JP2009215362A - Thermally conductive silicone grease composition and semiconductor device using the same - Google Patents

Thermally conductive silicone grease composition and semiconductor device using the same Download PDF

Info

Publication number
JP2009215362A
JP2009215362A JP2008057889A JP2008057889A JP2009215362A JP 2009215362 A JP2009215362 A JP 2009215362A JP 2008057889 A JP2008057889 A JP 2008057889A JP 2008057889 A JP2008057889 A JP 2008057889A JP 2009215362 A JP2009215362 A JP 2009215362A
Authority
JP
Japan
Prior art keywords
silicone grease
group
grease composition
component
conductive silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008057889A
Other languages
Japanese (ja)
Inventor
Chisato Hoshino
千里 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Inc
Original Assignee
Momentive Performance Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Performance Materials Inc filed Critical Momentive Performance Materials Inc
Priority to JP2008057889A priority Critical patent/JP2009215362A/en
Publication of JP2009215362A publication Critical patent/JP2009215362A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Lubricants (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally conductive silicone grease composition can suppress liquid dripping, and to provide a highly reliable semiconductor device using the same. <P>SOLUTION: The thermally conductive silicone grease composition includes (A) 100 pts.vol. of cyclic polyorganosiloxane having a viscosity of 0.01-5 Pa s at 23°C and averagely 0.5-1.5 pieces of trialkoxysilyl groups in 1 molecule, and (B) 100-2,000 pts.vol. of a thermally conductive filler. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液ダレを抑制することが可能な熱伝導性シリコーングリース組成物及びそれを用いた半導体装置に関する。   The present invention relates to a thermally conductive silicone grease composition capable of suppressing dripping and a semiconductor device using the same.

例えばCPUのような発熱性電子部品には、使用時の温度上昇による損傷や性能低下を防止するためにヒートシンクなどの放熱体が広く用いられており、発熱性電子部品から発生する熱を放熱体に効率よく伝導させるため、発熱性電子部品と放熱体との間には放熱シートや放熱グリースが使用されている。   For example, heat-generating electronic parts such as CPUs widely use heat sinks such as heat sinks in order to prevent damage or performance degradation due to temperature rise during use. In order to conduct the heat efficiently, a heat radiating sheet or heat radiating grease is used between the heat-generating electronic component and the heat radiating body.

放熱シートは、手軽にマウントすることができるため、取り扱い性に優れており、様々な分野で使用されている。放熱シートを形成するシリコーン組成物として、熱伝導性充填剤を高充填しても、良好な流動性、作業性を有する付加反応硬化型のシリコーンゴム組成物が提案されている(例えば特許文献1参照)。このシリコーンゴム組成物は、加水分解性基を有するポリオルガノシロキサンをウエッター成分として配合した組成物である。   Since the heat radiation sheet can be easily mounted, it is excellent in handleability and is used in various fields. As a silicone composition for forming a heat-dissipating sheet, an addition reaction curable silicone rubber composition having good fluidity and workability even when highly filled with a heat conductive filler has been proposed (for example, Patent Document 1). reference). This silicone rubber composition is a composition in which a polyorganosiloxane having a hydrolyzable group is blended as a wetter component.

一方、放熱グリースはその性状が液体に近く、放熱シートと比べて、発熱性電子部品や放熱体表面の凹凸に影響されることなく両者に密着して界面熱抵抗を小さくすることができる。このような放熱グリースとしては、シリコーンオイルをベースとして、アルミニウム粉末などの熱伝導性充填剤を配合したシリコーングリース組成物が提案されている。   On the other hand, the properties of the heat dissipating grease are close to liquids, and compared with the heat dissipating sheet, the heat dissipating grease can be in close contact with both of the heat generating electronic components and the unevenness of the heat dissipating member surface to reduce the interfacial thermal resistance. As such heat dissipating grease, a silicone grease composition has been proposed in which a silicone oil is used as a base and a heat conductive filler such as aluminum powder is blended.

しかし、従来のシリコーングリース組成物は、発熱性電子部品のON/OFFによる加熱/冷却サイクルにより、液ダレが発生して電子部品が汚染されやすい。この汚染によって、電子部品の本来の性能が発揮されない、あるいは作動し難い問題があった。
WO2005/030874A1
However, the conventional silicone grease composition is likely to be contaminated by liquid dripping due to heating / cooling cycle by ON / OFF of the heat-generating electronic component. Due to this contamination, there was a problem that the original performance of the electronic component was not exhibited or it was difficult to operate.
WO2005 / 030874A1

本発明の目的は、液ダレを抑制することが可能な熱伝導性シリコーングリース組成物、およびそれを用いた高信頼性の半導体装置を提供することにある。   An object of the present invention is to provide a thermally conductive silicone grease composition capable of suppressing dripping and a highly reliable semiconductor device using the same.

本発明者らは、上記目的を達成するために鋭意検討した結果、ベースオイルとして、トリアルコキシシリル基を有する環状のポリオルガノシロキサンを配合することによって、電子部品の冷熱サイクルによる組成物の液ダレを抑制することを見出し、本発明をなすに至った。   As a result of diligent investigations to achieve the above object, the inventors of the present invention incorporated a cyclic polyorganosiloxane having a trialkoxysilyl group as a base oil, thereby reducing dripping of the composition due to a thermal cycle of electronic components. As a result, the inventors have found that the present invention is suppressed.

すなわち、本発明の熱伝導性シリコーングリース組成物は、
(A)23℃における粘度が0.01〜5Pa・sであり、1分子中にトリアルコキシシリル基を平均0.5〜1.5個有する環状のポリオルガノシロキサン 100容量部、および
(B)熱伝導性充填剤 100〜2000容量部
を含有することを特徴としている。
That is, the thermally conductive silicone grease composition of the present invention is
(A) 100 parts by volume of a cyclic polyorganosiloxane having a viscosity of 0.01 to 5 Pa · s at 23 ° C. and having an average of 0.5 to 1.5 trialkoxysilyl groups in one molecule, and (B) It is characterized by containing 100-2000 volume parts of thermally conductive fillers.

