WO2018230189A1 - Thermally-conductive silicone composition - Google Patents

Thermally-conductive silicone composition Download PDF

Info

Publication number
WO2018230189A1
WO2018230189A1 PCT/JP2018/017750 JP2018017750W WO2018230189A1 WO 2018230189 A1 WO2018230189 A1 WO 2018230189A1 JP 2018017750 W JP2018017750 W JP 2018017750W WO 2018230189 A1 WO2018230189 A1 WO 2018230189A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
compounds
silicone composition
conductive silicone
Prior art date
Application number
PCT/JP2018/017750
Other languages
French (fr)
Japanese (ja)
Inventor
謙一 辻
野歩 加藤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2018230189A1 publication Critical patent/WO2018230189A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5465Silicon-containing compounds containing nitrogen containing at least one C=N bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a thermally conductive silicone composition in which the hardness after curing does not increase and the initial curing rate does not decrease even when exposed to a high temperature for a long time.
  • Electronic parts such as LSIs and IC chips are widely known to generate heat during use and performance degradation associated therewith, and various heat dissipation techniques are used as means for solving this.
  • a heat sink or other cooling application member is placed near the heat generating part, and by bringing them into close contact with each other, efficient heat transfer to the cooling member is promoted to cool the heat generation, thereby efficiently dissipating the heat from the heat generating part. It is known to do. At this time, if there is a gap between the heat generating member and the cooling member, heat transfer becomes inefficient due to the presence of air having low heat conductivity, and the temperature of the heat generating member cannot be sufficiently lowered.
  • a heat-dissipating material, a heat-dissipating sheet or a heat-dissipating grease having a good thermal conductivity and following the surface of the member is used for the purpose of preventing the air from interposing between the heat-generating member and the cooling member ( Japanese Patent No. 2938428, Japanese Patent No. 2938429, Japanese Patent No. 3952184: Patent Documents 1 to 3).
  • the heat dissipating grease exhibits a high performance from the viewpoint of thermal resistance because it can be used with a reduced thickness when mounted.
  • thermal grease Some types are used after being cured between heat and heat.
  • the heat-cured heat-dissipating grease is further heated when the element is in operation, so that the hardness may increase during use. If the hardness increases, there is a concern that the material becomes inflexible and cannot follow the “sleigh” during operation. When the follow-up cannot be performed, a gap is generated between the member and the heat-dissipating grease, so that the heat-dissipating characteristics are deteriorated.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermally conductive silicone composition in which the increase in hardness during high-temperature aging after curing is small and at the same time, the decrease in the curing rate is suppressed.
  • E hydrogenated organohydrogenpolysiloxane
  • F platinum compounds
  • G triazole compounds
  • isocyanate compounds each containing a specific ratio
  • the present invention provides the following thermally conductive silicone composition.
  • (A) Organopolysiloxane having at least two alkenyl groups in one molecule and a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s
  • (B) The following general formula (1) (In the formula, R 1 is an alkyl group having 1 to 6 carbon atoms, and a is a positive number having 5 to 100.)
  • One-terminal trifunctional hydrolyzable methylpolysiloxane represented by: (A) 10 to 150 parts by mass with respect to 100 parts by mass of component (C) Thermally conductive filling having a thermal conductivity of 10 W / m ⁇ ° C.
  • reaction control agent selected from acetylene compounds, nitrogen compounds, organic phosphorus compounds, oxime compounds and organic chloro compounds: an amount of 0.1 to 5% by mass based on component (A) [1 ]-The heat conductive silicone composition in any one of [5].
  • the thermally conductive silicone composition of the present invention can suppress the increase in hardness during high-temperature aging of the cured product and suppress the decrease in the curing rate by blending specific amounts of triazole compound and isocyanate compound, respectively. it can.
  • the organopolysiloxane of component (A) constituting the present invention has at least 2, preferably 2 to 10, more preferably 2 to 5, alkenyl groups directly bonded to silicon atoms in one molecule.
  • the chain may be branched or branched, and a mixture of two or more different viscosities may be used.
  • alkenyl group examples include those having 2 to 6 carbon atoms such as a vinyl group, an allyl group, a 1-butenyl group, and a 1-hexenyl group, but a vinyl group is preferable from the viewpoint of ease of synthesis and cost.
  • the remaining organic group bonded to the silicon atom is preferably an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, particularly 1 to 6 carbon atoms and not containing an aliphatic unsaturated bond.
  • alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group and dodecyl group, aryl groups such as phenyl group, aralkyl groups such as 2-phenylethyl group and 2-phenylpropyl group, etc.
  • aryl groups such as phenyl group
  • aralkyl groups such as 2-phenylethyl group and 2-phenylpropyl group
  • halogen-substituted hydrocarbon groups such as chloromethyl group and 3,3,3-trifluoropropyl group.
  • a methyl group is preferred from the viewpoint of ease of synthesis and cost.
  • the alkenyl group bonded to the silicon atom may be present at either the terminal or the middle of the molecular chain of the organopolysiloxane, but is preferably present at least at the terminal.
  • the kinematic viscosity of the component (A) measured at 25 ° C. with an Ostwald meter is in the range of 10 to 100,000 mm 2 / s, preferably in the range of 100 to 50,000 mm 2 / s, and more preferably in the range of 100 to 1,000 mm 2 / s is preferable. If the kinematic viscosity is less than 10 mm 2 / s, the oil bleed of the composition will be severe and the reliability will be poor, and if it exceeds 100,000 mm 2 / s, the viscosity of the composition will increase and the extensibility will be poor. .
  • component (A) for example, dimethylpolysiloxane blocked with a dimethylvinylsiloxy group blocked at both ends of the molecular chain, and one end of the molecular chain blocked with a dimethylvinylsiloxy group and the other end of the molecular chain blocked with a trimethylsiloxy group Siloxane / methylvinylpolysiloxane copolymer, molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, molecular chain both ends trimethylsiloxy group-blocked methylvinylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-blocked Examples thereof include, but are not limited to, a dimethylsiloxane / methylvinylsiloxane copolymer, and two or more of these may be used in combination.
  • the component (B) has the following general formula (1) (Wherein R 1 is an alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, a propyl group, a butyl group, or a hexyl group, and a is a positive number of 5 to 100.) Is a one-terminal trifunctional hydrolyzable methylpolysiloxane.
  • the oil bleed of the composition becomes so bad that the reliability becomes worse. If it is large, the wettability is not sufficient, so it is a positive number of 5 to 100, preferably in the range of 10 to 60.
  • this one-terminal trifunctional hydrolyzable methylpolysiloxane is less than 10 parts by mass with respect to 100 parts by mass of component (A), sufficient wettability cannot be exhibited, and if more than 150 parts by mass, oil bleed Is in the range of 10 to 150 parts by mass, preferably 20 to 140 parts by mass.
  • the component (C) is a thermally conductive filler having a thermal conductivity of 10 W / m ⁇ ° C. or higher.
  • the thermally conductive filler of component (C) those having a thermal conductivity of 10 W / m ⁇ ° C. or higher, preferably 15 W / m ⁇ ° C. or higher are used. This is because if the thermal conductivity of the filler is less than 10 W / m ⁇ ° C., the thermal conductivity of the thermally conductive silicone composition itself becomes small.
  • Such heat conductive fillers include aluminum powder, copper powder, silver powder, iron powder, nickel powder, gold powder, tin powder, metal silicon powder, aluminum nitride powder, boron nitride powder, alumina powder, diamond powder, carbon powder. Indium powder, gallium powder, zinc oxide powder, etc., any filler may be used as long as it is 10 W / m ⁇ ° C. or more, and one or a mixture of two or more may be used.
  • the average particle size of the component (C) is preferably in the range of 0.1 to 100 ⁇ m, more preferably in the range of 0.1 to 90 ⁇ m, and still more preferably in the range of 0.1 to 20 ⁇ m. If the average particle size is less than 0.1 ⁇ m, the resulting composition may not be in the form of grease and may have poor extensibility. If the average particle size is greater than 100 ⁇ m, the thermal resistance of the heat dissipating grease will increase and the performance will deteriorate. This is because there are cases. In the present invention, the average particle diameter can be measured by Nikkiso Co., Ltd. Microtrac MT330OEX, and is a volume-based volume average diameter.
  • the shape of the component (C) may be indefinite, spherical, or any shape.
  • the amount of the (C) component is less than 500 parts by mass with respect to 100 parts by mass of the total of the (A) component and the (B) component, the thermal conductivity of the composition becomes low and 3,000 parts by mass. If it is more, the viscosity of the composition increases and the extensibility becomes poor. Therefore, it is in the range of 500 to 3,000 parts by mass, preferably in the range of 500 to 2,800 parts by mass, more preferably 500 A range of ⁇ 2,500 parts by mass is preferable.
  • the organohydrogenpolysiloxane of component (D) has at least two, preferably 2 to 50, hydrogen atoms (Si—H groups) directly linked to silicon atoms in order to reticulate the composition by crosslinking. More preferably, it is necessary to have 2 to 30.
  • the Si—H group may be located at either the molecular chain end or in the middle of the molecular chain, or may be located at both.
  • the remaining organic group other than the Si—H group bonded to the silicon atom is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, particularly 1 to 6 carbon atoms and not containing an aliphatic unsaturated bond.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group or a dodecyl group, an aryl group such as a phenyl group, a 2-phenylethyl group, or a 2-phenylpropyl group
  • halogen-substituted hydrocarbon groups such as aralkyl group, chloromethyl group, 3,3,3-trifluoropropyl group, etc., and 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4- Examples include epoxy-substituted hydrocarbon groups such as glycidoxybutyl groups.
  • Such an organohydrogenpolysiloxane having a Si—H group may be linear, branched or cyclic, or a mixture thereof.
  • the number of silicon atoms in the organohydrogenpolysiloxane is preferably 10 to 250, particularly 10 to 200.
  • This organohydrogenpolysiloxane may be used alone or in combination of two or more.
  • Examples of the component (D) include a copolymer comprising (CH 3 ) 2 HSiO 1/2 units and (CH 3 ) 2 SiO units, (CH 3 ) 2 HSiO 1/2 units and (CH 3 ) 3 SiO.
  • a copolymer comprising 1/2 units and (CH 3 ) 2 SiO units a copolymer comprising (CH 3 ) 3 SiO 1/2 units, (CH 3 ) 2 SiO units and (CH 3 ) HSiO units
  • a copolymer comprising units and (CH 3 ) HSiO units a copolymer comprising (CH 3 ) 2 HSiO 1/2 units, (CH 3 ) 2 SiO units and (CH 3 ) HSiO units, (CH 3 ) 3 SiO
  • the blending amount of the component (D) is such that the composition cannot be reticulated sufficiently if the ⁇ number of Si—H groups in the component (D) ⁇ / ⁇ number of alkenyl groups in the component (A) ⁇ is less than 0.5. Is pumped out, and if it is larger than 1.5, the crosslinking density becomes too high and peels off during the reliability test, so the range is 0.5 to 1.5, preferably 0.7. A range of ⁇ 1.3 is good.
  • the catalyst selected from platinum and platinum compounds as the component (E) is a component for promoting the addition reaction between the alkenyl group in the component (A) and the Si—H group in the component (D).
  • Examples of the component (E) include platinum alone, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, platinum coordination compounds, and the like.
  • the amount of component (E) is less than 0.1 ppm as platinum atoms with respect to the mass of component (A), and there is no effect as a catalyst. Therefore, it is in the range of 0.1 to 500 ppm, preferably 0.1 to 400 ppm.
  • the (F) component triazole compound, together with the component (G) described later, is added to the composition at a specific blending amount to suppress a decrease in the curing rate of the thermally conductive silicone composition, and after curing.
  • the increase in hardness during high temperature aging can be suppressed.
  • Examples of the (F) component triazole-based compound include 1,2,3-triazole, 1,2,4-triazole, and derivatives thereof.
  • the derivatives of 1,2,3-triazole include benzotriazole, 4-hydroxy-1,2,3-triazole, 1,2,3-triazole-4-aldehyde, 4-cyano-1,2 , 3-triazole and the like.
  • Examples of the 1,2,4-triazole derivatives include 5-amino-3-methyl-1,2,4-triazole, 3-mercapto-1,2,4-triazole and the like.
  • preferred are benzotriazole, 1,2,3-triazole, and 1,2,4-triazole, and most preferred is benzotriazole. These may be used alone or in combination of two or more.
  • the compounding amount of component (F) is 2 to 1,000 mol, preferably 2 to 800 mol, more preferably 2 to 500 mol, per 1 mol of platinum atom in component (E). If the blending amount is less than 2 mol, the increase in hardness cannot be sufficiently suppressed, and if it is more than 1,000 mol, the curing rate becomes slow.
  • Examples of the isocyanate compound as component (G) include alkyl isocyanate compounds such as methyl isocyanate, butyl isocyanate and octyl isocyanate, aryl isocyanate compounds such as phenyl isocyanate and tolyl isocyanate, and further, for example, the following general formula (2) And an isocyanate silane compound containing an isocyanate group and a silyl group, as shown in FIG. (Wherein R 2 represents an alkyl group or a trialkylsilyl group, and b represents an integer of 1 to 6)
  • the alkyl group represented by R 2 is preferably one having 1 to 4 carbon atoms, particularly a methyl group or ethyl group, and the alkyl group of the trialkylsilyl group is also one having 1 to 4 carbon atoms, particularly a methyl group or ethyl group.
  • the alkyl group represented by R 2 is preferably one having 1 to 4 carbon atoms, particularly a methyl group or ethyl group
  • the alkyl group of the trialkylsilyl group is also one having 1 to 4 carbon atoms, particularly a methyl group or ethyl group.
  • a trimethylsilyl group and a triethylsilyl group are preferable.
  • octyl isocyanate 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3-isocyanatopropyltris (trimethylsiloxy) silane are most preferred. These may be used alone or in combination of two or more.
  • the amount of component (G) is 0.1 to 10 moles, preferably 0.5 to 5 moles, and more preferably 0.5 to 2 moles per mole of component (F). If the blending amount is less than 0.1 mol, the curing rate decreases, and if it exceeds 10 mol, the hardness increase after aging cannot be sufficiently suppressed.
  • a reaction control agent in the thermally conductive silicone composition of the present invention, can be further blended as the component (H) for the purpose of suppressing the catalytic activity of the component (E).
  • the reaction control agent of component (H) suppresses the progress of the hydrosilylation reaction at room temperature and extends shelf life and pot life.
  • Known reaction control agents can be used, and acetylene compounds, various nitrogen compounds, organic phosphorus compounds, oxime compounds, organic chloro compounds, and the like can be used.
  • the blending amount of the component (H) is less than 0.1% by mass relative to the component (A), sufficient shelf life and pot life may not be obtained. Since the speed may decrease, the range of 0.1 to 5% by mass is preferable, and the range of 0.1 to 4% by mass is particularly preferable. These may be used by diluting with a solvent such as toluene in order to improve dispersibility in the heat conductive silicone composition.
  • an antioxidant or the like may be added to the thermally conductive silicone composition of the present invention as necessary in order to prevent deterioration.
  • the components (A) to (H) are trimix, twin mix, planetary mixer (all are registered trademarks of a mixer manufactured by Inoue Seisakusho Co., Ltd.), ultra mixer It can be produced by mixing with a mixer such as (registered trademark of Mizuho Kogyo Co., Ltd.), Hibis Disper Mix (registered trademark of Special Kikai Kogyo Co., Ltd.).
  • the absolute viscosity at 25 ° C. of the obtained heat conductive silicone composition measured with a rotational viscometer is preferably 5 to 2,000 Pa ⁇ s, particularly 10 to 900 Pa ⁇ s.
  • the obtained heat conductive silicone composition can be made into a cured product by heating at 80 to 180 ° C., particularly 90 to 170 ° C. for 30 to 150 minutes, particularly 30 to 140 minutes.
  • the thermally conductive silicone composition of the present invention can suppress a decrease in curing rate, and the cured product of the composition can suppress an increase in hardness during high-temperature aging. It can use suitably as a use of the heat conductive material to a cooling member.
  • the heat conductive silicone composition was applied in a thickness of 2 mm between two parallel plates having a diameter of 2.5 cm. After the temperature of the coated plate was increased from 25 ° C. at 5 ° C./min, a program was created to maintain the temperature at 150 ° C. for 90 minutes, and the storage elastic modulus G ′ and loss elastic modulus G ′′ were measured. . The time when the value of the storage elastic modulus G ′ exceeded the loss elastic modulus G ′′ was defined as the crossover time, and was used as an index of the curing rate. The measurement was carried out using a viscoelasticity measuring device (Type ARES-G2 manufactured by TA Instruments).
  • the thermally conductive silicone composition was poured into a 6 cm ⁇ 6 cm ⁇ 6 mm mold and heated at 150 ° C. for 90 minutes to prepare a sheet-like sample. About what superposed
  • thermo resistance measurement A heat conductive silicone composition is sandwiched between a 15 mm ⁇ 15 mm ⁇ 1 mmt Si chip and a 15 mm ⁇ 15 mm ⁇ 1 mmt Ni plate so as to have a thickness of 80 ⁇ m, compressed at 0.7 MPa for 15 minutes, and then loaded. The sample was placed in an oven at 150 ° C. for 90 minutes with heat applied, and the thermally conductive silicone composition was heated and cured to prepare a test piece for measuring thermal resistance. Further, after that, a heat cycle test (-55 ° C. to 125 ° C.) was carried out for 500 cycles, and changes in thermal resistance were observed. In addition, this thermal resistance measurement was performed by nanoflash (the Niche company make, LFA447).
  • the following components were prepared in order to prepare the thermally conductive silicone composition of the present invention.
  • Component A-1 Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 600 mm 2 / s
  • Component (C) The following aluminum powder or alumina powder and zinc oxide powder were mixed for 15 minutes at room temperature using a 5-liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.) at the mass mixing ratio shown in Table 1 below. 1 or C-2 was obtained.
  • Aluminum powder with an average particle size of 10 ⁇ m (thermal conductivity: 236 W / m ⁇ ° C.)
  • G Component G-1: 3-isocyanatopropyltriethoxysilane
  • G-2 3-isocyanatopropyltrimethoxysilane
  • G-3 3-isocyanatopropyltris (trimethylsiloxy) silane
  • the components (A) to (H) were mixed as follows to obtain thermally conductive silicone compositions of Examples 1 to 6 and Comparative Examples 1 to 6. That is, take the component (A) into a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.), add the components (B) and (C) in the amounts shown in Tables 2 and 3, and mix at 170 ° C. for 1 hour. did. The mixture was cooled to room temperature, and then the components (D), (E), (F), (G), and (H) were added in the blending amounts shown in Tables 2 and 3 and mixed to be uniform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

This thermally-conductive silicone composition exhibits, after being cured, a small increase in hardness when being aged at a high temperature, and also any decrease in curing speed is constrained, wherein the composition contains (A) an organopolysiloxane having at least two alkenyl groups per molecule, and having a kinematic viscosity of 10-100,000 mm2/s at 25ºC, (B) a hydrolyzable methyl polysiloxane having three functional groups at one terminal thereof, (C) a thermally-conductive filler having a thermal conductivity of 10 W/m·ºC or higher, (D) an organohydrogenpolysiloxane having hydrogen atoms bonded directly to at least two silicon atoms per molecule, (E) a catalyst selected from the group consisting of platinum and platinum compounds, (F) a specific amount of a triazole compound, and (G) a specific amount of an isocyanate compound.

