WO2020004241A1 - 車両の制動制御装置 - Google Patents

車両の制動制御装置 Download PDF

Info

Publication number
WO2020004241A1
WO2020004241A1 PCT/JP2019/024629 JP2019024629W WO2020004241A1 WO 2020004241 A1 WO2020004241 A1 WO 2020004241A1 JP 2019024629 W JP2019024629 W JP 2019024629W WO 2020004241 A1 WO2020004241 A1 WO 2020004241A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pressure
pressure
braking
braking force
fluid
Prior art date
Application number
PCT/JP2019/024629
Other languages
English (en)
French (fr)
Inventor
将来 丸山
渡邊 俊哉
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Priority to CN201980043427.0A priority Critical patent/CN112313124B/zh
Priority to US17/251,414 priority patent/US11807215B2/en
Publication of WO2020004241A1 publication Critical patent/WO2020004241A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • B60T13/667Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems and combined with electro-magnetic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/192Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes electric brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/89Repartition of braking force, e.g. friction braking versus regenerative braking

Definitions

  • the present invention relates to a vehicle braking control device.
  • Patent Literature 1 states, "In order to improve the delay in the rise of the hydraulic braking force at the start of the replacement, prior to the start of the replacement, when the pump pressurization is started, the rotation speed of the motor can compensate for the decrease in the regenerative braking force.
  • the rotation speed of the motor is increased so that the amount of brake fluid supplied by the pump does not become insufficient, and the wheel cylinder pressure according to the differential pressure instruction value of the second differential pressure control valve is generated, and the replacement is performed. It will be possible to maintain the deceleration before the replacement later.
  • the regenerative braking force is applied to the hydraulic braking force generated by the master cylinder pressure generated in the master cylinder based on the operating force of the brake pedal boosted by the booster.
  • the braking force required by the driver is generated by the total braking force obtained by adding the regenerative braking force generated by the device, and the regenerative braking force is replaced with the hydraulic braking force due to the pump pressurization over time.
  • the motor must be raised before starting the replacement so that the hydraulic braking force due to the pump pressurization can follow the decrease in the regenerative braking force, that is, the amount of brake fluid supplied to the wheel cylinder when the pump is pressurized is not insufficient. Keep it rotating ".
  • JP 2007-276655 A Japanese Patent Application No. 2018-021735
  • the vehicle braking control device (SC) is applied to a vehicle having a regenerative generator (GN) on wheels (WH) of the vehicle.
  • the braking control device (SC) is composed of an electric pump (DC) and a pressure regulating valve (UA, UC), and regulates pressure between the electric pump (DC) and the pressure regulating valve (UA, UC).
  • a pressure adjustment unit (YC) for adjusting the adjustment hydraulic pressures (Pa, Pc) of the fluid path (HC), and a controller (ECU) for controlling the electric pump (DC) and the pressure adjustment valves (UA, UC) ".
  • the controller includes a regenerative braking force (Fg) by the regenerative generator (GN) and a friction braking force (Fm) by the adjustment fluid pressures (Pa, Pc).
  • Fg regenerative braking force
  • Fm friction braking force
  • pre-pressurization is performed to increase and maintain the adjusted hydraulic pressures (Pa, Pc) from “0” to a predetermined hydraulic pressure (pp).
  • the number of revolutions (Na) of the electric pump (DC) is increased, and the adjusted hydraulic pressures (Pa, Pc) are increased from the predetermined hydraulic pressure (pp) to execute the replacement operation.
  • the braking fluid pressure is “0”, a gap is generated between the rotating member and the friction material due to the swing of the rotating member. Further, the friction surface of the friction material (the sliding surface with the rotating member) may be inclined with respect to the surface of the rotating member. Further, fine irregularities exist on the surface of the friction material. Therefore, the brake fluid pressure starts increasing from “0” after the clearance between the rotating member and the friction material is eliminated and the surface irregularities of the friction material are crushed.
  • the braking fluid amount initial consumption fluid amount
  • the braking fluid pressure is slightly increased to the predetermined fluid pressure pp. You. For this reason, in the switching operation, the responsiveness of pressure increase and the pressure regulation accuracy can be improved.
  • FIG. 1 is an overall configuration diagram for describing a first embodiment of a vehicle braking control device SC according to the present invention.
  • FIG. 5 is a control flowchart for explaining a first processing example of pressure regulation control corresponding to the first embodiment. It is a functional block diagram for explaining electric motor MC and drive processing of pressure regulation valve UA.
  • FIG. 3 is a time-series diagram for explaining the operation and effect of the first embodiment.
  • FIG. 4 is an overall configuration diagram for explaining a second embodiment of the vehicle braking control device SC according to the present invention. It is a control flow figure for explaining the 2nd example of processing of pressure regulation control corresponding to a 2nd embodiment.
  • FIG. 9 is a time-series diagram for explaining the operation and effect of the second embodiment.
  • each symbol represents a generic term for each of the four wheels. For example, “WH” represents each wheel, and “CW” represents each wheel cylinder.
