to a hydrophobic treatment with the organopolysiloxane.
 R2は炭素数1~6のアルキル基であり、例えば、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基等が挙げられる。中でも、メチル基、エチル基が好ましい。R3は、互いに独立に、炭素数1~6の、非置換又は置換の飽和又は不飽和1価炭化水素基である。この1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基及びオクタデシル基等のアルキル基、シクロペンチル基、及びシクロヘキシル基等のシクロアルキル基、ビニル基及びアリル基等のアルケニル基、フェニル基、及びトリル基等のアリール基、2-フェニルエチル基及び2-メチル-2-フェニルエチル基等のアラルキル基、又はこれらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えば、3,3,3-トリフロロプロピル基、2-(パーフロロブチル)エチル基、2-(パーフロロオクチル)エチル基、p-クロロフェニル基等が挙げられる。中でも、特にメチル基が好ましい。上記式(II)中、bは5~120の整数であり、好ましくは10~90の整数である。 R 2 is an alkyl group having 1 to 6 carbon atoms, for example, an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group. Especially, a methyl group and an ethyl group are preferable. R 3 are independently of each other an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 6 carbon atoms. Examples of the monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, a decyl group, an alkyl group such as a dodecyl group, a tetradecyl group, a hexadecyl group and an octadecyl group, a cyclopentyl group, and a cyclohexyl group. Cycloalkyl group such as a group, alkenyl group such as a vinyl group and an allyl group, aryl group such as a phenyl group and a tolyl group, aralkyl group such as a 2-phenylethyl group and a 2-methyl-2-phenylethyl group, or In which some or all of the hydrogen atoms of the above groups have been substituted with halogen atoms such as fluorine, bromine and chlorine, cyano groups, etc., for example, 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl Group, 2- (perfluorooctyl) ethyl group, p-chlorophenyl group and the like. Among them, a methyl group is particularly preferable. In the above formula (II), b is an integer of 5 to 120, preferably 10 to 90.
(A-4-2)の加水分解性基含有オルガノポリシロキサンを含む場合、その量は、(A)液状シリコーン混合物の合計質量に対して10~90質量%の量が好ましく、20~80質量%がより好ましい。 When the hydrolyzable group-containing organopolysiloxane (A-4-2) is contained, its amount is preferably from 10 to 90% by mass, preferably from 20 to 80% by mass, based on the total mass of the liquid silicone mixture (A). % Is more preferred.
[(B)成分]
 熱伝導性充填剤は、熱伝導率が10W/(m・K)以上であることが好ましい。熱伝導率が10W/(m・K)未満であると、熱伝導性シリコーン組成物の熱伝導率そのものが小さくなる。熱伝導率の上限は、熱伝導性充填剤に用いる材料によっても変化するが、特に上限はない。熱伝導率が10W/(m・K)以上の熱伝導性充填剤としては、例えば、アルミニウム粉末、銅粉末、銀粉末、ニッケル粉末、金粉末、酸化アルミニウム(アルミナ)粉末、酸化亜鉛粉末、酸化マグネシウム粉末、窒化アルミニム粉末、窒化ホウ素粉末、窒化珪素粉末、ダイヤモンド粉末、カーボン粉末等の粉末や粒状物が挙げられ、これらを1種単独で又は2種以上を適宜組み合わせて用いることができる。
[Component (B)]
The thermal conductive filler preferably has a thermal conductivity of 10 W / (m · K) or more. When the thermal conductivity is less than 10 W / (m · K), the thermal conductivity of the thermally conductive silicone composition itself becomes small. The upper limit of the thermal conductivity varies depending on the material used for the thermally conductive filler, but there is no particular upper limit. Examples of the thermally conductive filler having a thermal conductivity of 10 W / (m · K) or more include aluminum powder, copper powder, silver powder, nickel powder, gold powder, aluminum oxide (alumina) powder, zinc oxide powder, and oxide powder. Examples include powders and granular materials such as magnesium powder, aluminum nitride powder, boron nitride powder, silicon nitride powder, diamond powder, and carbon powder, and these can be used alone or in combination of two or more.
 熱伝導性充填剤として粉末や粒状物を用いる場合に、その形状は不定形でも球形でもいかなる形状でも構わないが、平均粒径0.1~100μmのものを用いるのが好ましく、より好ましくは0.5~50μmである。平均粒径が0.1μm未満であると、得られるシリコーン組成物が、使用性に優れた良好な粘度を有するものにならず伸展性に乏しくなるおそれがあり、100μmを超えると組成物の均一性が乏しくなるおそれがある。なお、平均粒径とは、マイクロトラック(レーザー回折錯乱法)による体積基準の累積平均径(D50)である。 When a powder or a granular material is used as the heat conductive filler, the shape may be irregular, spherical or any shape, but preferably has an average particle size of 0.1 to 100 μm, more preferably 0 to 100 μm. 0.5 to 50 μm. When the average particle size is less than 0.1 μm, the obtained silicone composition may not have good usability and good viscosity, and may have poor extensibility. May be poor. The average particle diameter is a volume-based cumulative average diameter (D 50 ) measured by Microtrack (laser diffraction confusion method).
 (B)成分の配合量は、(A)成分100質量部に対して、300~5,000質量部が好ましく、500~3,000質量部がより好ましい。(B)成分の配合量が、(A)成分100質量部に対して300質量部未満であると、必要な熱伝導率が得られないおそれがあり、5,000質量部を超えると、シリコーン組成物が使用性に優れた良好な粘度を有するものにならず伸展性に乏しくなるおそれがある。 配合 The amount of component (B) is preferably from 300 to 5,000 parts by mass, more preferably from 500 to 3,000 parts by mass, per 100 parts by mass of component (A). If the amount of the component (B) is less than 300 parts by mass relative to 100 parts by mass of the component (A), the necessary thermal conductivity may not be obtained. The composition may not have good usability and good viscosity, and may have poor extensibility.
[硬化性熱伝導性シリコーン組成物]
 本発明のシリコーン組成物は硬化性シリコーン組成物とすることができる。
 以下、[I]付加反応硬化型熱伝導性シリコーン組成物、[II]縮合反応硬化型熱伝導性シリコーン組成物、[III]有機過酸化物硬化型熱伝導性シリコーン組成物に分けて説明する。
[Curable heat conductive silicone composition]
The silicone composition of the present invention can be a curable silicone composition.