Description

熱伝導性シリコーン組成物Thermally conductive silicone composition
 本発明は、高温に長時間さらされた場合にも硬化後の硬度が上昇せず、かつ初期の硬化速度が低下しない熱伝導性シリコーン組成物に関する。 The present invention relates to a thermally conductive silicone composition in which the hardness after curing does not increase and the initial curing rate does not decrease even when exposed to a high temperature for a long time.
 LSIやICチップ等の電子部品は使用中の発熱及びそれに伴う性能の低下が広く知られており、これを解決するための手段として様々な放熱技術が用いられている。例えば、発熱部の付近にヒートシンクなどの冷却用途の部材を配置し、両者を密接させることで冷却部材へと効率的な伝熱を促して発熱を冷却することにより発熱部の放熱を効率的に行うことが知られている。その際、発熱部材と冷却部材との間に隙間があると、熱伝導性の低い空気が介在することにより伝熱が効率的でなくなるために発熱部材の温度が十分に下がらなくなってしまう。このような現象を防止するために発熱部材と冷却部材の間の空気の介在を防ぐ目的として、熱伝導率がよく部材の表面に追随性のある放熱材料、放熱シートや放熱グリースが用いられる(特許第2938428号公報、特許第2938429号公報、特許第3952184号公報:特許文献1~3)。その中でも放熱グリースは実装時の厚みを薄くして使用することができるために熱抵抗の観点から高い性能を発揮する。 Electronic parts such as LSIs and IC chips are widely known to generate heat during use and performance degradation associated therewith, and various heat dissipation techniques are used as means for solving this. For example, a heat sink or other cooling application member is placed near the heat generating part, and by bringing them into close contact with each other, efficient heat transfer to the cooling member is promoted to cool the heat generation, thereby efficiently dissipating the heat from the heat generating part. It is known to do. At this time, if there is a gap between the heat generating member and the cooling member, heat transfer becomes inefficient due to the presence of air having low heat conductivity, and the temperature of the heat generating member cannot be sufficiently lowered. In order to prevent such a phenomenon, a heat-dissipating material, a heat-dissipating sheet or a heat-dissipating grease having a good thermal conductivity and following the surface of the member is used for the purpose of preventing the air from interposing between the heat-generating member and the cooling member ( Japanese Patent No. 2938428, Japanese Patent No. 2938429, Japanese Patent No. 3952184: Patent Documents 1 to 3). Among them, the heat dissipating grease exhibits a high performance from the viewpoint of thermal resistance because it can be used with a reduced thickness when mounted.
 放熱グリースの中には部材間に挟まれたのちに、加熱硬化して使用するようなタイプもある。加熱硬化された放熱グリースは素子稼働時にさらに加熱されるため、使用中に硬度が上昇してしまう場合がある。硬度が上昇すると、材料に柔軟性がなくなってしまい、稼働時の“そり”に追従できなくなってしまう点が懸念される。追従できなくなると、部材と放熱グリースの間に空隙が発生してしまうため放熱特性が悪化する。 Some types of thermal grease are used after being cured between heat and heat. The heat-cured heat-dissipating grease is further heated when the element is in operation, so that the hardness may increase during use. If the hardness increases, there is a concern that the material becomes inflexible and cannot follow the “sleigh” during operation. When the follow-up cannot be performed, a gap is generated between the member and the heat-dissipating grease, so that the heat-dissipating characteristics are deteriorated.
 一方で、シリコーンゴムにトリアゾール系化合物を配合すると、圧縮永久歪が小さくなることが知られている。圧縮永久歪が小さくなるということは、高温エージング時の硬度の上昇も抑制されることが期待できる。しかし、トリアゾール系化合物のみを配合した場合、加熱時の硬化速度が低下してしまうという課題があった。放熱グリースの硬化速度が低下すると、材料の硬化前に微量のガスが発生し、加熱により膨張、その後に硬化することによって材料中にボイド(空隙)が発生してしまい、放熱性能が低下してしまうという課題があった。 On the other hand, it is known that when a triazole compound is added to silicone rubber, the compression set is reduced. A reduction in compression set can be expected to suppress an increase in hardness during high temperature aging. However, when only a triazole-based compound is blended, there is a problem that the curing rate during heating is reduced. If the curing rate of the heat dissipation grease decreases, a small amount of gas is generated before the material is cured, expands due to heating, and then cures, creating voids in the material, resulting in decreased heat dissipation performance. There was a problem of ending up.
特許第2938428号公報Japanese Patent No. 2938428 特許第2938429号公報Japanese Patent No. 2938429 特許第3952184号公報Japanese Patent No. 3952184
 本発明は、上記事情に鑑みなされたもので、硬化後の高温エージング時の硬度上昇が小さく、同時に硬化速度の低下を抑制した熱伝導性シリコーン組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermally conductive silicone composition in which the increase in hardness during high-temperature aging after curing is small and at the same time, the decrease in the curing rate is suppressed.
 本発明者らは、上記目的を達成するために鋭意検討した結果、
 (A)1分子中に少なくとも2個のアルケニル基を有する、25℃の動粘度が10~100,000mm2/sのオルガノポリシロキサン
(B)下記一般式(1)
Figure JPOXMLDOC01-appb-C000003

(式中、R1は炭素数1~6のアルキル基であり、aは5~100の正数である。)
で表される片末端3官能の加水分解性メチルポリシロキサン
(C)10W/m・℃以上の熱伝導率を有する熱伝導性充填材
(D)1分子中に少なくとも2個のケイ素原子に直結した水素原子を含有するオルガノハイドロジェンポリシロキサン
(E)白金及び白金化合物からなる群より選択される触媒
(F)トリアゾール系化合物
(G)イソシアネート系化合物
をそれぞれ特定割合で含有する熱伝導性シリコーン組成物(シリコーングリース組成物)が、硬化後の高温エージング時の硬度上昇が小さく、同時に硬化速度の低下が抑制されることを見出し、本発明をなすに至った。
As a result of intensive studies to achieve the above object, the present inventors
(A) Organopolysiloxane having at least two alkenyl groups in one molecule and a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s (B) The following general formula (1)
Figure JPOXMLDOC01-appb-C000003

(In the formula, R 1 is an alkyl group having 1 to 6 carbon atoms, and a is a positive number having 5 to 100.)
One-terminal trifunctional hydrolyzable methylpolysiloxane (C) represented by the following formula: Thermally conductive filler having a thermal conductivity of 10 W / m · ° C. or higher (D) Directly linked to at least two silicon atoms in one molecule Conductive hydrogen composition containing hydrogenated organohydrogenpolysiloxane (E) platinum and a catalyst selected from the group consisting of platinum compounds (F) triazole compounds (G) isocyanate compounds each containing a specific ratio The product (silicone grease composition) was found to have a small increase in hardness during high-temperature aging after curing, and at the same time, a decrease in the curing rate was suppressed, and the present invention was made.
 従って、本発明は、下記の熱伝導性シリコーン組成物を提供する。
〔1〕
 (A)1分子中に少なくとも2個のアルケニル基を有する、25℃の動粘度が10~100,000mm2/sのオルガノポリシロキサン
(B)下記一般式(1)
Figure JPOXMLDOC01-appb-C000004