また、本発明の半導体装置は、発熱性電子部品と放熱体とを有し、前記発熱性電子部品と前記放熱体との間に、上記の熱伝導性シリコーングリース組成物を介在させてなることを特徴としている。   The semiconductor device of the present invention has a heat-generating electronic component and a heat radiator, and the above heat-conductive silicone grease composition is interposed between the heat-generating electronic component and the heat radiator. It is characterized by.

本発明によれば、液ダレを抑制することが可能な熱伝導性シリコーングリース組成物、およびそれを用いた高信頼性の半導体装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat conductive silicone grease composition which can suppress dripping, and a highly reliable semiconductor device using the same can be obtained.

以下、本発明の熱伝導性シリコーングリース組成物について詳細に説明する。   Hereinafter, the thermally conductive silicone grease composition of the present invention will be described in detail.

[(A)成分]
(A)成分は、CPUなどの発熱性電子部品の冷熱サイクルによる液ダレを抑制する、本発明の特徴を付与する成分である。
[(A) component]
(A) A component is a component which provides the characteristic of this invention which suppresses the liquid dripping by the cooling-heat cycle of exothermic electronic components, such as CPU.

(A)成分は、トリアルコキシシリル基を1分子中に平均0.5〜1.5個有する環状のポリオルガノシロキサンであり、例えば、下記一般式:

Figure 2009215362
で表されるポリオルガノシロキサンを用いることが好ましい。 The component (A) is a cyclic polyorganosiloxane having an average of 0.5 to 1.5 trialkoxysilyl groups in one molecule. For example, the following general formula:
Figure 2009215362
It is preferable to use a polyorganosiloxane represented by:

式中、Rは互いに同一または異なる、炭素原子数1〜6のアルキル基、または水素原子である。Rとしては、水素原子の他、一価炭化水素として、例えばメチル基、エチル基、プロピル基等が挙げられ、好ましくはメチル基である。 In the formula, R 1 is the same or different from each other, an alkyl group having 1 to 6 carbon atoms, or a hydrogen atom. Examples of R 1 include a hydrogen atom and monovalent hydrocarbons such as a methyl group, an ethyl group, and a propyl group, and a methyl group is preferable.

は互いに同一または異なる、炭素原子数2〜10の二価の炭化水素基であり、例えば、下記のようなアルキレン基が挙げられる。
−CHCH
−CHCHCH
−CHCH(CH)−
−CHCH(CH)CH
R 2 is the same or different and is a divalent hydrocarbon group having 2 to 10 carbon atoms, and examples thereof include the following alkylene groups.
-CH 2 CH 2-
-CH 2 CH 2 CH 2-
-CH 2 CH (CH 3 )-
-CH 2 CH (CH 3) CH 2 -

は−COOR−で表される基である。Rは、前記規定のとおりである。 R 3 is a group represented by —COOR 2 —. R 2 is as defined above.

は炭素原子数1〜4のアルコキシ基であり、例えばメトキシ基、エトキシ基、プロポキシ基等が挙げられ、好ましくはメトキシ基である。 R 4 is an alkoxy group having 1 to 4 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a propoxy group, and preferably a methoxy group.

a,bは、1以上の整数であり、好ましくは1〜2である。cは、0以上の整数であり、好ましくは0〜1である。   a and b are integers of 1 or more, preferably 1-2. c is an integer greater than or equal to 0, Preferably it is 0-1.

a+b+cの和は、4以上であり、好ましくは4である。a+b+cの和が、4未満では、組成物の粘度上昇を抑制できず、良好な作業性、成形性が得られない。   The sum of a + b + c is 4 or more, preferably 4. When the sum of a + b + c is less than 4, an increase in the viscosity of the composition cannot be suppressed, and good workability and moldability cannot be obtained.

また、Aは、炭素原子数6〜18の一価炭化水素基、または下記一般式:

Figure 2009215362
で表される基である。 A is a monovalent hydrocarbon group having 6 to 18 carbon atoms, or the following general formula:
Figure 2009215362
It is group represented by these.

Aが、炭素原子数6〜18の一価炭化水素基の場合には、例えばヘキシル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。炭素原子数が6未満であると、熱伝導性充填剤((B)成分)を高充填した場合に組成物の流動性が悪化しやすい。一方、炭素原子数が18を越えると、(A)成分の性状が固体に近くなり、均一に分散させることが困難になる。   When A is a monovalent hydrocarbon group having 6 to 18 carbon atoms, examples thereof include a hexyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group. When the number of carbon atoms is less than 6, the fluidity of the composition tends to deteriorate when the heat conductive filler (component (B)) is highly filled. On the other hand, when the number of carbon atoms exceeds 18, the property of the component (A) becomes close to solid and it is difficult to uniformly disperse.

また、Aが上記一般式で表される基の場合には、式中、Rは互いに同一または異なる、炭素原子数1〜12のアルキル基であり、例えばメチル基、エチル基、プロピル基、ブチル基等が挙げられ、好ましくはメチル基である。 When A is a group represented by the above general formula, R 5 is the same or different alkyl group having 1 to 12 carbon atoms, such as a methyl group, an ethyl group, a propyl group, A butyl group etc. are mentioned, Preferably it is a methyl group.