Hereinafter, description will be made separately for [I] an addition reaction-curable heat-conductive silicone composition, [II] a condensation reaction-curable heat-conductive silicone composition, and [III] an organic peroxide-curable heat-conductive silicone composition. .
[I]付加反応硬化型熱伝導性シリコーン組成物
 付加反応硬化型熱伝導性シリコーン組成物とする場合、上記(A)液状シリコーン混合物の構成成分として、(A-I-1)1分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサン、(A-I-2)1分子中に平均2個以上のケイ素原子に結合した水素原子を有するオルガノポリシロキサンを含み、白金族金属系硬化触媒をさらに含むものである。なお、(A-I-1)、(A-I-2)成分は、上記(A)成分と重複する場合や、非相溶ではない場合があり得るが、(A)液状シリコーン混合物として、2種類はお互いに非相溶性であるように選定される。
[I] Addition-Reaction-Curable Thermally Conductive Silicone Composition In the case of an addition-reaction-curable thermally conductive silicone composition, the component (A-1) in one molecule of the liquid silicone mixture (A) An organopolysiloxane having an alkenyl group bonded to at least two silicon atoms, (AI-2) an organopolysiloxane having an average of two or more hydrogen atoms bonded to silicon atoms in one molecule, and a platinum group It further contains a metal-based curing catalyst. The components (AI-1) and (AI-2) may overlap with the component (A) or may not be incompatible with each other. However, as the liquid silicone mixture (A), The two are selected to be incompatible with each other.
(A-I-1)1分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンとしては、上記平均組成式(I)で表され、1分子中に少なくとも2個、好ましくは2~5個のケイ素原子に結合したアルケニル基を有するものが挙げられる。アルケニル基としては、ビニル基、アリル基、1-ブテニル基、1-ヘキセニル基等が例示されるが、合成のし易さ、コストの面からビニル基が好ましい。ケイ素原子に結合するアルケニル基は、オルガノポリシロキサンの分子鎖の末端、途中のいずれに存在してもよいが、少なくとも末端に存在することが好ましい。 (AI-1) The organopolysiloxane having at least two alkenyl groups bonded to at least two silicon atoms in one molecule is represented by the above average composition formula (I) and is preferably at least two in one molecule. Is a group having an alkenyl group bonded to 2 to 5 silicon atoms. Examples of the alkenyl group include a vinyl group, an allyl group, a 1-butenyl group, a 1-hexenyl group and the like, and a vinyl group is preferable in terms of ease of synthesis and cost. The alkenyl group bonded to the silicon atom may be present at the terminal or midway of the molecular chain of the organopolysiloxane, but is preferably present at least at the terminal.
 アルケニル基以外の基としては、上記R1で例示されたものが挙げられるが、アルキル基、アリール基が好ましく、メチル基、フェニル基がより好ましい。 Examples of the group other than the alkenyl group include those exemplified above for R 1 , but an alkyl group and an aryl group are preferable, and a methyl group and a phenyl group are more preferable.
 (A-I-1)1分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンを含む場合、その配合量は、(A)液状シリコーン混合物の合計質量に対して10~90質量%の量が好ましく、20~80質量%がより好ましく、30~70質量%がさらに好ましい。 (AI-1) When one molecule contains an organopolysiloxane having an alkenyl group bonded to at least two silicon atoms, the amount of the organopolysiloxane is 10 to 10% based on the total mass of the liquid silicone mixture (A). The amount is preferably 90% by mass, more preferably 20 to 80% by mass, even more preferably 30 to 70% by mass.
(A-I-2)1分子中に平均2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン
 ケイ素原子に結合した水素原子以外のケイ素原子に結合する残余の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基等の炭素数1~12、好ましくは1~8の脂肪族不飽和結合を有さない1価炭化水素基が例示され、メチル基、フェニル基が好ましい。
(AI-2) An organohydrogenpolysiloxane having an average of two or more hydrogen atoms bonded to silicon atoms in one molecule The remaining organic groups bonded to silicon atoms other than hydrogen atoms bonded to silicon atoms include: , An alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group and a dodecyl group; an aryl group such as a phenyl group; an aralkyl group such as a 2-phenylethyl group and a 2-phenylpropyl group; Examples thereof include a monovalent hydrocarbon group having no aliphatic unsaturated bond of from 1 to 12, preferably 1 to 8, and a methyl group and a phenyl group are preferable.
 (A-I-2)オルガノハイドロジェンポリシロキサンの分子構造は限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状、環状、樹枝状(デンドリマー状)が挙げられる。このオルガノポリシロキサンは、例えば、これらの分子構造を有する単一重合体、これらの分子構造からなる共重合体、又はこれらの混合物であってもよい。このようなオルガノハイドロジェンポリシロキサンとしては、例えば、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサンコポリマー、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサンコポリマー、式:(CH33SiO1/2で表されるシロキサン単位と、式:(CH32HSiO1/2で表されるシロキサン単位と、式:SiO4/2で表されるシロキサン単位からなるオルガノシロキサンコポリマー等が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。 The molecular structure of the (AI-2) organohydrogenpolysiloxane is not limited, and examples thereof include linear, branched, partially branched linear, cyclic, and dendritic (dendrimer). The organopolysiloxane may be, for example, a homopolymer having these molecular structures, a copolymer having these molecular structures, or a mixture thereof. Such organohydrogenpolysiloxanes include, for example, dimethylpolysiloxane having dimethylhydrogensiloxy groups at both ends of molecular chains, dimethylsiloxane / methylhydrogensiloxane copolymer having trimethylsiloxy groups at both ends, and dimethylhydrogen at both ends of molecular chains. Gensiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, a siloxane unit represented by the formula: (CH 3 ) 3 SiO 1/2 , and a siloxane unit represented by the formula: (CH 3 ) 2 HSiO 1/2 And an organosiloxane copolymer comprising a siloxane unit represented by the formula: SiO 4/2 , and the like, and these can be used alone or in an appropriate combination of two or more.