(式中、R1は炭素数1~6のアルキル基であり、aは5~100の正数である。)
で表される片末端3官能の加水分解性メチルポリシロキサン:(A)成分100質量部に対して10~150質量部
(C)10W/m・℃以上の熱伝導率を有する熱伝導性充填材:(A)成分と(B)成分の合計100質量部に対して500~3,000質量部
(D)1分子中に少なくとも2個のケイ素原子に直結した水素原子を含有するオルガノハイドロジェンポリシロキサン:{(D)成分のSi-H基の個数}/{(A)成分のアルケニル基の個数}が0.5~1.5になる量
(E)白金及び白金化合物からなる群より選択される触媒:白金原子として(A)成分の質量に対して0.1~500ppmとなる量
(F)トリアゾール系化合物:(E)成分の白金原子1モルに対して2~1,000モル
(G)イソシアネート系化合物:(F)成分のトリアゾール系化合物1モルに対して0.1~10モル
を含有する熱伝導性シリコーン組成物。
〔2〕
 (F)成分が、1,2,3-トリアゾール、1,2,4-トリアゾール及びこれらの誘導体から選ばれるものである〔1〕に記載の熱伝導性シリコーン組成物。
〔3〕
 (F)成分が、ベンゾトリアゾールである〔2〕に記載の熱伝導性シリコーン組成物。
〔4〕
 (G)成分が、アルキルイソシアネート系化合物、アリールイソシアネート系化合物及びイソシアネートシラン系化合物から選ばれるものである〔1〕~〔3〕のいずれかに記載の熱伝導性シリコーン組成物。
〔5〕
 (G)成分が、下記式(2)
Figure JPOXMLDOC01-appb-C000005
(式中、R2はアルキル基又はトリアルキルシリル基であり、bは1~6の整数である。)
で示される化合物である〔4〕に記載の熱伝導性シリコーン組成物。
〔6〕
 更に、(H)アセチレン化合物、窒素化合物、有機りん化合物、オキシム化合物及び有機クロロ化合物より選択される反応制御剤:(A)成分に対して0.1~5質量%となる量
を含む〔1〕~〔5〕のいずれかに記載の熱伝導性シリコーン組成物。
Accordingly, the present invention provides the following thermally conductive silicone composition.
[1]
(A) Organopolysiloxane having at least two alkenyl groups in one molecule and a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s (B) The following general formula (1)
Figure JPOXMLDOC01-appb-C000004