Zはメチル基、ビニル基、またはR(前記規定のとおり)であり、好ましくはメチル基である。 Z is a methyl group, a vinyl group, or R 4 (as defined above), preferably a methyl group.

dは2〜500の整数であり、好ましくは10〜200の整数である。dが2未満でも500を超えても、得られる組成物の粘度上昇を抑制できず、良好な作業性、成形性が得られない。   d is an integer of 2 to 500, preferably an integer of 10 to 200. When d is less than 2 or more than 500, an increase in viscosity of the resulting composition cannot be suppressed, and good workability and moldability cannot be obtained.

(A)成分の23℃における粘度は、0.01〜5Pa・sであり、好ましくは0.02〜1Pa・sである。粘度が0.01Pa・s未満であると、液ダレ抑制の効果が不十分になる。一方、5Pa・sを超えると、組成物の流動性が低下して作業性の悪化を招く。   (A) The viscosity in 23 degreeC of a component is 0.01-5 Pa.s, Preferably it is 0.02-1 Pa.s. When the viscosity is less than 0.01 Pa · s, the effect of suppressing dripping is insufficient. On the other hand, when it exceeds 5 Pa · s, the fluidity of the composition is lowered, and workability is deteriorated.

[(B)成分]
(B)成分の熱伝導性充填剤には、平均粒径の異なる熱伝導性充填剤を配合することが好ましくは、(B1)平均粒径5μm以上30μm未満の熱伝導性充填剤の少なくとも1種と、(B2)平均粒径0.05μm以上5μm未満の熱伝導性充填剤の少なくとも1種とを使用することがより好ましい。平均粒径は、例えばレーザー光回折法で求めることができる。
[Component (B)]
(B) It is preferable to mix | blend the heat conductive filler from which an average particle diameter differs in the heat conductive filler of component, Preferably (B1) at least 1 of the heat conductive filler with an average particle diameter of 5 micrometers or more and less than 30 micrometers. It is more preferable to use seeds and (B2) at least one heat conductive filler having an average particle size of 0.05 μm or more and less than 5 μm. The average particle diameter can be determined by, for example, a laser light diffraction method.

(B1)成分は、その平均粒径が5μm以上30μm未満である。平均粒径が30μmを越えると、組成物の安定性が悪化し、オイル分離が起こりやすい。(B1)は平均粒径が上記範囲であれば、粒径もしくは粒度分布の異なるものを混合して用いてもよい。(B1)の形状は、制限されるものではなく、例えば球状、不定形状、棒状、針状、円盤状のいずれでもよい。   Component (B1) has an average particle size of 5 μm or more and less than 30 μm. When the average particle size exceeds 30 μm, the stability of the composition is deteriorated and oil separation tends to occur. As long as the average particle diameter of (B1) is within the above range, those having different particle diameters or particle size distributions may be mixed and used. The shape of (B1) is not limited, and may be any of a spherical shape, an indefinite shape, a rod shape, a needle shape, and a disk shape, for example.

(B1)成分としては、熱伝導率が良好なものであればよく、例えば酸化亜鉛、酸化アルミニウム、酸化マグネシウム等の金属酸化物粉末、窒化ホウ素、窒化アルミニウム、窒化ケイ素等の金属窒化物粉末、アルミニウム、銅、銀、ニッケル、鉄、ステンレス等の金属粉末、カーボンナノチューブなどが挙げられ、なかでも金属酸化物粉末、金属粉末が好ましく、酸化亜鉛、酸化アルミニウム、アルミニウムがより好ましく、1種単独または2種以上を混合してもよい。   As the component (B1), any material having good thermal conductivity may be used. For example, metal oxide powders such as zinc oxide, aluminum oxide, and magnesium oxide, metal nitride powders such as boron nitride, aluminum nitride, and silicon nitride, Examples thereof include metal powders such as aluminum, copper, silver, nickel, iron, and stainless steel, and carbon nanotubes. Among these, metal oxide powders and metal powders are preferable, zinc oxide, aluminum oxide, and aluminum are more preferable, and one kind alone or Two or more kinds may be mixed.

(B2)成分は、その平均粒径が0.05μm以上5μm未満である。平均粒径がこの範囲以外であると、所望の低粘度の組成物が得られ難い。(B2)は平均粒径が上記範囲であれば、粒径もしくは粒度分布の異なるものを混合して用いてもよい。(B2)の形状は、制限されるものではなく、例えば球状、不定形状、棒状、針状、円盤状のいずれでもよい。   Component (B2) has an average particle size of 0.05 μm or more and less than 5 μm. When the average particle size is outside this range, it is difficult to obtain a desired low-viscosity composition. If (B2) has an average particle diameter within the above range, those having different particle diameters or particle size distributions may be mixed and used. The shape of (B2) is not limited, and may be any of a spherical shape, an indefinite shape, a rod shape, a needle shape, and a disk shape, for example.

(B2)成分としては、上記(B1)で例示したものと同様のものが挙げられ、酸化亜鉛、酸化アルミニウム、アルミニウムがより好ましく、一種単独または2種以上を混合してもよい。   (B2) As a component, the thing similar to what was illustrated by said (B1) is mentioned, Zinc oxide, aluminum oxide, and aluminum are more preferable, and 1 type may be individual or 2 or more types may be mixed.

(B1)、(B2)成分は、そのまま用いてもよいが、樹脂成分との濡れ性を向上させる点から、1種または2種以上の周知の表面処理剤((D)成分)でその表面を予め疎水化処理したものを用いてもよい。あるいはこのような表面処理剤を別途組成物中に配合してもよい。   The components (B1) and (B2) may be used as they are, but from the viewpoint of improving the wettability with the resin component, the surface thereof is one or more known surface treatment agents (component (D)). May be used that has been previously hydrophobized. Or you may mix | blend such a surface treating agent in a composition separately.