 (A-I-2)オルガノハイドロジェンポリシロキサンの25℃における動粘度は1~100,000mm2/sの範囲内であることが好ましく、1~5,000mm2/sの範囲内がより好ましい。 Preferably kinematic viscosity at 25 ° C. of (A-I-2) organohydrogenpolysiloxane is in the range of 1 ~ 100,000mm 2 / s, more preferably in the range of 1 ~ 5,000mm 2 / s .
 (A-I-2)オルガノハイドロジェンポリシロキサンを含む場合、その配合量は、硬化に必要な量であり、具体的には、(A-I-1)成分中のケイ素原子に結合したアルケニル基1モルに対して、ケイ素原子に結合した水素原子が0.1~10モルの範囲内となる量であることが好ましく、さらに、0.1~5モルの範囲内となる量であることがより好ましく、0.1~3モルの範囲内となる量であることがさらに好ましい。本成分の配合量が上記範囲の下限未満となる量であると、得られる硬化性シリコーン組成物が十分に硬化しなくなるおそれがあり、一方、上記範囲の上限を超えると、得られるシリコーン硬化物が非常に硬質となり、表面に多数のクラックを生じたりするおそれがある。 When (AI-2) an organohydrogenpolysiloxane is contained, its compounding amount is an amount necessary for curing, and specifically, alkenyl bonded to a silicon atom in the component (AI-1). The amount of hydrogen atoms bonded to silicon atoms is preferably in the range of 0.1 to 10 mol, more preferably 0.1 to 5 mol, per 1 mol of the group. Is more preferable, and the amount is more preferably in the range of 0.1 to 3 mol. If the amount of this component is less than the lower limit of the above range, the resulting curable silicone composition may not be sufficiently cured, while if it exceeds the upper limit of the above range, the obtained cured silicone product Becomes very hard and may cause many cracks on the surface.
 白金族金属系硬化触媒としては、例えば、塩化白金酸、塩化白金酸のアルコール溶液、白金のオレフィン錯体、白金のアルケニルシロキサン錯体、白金のカルボニル錯体が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。 Examples of the platinum group metal-based curing catalyst include chloroplatinic acid, an alcohol solution of chloroplatinic acid, an olefin complex of platinum, an alkenylsiloxane complex of platinum, and a carbonyl complex of platinum. They can be used in appropriate combination.
 白金族金属系硬化触媒を配合する場合、その配合量は、硬化性シリコーン組成物中、本組成物の硬化に必要な量であり、具体的には、(A-I-1)成分に対して、白金金属としての量が質量単位で0.01~1,000ppmの範囲となる量が好ましく、0.1~500ppmの範囲となる量であることがより好ましい。本成分の配合量が上記範囲の下限未満であると、得られる硬化性シリコーン組成物が十分に硬化しなくなるおそれがあり、一方、上記範囲の上限を超える量を配合しても、硬化性シリコーン組成物の硬化速度は顕著に向上しなくなる傾向がある。 When a platinum group metal-based curing catalyst is blended, the blending amount is an amount necessary for curing the present composition in the curable silicone composition, and specifically, based on the component (AI-1). The amount of the platinum metal is preferably in the range of 0.01 to 1,000 ppm by mass, more preferably 0.1 to 500 ppm. If the amount of this component is less than the lower limit of the above range, the resulting curable silicone composition may not be sufficiently cured. The cure rate of the composition tends to not significantly improve.
 また、硬化性シリコーン組成物には、本組成物の硬化速度を調節し、取扱作業性を向上させるため、2-メチル-3-ブチン-2-オール、2-フェニル-3-ブチン-2-オール、1-エチニル-1-シクロヘキサノール等のアセチレン系化合物;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエン-イン化合物;その他、ヒドラジン系化合物、フォスフィン系化合物、メルカプタン系化合物等の硬化反応抑制剤を配合することが好ましい。 In addition, the curable silicone composition contains 2-methyl-3-butyn-2-ol and 2-phenyl-3-butyn-2-ol in order to control the curing rate of the present composition and improve handling efficiency. Acetylene compounds such as all and 1-ethynyl-1-cyclohexanol; ene-yne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; It is preferable to add a curing reaction inhibitor such as a hydrazine compound, a phosphine compound, or a mercaptan compound.
 硬化反応抑制剤を配合する場合、その配合量は限定されないが、(A-I-1)成分100質量部に対して0.0001~1.0質量部が好ましい。 When the curing reaction inhibitor is blended, the blending amount is not limited, but is preferably 0.0001 to 1.0 part by mass with respect to 100 parts by mass of the component (AI-1).
[II]縮合反応硬化型熱伝導性シリコーン組成物
 縮合反応硬化型熱伝導性シリコーン組成物とする場合、上記(A)液状シリコーン混合物の構成成分として、(A-II-1)Si-OH基を有するオルガノポリシロキサン、(A-II-2)1分子中に少なくとも3個のケイ素原子に結合する加水分解性基を有するシラン又はシロキサンオリゴマーを含み、さらに必要に応じて縮合反応用硬化触媒を含むものである。なお、(A-II-1)、(A-II-2)成分は、上記(A)成分と非相溶ではない場合があり得るが、(A)液状シリコーン混合物として、2種類はお互いに非相溶性であるように選定される。
[II] Condensation Reaction-Curable Thermally Conductive Silicone Composition In the case of a condensation reaction-curable thermal conductive silicone composition, (A-II-1) a Si—OH group is used as a component of the liquid silicone mixture (A). And (A-II-2) a silane or siloxane oligomer having a hydrolyzable group bonded to at least three silicon atoms in one molecule, and if necessary, a curing catalyst for a condensation reaction. Including. The components (A-II-1) and (A-II-2) may not be incompatible with the above component (A), but as the liquid silicone mixture (A), the two components are mutually compatible. It is chosen to be incompatible.