  • the suffixes “1” and “2” added to the end of the symbol relating to the diagonal type braking system are comprehensive symbols indicating which of the two braking systems it is related to. Specifically, “1” indicates the first system, and “2” indicates the second system. For example, in two master cylinder fluid paths, the first master cylinder valve VM1 and the second master cylinder valve VM2 are described. Further, the suffixes “1” and “2” at the end of the symbol may be omitted. When the suffixes “1” and “2” are omitted, each symbol represents a general term for two braking systems. For example, “VM” represents a master cylinder valve of each braking system.
  • the side near the reservoir RV is called “upper”, and the side near the wheel cylinder CW is called “lower”.
  • the side near the discharge section of the fluid pump HP is called “upstream side”, and the side away from the discharge section is called “downstream side”.
  • a first embodiment of the braking control device SC according to the present invention will be described with reference to the overall configuration diagram of FIG.
  • a so-called diagonal type also referred to as “X type”
  • the fluid path is a path for moving the brake fluid BF that is the working liquid of the brake control device SC, and corresponds to a brake pipe, a fluid unit flow path, a hose, and the like.
  • a front-back type fluid path may be adopted as the two-system fluid path.
  • the vehicle is a hybrid vehicle equipped with a driving electric motor GN or an electric vehicle.
  • the electric motor GN for driving also functions as a generator (generator) for energy regeneration.
  • the vehicle includes a braking operation member BP, a wheel cylinder CW, a reservoir RV, a master cylinder CM, a lower fluid unit YL, and a wheel speed sensor VW.
  • Brake operation member for example, brake pedal
  • BP brake pedal
  • a braking force for example, braking force
  • a rotating member for example, a brake disk
  • a brake caliper is arranged so as to sandwich rotating member KT.
  • the brake caliper is provided with a wheel cylinder CW.
  • a friction member for example, a brake pad
  • the braking torque (W) is applied to the wheel WH by the frictional force generated when the surface of the rotating member KT slides on the friction surface of the friction material. Friction braking force) is generated.
  • the reservoir (atmospheric pressure reservoir) RV is a tank for the working liquid, in which the brake fluid BF is stored.
  • the master cylinder CM is mechanically connected to the braking operation member BP.
  • a tandem type master cylinder is used as the master cylinder CM.
  • the braking operation member BP When the braking operation member BP is not operated, the master cylinder CM and the reservoir RV are in a communication state.
  • the first and second master cylinder chambers Rm1 and Rm2 formed by the inner wall of the master cylinder CM and the first and second master pistons PR1 and PR2 are shut off from the reservoir RV. You.
  • the operation amount Ba of the brake operation member BP increases, the volume of the master cylinder chamber Rm decreases, and the brake fluid BF is pumped from the master cylinder CM.
  • First and second master cylinder fluid paths HM1 and HM2 are connected to the master cylinder CM.
  • Wheel cylinder fluid passages HWi to HWl are connected to wheel cylinders CWi to CWl.
  • the master cylinder fluid passage HM is branched into a wheel cylinder fluid passage HW at a portion Bw in the lower fluid unit YL. Therefore, the first master cylinder chamber Rm1 is connected to the wheel cylinders CWi and CWl, and the second master cylinder chamber Rm2 is connected to the wheel cylinders CWj and CWk.
  • the lower fluid unit YL is a known fluid unit for executing anti-skid control, vehicle stabilization control, and the like.
  • the lower fluid unit YL is configured to include an electric pump and a plurality of solenoid valves. These are controlled by the lower controller ECL.
  • Each wheel WH is provided with a wheel speed sensor VW so as to detect the wheel speed Vw.
  • the signal of the wheel speed Vw is employed for anti-skid control or the like for suppressing the tendency of the wheel WH to lock.
  • Each wheel speed Vw detected by the wheel speed sensor VW is input to the lower controller ECL.
  • the controller ECL calculates the vehicle body speed Vx based on the wheel speed Vw.
  • the braking control device SC includes an operation amount sensor BA, a stroke simulator SS, a simulator valve VS, a master cylinder valve VM, a pressure adjustment unit YA, and an upper controller ECU.
  • An operation amount sensor BA is provided so as to detect an operation amount Ba of the braking operation member (brake pedal) BP by the driver.
  • a master cylinder pressure sensor PQ that detects the pressure Pm of the master cylinder CM
  • an operation displacement sensor SP that detects an operation displacement Sp of the braking operation member BP
  • an operation force Fp of the braking operation member BP At least one of the operation force sensors FP to be detected is employed. That is, at least one of the master cylinder hydraulic pressure Pm, the operation displacement Sp, and the operation force Fp is detected by the operation amount sensor BA as the braking operation amount Ba.
  • a stroke simulator (simply referred to as “simulator”) SS is provided to generate an operating force Fp on the braking operation member BP. That is, the operation characteristics (the relationship between the operation displacement Sp and the operation force Fp) of the braking operation member BP are formed by the simulator SS.
  • a simulator valve VS is provided between the master cylinder chamber Rm and the simulator SS. The simulator valve VS is a normally closed solenoid valve (on / off valve) having an open position and a closed position. When the braking control device SC is started, the simulator valve VS is set to the open position, and the master cylinder CM and the simulator SS are brought into a communication state.