(B)成分の配合量は、(A)成分100容量部に対して100〜2000重量部、好ましくは200〜1500容量部である。配合量が100容量部未満であると、所望の熱伝導率が得られにくい。一方、2000容量部を越えると、作業性の低下を招く。   (B) The compounding quantity of a component is 100-2000 weight part with respect to 100 volume part of (A) component, Preferably it is 200-1500 volume part. When the blending amount is less than 100 parts by volume, it is difficult to obtain a desired thermal conductivity. On the other hand, if it exceeds 2000 capacity parts, workability will be reduced.

ただし、(B1)、(B2)の配合割合は、(B1)は(B)成分中、50〜95容量%となる量、好ましくは60〜90容量%となる量である。(B1)の配合割合が上記の範囲以外であると、(B)成分全体が分散しにくくなり、所望の低粘度の組成物が得られ難い。   However, the blending ratio of (B1) and (B2) is such that (B1) is an amount of 50 to 95% by volume, preferably 60 to 90% by volume in the component (B). When the blending ratio of (B1) is outside the above range, the entire component (B) is difficult to disperse and it is difficult to obtain a desired low-viscosity composition.

[その他任意成分]
上述した(A)成分と(B)成分を基本成分とし、これらに必要に応じてその他任意成分として(C)成分のオイル状のポリオルガノシロキサンを添加してもよい。
[Other optional ingredients]
The component (A) and the component (B) described above are used as basic components, and an oily polyorganosiloxane of the component (C) may be added to these as other optional components as necessary.

[(C)成分]
(C)成分は、例えば、下記一般式で表される。

Figure 2009215362
[Component (C)]
(C) A component is represented by the following general formula, for example.
Figure 2009215362

式中、Rは、メチル基、フェニル基及びビニル基から選ばれる基であり、互いに同一でも異なっていてもよい。なかでも、液ダレを抑制し低粘度で作業性に優れた組成物を与える点から、すべてのRがメチル基であることが好ましい。また、Xはメチル基であり、Yはフェニル基である。 In the formula, R 6 is a group selected from a methyl group, a phenyl group, and a vinyl group, and may be the same as or different from each other. Especially, it is preferable that all R < 6 > is a methyl group from the point which suppresses dripping and provides the composition which was excellent in workability | operativity with low viscosity. X is a methyl group, and Y is a phenyl group.

pは正数、qは0以上の数で、かつ、0.90≦p/(p+q)≦1、好ましくは0.95≦p/(p+q)≦1である。p+qは、限定されるものではないが、好ましくは50〜1000である。なお、p,qは、(C)成分の一般式での組成、数値を示しているにすぎず、分子レベルを制限するものではない。   p is a positive number, q is a number of 0 or more, and 0.90 ≦ p / (p + q) ≦ 1, preferably 0.95 ≦ p / (p + q) ≦ 1. Although p + q is not limited, Preferably it is 50-1000. In addition, p and q only show the composition and numerical value in the general formula of the component (C), and do not limit the molecular level.

(C)成分の粘度は、23℃において0.05〜10Pa・s、好ましくは0.1〜5Pa・sである。粘度が0.05Pa・s未満であると、得られる組成物の安定性が悪化してオイル分離が起こり易くなる。一方、10Pa・sを越えると、組成物の流動性が乏しくなる。(C)成分は、1種単独または2種以上を組み合わせてもよい。   The viscosity of the component (C) is 0.05 to 10 Pa · s, preferably 0.1 to 5 Pa · s at 23 ° C. When the viscosity is less than 0.05 Pa · s, the stability of the resulting composition is deteriorated and oil separation tends to occur. On the other hand, if it exceeds 10 Pa · s, the fluidity of the composition becomes poor. As the component (C), one type may be used alone, or two or more types may be combined.

(C)成分としては、例えばジメチルポリシロキサン、ジメチル−ジフェニルシロキサンコポリマー、ジメチル‐メチルフェニルシロキサンコポリマーなどが挙げられ、好ましくは、下記式で表されるような、分子鎖両末端がトリメチルシロキシ基で封鎖されたジメチルポリシロキサンである。

Figure 2009215362
Examples of the component (C) include dimethylpolysiloxane, dimethyl-diphenylsiloxane copolymer, dimethyl-methylphenylsiloxane copolymer, and the like. Preferably, both ends of the molecular chain are trimethylsiloxy groups as represented by the following formula: Blocked dimethylpolysiloxane.
Figure 2009215362

rは、50〜1000の整数、好ましくは100〜800の整数である。   r is an integer of 50 to 1000, preferably an integer of 100 to 800.

(C)成分の配合量は、(A)成分100容量部に対して、好ましくは0〜500容量部である。(C)成分の配合量が、500容量部を超えると熱伝導性シリコーングリース組成物が液だれしやすくなる。   The amount of component (C) is preferably 0 to 500 parts by volume with respect to 100 parts by volume of component (A). When the blending amount of the component (C) exceeds 500 parts by volume, the heat conductive silicone grease composition is liable to drip.

[(D)成分]
さらに、本発明の熱伝導性シリコーングリース組成物には、(D)成分の表面処理剤(ウエッター)を添加してもよい。
[(D) component]
Furthermore, you may add the surface treating agent (wetter) of (D) component to the heat conductive silicone grease composition of this invention.

(D)成分は、(B)成分の粉末表面を処理することにより、前記粉末とベースオイルである(A)成分との濡れ性を向上させる成分である。   (D) component is a component which improves the wettability of the (A) component which is the said powder and base oil by processing the powder surface of (B) component.

(D)成分としては、一般式:
Si(OR4−(b+c)
で表されるアルコキシシランを用いることが好ましい。
As the component (D), the general formula:
R 7 b R 8 c Si (OR 9 ) 4- (b + c)
It is preferable to use an alkoxysilane represented by

式中、bは1〜3の整数であり、好ましくは1である。cは0〜2の整数、b+cは1〜3である。   In formula, b is an integer of 1-3, Preferably it is 1. c is an integer of 0-2, b + c is 1-3.