 上記ケイ素原子に結合する加水分解性基としては、アルコキシ基、アルコキシアルコキシ基、アシロキシ基、ケトオキシム基、アルケノキシ基、アミノ基、アミノキシ基、アミド基が例示される。また、このシランもしくはシロキサンオリゴマーのケイ素原子には上記の加水分解性基以外に、例えば、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基を結合していてもよい。このようなシランもしくはシロキサンオリゴマーとしては、例えば、テトラエトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、メチルトリス(メチルエチルケトオキシム)シラン、ビニルトリアセトキシシラン、エチルオルソシリケートが挙げられる。 加 水 Examples of the hydrolyzable group bonded to the silicon atom include an alkoxy group, an alkoxyalkoxy group, an acyloxy group, a ketoxime group, an alkenoxy group, an amino group, an aminoxy group, and an amide group. In addition to the above-mentioned hydrolyzable groups, the silicon atom of the silane or siloxane oligomer may be, for example, a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, or a halogenated group. An alkyl group may be bonded. Examples of such a silane or siloxane oligomer include tetraethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, methyltris (methylethylketoxime) silane, vinyltriacetoxysilane, and ethyl orthosilicate.
 (A-II-1)オルガノポリシロキサンを含む場合、(A)液状シリコーン混合物の合計質量に対して10~90質量%が好ましく、20~80質量%がより好ましく、30~70質量%がさらに好ましい。 When (A-II-1) contains an organopolysiloxane, it is preferably from 10 to 90% by mass, more preferably from 20 to 80% by mass, and further preferably from 30 to 70% by mass, based on the total mass of the liquid silicone mixture (A). preferable.
 (A-II-2)シラン又はシロキサンオリゴマーを配合する場合、その配合量は、本組成物の硬化に必要な量であり、具体的には、(A-II-1)成分100質量部に対して0.01~20質量部が好ましく、0.1~10質量部がより好ましい。シラン又はシロキサンオリゴマーの配合量が上記範囲の下限未満の量であると、得られる硬化性シリコーン組成物の貯蔵安定性が低下したり、また、接着性が低下するおそれがあり、一方、上記範囲の上限をこえる量であると、得られる組成物の硬化が著しく遅くなったりするおそれがある。 When the (A-II-2) silane or siloxane oligomer is compounded, the compounding amount is an amount necessary for curing the present composition, and specifically, 100 parts by mass of the (A-II-1) component. On the other hand, the amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass. When the amount of the silane or siloxane oligomer is less than the lower limit of the above range, the storage stability of the obtained curable silicone composition may be reduced, or the adhesiveness may be reduced. If the amount exceeds the upper limit, the curing of the obtained composition may be remarkably slowed.
 縮合反応用硬化触媒は任意の成分であり、例えば、アミノキシ基、アミノ基、ケトオキシム基等の加水分解性基を有するシランを用いる場合には必須ではない。このような縮合反応用触媒としては、例えば、テトラブチルチタネート、テトライソプロピルチタネート等の有機チタン酸エステル;ジイソプロポキシビス(アセチルアセテート)チタン、ジイソプロポキシビス(エチルアセトアセテート)チタン等の有機チタンキレート化合物;アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)等の有機アルミニウム化合物;ジルコニウムテトラ(アセチルアセトネート)、ジルコニウムテトラブチレート等の有機ジルコニウム化合物;ジブチルスズジオクトエート、ジブチルスズジラウレート、ブチルスズ-2-エチルヘキソエート等の有機スズ化合物;ナフテン酸スズ、オレイン酸スズ、ブチル酸スズ、ナフテン酸コバルト、ステアリン酸亜鉛等の有機カルボン酸の金属塩;ヘキシルアミン、燐酸ドデシルアミン等のアミン化合物、及びその塩;ベンジルトリエチルアンモニウムアセテート等の4級アンモニウム塩;酢酸カリウム等のアルカリ金属の低級脂肪酸塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;グアニジル基含有有機ケイ素化合物が挙げられる。 The curing catalyst for the condensation reaction is an optional component, and is not essential when, for example, a silane having a hydrolyzable group such as an aminoxy group, an amino group, or a ketoxime group is used. Examples of such a condensation reaction catalyst include organic titanates such as tetrabutyl titanate and tetraisopropyl titanate; and organic titanium such as diisopropoxybis (acetylacetate) titanium and diisopropoxybis (ethylacetoacetate) titanium. Chelate compounds; organic aluminum compounds such as aluminum tris (acetylacetonate) and aluminum tris (ethylacetoacetate); organic zirconium compounds such as zirconium tetra (acetylacetonate) and zirconium tetrabutyrate; dibutyltin dioctoate, dibutyltin dilaurate; Organic tin compounds such as butyltin-2-ethylhexoate; organic compounds such as tin naphthenate, tin oleate, tin butylate, cobalt naphthenate and zinc stearate Metal salts of rubonic acid; amine compounds such as hexylamine and dodecylamine phosphate, and salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; lower fatty acid salts of alkali metals such as potassium acetate; dimethylhydroxylamine, diethylhydroxylamine And guanidyl group-containing organosilicon compounds.
 縮合反応用硬化触媒を配合する場合、その配合量は任意量であり、本組成物の硬化に必要な量であればよく、具体的には、(A-II-1)成分100質量部に対して0.01~20質量部が好ましく、0.1~10質量部がより好ましい。この触媒が必須である場合、この触媒の配合量が上記範囲の下限未満の量であると、得られる硬化性シリコーン組成物が十分に硬化しなくなるおそれがあり、一方、上記範囲の上限をこえると、得られる硬化性シリコーン組成物の貯蔵安定性が低下するおそれがある。 When the curing catalyst for the condensation reaction is blended, the blending amount is optional and may be any amount necessary for curing the present composition. Specifically, 100 parts by mass of the component (A-II-1) On the other hand, the amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass. When this catalyst is essential, if the amount of the catalyst is less than the lower limit of the above range, the resulting curable silicone composition may not be sufficiently cured, while the amount exceeds the upper limit of the above range. In such a case, the storage stability of the obtained curable silicone composition may be reduced.