(In the formula, R 1 is an alkyl group having 1 to 6 carbon atoms, and a is a positive number having 5 to 100.)
One-terminal trifunctional hydrolyzable methylpolysiloxane represented by: (A) 10 to 150 parts by mass with respect to 100 parts by mass of component (C) Thermally conductive filling having a thermal conductivity of 10 W / m · ° C. or more Material: 500 to 3,000 parts by mass with respect to a total of 100 parts by mass of component (A) and component (B) (D) Organohydrogen containing hydrogen atoms directly bonded to at least two silicon atoms in one molecule Polysiloxane: {Equivalent number of Si-H groups in component (D)} / {Number of alkenyl groups in component (A)} is 0.5 to 1.5 (E) From the group consisting of platinum and platinum compounds Catalyst selected: An amount of 0.1 to 500 ppm as platinum atom based on the mass of component (A) (F) Triazole compound: 2 to 1,000 mol per mol of platinum atom of component (E) (G) Isocyanate compound: ( ) Heat conductive silicone composition containing 0.1 to 10 mol relative to triazole compound 1 mole of component.
[2]
The heat conductive silicone composition according to [1], wherein the component (F) is selected from 1,2,3-triazole, 1,2,4-triazole and derivatives thereof.
[3]
(F) The heat conductive silicone composition as described in [2] whose component is benzotriazole.
[4]
The thermally conductive silicone composition according to any one of [1] to [3], wherein the component (G) is selected from alkyl isocyanate compounds, aryl isocyanate compounds and isocyanate silane compounds.
[5]
The component (G) is represented by the following formula (2)
Figure JPOXMLDOC01-appb-C000005
(Wherein R 2 represents an alkyl group or a trialkylsilyl group, and b represents an integer of 1 to 6)
[4] The heat conductive silicone composition according to [4].
[6]
Furthermore, (H) a reaction control agent selected from acetylene compounds, nitrogen compounds, organic phosphorus compounds, oxime compounds and organic chloro compounds: an amount of 0.1 to 5% by mass based on component (A) [1 ]-The heat conductive silicone composition in any one of [5].
 本発明の熱伝導性シリコーン組成物は、トリアゾール系化合物とイソシアネート系化合物をそれぞれ特定量配合することにより、硬化物の高温エージング時の硬度上昇を抑制し、かつ硬化速度の低下を抑制することができる。 The thermally conductive silicone composition of the present invention can suppress the increase in hardness during high-temperature aging of the cured product and suppress the decrease in the curing rate by blending specific amounts of triazole compound and isocyanate compound, respectively. it can.
[(A)成分]
 本発明を構成する(A)成分のオルガノポリシロキサンは、ケイ素原子に直結したアルケニル基を1分子中に少なくとも2個、好ましくは2~10個、より好ましくは2~5個有するもので、直鎖状でも分岐状でもよく、またこれら2種以上の異なる粘度の混合物でもよい。
[(A) component]
The organopolysiloxane of component (A) constituting the present invention has at least 2, preferably 2 to 10, more preferably 2 to 5, alkenyl groups directly bonded to silicon atoms in one molecule. The chain may be branched or branched, and a mixture of two or more different viscosities may be used.
 アルケニル基としては、ビニル基、アリル基、1-ブテニル基、1-ヘキセニル基等の炭素数2~6のものが例示されるが、合成のし易さ、コストの面からビニル基が好ましい。
 ケイ素原子に結合する残余の有機基としては、非置換又は置換の炭素数1~12、特に炭素数1~6の脂肪族不飽和結合を含まない一価炭化水素基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基などが例示され、更にクロロメチル基、3,3,3-トリフルオロプロピル基等のハロゲン置換炭化水素基なども例として挙げられる。これらのうち、合成のし易さ、コストの面からメチル基が好ましい。
 ケイ素原子に結合するアルケニル基は、オルガノポリシロキサンの分子鎖の末端、途中のいずれに存在してもよいが、少なくとも末端に存在することが好ましい。
Examples of the alkenyl group include those having 2 to 6 carbon atoms such as a vinyl group, an allyl group, a 1-butenyl group, and a 1-hexenyl group, but a vinyl group is preferable from the viewpoint of ease of synthesis and cost.
The remaining organic group bonded to the silicon atom is preferably an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, particularly 1 to 6 carbon atoms and not containing an aliphatic unsaturated bond. Specifically, alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group and dodecyl group, aryl groups such as phenyl group, aralkyl groups such as 2-phenylethyl group and 2-phenylpropyl group, etc. Examples thereof include halogen-substituted hydrocarbon groups such as chloromethyl group and 3,3,3-trifluoropropyl group. Of these, a methyl group is preferred from the viewpoint of ease of synthesis and cost.
The alkenyl group bonded to the silicon atom may be present at either the terminal or the middle of the molecular chain of the organopolysiloxane, but is preferably present at least at the terminal.
 (A)成分のオストワルド計により測定した25℃における動粘度は、10~100,000mm2/sの範囲であり、好ましくは100~50,000mm2/sの範囲であり、更に好ましくは100~1,000mm2/sがよい。動粘度が10mm2/s未満であると組成物のオイルブリードがひどくなり信頼性が悪くなるし、100,000mm2/sを超えると組成物の粘度が上昇し、伸展性の乏しいものになる。 The kinematic viscosity of the component (A) measured at 25 ° C. with an Ostwald meter is in the range of 10 to 100,000 mm 2 / s, preferably in the range of 100 to 50,000 mm 2 / s, and more preferably in the range of 100 to 1,000 mm 2 / s is preferable. If the kinematic viscosity is less than 10 mm 2 / s, the oil bleed of the composition will be severe and the reliability will be poor, and if it exceeds 100,000 mm 2 / s, the viscosity of the composition will increase and the extensibility will be poor. .
 (A)成分としては、例えば、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖片末端がジメチルビニルシロキシ基で封鎖され分子鎖の他方の末端がトリメチルシロキシ基で封鎖されたジメチルポリシロキサン・メチルビニルポリシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体などが挙げられるが、これらに限定されるものではなく、またこれらのうち2種類以上を混合して用いてもよい。 As the component (A), for example, dimethylpolysiloxane blocked with a dimethylvinylsiloxy group blocked at both ends of the molecular chain, and one end of the molecular chain blocked with a dimethylvinylsiloxy group and the other end of the molecular chain blocked with a trimethylsiloxy group Siloxane / methylvinylpolysiloxane copolymer, molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, molecular chain both ends trimethylsiloxy group-blocked methylvinylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-blocked Examples thereof include, but are not limited to, a dimethylsiloxane / methylvinylsiloxane copolymer, and two or more of these may be used in combination.
[(B)成分]
 (B)成分は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000006
(式中、R1は炭素数1~6のメチル基、エチル基、プロピル基、ブチル基、ヘキシル基等のアルキル基であり、aは5~100の正数である。)
で表される片末端3官能の加水分解性メチルポリシロキサンである。
[Component (B)]
The component (B) has the following general formula (1)
Figure JPOXMLDOC01-appb-C000006
(Wherein R 1 is an alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, a propyl group, a butyl group, or a hexyl group, and a is a positive number of 5 to 100.)
Is a one-terminal trifunctional hydrolyzable methylpolysiloxane.
 (B)成分の一般式(1)で表される片末端3官能の加水分解性メチルポリシロキサンのaは、5より小さいと組成物のオイルブリードがひどくなり信頼性が悪くなるし、100より大きいと濡れ性が十分でないため、5~100の正数であり、好ましくは10~60の正数の範囲がよい。 If (a) of the one-terminal trifunctional hydrolyzable methylpolysiloxane represented by the general formula (1) of the component (B) is less than 5, the oil bleed of the composition becomes so bad that the reliability becomes worse. If it is large, the wettability is not sufficient, so it is a positive number of 5 to 100, preferably in the range of 10 to 60.
 この片末端3官能の加水分解性メチルポリシロキサンの添加量は、(A)成分100質量部に対して10質量部より少ないと十分な濡れ性を発揮できないし、150質量部より多いとオイルブリードが激しくなり信頼性が悪くなるため、10~150質量部であり、好ましくは20~140質量部の範囲がよい。 If the addition amount of this one-terminal trifunctional hydrolyzable methylpolysiloxane is less than 10 parts by mass with respect to 100 parts by mass of component (A), sufficient wettability cannot be exhibited, and if more than 150 parts by mass, oil bleed Is in the range of 10 to 150 parts by mass, preferably 20 to 140 parts by mass.
[(C)成分]
 (C)成分は、10W/m・℃以上の熱伝導率を有する熱伝導性充填材である。
 (C)成分の熱伝導性充填材としては、熱伝導率が10W/m・℃以上、好ましくは15W/m・℃以上のものが使用される。充填材のもつ熱伝導率が10W/m・℃より小さいと、熱伝導性シリコーン組成物の熱伝導率そのものが小さくなるためである。かかる熱伝導性充填材としては、アルミニウム粉末、銅粉末、銀粉末、鉄粉末、ニッケル粉末、金粉末、錫粉末、金属ケイ素粉末、窒化アルミニウム粉末、窒化ホウ素粉末、アルミナ粉末、ダイヤモンド粉末、カーボン粉末、インジウム粉末、ガリウム粉末、酸化亜鉛粉末などが挙げられるが、10W/m・℃以上を有する充填材であれば如何なる充填材でもよく、1種類あるいは2種類以上を混ぜ合わせたものでもよい。
[Component (C)]
The component (C) is a thermally conductive filler having a thermal conductivity of 10 W / m · ° C. or higher.
As the thermally conductive filler of component (C), those having a thermal conductivity of 10 W / m · ° C. or higher, preferably 15 W / m · ° C. or higher are used. This is because if the thermal conductivity of the filler is less than 10 W / m · ° C., the thermal conductivity of the thermally conductive silicone composition itself becomes small. Such heat conductive fillers include aluminum powder, copper powder, silver powder, iron powder, nickel powder, gold powder, tin powder, metal silicon powder, aluminum nitride powder, boron nitride powder, alumina powder, diamond powder, carbon powder. Indium powder, gallium powder, zinc oxide powder, etc., any filler may be used as long as it is 10 W / m · ° C. or more, and one or a mixture of two or more may be used.
 (C)成分の平均粒径は0.1~100μmの範囲が好ましく、より好ましくは0.1~90μmの範囲であり、更に好ましくは0.1~20μmの範囲がよい。該平均粒径が0.1μmより小さいと得られる組成物がグリース状にならず伸展性に乏しいものになる場合があり、100μmより大きいと放熱グリースの熱抵抗が大きくなってしまい性能が低下する場合があるためである。なお、本発明において、平均粒径は日機装(株)製マイクロトラックMT330OEXにより測定でき、体積基準の体積平均径である。
 (C)成分の形状は、不定形でも球形でも如何なる形状でもよい。
The average particle size of the component (C) is preferably in the range of 0.1 to 100 μm, more preferably in the range of 0.1 to 90 μm, and still more preferably in the range of 0.1 to 20 μm. If the average particle size is less than 0.1 μm, the resulting composition may not be in the form of grease and may have poor extensibility. If the average particle size is greater than 100 μm, the thermal resistance of the heat dissipating grease will increase and the performance will deteriorate. This is because there are cases. In the present invention, the average particle diameter can be measured by Nikkiso Co., Ltd. Microtrac MT330OEX, and is a volume-based volume average diameter.