は、炭素原子数6〜15のアルキル基であり、例えばヘキシル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。炭素原子数が6より小さいと、熱伝導性充填剤((B)成分)との濡れ性が不充分となりやすい。一方、15より大きいと、(D)成分が常温で固化しやすいのでその取扱いが不便になりやすい上、得られる組成物の耐熱性および難燃性が低下しやすい。bが2〜3の場合には、互いに同一でも異なっていてもよい。 R 7 is an alkyl group having 6 to 15 carbon atoms, and examples thereof include a hexyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group. If the number of carbon atoms is less than 6, the wettability with the thermally conductive filler (component (B)) tends to be insufficient. On the other hand, if it is greater than 15, the component (D) tends to solidify at room temperature, which makes it difficult to handle, and the heat resistance and flame retardancy of the resulting composition tend to decrease. When b is 2 to 3, they may be the same as or different from each other.

は、非置換または置換の炭素原子数1〜8の飽和または不飽和の一価炭化水素基であり、例えばメチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基;3,3,3−トリフルオロプロピル基、2−(ノナフルオロブチル)エチル基、2−(ヘプタデカフルオロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基が挙げられ、好ましくはメチル基、エチル基である。cが2の場合には、互いに同一でも異なっていてもよい。 R 8 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, such as a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, or the like; cyclopentyl Groups, cycloalkyl groups such as cyclohexyl groups; alkenyl groups such as vinyl groups and allyl groups; aryl groups such as phenyl groups and tolyl groups; aralkyl groups such as 2-phenylethyl groups and 2-methyl-2-phenylethyl groups; Examples include halogenated hydrocarbon groups such as 3,3,3-trifluoropropyl group, 2- (nonafluorobutyl) ethyl group, 2- (heptadecafluorooctyl) ethyl group, p-chlorophenyl group, preferably methyl Group, an ethyl group. When c is 2, they may be the same or different.

は、炭素原子数1〜6のアルキル基であり、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられ、好ましくはメチル基、エチル基である。 R 9 is an alkyl group having 1 to 6 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and preferably a methyl group and an ethyl group.

(D)成分としては、例えば、下記のアルコキシシランが挙げられる。
13Si(OCH
1021Si(OCH
1225Si(OCH
1225Si(OC
1021Si(CH)(OCH
1021Si(C)(OCH
1021Si(CH)(OC
1021Si(CH=CH)(OCH
1021Si(CHCHCF)(OCH
(D) As a component, the following alkoxysilane is mentioned, for example.
C 6 H 13 Si (OCH 3 ) 3
C 10 H 21 Si (OCH 3 ) 3 ,
C 12 H 25 Si (OCH 3 ) 3 ,
C 12 H 25 Si (OC 2 H 5 ) 3 ,
C 10 H 21 Si (CH 3 ) (OCH 3 ) 2 ,
C 10 H 21 Si (C 6 H 5 ) (OCH 3 ) 2 ,
C 10 H 21 Si (CH 3 ) (OC 2 H 5) 2,
C 10 H 21 Si (CH = CH 2) (OCH 3) 2,
C 10 H 21 Si (CH 2 CH 2 CF 3) (OCH 3) 2

(D)成分の配合量は、(B)成分と(A)成分との濡れ性を向上させる上で、(A)成分100容量部に対して、好ましくは0〜30容量部である。   In order to improve the wettability of the component (B) and the component (A), the blending amount of the component (D) is preferably 0 to 30 parts by volume with respect to 100 parts by volume of the component (A).

さらに、本発明の熱伝導性シリコーングリース組成物には、耐熱性向上剤、難燃性付与剤、耐酸化劣化剤、着色剤、接着性付与材、チクソトロピー性付与剤、熱伝導性充填剤((B)成分)の沈降防止剤(例えば煙霧質シリカ、焼成シリカなど)、組成物の粘度や作業性を良好にする上で希釈剤(例えば、付加反応に寄与しないポリオルガノシロキサン)などを本発明の目的を損なわない範囲で添加してもよい。   Further, the heat conductive silicone grease composition of the present invention includes a heat resistance improver, a flame retardant, an oxidation-deteriorating agent, a colorant, an adhesion promoter, a thixotropic agent, a heat conductive filler ( (B) component) anti-settling agent (for example, fumed silica, calcined silica, etc.), diluent (for example, polyorganosiloxane that does not contribute to addition reaction) and the like for improving the viscosity and workability of the composition. You may add in the range which does not impair the objective of invention.

本発明の熱伝導性シリコーングリース組成物の製造方法としては、上述した(A)〜(B)成分及びその他任意成分を周知の混練機で、常温、または必要に応じて加熱(例えば50〜150℃)しながら混練する方法が挙げられる。混練機としては、必要に応じて加熱手段や冷却手段を備えた周知の装置を使用でき、例えばプラネタリーミキサー、3本ロール、ニーダー、品川ミキサー、トリミックス、ツインミックス等が挙げられ、単独またはこれらを組み合わせて使用することができる。   As a method for producing the thermally conductive silicone grease composition of the present invention, the above-mentioned components (A) to (B) and other optional components are heated at a normal temperature or as necessary (for example, 50 to 150) with a known kneader. C.) and kneading the mixture. As a kneading machine, a known apparatus equipped with a heating means or a cooling means can be used as necessary, and examples thereof include a planetary mixer, three rolls, a kneader, a Shinagawa mixer, a trimix, a twin mix, and the like. These can be used in combination.