[III]有機過酸化物硬化型熱伝導性シリコーン組成物
 有機過酸化物硬化型熱伝導性シリコーン組成物とする場合、上記(A)液状シリコーン混合物の構成成分として、(A-I-1)1分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンを含み、有機過酸化物をさらに含むものである。なお、(A-I-1)成分は、上記(A)成分と重複する場合や、非相溶ではない場合があり得るが、(A)液状シリコーン混合物として、2種類はお互いに非相溶性であるように選定される。
[III] Organic peroxide-curable heat-conductive silicone composition When the organic peroxide-curable heat-conductive silicone composition is used, (A-I-1) It contains an organopolysiloxane having an alkenyl group bonded to at least two silicon atoms in one molecule, and further contains an organic peroxide. The component (AI-1) may overlap with the component (A) or may not be incompatible. However, as the liquid silicone mixture (A), two types are incompatible with each other. Is chosen to be
 有機過酸化物としては、例えば、ベンゾイルパーオキサイド、ジ(p-メチルベンゾイル)パーオキサイド、ジ(o-メチルベンゾイル)パーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート等が挙げられる。この有機過酸化物の配合量は、本組成物の硬化に必要な量であり、具体的には、(A-I-1)成分100質量部に対して0.1~5質量部が好ましい。 Examples of the organic peroxide include benzoyl peroxide, di (p-methylbenzoyl) peroxide, di (o-methylbenzoyl) peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-bis ( t-butylperoxy) hexane, di-t-butyl peroxide, t-butylperoxybenzoate and the like. The compounding amount of the organic peroxide is an amount necessary for curing the present composition, and specifically, 0.1 to 5 parts by mass with respect to 100 parts by mass of the component (AI-1). .
 硬化性シリコーン組成物の場合、硬化させる方法は限定されず、例えば、本組成物を成形後、室温で放置する方法、本組成物を成形後、50~200℃に加熱する方法が挙げられる。また、このようにして得られるシリコーン硬化物の性状は限定されないが、例えば、ゲル状、低硬度のゴム状、あるいは高硬度のゴム状が挙げられる。例えば、得られるシリコーン硬化物は放熱材料として部材に十分に密着させることができる。 In the case of a curable silicone composition, the method of curing is not limited, and examples thereof include a method in which the composition is molded and then left at room temperature, and a method in which the composition is molded and heated to 50 to 200 ° C. The properties of the silicone cured product thus obtained are not limited, and examples thereof include a gel, a low-hardness rubber, and a high-hardness rubber. For example, the obtained cured silicone material can be sufficiently adhered to a member as a heat dissipation material.
[製造方法]
 本発明のシリコーン組成物の製造方法は、特に制限されるものでない。例えば、上記(A)及び(B)成分、及び必要に応じてその他の成分を、トリミックス、ツウィンミックス、プラネタリーミキサー(いずれも井上製作所(株)製混合機、登録商標)、ウルトラミキサー(みずほ工業(株)製混合機、登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機、登録商標)等の混合機にて30分~4時間混合することにより製造することができる。また、必要に応じて、50~200℃の範囲、好ましくは50~150℃の範囲の温度で加熱しながら混合してもよい。
[Production method]
The method for producing the silicone composition of the present invention is not particularly limited. For example, the components (A) and (B), and other components as required, may be mixed with a trimix, a twin-mix, a planetary mixer (all of which are manufactured by Inoue Seisakusho Co., Ltd., a registered trademark), an ultra mixer ( It can be manufactured by mixing for 30 minutes to 4 hours with a mixer such as a mixer manufactured by Mizuho Industry Co., Ltd., a registered trademark) and Hibis Dispermix (mixer manufactured by Tokushu Kika Kogyo Co., Ltd.). it can. If necessary, mixing may be performed while heating at a temperature in the range of 50 to 200 ° C., preferably 50 to 150 ° C.
[シリコーン組成物の物性]
 本発明のシリコーン組成物の25℃にて測定される絶対粘度は、10~600Pa・sが好ましく、50~500Pa・sがより好ましく、50~400Pa・sがさらに好ましく、50~350Pa・sが特に好ましい。シリコーン組成物の絶対粘度が上記範囲内であることにより、使用性及び作業性により優れた粘度を有することができる。絶対粘度が上記上限値より高いと作業性が悪くなるおそれがある。絶対粘度が上記下限値より小さいと、各種基材上に塗布した後、組成物が流れ出してしまい耐ズレ性の効果が発揮できないおそれがある。絶対粘度は、各成分を上述した配合量で調整することにより得ることができる。上記絶対粘度は、例えば、株式会社マルコム社製の型番PC-1TL(10rpm)を用いて測定される。
[Physical properties of silicone composition]
The absolute viscosity of the silicone composition of the present invention measured at 25 ° C. is preferably from 10 to 600 Pa · s, more preferably from 50 to 500 Pa · s, still more preferably from 50 to 400 Pa · s, and preferably from 50 to 350 Pa · s. Particularly preferred. When the absolute viscosity of the silicone composition is within the above range, the silicone composition can have more excellent viscosity in use and workability. If the absolute viscosity is higher than the above upper limit, workability may be deteriorated. If the absolute viscosity is smaller than the above lower limit, the composition may flow out after being applied on various base materials, and the effect of displacement resistance may not be exhibited. The absolute viscosity can be obtained by adjusting each component at the above-mentioned amount. The absolute viscosity is measured using, for example, Model No. PC-1TL (10 rpm) manufactured by Malcolm Co., Ltd.
 本発明のシリコーン組成物は、25℃にて3.0W/(m・K)以上の高い熱伝導率を有することが好ましい。熱伝導率の上限は特に制限されないが、通常10W/(m・K)未満、特には8W/(m・K)未満とすることができる。該熱伝導率は、熱伝導率計、例えば、京都電子工業株式会社製のTPA-501を用いて測定できる。 シ リ コ ー ン The silicone composition of the present invention preferably has a high thermal conductivity of 3.0 W / (m · K) or more at 25 ° C. Although the upper limit of the thermal conductivity is not particularly limited, it can be generally less than 10 W / (m · K), particularly less than 8 W / (m · K). The thermal conductivity can be measured using a thermal conductivity meter, for example, TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.