The shape of the component (C) may be indefinite, spherical, or any shape.
 (C)成分の充填量は、(A)成分と(B)成分の合計100質量部に対して500質量部より少ないと組成物の熱伝導率が低くなってしまうし、3,000質量部より多いと組成物の粘度が上昇し、伸展性の乏しいものになるため、500~3,000質量部の範囲であり、好ましくは500~2,800質量部の範囲がよく、より好ましくは500~2,500質量部の範囲がよい。 When the amount of the (C) component is less than 500 parts by mass with respect to 100 parts by mass of the total of the (A) component and the (B) component, the thermal conductivity of the composition becomes low and 3,000 parts by mass. If it is more, the viscosity of the composition increases and the extensibility becomes poor. Therefore, it is in the range of 500 to 3,000 parts by mass, preferably in the range of 500 to 2,800 parts by mass, more preferably 500 A range of ˜2,500 parts by mass is preferable.
[(D)成分]
 (D)成分のオルガノハイドロジェンポリシロキサンは、架橋により組成を網状化するためにケイ素原子に直結した水素原子(Si-H基)を1分子中に少なくとも2個、好ましくは2~50個、より好ましくは2~30個有することが必要である。なお、このSi-H基は、分子鎖末端、分子鎖の途中のいずれに位置していてもよく、両方に位置するものであってもよい。
[(D) component]
The organohydrogenpolysiloxane of component (D) has at least two, preferably 2 to 50, hydrogen atoms (Si—H groups) directly linked to silicon atoms in order to reticulate the composition by crosslinking. More preferably, it is necessary to have 2 to 30. The Si—H group may be located at either the molecular chain end or in the middle of the molecular chain, or may be located at both.
 ケイ素原子に結合するSi-H基以外の残余の有機基としては、非置換又は置換の炭素数1~12、特に炭素数1~6の脂肪族不飽和結合を含まない一価炭化水素基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基、クロロメチル基、3,3,3-トリフルオロプロピル基等のハロゲン置換炭化水素基などが挙げられ、また2-グリシドキシエチル基、3-グリシドキシプロピル基、4-グリシドキシブチル基等のエポキシ置換炭化水素基なども例として挙げられる。 The remaining organic group other than the Si—H group bonded to the silicon atom is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, particularly 1 to 6 carbon atoms and not containing an aliphatic unsaturated bond. Specifically, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group or a dodecyl group, an aryl group such as a phenyl group, a 2-phenylethyl group, or a 2-phenylpropyl group And halogen-substituted hydrocarbon groups such as aralkyl group, chloromethyl group, 3,3,3-trifluoropropyl group, etc., and 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4- Examples include epoxy-substituted hydrocarbon groups such as glycidoxybutyl groups.
 かかるSi-H基を有するオルガノハイドロジェンポリシロキサンは、直鎖状、分岐状及び環状のいずれであってもよく、またこれらの混合物であってもよい。なお、オルガノハイドロジェンポリシロキサン中のケイ素原子数は、10~250個、特に10~200個であることが好ましい。
 このオルガノハイドロジェンポリシロキサンは、1種単独で用いても、2種以上を組み合わせて用いてもよい。
Such an organohydrogenpolysiloxane having a Si—H group may be linear, branched or cyclic, or a mixture thereof. The number of silicon atoms in the organohydrogenpolysiloxane is preferably 10 to 250, particularly 10 to 200.
This organohydrogenpolysiloxane may be used alone or in combination of two or more.
 (D)成分としては、例えば、(CH32HSiO1/2単位と(CH32SiO単位からなる共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(CH32SiO単位からなる共重合体、(CH33SiO1/2単位と(CH32SiO単位と(CH3)HSiO単位からなる共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(CH32SiO単位と(CH3)HSiO単位からなる共重合体、(CH33SiO1/2単位と(CH3)HSiO単位からなる共重合体、(CH32HSiO1/2単位と(CH32SiO単位と(CH3)HSiO単位からなる共重合体、(CH33SiO1/2単位と(CH32HSiO1/2単位と(CH3)HSiO単位からなる共重合体、(CH3)HSiO単位からなる環状共重合体、(CH3)HSiO単位と(CH32SiO単位からなる環状共重合体などが挙げられるが、これらに限定されるものではない。 Examples of the component (D) include a copolymer comprising (CH 3 ) 2 HSiO 1/2 units and (CH 3 ) 2 SiO units, (CH 3 ) 2 HSiO 1/2 units and (CH 3 ) 3 SiO. A copolymer comprising 1/2 units and (CH 3 ) 2 SiO units, a copolymer comprising (CH 3 ) 3 SiO 1/2 units, (CH 3 ) 2 SiO units and (CH 3 ) HSiO units, A copolymer comprising (CH 3 ) 2 HSiO 1/2 units, (CH 3 ) 3 SiO 1/2 units, (CH 3 ) 2 SiO units and (CH 3 ) HSiO units, (CH 3 ) 3 SiO 1/2 A copolymer comprising units and (CH 3 ) HSiO units, a copolymer comprising (CH 3 ) 2 HSiO 1/2 units, (CH 3 ) 2 SiO units and (CH 3 ) HSiO units, (CH 3 ) 3 A copolymer comprising SiO 1/2 units, (CH 3 ) 2 HSiO 1/2 units and (CH 3 ) HSiO units, (CH 3 ) Examples thereof include, but are not limited to, cyclic copolymers composed of HSiO units, cyclic copolymers composed of (CH 3 ) HSiO units and (CH 3 ) 2 SiO units.
 (D)成分の配合量は、{(D)成分のSi-H基の個数}/{(A)成分のアルケニル基の個数}が0.5より小さいと十分に組成を網状化できないためグリースがポンプアウトしてしまうし、1.5より大きいと架橋密度が高くなりすぎてしまい信頼性試験中に剥離してしまうため、0.5~1.5の範囲であり、好ましくは0.7~1.3の範囲がよい。 The blending amount of the component (D) is such that the composition cannot be reticulated sufficiently if the {number of Si—H groups in the component (D)} / {number of alkenyl groups in the component (A)} is less than 0.5. Is pumped out, and if it is larger than 1.5, the crosslinking density becomes too high and peels off during the reliability test, so the range is 0.5 to 1.5, preferably 0.7. A range of ~ 1.3 is good.
[(E)成分]
 (E)成分の白金及び白金化合物から選択される触媒は、(A)成分中のアルケニル基と(D)成分中のSi-H基との間の付加反応の促進成分である。この(E)成分は、例えば、白金の単体、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物などが挙げられる。
[(E) component]
The catalyst selected from platinum and platinum compounds as the component (E) is a component for promoting the addition reaction between the alkenyl group in the component (A) and the Si—H group in the component (D). Examples of the component (E) include platinum alone, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, platinum coordination compounds, and the like.
 (E)成分の配合量は、(A)成分の質量に対し、白金原子として0.1ppmより少ないと触媒としての効果がなく、500ppmを超えても効果が増大することがなく、不経済であるので、0.1~500ppmの範囲であり、好ましくは0.1~400ppmである。 The amount of component (E) is less than 0.1 ppm as platinum atoms with respect to the mass of component (A), and there is no effect as a catalyst. Therefore, it is in the range of 0.1 to 500 ppm, preferably 0.1 to 400 ppm.
[(F)成分]
 (F)成分のトリアゾール系化合物は、後述する(G)成分と共に、組成物中に特定の配合量で添加することによって熱伝導性シリコーン組成物の硬化速度の低下を抑制すると共に、硬化後の高温エージング時の硬度上昇を抑制することができる。
[(F) component]
The (F) component triazole compound, together with the component (G) described later, is added to the composition at a specific blending amount to suppress a decrease in the curing rate of the thermally conductive silicone composition, and after curing. The increase in hardness during high temperature aging can be suppressed.
 (F)成分のトリアゾール系化合物としては、例えば、1,2,3-トリアゾール、1,2,4-トリアゾール及びこれらの誘導体が挙げられる。具体的に、1,2,3-トリアゾールの誘導体としては、ベンゾトリアゾール、4-ヒドロキシ-1,2,3-トリアゾール、1,2,3-トリアゾール-4-アルデヒド、4-シアノ-1,2,3-トリアゾールなどが挙げられる。1,2,4-トリアゾールの誘導体としては、5-アミノ-3-メチル-1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾールなどが挙げられる。これらのうち好適なものは、ベンゾトリアゾール、1,2,3-トリアゾール、1,2,4-トリアゾールであり、最も好適なものはベンゾトリアゾールである。これらは1種単独で使用しても、2種以上を併用してもよい。 Examples of the (F) component triazole-based compound include 1,2,3-triazole, 1,2,4-triazole, and derivatives thereof. Specifically, the derivatives of 1,2,3-triazole include benzotriazole, 4-hydroxy-1,2,3-triazole, 1,2,3-triazole-4-aldehyde, 4-cyano-1,2 , 3-triazole and the like. Examples of the 1,2,4-triazole derivatives include 5-amino-3-methyl-1,2,4-triazole, 3-mercapto-1,2,4-triazole and the like. Among these, preferred are benzotriazole, 1,2,3-triazole, and 1,2,4-triazole, and most preferred is benzotriazole. These may be used alone or in combination of two or more.
 この成分(F)の配合量は、(E)成分の白金原子1モルに対し、2~1,000モルであり、好ましくは2~800モル、より好ましくは2~500モルである。配合量が2モルより少ないと十分に硬度上昇を抑制することができず、1,000モルより多いと、硬化速度が遅くなってしまう。 The compounding amount of component (F) is 2 to 1,000 mol, preferably 2 to 800 mol, more preferably 2 to 500 mol, per 1 mol of platinum atom in component (E). If the blending amount is less than 2 mol, the increase in hardness cannot be sufficiently suppressed, and if it is more than 1,000 mol, the curing rate becomes slow.
[(G)成分]
 (G)成分のイソシアネート系化合物は、前記(F)成分と共に、組成物中に特定の配合量で併用添加することによって熱伝導性シリコーン組成物の硬化速度の低下を抑制すると共に、硬化後の高温エージング時の硬度上昇を抑制することができる。
[(G) component]
The isocyanate-based compound of component (G), together with the component (F), suppresses a decrease in the curing rate of the thermally conductive silicone composition by being added to the composition at a specific blending amount, and after curing. The increase in hardness during high temperature aging can be suppressed.
 (G)成分のイソシアネート系化合物としては、例えば、メチルイソシアネート、ブチルイソシアネート、オクチルイソシアネート等のアルキルイソシアネート系化合物、フェニルイソシアネート、トリルイソシアネート等のアリールイソシアネート系化合物、更に、例えば、下記一般式(2)で示されるような、イソシアネート基及びシリル基を含有するイソシアネートシラン系化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000007
(式中、R2はアルキル基又はトリアルキルシリル基であり、bは1~6の整数である。)
Examples of the isocyanate compound as component (G) include alkyl isocyanate compounds such as methyl isocyanate, butyl isocyanate and octyl isocyanate, aryl isocyanate compounds such as phenyl isocyanate and tolyl isocyanate, and further, for example, the following general formula (2) And an isocyanate silane compound containing an isocyanate group and a silyl group, as shown in FIG.
Figure JPOXMLDOC01-appb-C000007
(Wherein R 2 represents an alkyl group or a trialkylsilyl group, and b represents an integer of 1 to 6)
 この場合、R2のアルキル基としては、炭素数1~4のもの、特にメチル基、エチル基が好ましく、トリアルキルシリル基のアルキル基も炭素数1~4のもの、特にメチル基、エチル基が好ましく、トリメチルシリル基、トリエチルシリル基が好ましい。 In this case, the alkyl group represented by R 2 is preferably one having 1 to 4 carbon atoms, particularly a methyl group or ethyl group, and the alkyl group of the trialkylsilyl group is also one having 1 to 4 carbon atoms, particularly a methyl group or ethyl group. Are preferable, and a trimethylsilyl group and a triethylsilyl group are preferable.
 これらのうち、最も好適なものはオクチルイソシアネート、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリス(トリメチルシロキシ)シランである。これらは1種単独でも2種以上を併用してもよい。 Of these, octyl isocyanate, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3-isocyanatopropyltris (trimethylsiloxy) silane are most preferred. These may be used alone or in combination of two or more.