熱伝導性シリコーングリース組成物の23℃における粘度(JIS K 6249)は、400Pa・s以下、好ましくは100〜350Pa・sである。粘度が400Pa・sを超えると、作業性が悪化しやすく、ディスペンサなどを用いて電子部品に本組成物を塗布する場合に、吐出し難くなり所望の厚さになりにくい。   The viscosity (JIS K 6249) at 23 ° C. of the thermally conductive silicone grease composition is 400 Pa · s or less, preferably 100 to 350 Pa · s. When the viscosity exceeds 400 Pa · s, workability is likely to deteriorate, and when the present composition is applied to an electronic component using a dispenser or the like, it is difficult to discharge and a desired thickness is hardly obtained.

熱伝導性シリコーングリース組成物は、23℃における熱伝導率が2.0W/(m・K)以上である。熱伝導率が2.0W/(m・K)未満であると、熱伝導性能が不十分になる場合があり、用途が限定され易くなる。   The thermally conductive silicone grease composition has a thermal conductivity at 23 ° C. of 2.0 W / (m · K) or more. When the thermal conductivity is less than 2.0 W / (m · K), the thermal conductivity may be insufficient, and the application is likely to be limited.

次に、熱伝導性シリコーングリース組成物を適用した本発明の半導体装置の一例について図面を参照して説明する。図1は、半導体装置の構成を模式的に示す断面図である。   Next, an example of the semiconductor device of the present invention to which the thermally conductive silicone grease composition is applied will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing a configuration of a semiconductor device.

半導体装置1は、配線基板2に実装されたCPU3などの発熱性電子部品とヒートシンク4などの放熱体とを備え、CPU3とヒートシンク4との間には、熱伝導性シリコーングリース組成物5が介在されている。   The semiconductor device 1 includes a heat generating electronic component such as a CPU 3 mounted on a wiring board 2 and a heat radiator such as a heat sink 4, and a heat conductive silicone grease composition 5 is interposed between the CPU 3 and the heat sink 4. Has been.

このような半導体装置1は、配線基板2に実装されたCPU3に、例えばシリンジで熱伝導性シリコーングリース組成物5を塗布した後、ヒートシンク4と配線基板2とをクランプ6などで押圧することによって得られる。   Such a semiconductor device 1 is obtained by applying a heat conductive silicone grease composition 5 to the CPU 3 mounted on the wiring board 2 with a syringe, for example, and then pressing the heat sink 4 and the wiring board 2 with a clamp 6 or the like. can get.

熱伝導性シリコーングリース組成物5の厚さは、5〜300μmであることが好ましい。厚さが5μmより薄いと、押圧の僅かなずれによりCPU3とヒートシンク4との間に隙間が生じる恐れがある。一方、300μmより厚いと、熱抵抗が大きくなり、放熱効果が悪化し易い。   The thickness of the thermally conductive silicone grease composition 5 is preferably 5 to 300 μm. If the thickness is less than 5 μm, there is a possibility that a gap is generated between the CPU 3 and the heat sink 4 due to a slight shift in pressing. On the other hand, if it is thicker than 300 μm, the thermal resistance increases and the heat dissipation effect tends to deteriorate.

従来のシリコーングリース組成物では、発熱性電子部品のON/OFFによる加熱/冷却サイクルにより、液ダレが発生しやすかったが、本発明の熱伝導性シリコーングリース組成物によれば、この液ダレを抑制できるため、信頼性に優れた半導体装置を提供できる。   In the conventional silicone grease composition, dripping was likely to occur due to the heating / cooling cycle by ON / OFF of the heat-generating electronic component. However, according to the thermally conductive silicone grease composition of the present invention, this dripping is prevented. Since it can suppress, the semiconductor device excellent in reliability can be provided.

本発明を実施例により詳細に説明するが、本発明は実施例に限定されるものではない。実施例及び比較例中、平均粒径はレーザー光回折法により測定した値である。実施例及び比較例で得られた熱伝導性シリコーングリース組成物は、以下のようにして評価し、結果を表1に示した。表1に示した特性は、23℃において測定した値である。   The present invention will be described in detail with reference to examples, but the present invention is not limited to the examples. In Examples and Comparative Examples, the average particle diameter is a value measured by a laser light diffraction method. The thermally conductive silicone grease compositions obtained in the examples and comparative examples were evaluated as follows, and the results are shown in Table 1. The characteristics shown in Table 1 are values measured at 23 ° C.

[垂れ性試験]
得られたシリコーングリース組成物をガラス板の間に挟み込み、ヒートサイクル試験(1サイクル:−40℃/15分〜100℃/15分)を300サイクル行い、液ダレの距離を測定した。
[Sagging test]
The obtained silicone grease composition was sandwiched between glass plates, a heat cycle test (one cycle: −40 ° C./15 minutes to 100 ° C./15 minutes) was performed 300 cycles, and the distance of liquid dripping was measured.

[粘度]
得られらシリコーングリース組成物の23℃における粘度をJIS K 6249に準拠して測定した。
[viscosity]
The viscosity of the obtained silicone grease composition at 23 ° C. was measured according to JIS K 6249.

[実施例1]
(A)23℃における粘度が0.2Pa・sであり、式:

Figure 2009215362
で表されるポリオルガノシロキサン100容量部、(B1)平均粒径9μmのアルミニウム662容量部、(B2)平均粒径0.5μmの酸化亜鉛376容量部、(C)23℃における粘度が0.5Pa・sであり、式:
Figure 2009215362
で表されるポリジメチルシロキサン300容量部、(D)ヘキシルトリメトキシシラン20容量部をプラネタリーミキサー(ダルトン社製)にて室温(23℃)で60分間混練し、次いで減圧混練を120分間行い熱伝導性シリコーングリース組成物を得た。この組成物の特性を測定し、結果を表1に示した。 [Example 1]
(A) The viscosity at 23 ° C. is 0.2 Pa · s, and the formula:
Figure 2009215362
(B1) 662 parts by volume of aluminum having an average particle size of 9 μm, (B2) 376 parts by volume of zinc oxide having an average particle size of 0.5 μm, and (C) a viscosity at 23 ° C. of 0.1 parts. 5 Pa · s, the formula:
Figure 2009215362
300 parts by volume of polydimethylsiloxane represented by the formula (D) and 20 parts by volume of hexyltrimethoxysilane were kneaded for 60 minutes at room temperature (23 ° C.) with a planetary mixer (manufactured by Dalton), and then kneaded under reduced pressure for 120 minutes. A thermally conductive silicone grease composition was obtained. The properties of this composition were measured and the results are shown in Table 1.