  • the first and second master cylinder valves VM1 and VM2 are provided in the middle of the first and second master cylinder fluid paths HM1 and HM2.
  • the master cylinder valve VM is a normally-open solenoid valve (on / off valve) having an open position and a closed position.
  • the master cylinder valve VM is set to the closed position, and the master cylinder CM and the wheel cylinder CW are disconnected (disconnected state).
  • the braking hydraulic pressure Pw is controlled by the pressure adjusting unit YA.
  • the pressure regulating unit YA includes an electric pump DC, a check valve GC, a pressure regulating valve UA, a regulated hydraulic pressure sensor PA, and a separation valve VC.
  • the electric pump DC is constituted by the electric motor MC and the fluid pump HP.
  • the electric motor MC and the fluid pump HP rotate integrally.
  • the electric pump DC (particularly, the electric motor MC) is a power source for increasing the brake hydraulic pressure Pw.
  • the electric motor MC is controlled by the upper controller ECU.
  • a reservoir fluid passage HV is connected to a suction port of the fluid pump HP. Further, a pressure regulating fluid passage HC is connected to a discharge port of the fluid pump HP.
  • the brake fluid BF is sucked from the reservoir fluid passage HV and discharged to the pressure regulating fluid passage HC.
  • a gear pump is employed as the fluid pump HP.
  • a check valve GC (also referred to as a “check valve”) is interposed in the pressure regulating fluid path HC.
  • the check valve GC allows the brake fluid BF to move from the reservoir fluid passage HV to the pressure regulating fluid passage HC, but to move from the pressure regulating fluid passage HC to the reservoir fluid passage HV (ie, the braking fluid). Backflow of the liquid BF) is prevented.
  • the pressure regulating valve UA is connected to the pressure regulating fluid passage HC and the reservoir fluid passage HV.
  • the pressure regulating valve UA is a normally-open linear solenoid valve (a “proportional valve” or a “differential pressure valve”) in which an opening amount (lift amount) is continuously controlled based on an energized state (for example, supply current). ).
  • the brake fluid BF recirculates in the order of “HV ⁇ HP ⁇ GC ⁇ UA ⁇ HV” as shown by the broken line arrow (A). That is, in the pressure adjusting unit YA, a return path of the brake fluid BF (a fluid path in which the flow of the brake fluid BF returns to the original flow) including the fluid pump HP, the check valve GC, and the pressure regulator valve UA is formed. I have.
  • the pressure regulating valve UA can be connected to the reservoir RV via a second reservoir fluid passage HX different from the first reservoir fluid passage HV.
  • the return path (A) of the brake fluid BF includes the reservoir RV, and is in the order of “HV ⁇ HP ⁇ GC ⁇ UA ⁇ HX ⁇ RV ⁇ HV”.
  • the hydraulic pressure (adjusted hydraulic pressure) Pa in the pressure adjusting fluid passage HC is low and substantially “0 (atmospheric pressure)”.
  • the regulated hydraulic pressure Pa is increased. That is, the adjustment hydraulic pressure Pa is adjusted by the orifice effect of the pressure adjustment valve UA.
  • An adjustment hydraulic pressure sensor PA is provided in the pressure adjustment fluid passage HC so as to detect the adjustment hydraulic pressure Pa. The detected adjusted hydraulic pressure Pa is input to the controller ECU.
  • the pressure regulating fluid passage HC is connected to the first and second master cylinder fluid passages HM1 and HM2 via the first and second introduction fluid passages HD1 and HD2.
  • an introduction fluid passage HD is connected between a portion Bc of the pressure regulating fluid passage HC and a portion Bw of the master cylinder fluid passage HM.
  • a separation valve VC is provided in the introduction fluid path HD.
  • the separation valve VC is a normally closed solenoid valve (on / off valve) having an open position and a closed position. When the braking control device SC is started, the separation valve VC is set to the open position.
  • the upper controller also referred to as “upper electronic control unit” ECU includes an electric circuit board on which the microprocessor MP and the drive circuit DR are mounted, and a control algorithm programmed in the microprocessor MP.
  • the electric motor MC and various solenoid valves VM, VS, VC, and UA are controlled by the controller ECU based on various signals (Ba and the like). Specifically, drive signals Vm, Vs, Vc, and Ua for controlling various solenoid valves VM, VS, VC, and UA are calculated based on a control algorithm in the microprocessor MP. Similarly, a drive signal Mc for controlling the electric motor MC is calculated. Then, based on these drive signals Vm, Vs, Vc, Ua, Mc, the solenoid valves VM, VS, VC, UA, and the electric motor MC are driven.
  • the controller ECU is network-connected to another controller via the on-vehicle communication bus BS.
  • the controller ECU transmits the regenerative amount Rg to the drive controller ECD so as to execute the cooperative control of the friction braking and the regenerative braking (so-called regenerative cooperative control).
  • the “regenerative amount Rg” is a state quantity representing the magnitude of the regenerative braking force generated by the driving motor GN.