 本発明のシリコーン組成物はペーストとして使用することができる。本発明のシリコーン組成物をペーストとして使用する態様は特に制限されるものでなく、従来の放熱用(熱伝導性)シリコーンペーストと同様の方法で使用すればよい。なお、本発明において、ペーストには、従来グリースと称されるもの等をも含む。使用方法としては、例えば、LSI等の電気・電子部品やその他の発熱部材と、冷却部材又は放熱部材との間に該シリコーン組成物を挟み、発熱部材からの熱を冷却部材や放熱部材に伝熱して放熱する態様にて好適に用いることができる。本発明のシリコーン組成物は、低粘度であり、熱伝導率が高く、かつ耐ズレ性が極めて優れているため、高品位機種の半導体装置等に対する放熱用(熱伝導性)ペーストとして好適に使用することができる。 シ リ コ ー ン The silicone composition of the present invention can be used as a paste. The manner in which the silicone composition of the present invention is used as a paste is not particularly limited, and may be used in the same manner as a conventional heat-dissipating (thermally conductive) silicone paste. In the present invention, the paste includes what is conventionally called grease. As a usage method, for example, the silicone composition is sandwiched between an electric / electronic component such as an LSI or other heat generating member and a cooling member or a heat radiating member, and heat from the heat generating member is transmitted to the cooling member or the heat radiating member. It can be suitably used in a mode in which heat is radiated. INDUSTRIAL APPLICABILITY The silicone composition of the present invention has a low viscosity, a high thermal conductivity, and extremely excellent misalignment resistance, so that it is suitably used as a heat-radiating (thermal conductive) paste for high-quality semiconductor devices. can do.
[熱伝導性シート]
 本発明のシリコーン組成物は、シート成型物として使用することもできる。上記硬化性シリコーン組成物を公知の方法で硬化させるとよい。使用する態様は特に制限されるものではなく、例えば、LSI等の電気・電子部品やその他の発熱部材と、冷却部材又は放熱部材との間に該シリコーン組成物を挟み、発熱部材からの熱を冷却部材や放熱部材に伝熱して放熱する態様にて好適に用いることができる。
[Thermal conductive sheet]
The silicone composition of the present invention can also be used as a sheet molding. The curable silicone composition may be cured by a known method. The mode of use is not particularly limited. For example, the silicone composition is sandwiched between an electric / electronic component such as an LSI and other heat generating members, and a cooling member or a heat radiating member, and heat from the heat generating member is transferred. It can be suitably used in a mode in which heat is transferred to a cooling member or a heat radiating member to release heat.
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
 下記実施例及び比較例の組成物に用いられる各成分を下記に示す。
[(A)成分]
(A-1)下記一般式で表される動粘度390mm2/sの液状シリコーン
Figure JPOXMLDOC01-appb-C000007
(X1及びX2は整数、X2/(X1+X2)=0.4である上記粘度を満たす数である。)
The components used in the compositions of the following Examples and Comparative Examples are shown below.
[(A) component]
(A-1) Liquid silicone having a kinematic viscosity of 390 mm 2 / s represented by the following general formula
Figure JPOXMLDOC01-appb-C000007
(X 1 and X 2 are integers that satisfy the above viscosity of X 2 / (X 1 + X 2 ) = 0.4)
(A-2)下記一般式で表される動粘度400mm2/sの液状シリコーン
Figure JPOXMLDOC01-appb-C000008
(Y1及びY2は整数、Y2/(Y1+Y2)=0.25である上記粘度を満たす数である。)
(A-2) Liquid silicone having a kinematic viscosity of 400 mm 2 / s represented by the following general formula
Figure JPOXMLDOC01-appb-C000008
(Y 1 and Y 2 are integers that satisfy the above viscosity of Y 2 / (Y 1 + Y 2 ) = 0.25.)
(A-3)下記一般式で表される動粘度1,000mm2/sの液状シリコーン
Figure JPOXMLDOC01-appb-C000009
(Z2は整数で、上記粘度を満たす数である。)
(A-3) Liquid silicone having a kinematic viscosity of 1,000 mm 2 / s represented by the following general formula
Figure JPOXMLDOC01-appb-C000009
(Z 2 is an integer that satisfies the above viscosity.)
(A-4-1)
 両末端がトリメチルシリル基で封鎖され、25℃における動粘度が5,000mm2/sのジメチルポリシロキサン。
(A-4-1)
Dimethylpolysiloxane having both ends blocked with a trimethylsilyl group and having a kinematic viscosity at 25 ° C of 5,000 mm 2 / s.
(A-4-2)
 下記一般式で表される動粘度35mm2/sの液状シリコーン。
Figure JPOXMLDOC01-appb-C000010
 (A-4-1)及び(A-4-2)は、(A-1)~(A-3)何れにも含まれず、(A-1)、(A-2)、(A-3)、(A-4-1)、(A-4-2)は何れも互いに非相溶である。
(A-4-2)
Liquid silicone having a kinematic viscosity of 35 mm 2 / s represented by the following general formula.
Figure JPOXMLDOC01-appb-C000010
(A-4-1) and (A-4-2) are not included in any of (A-1) to (A-3), and (A-1), (A-2), and (A-3) ), (A-4-1) and (A-4-2) are incompatible with each other.
(A-I-1)
 両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm2/sのジメチルポリシロキサン
(AI-1)
Dimethylpolysiloxane having both ends blocked with a dimethylvinylsilyl group and having a kinematic viscosity at 25 ° C. of 600 mm 2 / s
(A-I-2)
 下記一般式で表される25℃における動粘度が、100mm2/sのハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000011
(AI-2)
Hydrogenpolysiloxane having a kinematic viscosity at 25 ° C. represented by the following general formula of 100 mm 2 / s
Figure JPOXMLDOC01-appb-C000011
[(B)成分]
(B-1)酸化アルミニウム(アルミナ粉末):平均粒径1.0μm
(B-2)酸化アルミニウム(アルミナ粉末):平均粒径40μm
 (B)成分の熱伝導性充填剤の平均粒径は、日機装株式会社製の粒度分析計であるマイクロトラックMT3300EXを用いて測定した体積基準の累積平均径(D50)である。
[Component (B)]
(B-1) Aluminum oxide (alumina powder): average particle size 1.0 μm
(B-2) Aluminum oxide (alumina powder): average particle size 40 μm
The average particle size of the thermally conductive filler of the component (B) is a volume-based cumulative average particle size (D 50 ) measured using a Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.
  [実施例1~8、比較例1~4]
 上記(A)~(B)成分を、表1,2に示す組成及び配合量に従い、容量5リットルのプラネタリーミキサー(井上製作所(株)製、登録商標)に投入し、150℃にて1時間撹拌してシリコーン組成物を製造した。
 上記方法で得られた各シリコーン組成物について、下記の方法に従い、粘度、熱伝導率を測定した。結果を表1,2に示す。
[Examples 1 to 8, Comparative Examples 1 to 4]
The above components (A) and (B) were charged into a 5 liter planetary mixer (registered trademark, manufactured by Inoue Seisakusho Co., Ltd.) according to the compositions and blending amounts shown in Tables 1 and 2, and added at 150 ° C. After stirring for an hour, a silicone composition was produced.