 この(G)成分の配合量は、(F)成分1モルに対し、0.1~10モルであり、好ましくは0.5~5モル、より好ましくは0.5~2モルである。配合量が0.1モルより少ないと硬化速度が低下してしまうし、10モルより多いとエージング後の硬度上昇を十分に抑制することができなくなる。 The amount of component (G) is 0.1 to 10 moles, preferably 0.5 to 5 moles, and more preferably 0.5 to 2 moles per mole of component (F). If the blending amount is less than 0.1 mol, the curing rate decreases, and if it exceeds 10 mol, the hardness increase after aging cannot be sufficiently suppressed.
[(H)成分]
 本発明の熱伝導性シリコーン組成物には、更に(H)成分として、(E)成分の触媒活性を抑制する目的で反応制御剤を配合することができる。(H)成分の反応制御剤は、室温でのヒドロシリル化反応の進行を抑え、シェルフライフ、ポットライフを延長させるものである。反応制御剤としては公知のものを使用することができ、アセチレン化合物、各種窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物等が利用できる。
[(H) component]
In the thermally conductive silicone composition of the present invention, a reaction control agent can be further blended as the component (H) for the purpose of suppressing the catalytic activity of the component (E). The reaction control agent of component (H) suppresses the progress of the hydrosilylation reaction at room temperature and extends shelf life and pot life. Known reaction control agents can be used, and acetylene compounds, various nitrogen compounds, organic phosphorus compounds, oxime compounds, organic chloro compounds, and the like can be used.
 (H)成分を配合する場合の配合量は、(A)成分に対して0.1質量%より小さいと十分なシェルフライフ、ポットライフが得られない場合があり、5質量%より大きいと硬化速度が低下する場合があるため、0.1~5質量%の範囲が好ましく、特には0.1~4質量%の範囲が好ましい。これらは熱伝導性シリコーン組成物への分散性を良くするためにトルエン等の溶剤で希釈して使用してもよい。 When the blending amount of the component (H) is less than 0.1% by mass relative to the component (A), sufficient shelf life and pot life may not be obtained. Since the speed may decrease, the range of 0.1 to 5% by mass is preferable, and the range of 0.1 to 4% by mass is particularly preferable. These may be used by diluting with a solvent such as toluene in order to improve dispersibility in the heat conductive silicone composition.
 また、本発明の熱伝導性シリコーン組成物には、上記した(A)~(H)成分以外に必要に応じて、劣化を防ぐために酸化防止剤等を入れてもよい。 In addition to the components (A) to (H) described above, an antioxidant or the like may be added to the thermally conductive silicone composition of the present invention as necessary in order to prevent deterioration.
 本発明の熱伝導性シリコーン組成物を製造するには、(A)~(H)成分をトリミックス、ツウィンミックス、プラネタリミキサー(いずれも(株)井上製作所製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機にて混合することにより製造することができる。 In order to produce the heat conductive silicone composition of the present invention, the components (A) to (H) are trimix, twin mix, planetary mixer (all are registered trademarks of a mixer manufactured by Inoue Seisakusho Co., Ltd.), ultra mixer It can be produced by mixing with a mixer such as (registered trademark of Mizuho Kogyo Co., Ltd.), Hibis Disper Mix (registered trademark of Special Kikai Kogyo Co., Ltd.).
 得られた熱伝導性シリコーン組成物の回転粘度計により測定した25℃における絶対粘度は、5~2,000Pa・s、特に10~900Pa・sであることが好ましい。 The absolute viscosity at 25 ° C. of the obtained heat conductive silicone composition measured with a rotational viscometer is preferably 5 to 2,000 Pa · s, particularly 10 to 900 Pa · s.
 また、得られた熱伝導性シリコーン組成物は、80~180℃、特に90~170℃にて30~150分間、特に30~140分間加熱することにより硬化物とすることができる。 The obtained heat conductive silicone composition can be made into a cured product by heating at 80 to 180 ° C., particularly 90 to 170 ° C. for 30 to 150 minutes, particularly 30 to 140 minutes.
 本発明の熱伝導性シリコーン組成物は、硬化速度の低下を抑制することができ、該組成物の硬化物は、高温エージング時の硬度上昇を抑制することができることから、半導体チップなど発熱素子の冷却部材への熱伝導材料の用途として好適に使用することができる。 The thermally conductive silicone composition of the present invention can suppress a decrease in curing rate, and the cured product of the composition can suppress an increase in hardness during high-temperature aging. It can use suitably as a use of the heat conductive material to a cooling member.
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
 本発明の効果に関する試験は次のように行った。 The test regarding the effect of the present invention was performed as follows.
〔粘度〕
 熱伝導性シリコーン組成物の絶対粘度は、マルコム粘度計(タイプPC-1TL;(株)マルコム製)を用いて25℃で測定した。
〔viscosity〕
The absolute viscosity of the thermally conductive silicone composition was measured at 25 ° C. using a Malcolm viscometer (type PC-1TL; manufactured by Malcolm).
〔熱伝導率〕
 各組成物を3cm厚の型に流し込み、キッチン用ラップをかぶせて京都電子工業(株)製のModel QTM-500で25℃において測定した。
〔Thermal conductivity〕
Each composition was poured into a 3 cm thick mold, covered with a kitchen wrap, and measured at 25 ° C. with Model QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd.
〔硬化速度評価〕
 直径2.5cmの2枚のパラレルプレートの間に、熱伝導性シリコーン組成物を厚み2mmで塗布した。塗布したプレートを25℃から5℃/分にて昇温後、150℃において90分間温度を維持するようにプログラムを作成し、貯蔵弾性率G'及び損失弾性率G''の測定を行った。貯蔵弾性率G'の値が、損失弾性率G''を上回った時点をクロスオーバータイムとし、硬化速度の指標とした。測定は、粘弾性測定装置(ティー・エイ・インスツルメント社製、タイプARES-G2)を用いて行った。
[Evaluation of curing speed]
The heat conductive silicone composition was applied in a thickness of 2 mm between two parallel plates having a diameter of 2.5 cm. After the temperature of the coated plate was increased from 25 ° C. at 5 ° C./min, a program was created to maintain the temperature at 150 ° C. for 90 minutes, and the storage elastic modulus G ′ and loss elastic modulus G ″ were measured. . The time when the value of the storage elastic modulus G ′ exceeded the loss elastic modulus G ″ was defined as the crossover time, and was used as an index of the curing rate. The measurement was carried out using a viscoelasticity measuring device (Type ARES-G2 manufactured by TA Instruments).
〔硬度上昇評価〕
 熱伝導性シリコーン組成物を6cm×6cm×6mmの型枠に流し込み、150℃において90分間加熱することによりシート状のサンプルを作製した。これらを2枚重ね合わせたものについてアスカーC硬度計を用いて硬度を測定し、初期硬度とした。その後125℃にて500時間エージングを行い、硬度を測定した。
[Evaluation of hardness increase]
The thermally conductive silicone composition was poured into a 6 cm × 6 cm × 6 mm mold and heated at 150 ° C. for 90 minutes to prepare a sheet-like sample. About what superposed | stacked two of these, hardness was measured using the Asker C hardness meter and it was set as initial stage hardness. Thereafter, aging was performed at 125 ° C. for 500 hours, and the hardness was measured.
〔熱抵抗測定〕
 15mm×15mm×1mmtのSiチップと15mm×15mm×1mmtのNiプレートの間に、熱伝導性シリコーン組成物を厚さ80μmとなるように挟み込み、0.7MPaにて15分間圧縮させた後、荷重をかけたまま150℃のオーブンに90分間装入して熱伝導性シリコーン組成物を加熱硬化させ、熱抵抗測定用の試験片を作製した。さらにその後ヒートサイクル試験(-55℃⇔125℃)を500サイクル実施して熱抵抗の変化を観察した。なお、この熱抵抗測定はナノフラッシュ(ニッチェ社製、LFA447)によって行った。
(Thermal resistance measurement)
A heat conductive silicone composition is sandwiched between a 15 mm × 15 mm × 1 mmt Si chip and a 15 mm × 15 mm × 1 mmt Ni plate so as to have a thickness of 80 μm, compressed at 0.7 MPa for 15 minutes, and then loaded. The sample was placed in an oven at 150 ° C. for 90 minutes with heat applied, and the thermally conductive silicone composition was heated and cured to prepare a test piece for measuring thermal resistance. Further, after that, a heat cycle test (-55 ° C. to 125 ° C.) was carried out for 500 cycles, and changes in thermal resistance were observed. In addition, this thermal resistance measurement was performed by nanoflash (the Niche company make, LFA447).
 本発明の熱伝導性シリコーン組成物を調製するために以下の各成分を用意した。 The following components were prepared in order to prepare the thermally conductive silicone composition of the present invention.
(A)成分
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600 mm2/sのジメチルポリシロキサン
(A) Component A-1: Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 600 mm 2 / s
(B)成分
B-1:下記式で示される片末端トリアルコキシシリル基封鎖ジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000008
(B) Component B-1: One-terminal trialkoxysilyl group-blocked dimethylpolysiloxane represented by the following formula
Figure JPOXMLDOC01-appb-C000008
(C)成分
 下記のアルミニウム粉末又はアルミナ粉末と酸化亜鉛粉末を5リットルプラネタリーミキサー((株)井上製作所製)を用いて下記表1の質量混合比で室温にて15分間混合し、C-1又はC-2を得た。
  平均粒径10μmのアルミニウム粉末(熱伝導率:236W/m・℃)
  平均粒径6μmのアルミナ粉末(熱伝導率:27W/m・℃)
  平均粒径0.6μmの酸化亜鉛粉末(熱伝導率:25W/m・℃)
Figure JPOXMLDOC01-appb-T000009
Component (C) The following aluminum powder or alumina powder and zinc oxide powder were mixed for 15 minutes at room temperature using a 5-liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.) at the mass mixing ratio shown in Table 1 below. 1 or C-2 was obtained.
Aluminum powder with an average particle size of 10 μm (thermal conductivity: 236 W / m · ° C.)
Alumina powder with an average particle size of 6 μm (thermal conductivity: 27 W / m · ° C)
Zinc oxide powder with an average particle size of 0.6 μm (thermal conductivity: 25 W / m · ° C)
Figure JPOXMLDOC01-appb-T000009
(D)成分
 下記式で表されるオルガノハイドロジェンポリシロキサン
D-1:
Figure JPOXMLDOC01-appb-C000010
D-2:
Figure JPOXMLDOC01-appb-C000011
Component (D) Organohydrogenpolysiloxane D-1 represented by the following formula:
Figure JPOXMLDOC01-appb-C000010
D-2:
Figure JPOXMLDOC01-appb-C000011
(E)成分
E-1:白金-ジビニルテトラメチルジシロキサン錯体のA-1溶液、白金原子として1質量%含有
(E) Component E-1: A-1 solution of platinum-divinyltetramethyldisiloxane complex, containing 1% by mass as platinum atoms
(F)成分
F-1:ベンゾトリアゾール
(F) Component F-1: Benzotriazole
(G)成分
G-1:3-イソシアネートプロピルトリエトキシシラン
G-2:3-イソシアネートプロピルトリメトキシシラン
G-3:3-イソシアネートプロピルトリス(トリメチルシロキシ)シラン
(G) Component G-1: 3-isocyanatopropyltriethoxysilane G-2: 3-isocyanatopropyltrimethoxysilane G-3: 3-isocyanatopropyltris (trimethylsiloxy) silane
(H)成分
H-1:1-エチニル-1-シクロヘキサノール
(H) Component H-1: 1-ethynyl-1-cyclohexanol
 (A)~(H)成分を以下のように混合して実施例1~6及び比較例1~6の熱伝導性シリコーン組成物を得た。
 即ち、5リットルプラネタリーミキサー((株)井上製作所製)に(A)成分を取り、表2、表3に示す配合量で(B)、(C)成分を加え、170℃で1時間混合した。常温になるまで冷却し、次に(D)、(E)、(F)、(G)、(H)成分を表2、表3に示す配合量で加えて均一になるように混合した。
The components (A) to (H) were mixed as follows to obtain thermally conductive silicone compositions of Examples 1 to 6 and Comparative Examples 1 to 6.
That is, take the component (A) into a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.), add the components (B) and (C) in the amounts shown in Tables 2 and 3, and mix at 170 ° C. for 1 hour. did. The mixture was cooled to room temperature, and then the components (D), (E), (F), (G), and (H) were added in the blending amounts shown in Tables 2 and 3 and mixed to be uniform.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