  • the vehicle speed Vx calculated by the lower controller ECL is transmitted to the upper controller ECU via the communication bus BS.
  • the controller ECU is provided with a drive circuit DR for driving the solenoid valves VM, VS, VC, UA, and the electric motor MC.
  • a bridge circuit is formed by switching elements (power semiconductor devices such as MOS-FETs and IGBTs) so as to drive the electric motor MC.
  • the energization state of each switching element is controlled based on the motor drive signal Mc, and the output of the electric motor MC is controlled.
  • their excitation states are controlled based on the drive signals Vm, Vs, Vc, Ua so as to drive the solenoid valves VM, VS, VC, UA.
  • the pressure regulation control is drive control of the electric motor MC and the pressure regulation valve UA for controlling the regulated hydraulic pressure Pa.
  • the control algorithm is programmed in the upper controller ECU.
  • step S110 the braking control device SC is initialized, and an initial diagnosis of each component is executed.
  • step S120 power is supplied to the solenoid valves VM, VC, and VS. That is, when the start switch of the device SC is turned on, the simulator valve VS and the separation valve VC are set to the open position, and the master cylinder valve VM is set to the closed position.
  • step S130 the braking operation amount Ba, the adjusted hydraulic pressure (detected value) Pa, and the vehicle speed Vx are read.
  • the operation amount Ba is detected by an operation amount sensor BA (operation displacement sensor SP, master cylinder hydraulic pressure sensor PQ, operation force sensor FP).
  • the adjustment hydraulic pressure Pa is detected by the adjustment hydraulic pressure sensor PA.
  • the vehicle speed Vx is obtained from the lower controller ECL via the communication bus BS.
  • the vehicle speed Vx may be calculated by inputting the wheel speed Vw to the upper controller ECU and calculating the vehicle speed Vx based on the wheel speed Vw.
  • step S140 it is determined whether or not braking is being performed based on the braking operation amount Ba. For example, when the operation amount Ba is larger than the predetermined value bo, step S140 is affirmed and the process proceeds to step S150. On the other hand, if the operation amount Ba is equal to or smaller than the predetermined value bo, step S140 is negative and the process returns to step S130.
  • the predetermined value bo is a preset constant corresponding to the play of the braking operation member BP.
  • step S150 as shown in block X150, the required braking force Fd is calculated based on the operation amount Ba.
  • the required braking force Fd is a target value of the total braking force F acting on the vehicle, and is a braking force obtained by adding “the friction braking force Fm by the braking control device SC” and “the regenerative braking force Fg by the generator GN”.
  • the required braking force Fd is determined to be “0” according to the calculation map Zfd when the operation amount Ba is in the range from “0” to the predetermined value bo, and when the operation amount Ba is equal to or more than the predetermined value bo, the operation amount Ba increases. Accordingly, the calculation is performed so as to monotonously increase from “0”.
  • step S160 the maximum value of the regenerative braking force (referred to as "maximum regenerative force”) Fx is calculated based on the vehicle speed Vx and the calculation map Zfx as shown in block X160.
  • the regeneration amount Rg of the generator GN is limited by the rating of the power transistor (IGBT or the like) of the drive controller ECD and the charge acceptability of the battery.
  • the regeneration amount Rg of the generator GN is controlled to a predetermined power (electric energy per unit time). Since the electric power (power) is constant, the regenerative torque around the wheel shaft by the generator GN is inversely proportional to the rotation speed of the wheel WH (that is, the vehicle speed Vx). Also, when the rotation speed Ng of the generator GN decreases, the regeneration amount Rg decreases. Further, an upper limit is provided for the regeneration amount Rg.
  • the maximum regenerative power Fx in a range where the vehicle speed Vx is equal to or more than “0” and lower than the first predetermined speed vo, the maximum regenerative power Fx is set to increase as the vehicle speed Vx increases. .
  • the maximum regenerative force Fx is determined to be the upper limit value fx.
  • the maximum regenerative force Fx is set to decrease as the vehicle speed Vx increases.
  • the relationship between the vehicle speed Vx and the maximum regenerative power Fx is represented by a hyperbola (that is, the regenerative power is constant).
  • the predetermined values vo and vp are constants set in advance.
  • the rotation speed Ng of the generator GN may be employed instead of the vehicle body speed Vx.
  • step S170 it is determined whether or not the required braking force Fd is equal to or less than the maximum regenerative force Fx based on the required braking force Fd and the maximum regenerative force Fx. That is, it is determined whether the braking force Fd requested by the driver can be achieved only by the regenerative braking force Fg. If “Fd ⁇ Fx” and step S170 is affirmative, the process proceeds to step S180. On the other hand, if “Fd> Fx” and step S170 is negative, the process proceeds to step S200.
  • the regeneration amount Rg is a target value of the regeneration amount of the generator GN.
  • the regeneration amount Rg is transmitted from the brake controller ECU to the drive controller ECD via the communication bus BS.
  • the target friction braking force Fm is a target value of the braking force to be achieved by friction braking. In this case, friction braking is not adopted for vehicle deceleration, and the required braking force Fd is achieved only by regenerative braking.