The viscosity and thermal conductivity of each silicone composition obtained by the above method were measured according to the following methods. The results are shown in Tables 1 and 2.
[粘度]
 各組成物の絶対粘度を、株式会社マルコム社製の型番PC-1TL(10rpm)を用いて25℃にて測定した。
[熱伝導率]
 各組成物の熱伝導率を、京都電子工業株式会社製のTPA-501を用いて25℃にて測定した。
[viscosity]
The absolute viscosity of each composition was measured at 25 ° C. using a model No. PC-1TL (10 rpm) manufactured by Malcolm Co., Ltd.
[Thermal conductivity]
The thermal conductivity of each composition was measured at 25 ° C. using TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
  [実施例9]
〈熱伝導性シートの作製〉
 (A-1)30g、(A-2)30g、(A-I-1)40g、(B-1)300g及び(B-2)700gを、容量5リットルのプラネタリーミキサー(井上製作所(株)製、登録商標)に投入し、150℃にて1時間撹拌して混合物を得た。その混合物の冷却後、1-エチニル-1-シクロヘキサノールの50質量%トルエン溶液0.45g、白金-ジビニルテトラメチルジシロキサン錯体を(A-I-1)と同じジメチルポリシロキサンに溶解した溶液(白金原子配合量:1質量%)0.15gを順次添加し、各15分間攪拌した。さらに、(A-I-2)を1.2g添加し、シリコーン組成物を得た。このシリコーン組成物を、金型を用いてプレス成型(150℃/60分間)によりシート化して、熱伝導性シート(厚み2.0mm)を作製した。
[Example 9]
<Preparation of heat conductive sheet>
30 g of (A-1), 30 g of (A-2), 40 g of (AI-1), 300 g of (B-1) and 700 g of (B-2) were mixed with a 5 liter planetary mixer (Inoue Seisakusho Co., Ltd.). ), And stirred at 150 ° C. for 1 hour to obtain a mixture. After cooling the mixture, 0.45 g of a 50% by mass solution of 1-ethynyl-1-cyclohexanol in toluene and a solution of a platinum-divinyltetramethyldisiloxane complex dissolved in the same dimethylpolysiloxane as (AI-1) ( 0.15 g of platinum atom (1% by mass) was added in sequence and stirred for 15 minutes. Further, 1.2 g of (AI-2) was added to obtain a silicone composition. This silicone composition was formed into a sheet by press molding (150 ° C./60 minutes) using a mold to produce a thermally conductive sheet (2.0 mm thick).
  [比較例5]
 「(A-1)を30g及び(A-2)を30g」を、「(A-4-1)を60g」にした以外は、全て実施例9と全く同じ操作を行った。なお、(A-4-1)、(A-I-1)、(A-I-2)は、互いに相溶性のある液状シリコーンである。
[Comparative Example 5]
Except for changing “(A-1) 30 g and (A-2) 30 g” and “(A-4-1) 60 g”, the same operation as in Example 9 was carried out. (A-4-1), (AI-1) and (AI-2) are liquid silicones having compatibility with each other.
(評価)
 上記熱伝導性シートについて熱伝導率を測定した。尚、熱伝導率は、2mmシートを5枚重ねて、同様に京都電子工業株式会社製のTPA-501を用いて25℃にて測定した。
(Evaluation)
The thermal conductivity of the heat conductive sheet was measured. The thermal conductivity was measured at 25 ° C. by stacking five 2 mm sheets and similarly using TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記結果から明らかであるように、熱伝導性充填剤の添加量が同じ場合でも実施例のほうが明らかに高い熱伝導率を示した。 よ う As is clear from the above results, the example showed a clearly higher thermal conductivity even when the amount of the thermally conductive filler added was the same.

Claims (9)

  1.  (A)液状シリコーンと、(B)熱伝導性充填剤とを含む熱伝導性シリコーン組成物であって、(A)成分が少なくとも2種類以上の液状シリコーン混合物であり、そのうち少なくとも2種類は互いに非相溶性を示すことを特徴とする熱伝導性シリコーン組成物。 A thermally conductive silicone composition comprising (A) a liquid silicone and (B) a thermally conductive filler, wherein the component (A) is a mixture of at least two types of liquid silicones, at least two of which are mutually exclusive. A thermally conductive silicone composition characterized by being incompatible.
  2.  (A)成分が、下記平均組成式(I)
     R1 aSiO(4-a)/2          (I)
    (式中、R1は互いに独立に、炭素数1~18の非置換又は置換の飽和又は不飽和1価炭化水素基であり、1.8≦a≦2.2である。)
    で表され、25℃における動粘度が10~500,000mm2/sのオルガノポリシロキサンを含有する請求項1記載の熱伝導性シリコーン組成物。
    The component (A) has the following average composition formula (I)
    R 1 a SiO (4-a) / 2 (I)
    (Wherein, R 1 is independently of each other an unsubstituted or substituted saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, and 1.8 ≦ a ≦ 2.2.)
    The thermally conductive silicone composition according to claim 1, which contains an organopolysiloxane having a kinematic viscosity at 25 ° C of 10 to 500,000 mm 2 / s.
  3.  (A)成分が、(A-1)炭素数7~18のアルキル基を有するアルキル変性シリコーンと、(A-1)と非相溶性を示す液状シリコーンとを含有する液状シリコーン混合物である請求項1又は2記載の熱伝導性シリコーン組成物。 The component (A) is a liquid silicone mixture containing (A-1) an alkyl-modified silicone having an alkyl group having 7 to 18 carbon atoms and (A-1) a liquid silicone incompatible with (A-1). 3. The thermally conductive silicone composition according to 1 or 2.
  4.  (A)成分が、(A-2)アリール変性シリコーンと、(A-2)と非相溶性を示す液状シリコーンとを含有する液状シリコーン混合物である請求項1又は2記載の熱伝導性シリコーン組成物。 3. The thermally conductive silicone composition according to claim 1, wherein the component (A) is a liquid silicone mixture containing (A-2) an aryl-modified silicone and a liquid silicone incompatible with (A-2). object.