Claims (6)

  1.  (A)1分子中に少なくとも2個のアルケニル基を有する、25℃の動粘度が10~100,000mm2/sのオルガノポリシロキサン
    (B)下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1は炭素数1~6のアルキル基であり、aは5~100の正数である。)
    で表される片末端3官能の加水分解性メチルポリシロキサン:(A)成分100質量部に対して10~150質量部
    (C)10W/m・℃以上の熱伝導率を有する熱伝導性充填材:(A)成分と(B)成分の合計100質量部に対して500~3,000質量部
    (D)1分子中に少なくとも2個のケイ素原子に直結した水素原子を含有するオルガノハイドロジェンポリシロキサン:{(D)成分のSi-H基の個数}/{(A)成分のアルケニル基の個数}が0.5~1.5になる量
    (E)白金及び白金化合物からなる群より選択される触媒:白金原子として(A)成分の質量に対して0.1~500ppmとなる量
    (F)トリアゾール系化合物:(E)成分の白金原子1モルに対して2~1,000モル
    (G)イソシアネート系化合物:(F)成分のトリアゾール系化合物1モルに対して0.1~10モル
    を含有する熱伝導性シリコーン組成物。
    (A) Organopolysiloxane having at least two alkenyl groups in one molecule and a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s (B) The following general formula (1)
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, R 1 is an alkyl group having 1 to 6 carbon atoms, and a is a positive number having 5 to 100.)
    One-terminal trifunctional hydrolyzable methylpolysiloxane represented by: (A) 10 to 150 parts by mass with respect to 100 parts by mass of component (C) Thermally conductive filling having a thermal conductivity of 10 W / m · ° C. or more Material: 500 to 3,000 parts by mass with respect to a total of 100 parts by mass of component (A) and component (B) (D) Organohydrogen containing hydrogen atoms directly bonded to at least two silicon atoms in one molecule Polysiloxane: {Equivalent number of Si-H groups in component (D)} / {Number of alkenyl groups in component (A)} is 0.5 to 1.5 (E) From the group consisting of platinum and platinum compounds Catalyst selected: An amount of 0.1 to 500 ppm as platinum atom based on the mass of component (A) (F) Triazole compound: 2 to 1,000 mol per mol of platinum atom of component (E) (G) Isocyanate compound: ( ) Heat conductive silicone composition containing 0.1 to 10 mol relative to triazole compound 1 mole of component.
  2.  (F)成分が、1,2,3-トリアゾール、1,2,4-トリアゾール及びこれらの誘導体から選ばれるものである請求項1に記載の熱伝導性シリコーン組成物。 The heat conductive silicone composition according to claim 1, wherein the component (F) is selected from 1,2,3-triazole, 1,2,4-triazole and derivatives thereof.
  3.  (F)成分が、ベンゾトリアゾールである請求項2に記載の熱伝導性シリコーン組成物。 The heat conductive silicone composition according to claim 2, wherein the component (F) is benzotriazole.
  4.  (G)成分が、アルキルイソシアネート系化合物、アリールイソシアネート系化合物及びイソシアネートシラン系化合物から選ばれるものである請求項1~3のいずれか1項に記載の熱伝導性シリコーン組成物。 The thermally conductive silicone composition according to any one of claims 1 to 3, wherein the component (G) is selected from alkyl isocyanate compounds, aryl isocyanate compounds and isocyanate silane compounds.
  5.  (G)成分が、下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R2はアルキル基又はトリアルキルシリル基であり、bは1~6の整数である。)
    で示される化合物である請求項4に記載の熱伝導性シリコーン組成物。
    The component (G) is represented by the following formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 2 represents an alkyl group or a trialkylsilyl group, and b represents an integer of 1 to 6)
    The heat conductive silicone composition of Claim 4 which is a compound shown by these.
  6.  更に、(H)アセチレン化合物、窒素化合物、有機りん化合物、オキシム化合物及び有機クロロ化合物より選択される反応制御剤:(A)成分に対して0.1~5質量%となる量
    を含む請求項1~5のいずれか1項に記載の熱伝導性シリコーン組成物。
    Furthermore, (H) a reaction control agent selected from acetylene compounds, nitrogen compounds, organic phosphorus compounds, oxime compounds and organic chloro compounds: an amount of 0.1 to 5% by mass based on component (A) 6. The thermally conductive silicone composition according to any one of 1 to 5.
PCT/JP2018/017750 2017-06-15 2018-05-08 Thermally-conductive silicone composition WO2018230189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-117347 2017-06-15
JP2017117347A JP6943028B2 (en) 2017-06-15 2017-06-15 Thermally conductive silicone composition