  • step S220 the required hydraulic pressure Pu is calculated based on the target value Fm of the friction braking force.
  • the required hydraulic pressure Pu is a target value of the adjusted hydraulic pressure Pa.
  • the required hydraulic pressure Pu is determined by converting the target friction braking force Fm into a hydraulic pressure.
  • step S230 advance pressurization control is executed based on the vehicle speed Vx (or the generator rotation speed Ng) and the adjustment hydraulic pressure Pa (the value detected by the adjustment hydraulic pressure sensor PA).
  • the “replacement operation” is to compensate for the decrease in the regenerative braking force Fg by increasing the friction braking force Fm.
  • precedence pressure the fact that the adjusted hydraulic pressure Pa is slightly increased to the predetermined hydraulic pressure pp by the advanced pressure control is referred to as “precedence pressure”. In other words, after the preliminary pressurization is performed, the switching operation of the regenerative cooperative control is started.
  • step S230 the target hydraulic pressure Pt is determined based on the required hydraulic pressure Pu and the presence or absence of pre-pressurization.
  • the target hydraulic pressure Pt is a final target value of the adjusted hydraulic pressure Pa.
  • step S240 the electric motor MC is driven to form the fluid pump HP and the return path (A) for the brake fluid BF including the pressure regulating valve UA. Further, based on the target hydraulic pressure Pt and the adjustment hydraulic pressure (the detection value of the adjustment hydraulic pressure sensor PA) Pa, the pressure adjustment valve UA is feedback-controlled so that the adjustment hydraulic pressure Pa approaches and matches the target hydraulic pressure Pt. You. The details of the processing of the electric motor MC and the pressure regulating valve UA will be described later.
  • the drive processing of the electric motor MC and the pressure regulating valve UA will be described with reference to the functional block diagram of FIG. This processing is programmed in the upper controller ECU. ⁇ ⁇ Drive control of electric motor MC ⁇ First, the drive control of the electric motor MC will be described.
  • the processing includes a required hydraulic pressure calculation block PU, a preceding pressure control block PP, a target hydraulic pressure calculation block PT, a reference flow rate calculation block QO, a hydraulic pressure change amount calculation block DP, an adjustment flow rate calculation block QH, and a target flow rate calculation block QT. , A target rotation speed calculation block NT, an actual rotation speed calculation block NA, and a rotation speed feedback control block NC.
  • the required hydraulic pressure Pu is calculated based on the target frictional braking force Fm and the calculation map Zpu.
  • the required hydraulic pressure Pu is a target value of the adjusted hydraulic pressure Pa adjusted by the pressure adjusting unit YA.
  • the required hydraulic pressure Pu is determined so as to monotonously increase from “0” as the target frictional braking force Fm increases from “0” according to the calculation map Zpu.
  • the necessity of preceding pressure is determined based on the vehicle speed Vx and the adjusted hydraulic pressure Pa.
  • the brake fluid pressure Pw is slightly increased to and maintained at a predetermined fluid pressure pp before the switching operation between the regenerative braking force Fg and the friction braking force Fm is started.
  • the predetermined hydraulic pressure pp is set so that the influence of the vehicle deceleration does not occur and the entire friction surface (sliding surface) of the friction material (brake pad) contacts the rotating member (brake disc). This is a predetermined value (small constant) set in advance.
  • the predetermined hydraulic pressure pp is set as the preliminary pressurization control. Is output.
  • the predetermined speed (threshold speed) vx is a predetermined threshold constant value (constant) greater than the first predetermined speed vo. Because of the relationship of “vx> vo”, the predetermined hydraulic pressure pp of the preceding pressurization is output before the replacement operation.
  • the target hydraulic pressure Pt is calculated based on the required hydraulic pressure Pu and the predetermined hydraulic pressure pp.
  • the target hydraulic pressure Pt is a final target value of the adjusted hydraulic pressure Pa.
  • the required hydraulic pressure Pu is determined as it is as the target hydraulic pressure Pt.
  • the larger of the required hydraulic pressure Pu and the predetermined hydraulic pressure pp is determined as the target hydraulic pressure Pt. In other words, if the required hydraulic pressure Pu is equal to or higher than the predetermined hydraulic pressure pp, the preliminary pressurization control is not executed (that is, the control is prohibited). If “Pu ⁇ pp”, it is based on the fact that the pre-pressurization need not be performed.
  • the reference flow rate Qo is calculated based on the target hydraulic pressure Pt and the calculation map Zqo.
  • the reference flow rate Qo is a target value of the discharge amount (flow rate) of the electric pump DC (that is, the fluid pump HP), which is the minimum necessary for adjusting the fluid pressure by the orifice effect of the pressure regulating valve UA.
  • the reference flow rate Qo is determined according to the calculation map Zqo so as to monotonously increase from the predetermined flow rate qo as the target hydraulic pressure Pt increases from “0”. This is based on the fact that the higher the hydraulic pressure, the greater the internal leakage of the fluid pump HP.
  • the predetermined flow rate qo is a preset constant.