[実施例2〜4、比較例1〜2]
表1に示す各成分を同表に示す組成で配合し、実施例1と同様の手順でシリコーングリース組成物を得た。この組成物の特性を測定し、結果を表1に示した。
[Examples 2-4, Comparative Examples 1-2]
Each component shown in Table 1 was blended in the composition shown in the same table, and a silicone grease composition was obtained in the same procedure as in Example 1. The properties of this composition were measured and the results are shown in Table 1.

Figure 2009215362
Figure 2009215362

表1から明らかなように、ベースオイルの(A)成分として、トリメトキシシリル基を有する環状のポリオルガノシロキサンを配合した実施例1〜4のシリコーングリース組成物は、冷熱サイクルによる液ダレを抑制できる。   As is clear from Table 1, the silicone grease compositions of Examples 1 to 4 in which a cyclic polyorganosiloxane having a trimethoxysilyl group was blended as the component (A) of the base oil can suppress dripping due to the cooling and heating cycle. .

また、実施例1〜4のシリコーングリース組成物は、23℃における粘度が400Pa・s以下であるため電子部品に塗布する場合には、良好な作業性を付与することができる。   In addition, since the silicone grease compositions of Examples 1 to 4 have a viscosity at 23 ° C. of 400 Pa · s or less, good workability can be imparted when applied to electronic components.

本発明の半導体装置の一例を模式的に示す断面図。Sectional drawing which shows typically an example of the semiconductor device of this invention.

符号の説明Explanation of symbols

1…半導体装置、2…配線基板、3…CPU、4…ヒートシンク、5…熱伝導性シリコーングリース組成物、6…クランプ。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 2 ... Wiring board, 3 ... CPU, 4 ... Heat sink, 5 ... Thermally conductive silicone grease composition, 6 ... Clamp.

Claims (10)

(A)23℃における粘度が0.01〜5Pa・sであり、1分子中にトリアルコキシシリル基を平均0.5〜1.5個有する環状のポリオルガノシロキサン 100容量部、および
(B)熱伝導性充填剤 100〜2000容量部
を含有することを特徴とする熱伝導性シリコーングリース組成物。
(A) 100 parts by volume of a cyclic polyorganosiloxane having a viscosity of 0.01 to 5 Pa · s at 23 ° C. and having an average of 0.5 to 1.5 trialkoxysilyl groups in one molecule, and (B) A thermally conductive silicone grease composition comprising 100 to 2000 parts by volume of a thermally conductive filler.
前記(A)成分のトリアルコキシシリル基が、トリメトキシ基であることを特徴とする請求項1記載の熱伝導性シリコーングリース組成物。   The thermally conductive silicone grease composition according to claim 1, wherein the trialkoxysilyl group of the component (A) is a trimethoxy group. さらに、(C)一般式:
Figure 2009215362
(Rは互いに同一もしくは異なる、メチル基、フェニル基及びビニル基から選ばれる基、Xはメチル基、Yはフェニル基、pは正数、qは0以上の数で、かつ、0.90≦p/(p+q)≦1である。)で表されるポリオルガノシロキサンを含むことを特徴とする請求項1または2記載の熱伝導性シリコーングリース組成物。
Furthermore, (C) the general formula:
Figure 2009215362
(R 6 is the same or different from each other, and is a group selected from a methyl group, a phenyl group and a vinyl group, X is a methyl group, Y is a phenyl group, p is a positive number, q is a number of 0 or more, and 0.90 3. The thermally conductive silicone grease composition according to claim 1, comprising a polyorganosiloxane represented by: ≦ p / (p + q) ≦ 1.
前記(C)成分が、一般式:
Figure 2009215362
(式中、rは、50〜1000の整数である。)で表されるポリジメチルシロキサンであることを特徴とする請求項3に記載の熱伝導性シリコーングリース組成物。
The component (C) has the general formula:
Figure 2009215362
The heat conductive silicone grease composition according to claim 3, wherein r is a polydimethylsiloxane represented by the formula (wherein r is an integer of 50 to 1000).
前記(C)成分の配合量が、(A)成分100容量部に対して0〜500容量部であることを特徴とする請求項3または4記載の熱伝導性シリコーングリース組成物。   The thermally conductive silicone grease composition according to claim 3 or 4, wherein the amount of the component (C) is 0 to 500 parts by volume with respect to 100 parts by volume of the component (A). 前記(B)成分が、平均粒径5μm以上30μm未満の熱伝導性充填剤の少なくとも1種と、平均粒径0.05μm以上5μm未満の熱伝導性充填剤の少なくとも1種とを含むことを特徴とする請求項1乃至5のいずれか1項記載の熱伝導性シリコーングリース組成物。   The component (B) contains at least one heat conductive filler having an average particle diameter of 5 μm or more and less than 30 μm and at least one heat conductive filler having an average particle diameter of 0.05 μm or more and less than 5 μm. The thermally conductive silicone grease composition according to any one of claims 1 to 5, wherein the composition is a thermally conductive silicone grease composition. 前記(B)成分が、酸化アルミニウム、酸化亜鉛及びアルミニウムの群から選ばれる少なくとも1種であることを特徴とする請求項1乃至6のいずれか1項記載の熱伝導性シリコーングリース組成物。   The thermally conductive silicone grease composition according to any one of claims 1 to 6, wherein the component (B) is at least one selected from the group consisting of aluminum oxide, zinc oxide and aluminum. さらに、(D)一般式:
Si(OR4−(b+c)
(式中、Rは炭素原子数6〜15のアルキル基、Rは非置換または置換の炭素原子数1〜8の一価の炭化水素基、Rは炭素原子数1〜6のアルキル基、bは1〜3の整数、cは0〜2の整数、b+cは1〜3である。)で表されるアルコキシシランを(A)成分100容量部に対して0〜30容量部含有することを特徴とする請求項1乃至7のいずれか1項記載の熱伝導性シリコーングリース組成物。
Furthermore, (D) General formula:
R 7 b R 8 c Si (OR 9 ) 4- (b + c)
(Wherein R 7 is an alkyl group having 6 to 15 carbon atoms, R 8 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 9 is an alkyl group having 1 to 6 carbon atoms. Group, b is an integer of 1 to 3, c is an integer of 0 to 2, and b + c is 1 to 3). 0 to 30 parts by volume of 100 parts by volume of component (A) The thermally conductive silicone grease composition according to any one of claims 1 to 7, wherein:
23℃における粘度が、400Pa・s以下であることを特徴とする請求項1乃至8のいずれか1項記載の熱伝導性シリコーングリース組成物。   The thermally conductive silicone grease composition according to any one of claims 1 to 8, wherein the viscosity at 23 ° C is 400 Pa · s or less. 発熱性電子部品と放熱体とを有し、前記発熱性電子部品と前記放熱体との間に請求項1乃至9のいずれか1項に記載の熱伝導性シリコーングリース組成物を介在させてなることを特徴とする半導体装置。   A heat conductive silicone grease composition according to any one of claims 1 to 9, comprising a heat-generating electronic component and a heat radiator, wherein the heat-conductive silicone grease composition according to any one of claims 1 to 9 is interposed between the heat-generating electronic component and the heat radiator. A semiconductor device.
JP2008057889A 2008-03-07 2008-03-07 Thermally conductive silicone grease composition and semiconductor device using the same Pending JP2009215362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057889A JP2009215362A (en) 2008-03-07 2008-03-07 Thermally conductive silicone grease composition and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057889A JP2009215362A (en) 2008-03-07 2008-03-07 Thermally conductive silicone grease composition and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2009215362A true JP2009215362A (en) 2009-09-24