  5.  (A)成分が、(A-3)フッ素変性シリコーンと、(A-3)と非相溶性を示す液状シリコーンとを含有する液状シリコーン混合物である請求項1又は2記載の熱伝導性シリコーン組成物。 The thermally conductive silicone composition according to claim 1, wherein the component (A) is a liquid silicone mixture containing (A-3) a fluorine-modified silicone and (A-3) a liquid silicone incompatible with (A-3). object.
  6.  (A)成分が、(A-4-2)下記一般式(II)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R2は炭素数1~6のアルキル基であり、R3は互いに独立に炭素数1~6のアルキル基であり、bは5~120の整数である。)
    で表される加水分解性基含有オルガノポリシロキサンを、(A)液状シリコーン混合物の合計質量に対して10~90質量%含有する請求項1~5のいずれか1項記載の熱伝導性シリコーン組成物。
    The component (A) is represented by the following general formula (II): (A-4-2)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 2 is an alkyl group having 1 to 6 carbon atoms, R 3 is independently an alkyl group having 1 to 6 carbon atoms, and b is an integer of 5 to 120.)
    The thermally conductive silicone composition according to any one of claims 1 to 5, wherein the organopolysiloxane having a hydrolyzable group represented by the formula (A) is contained in an amount of 10 to 90% by mass based on the total mass of the liquid silicone mixture (A). object.
  7.  (B)成分の配合量が、(A)液状シリコーン混合物100質量部に対して、300~5,000質量部である請求項1~6のいずれか1項記載の熱伝導性シリコーン組成物。 (7) The thermally conductive silicone composition according to any one of (1) to (6), wherein the amount of the component (B) is 300 to 5,000 parts by mass based on 100 parts by mass of the liquid silicone mixture (A).
  8.  硬化性である請求項1~7のいずれか1項記載の熱伝導性シリコーン組成物。 (8) The thermally conductive silicone composition according to any one of (1) to (7), which is curable.
  9.  請求項8記載の熱伝導性シリコーン組成物を成型した熱伝導性シート。 A heat conductive sheet formed by molding the heat conductive silicone composition according to claim 8.
PCT/JP2019/025311 2018-06-28 2019-06-26 Thermally conductive silicone composition and thermally conductive sheet WO2020004442A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527566A JP7060097B2 (en) 2018-06-28 2019-06-26 Thermally Conductive Silicone Compositions and Thermally Conductive Sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-122982 2018-06-28
JP2018122982 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004442A1 true WO2020004442A1 (en) 2020-01-02

Family

ID=68984868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025311 WO2020004442A1 (en) 2018-06-28 2019-06-26 Thermally conductive silicone composition and thermally conductive sheet

Country Status (3)

Country Link
JP (1) JP7060097B2 (en)
TW (1) TW202000792A (en)
WO (1) WO2020004442A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082724B1 (en) * 2021-02-15 2022-06-08 富士高分子工業株式会社 Thermally conductive silicone composition
WO2022172547A1 (en) * 2021-02-15 2022-08-18 富士高分子工業株式会社 Heat-conductive silicone composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149958A (en) * 1997-08-06 1999-02-23 Shin Etsu Chem Co Ltd Heat conductive silicone composition
JP2007277387A (en) * 2006-04-06 2007-10-25 Shin Etsu Chem Co Ltd Heat-conductive silicone grease composition
JP2012107152A (en) * 2010-11-19 2012-06-07 Shin-Etsu Chemical Co Ltd Thermally conductive silicone grease composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149958A (en) * 1997-08-06 1999-02-23 Shin Etsu Chem Co Ltd Heat conductive silicone composition
JP2007277387A (en) * 2006-04-06 2007-10-25 Shin Etsu Chem Co Ltd Heat-conductive silicone grease composition
JP2012107152A (en) * 2010-11-19 2012-06-07 Shin-Etsu Chemical Co Ltd Thermally conductive silicone grease composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082724B1 (en) * 2021-02-15 2022-06-08 富士高分子工業株式会社 Thermally conductive silicone composition
WO2022172547A1 (en) * 2021-02-15 2022-08-18 富士高分子工業株式会社 Heat-conductive silicone composition

Also Published As

Publication number Publication date
JP7060097B2 (en) 2022-04-26
JPWO2020004442A1 (en) 2021-06-24
TW202000792A (en) 2020-01-01

Similar Documents

Publication Publication Date Title
JP6610429B2 (en) Thermally conductive silicone composition, cured product thereof and method for producing the same
JP6607166B2 (en) Thermally conductive silicone composition and semiconductor device
KR102360378B1 (en) Silicone composition
JP6645395B2 (en) Thermal conductive silicone composition and semiconductor device
JP6658866B2 (en) Thermal conductive silicone composition and semiconductor device
JP6183319B2 (en) Thermally conductive silicone composition and thermally conductive sheet
JP5434795B2 (en) Thermally conductive silicone grease composition
JP5304623B2 (en) Selection method of high thermal conductivity potting material
KR102132243B1 (en) Thermal conductive silicone composition and cured product, and composite sheet
JP5832983B2 (en) Silicone composition
JP2010538111A (en) Thermal interface material
JP2012102283A (en) Thermally conductive silicone grease composition
JP5843364B2 (en) Thermally conductive composition
JP2010013521A (en) Heat conductive silicone composition
JP6610491B2 (en) Thermally conductive silicone composition and semiconductor device
JP6977786B2 (en) Silicone composition
JP2009221310A (en) Heat-conductive silicone grease composition
JP7060097B2 (en) Thermally Conductive Silicone Compositions and Thermally Conductive Sheets
WO2020129555A1 (en) Heat-conductive silicone composition and semiconductor device
WO2018230189A1 (en) Thermally-conductive silicone composition
JP2009221311A (en) Heat conductive grease composition
JP2006143978A (en) Heat conductive silicone composition
CN111918929B (en) Silicone composition
JP2009215362A (en) Thermally conductive silicone grease composition and semiconductor device using the same
JP7034980B2 (en) Surface-treated Alumina powder manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527566

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825395

Country of ref document: EP

Kind code of ref document: A1