  • the hydraulic pressure change amount dP is calculated based on the target hydraulic pressure Pt. Specifically, the target hydraulic pressure Pt is differentiated with respect to time to determine the hydraulic pressure change amount dP.
  • the hydraulic pressure change amount dP is calculated so as to increase as the operation speed dB of the brake operation member BP (the time change amount of the operation amount Ba) increases.
  • the adjustment flow rate Qh is calculated based on the hydraulic pressure change amount dP, the target hydraulic pressure Pt, and the calculation map Zqh.
  • the adjustment flow rate Qh is a target value of the discharge flow rate of the electric pump DC required to increase the adjustment hydraulic pressure Pa.
  • the adjusted flow rate Qh is calculated to be “0” when the fluid pressure change amount dP is equal to or less than “0” according to the calculation map Zqh, and monotonically increases from “0” as the fluid pressure change amount dP increases from “0”. To be determined.
  • the adjustment flow rate Qh is determined so as to increase as the target hydraulic pressure Pt decreases, and to decrease as the target hydraulic pressure Pt increases.
  • the adjusted hydraulic pressure Pa (resulting in the brake hydraulic pressure Pw) is based on an increase according to the rigidity (non-linear spring constant) of the brake caliper, friction material and the like. That is, when the adjustment hydraulic pressure Pa is low, a large amount of flow is required, but when the adjustment hydraulic pressure Pa is high, the flow rate is not so required. Therefore, the adjustment flow rate Qh is determined to be larger as the target hydraulic pressure Pt is smaller.
  • the target flow rate Qt is calculated based on the reference flow rate Qo and the adjusted flow rate Qh.
  • the target rotation speed calculation block NT the target rotation speed Nt is calculated based on the target flow rate Qt.
  • the target rotation speed Nt is a target value of the rotation speed of the electric pump DC (particularly, the electric motor MC).
  • the target flow rate Qt is converted and calculated into the target rotation speed Nt.
  • the actual rotation speed calculation block NA the actual rotation speed Na is calculated based on the actual rotation angle Ka (the value detected by the rotation angle sensor KA). Specifically, the actual rotation angle Ka is differentiated with respect to time to determine the actual rotation speed Na.
  • the rotation speed feedback control of the electric motor MC is executed based on the target rotation speed Nt and the actual rotation speed Na. That is, the drive signal Mc is determined such that the actual rotation speed Na approaches the target rotation speed Nt and finally matches the target rotation speed Nt.
  • the switching element of the drive circuit DR is driven based on the drive signal Mc, and the electric motor MC is controlled.
  • the processing includes a target hydraulic pressure calculation block PT, a hydraulic pressure change amount calculation block DP, a required power amount calculation block IS, a compensation power amount calculation block IH, a target power amount calculation block IT, and a power amount feedback control block CA. It consists of. Note that the target hydraulic pressure calculation block PT and the hydraulic pressure change amount calculation block DP are processes common to the electric motor MC, and thus description thereof is omitted.
  • the required energization amount Is is calculated based on the target hydraulic pressure Pt, the reference flow rate Qo, and the calculation map Zis.
  • the required energization amount Is is a target value of the energization amount (current) supplied to the pressure regulating valve UA.
  • the required energization amount Is is determined in accordance with the calculation map Zis so as to increase monotonically from "0" to "upwardly convex" as the target hydraulic pressure Pt increases from "0". Further, the required energization amount Is is calculated based on the flow rate to be flowed through the pressure regulating valve UA.
  • the reference flow rate Qo is determined to be larger as the reference flow rate Qo is smaller, and is determined to be smaller as the reference flow rate Qo is larger. Since the pressure regulating valve UA is a normally open type, the required flow amount Is is calculated to be smaller as the reference flow rate Qo is larger, and the opening amount of the pressure regulating valve UA is increased. Note that the brake fluid BF corresponding to the adjusted flow rate Qh is moved toward the wheel cylinder CW to increase the brake fluid pressure Pw.
  • the compensation energization amount Ih is calculated based on the deviation hP between the target hydraulic pressure Pt and the adjustment hydraulic pressure Pa, and the arithmetic map Zih.
  • the compensation energization amount Ih is a target value of the energization amount (current) supplied to the pressure regulating valve UA to make the adjustment hydraulic pressure Pa equal to the target hydraulic pressure Pt.
  • the adjusted hydraulic pressure Pa the value detected by the adjusted hydraulic pressure sensor PA
  • the compensation energization amount Ih is determined to increase as the hydraulic pressure deviation hP increases.
  • the hydraulic pressure deviation hP is within the range from the predetermined value “ ⁇ po” to the predetermined value po, the compensation energization amount Ih is determined to be “0”.
  • the predetermined value po is a preset positive constant.
  • the target energization amount It is calculated based on the required energization amount Is and the compensation energization amount Ih.
  • energization amount feedback control of the pressure regulating valve UA is executed based on the target energization amount It and the actual energization amount Ia. That is, the drive signal Ua is determined so that the actual energization amount Ia matches the target energization amount It.
  • the actual energization amount Ia is detected by an energization amount sensor IA provided in the drive circuit DR. Then, the drive circuit DR is driven based on the drive signal Ua, and the pressure regulating valve UA is controlled.