Publications (1)

Publication Number Publication Date
WO2018230189A1 true WO2018230189A1 (en) 2018-12-20

Family

ID=64661001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017750 WO2018230189A1 (en) 2017-06-15 2018-05-08 Thermally-conductive silicone composition

Country Status (3)

Country Link
JP (1) JP6943028B2 (en)
TW (1) TW201906934A (en)
WO (1) WO2018230189A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149335A1 (en) * 2019-01-17 2020-07-23 バンドー化学株式会社 Heat-conductive sheet
WO2021235214A1 (en) * 2020-05-22 2021-11-25 信越化学工業株式会社 Highly thermally-conductive silicone composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022185620A (en) * 2021-06-03 2022-12-15 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168920A (en) * 2002-11-21 2004-06-17 Dow Corning Toray Silicone Co Ltd Thermally conductive silicone elastomer composition
JP2017031364A (en) * 2015-08-05 2017-02-09 信越化学工業株式会社 Addition curable silicone rubber composition
WO2018079309A1 (en) * 2016-10-26 2018-05-03 信越化学工業株式会社 Thermally-conductive silicone composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168920A (en) * 2002-11-21 2004-06-17 Dow Corning Toray Silicone Co Ltd Thermally conductive silicone elastomer composition
JP2017031364A (en) * 2015-08-05 2017-02-09 信越化学工業株式会社 Addition curable silicone rubber composition
WO2018079309A1 (en) * 2016-10-26 2018-05-03 信越化学工業株式会社 Thermally-conductive silicone composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149335A1 (en) * 2019-01-17 2020-07-23 バンドー化学株式会社 Heat-conductive sheet
JP6754917B1 (en) * 2019-01-17 2020-09-16 バンドー化学株式会社 Thermal conductivity sheet
WO2021235214A1 (en) * 2020-05-22 2021-11-25 信越化学工業株式会社 Highly thermally-conductive silicone composition
JPWO2021235214A1 (en) * 2020-05-22 2021-11-25
JP7371249B2 (en) 2020-05-22 2023-10-30 信越化学工業株式会社 High thermal conductivity silicone composition

Also Published As

Publication number Publication date
JP2019001900A (en) 2019-01-10
TW201906934A (en) 2019-02-16
JP6943028B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
JP6614362B2 (en) Thermally conductive silicone composition
JP5434795B2 (en) Thermally conductive silicone grease composition
CN102533214B (en) Thermally conductive silicone grease composition
JP6149831B2 (en) Silicone composition
JP5898139B2 (en) Thermally conductive silicone composition
JP5943071B2 (en) Thermally conductive silicone grease composition
JP5832983B2 (en) Silicone composition
JP7070320B2 (en) Thermally conductive silicone composition
JP5843364B2 (en) Thermally conductive composition
JP2010013521A (en) Heat conductive silicone composition
JP5947267B2 (en) Silicone composition and method for producing thermally conductive silicone composition
JP6981914B2 (en) Thermally conductive silicone composition and its cured product
JP6915599B2 (en) Thermally conductive silicone composition
JP2021098804A (en) Heat-conductive silicone composition
WO2018230189A1 (en) Thermally-conductive silicone composition
JP6579272B2 (en) Thermally conductive silicone composition
JP7371249B2 (en) High thermal conductivity silicone composition
JP6314710B2 (en) Thermally conductive silicone composition
JP2019077843A (en) Thermally conductive silicone potting composition and cured product thereof
JP2021113290A (en) Heat-conductive silicone potting composition, and cured product of the same
JP2020143178A (en) Non-curable thermally conductive silicone composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18816644

Country of ref document: EP

Kind code of ref document: A1