Family

ID=41187562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057889A Pending JP2009215362A (en) 2008-03-07 2008-03-07 Thermally conductive silicone grease composition and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2009215362A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476846A (en) * 2016-07-22 2019-03-15 迈图高新材料日本合同公司 Thermal conductivity constituent polyorganosiloxane composition surface treating agent
US11124646B2 (en) 2016-08-05 2021-09-21 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same
US11739245B2 (en) * 2016-07-22 2023-08-29 Momentive Performance Materials Japan Llc Thermally conductive polyorganosiloxane composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162975A (en) * 2003-12-05 2005-06-23 Ge Toshiba Silicones Co Ltd Heat conductive silicone composition
JP2007177001A (en) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162975A (en) * 2003-12-05 2005-06-23 Ge Toshiba Silicones Co Ltd Heat conductive silicone composition
JP2007177001A (en) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476846A (en) * 2016-07-22 2019-03-15 迈图高新材料日本合同公司 Thermal conductivity constituent polyorganosiloxane composition surface treating agent
US11739245B2 (en) * 2016-07-22 2023-08-29 Momentive Performance Materials Japan Llc Thermally conductive polyorganosiloxane composition
US11124646B2 (en) 2016-08-05 2021-09-21 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same

Similar Documents

Publication Publication Date Title
TWI454564B (en) Thermal conductive silicone grease composition
JP7134582B2 (en) Thermally conductive polyorganosiloxane composition
TWI597357B (en) Thermally conductive polysiloxane composition
WO2018079362A1 (en) Thermal conductive silicone composition, semiconductor device, and method for manufacturing semiconductor device
KR102132243B1 (en) Thermal conductive silicone composition and cured product, and composite sheet
JP6625749B2 (en) Thermally conductive polyorganosiloxane composition
JP2008038137A (en) Heat conductive silicone grease composition and cured product thereof
JP5304623B2 (en) Selection method of high thermal conductivity potting material
JP2009138036A (en) Thermally-conductive silicone grease composition
JP2013082816A (en) Curable organopolysiloxane composition and semiconductor device
JP6610491B2 (en) Thermally conductive silicone composition and semiconductor device
JP2009203373A (en) Thermoconductive silicone composition
JP2008222776A (en) Heat-conductive silicone grease composition
JP2020090584A (en) Cured article of heat conductive silicone composition
JP6890898B2 (en) Surface treatment agent for thermally conductive polyorganosiloxane composition
TWI354005B (en)
JP2009221310A (en) Heat-conductive silicone grease composition
TWI846825B (en) Thermally conductive silicon oxide composition, method for manufacturing the same, and semiconductor device
JP5117049B2 (en) Silicone composition for heat dissipation
JP2012052137A (en) Heat conductive silicone grease composition
JP2009221311A (en) Heat conductive grease composition
JP2009215362A (en) Thermally conductive silicone grease composition and semiconductor device using the same
JP7060097B2 (en) Thermally Conductive Silicone Compositions and Thermally Conductive Sheets
JP2008255275A (en) Thermoconductive silicone grease composition and semiconductor device using it
JP4942978B2 (en) Thermally conductive silicone grease composition and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528