  • the adjustment flow rate Qh is determined to increase as the hydraulic pressure change amount dP increases (the increasing gradient of the adjustment hydraulic pressure Pa increases).
  • the target rotation speed Nt increases as the hydraulic pressure change amount dP increases.
  • the reference flow rate Qo is sufficient for the flow rate of the brake fluid BF (discharge flow rate of the electric pump DC). The same applies to the case where the adjustment hydraulic pressure Pa is reduced. Therefore, when the fluid pressure change amount dP is equal to or less than “0”, the adjustment flow rate Qh is calculated to be “0”. Therefore, when the operation of the brake operation member BP is increased or decreased after the operation is increased, the increased target rotation speed Nt is decreased.
  • the hydraulic pressure change amount dP corresponding to the operation of the braking operation member BP is calculated, the rotation speed (rotation speed) of the electric pump DC (particularly, the electric motor MC) is determined, and the electric pump DC (particularly, the fluid pump HP) is set. Since the unnecessary flow rate is not discharged, the power consumption of the braking control device SC can be reduced. Further, when a sudden increase in the brake fluid pressure Pw is required (for example, when the brake operating member BP is suddenly operated), the rotation speed Na of the electric motor MC is rapidly increased, and a sufficient fluid amount (braking) is supplied to the wheel cylinder CW. Liquid BF). Therefore, the boost response of the brake fluid pressure Pw is improved, the time delay in the feedback control based on the deviation hP is reduced, and the pressure regulation accuracy of the brake fluid pressure Pw is ensured.
  • the pressure regulating unit YA is provided with the check valve GC, when the pressure regulating valve UA is completely closed, the regulated hydraulic pressure Pa can be kept constant. If the pressure regulating valve UA is slightly opened, the regulated hydraulic pressure Pa can be gradually reduced.
  • the fluid pressure change amount dP is equal to or less than “0” (that is, when the brake operation member BP is held or returned)
  • the electric motor MC is stopped to further reduce power consumption.
  • the rotation member KT When the adjusted hydraulic pressure Pa (that is, the brake hydraulic pressure Pw) is “0”, the rotation member KT is caused by the vibration of the rotation member KT (the vibration of the rotation member sliding surface with respect to a plane perpendicular to the rotation axis). There is a gap between the friction material and the friction material. Further, there may be a case where the friction surface of the friction material (the surface that slides on the surface of the rotating member KT) is inclined with respect to the surface (sliding surface) of the rotating member KT. Further, the surface (sliding surface) of the friction material is not a uniform flat surface but has fine irregularities.
  • the braking control device SC prior to the start of the reallocation operation, pre-pressurization is performed so that a liquid amount (volume of the braking liquid BF) corresponding to the initial consumed liquid amount is supplied.
  • the predetermined hydraulic pressure pp is a hydraulic pressure that does not affect the deceleration of the vehicle, eliminates the above-described gap or inclination, and causes the entire sliding surface of the friction material to come into contact with the rotating member KT. Is a constant.
  • the pre-pressurization is for replenishing the initial liquid consumption. Therefore, when the adjusted hydraulic pressure Pa before the preliminary pressurization is equal to or higher than the predetermined hydraulic pressure pp, the execution of the preliminary pressurization is prohibited. Specifically, in the target hydraulic pressure calculation block PT, the larger one of the required hydraulic pressure Pu and the predetermined hydraulic pressure pp is determined as the final target hydraulic pressure Pt. Further, in the pre-pressurization control block PP, when the start condition of the pre-pressurization control (that is, “Vx ⁇ vx”) is satisfied, the pre-pressurization pressure Pa is set to the predetermined pre-set pressure pp based on the pre-pressurization pressure Pa.
  • the generator speed Ng may be used as an execution condition of the preceding pressurization control instead of the vehicle speed Vx.
  • the target hydraulic pressure Pt is calculated according to the operation amount Ba of the braking operation member BP, and the hydraulic pressure change amount dP is calculated based on the target hydraulic pressure Pt.
  • the rotation speed Na of the electric pump DC is adjusted based on the hydraulic pressure change amount dP. Specifically, when “dP ⁇ 0”, the rotation speed Na of the electric pump DC is maintained at “0 (stop)” or a constant value. When “dP> 0”, the rotation speed Na is increased so that the rotation speed Na increases as the hydraulic pressure change amount dP increases.
  • the target hydraulic pressure Pt (as a result, the adjusted hydraulic pressure Pa) is gradually increased to a predetermined hydraulic pressure pp with a predetermined increasing gradient so as to avoid an influence on the vehicle deceleration, and thereafter, is maintained at the predetermined hydraulic pressure pp.
  • the vehicle speed Vx reaches the first predetermined speed vo and the maximum regenerative force Fx is reduced, so that the regenerative braking force Fg is reduced.
  • the friction braking force Fm is increased.
  • the target hydraulic pressure Pt (resulting in the adjusted hydraulic pressure Pa and the braking hydraulic pressure Pw) is increased from the predetermined hydraulic pressure pp.
  • the target hydraulic pressure Pt increases in the switching operation, the hydraulic pressure change amount dP increases, and the target rotational speed Nt increases.
  • the actual rotational speed Na is increased to the value nb (see characteristic Ca).
  • the reallocation operation ends.
  • the adjusted hydraulic pressure Pa is kept constant, so that the rotation speed Na is reduced to the value nc.
  • the rotation speed Na may be set to “0 (stop)” by setting the pressure regulating valve UA to the fully closed state.
  • the adjusted hydraulic pressure Pa When the adjusted hydraulic pressure Pa is increased from “0”, first, it is necessary to supply the brake fluid BF for the initial consumed fluid amount to the wheel cylinder CW.
  • the initial amount of liquid consumed is determined by filling the gap between the rotating member KT and the friction material, correcting the inclination between the rotating member KT and the friction material, crushing the unevenness of the friction material surface, and removing the entire surface of the friction material from the rotating member. This is the volume of the brake fluid BF required to contact KT.
  • the case where the preceding pressurization control is not executed is indicated by the dotted line characteristic Cb.
  • the target hydraulic pressure Pt increases, the rotation speed Na is rapidly increased to the value nd based on the hydraulic pressure change amount dP.
  • the supply of the brake fluid BF may be delayed due to the inertial mass of the electric pump DC. Therefore, it is difficult to ensure the responsiveness of the adjusted hydraulic pressure Pa. In addition, since the rotation speed Na is suddenly increased, a problem of operating noise may occur.
  • the preceding pressurization control is performed before the replacement operation is started (time t0).
  • the brake fluid BF corresponding to the initial consumption fluid amount is supplied, and the boost response of the adjusted hydraulic pressure Pa can be ensured.
  • the increase in the rotation speed Na with the increase in the target hydraulic pressure Pt does not become so large, and the operation noise is small.
  • ⁇ Second embodiment of braking control device SC> A second embodiment of the braking control device SC according to the present invention will be described with reference to the overall configuration diagram of FIG.
  • a so-called front-rear type is used as the two-system fluid path.
  • the same hydraulic pressure Pa is supplied to the four wheel cylinders CW.
  • the front wheel cylinder CWf and the rear wheel cylinder CWr are connected to each other. Controlled individually. This control is referred to as “independent pressure regulation”.
  • each symbol represents a generic term for each of the four wheels.
  • the suffixes “f” and “r” added to the end of the symbols related to the front and rear brake systems are comprehensive symbols indicating which system of the front and rear wheels, and “f” is the front wheel system. , “R” indicate a rear wheel system.
  • the suffixes “1” and “2” added to the end of the symbol related to the diagonal type braking system are comprehensive symbols indicating which system it is, and “1” is the first system. , “2” indicate the second system.
  • the suffixes “f”, “r”, “1”, “2” at the end of the symbol can be omitted. In this case, each symbol represents a general term for each of the two braking systems.
  • the braking control device SC includes an upper fluid unit YU.
  • the upper fluid unit YU is controlled by the upper controller ECU.
  • the vehicle is provided with a lower fluid unit YL controlled by a lower controller ECL.
  • the upper controller ECU and the lower controller ECL are connected via a communication bus BS so that signals (sensor detection values, calculation values, etc.) are shared.
  • the generator GN is provided on the front wheel WHf (regeneration wheel).
  • the upper fluid unit YU in the second embodiment includes an operation amount sensor BA, a master unit YM, a pressure adjustment unit YC, and a regenerative cooperation unit YK.
  • An operation amount sensor BA is provided to detect the operation amount Ba of the braking operation member (brake pedal) BP.
  • the operation amount sensor BA in addition to the operation displacement sensor SP and the operation force sensor FP, the simulator hydraulic pressure sensor PS that detects the hydraulic pressure (simulator hydraulic pressure) Ps in the simulator SS, and the input chamber Rn of the regenerative cooperation unit YK
  • An input hydraulic pressure sensor PN for detecting a hydraulic pressure (input hydraulic pressure) Pn is provided. That is, at least one of the operation displacement Sp, the operation force Fp, the simulator hydraulic pressure Ps, and the input hydraulic pressure Pn is adopted as the braking operation amount Ba.
  • the detected braking operation amount Ba is input to the upper controller ECU.
  • the master cylinder hydraulic pressure Pm does not correspond to the operation amount Ba.
  • the master unit YM adjusts the hydraulic pressure (front wheel brake hydraulic pressure) Pwf in the front wheel cylinder CWf via the master cylinder chamber Rm.
  • the master unit YM includes a master cylinder CM, a master piston PM, and a master elastic body SM.
  • the master cylinder CM is a stepped cylinder member having a bottom (that is, having a small diameter portion and a large diameter portion).
  • a single type is used as the master cylinder CM.
  • Master piston PM is a piston member inserted inside master cylinder CM, and has a flange portion (flange) Tm. Master cylinder CM and master piston PM are sealed with a seal SL.
  • the master piston PM is movable in conjunction with the operation of the braking operation member BP.
  • the inside of the master cylinder CM is partitioned into three hydraulic chambers Rm, Rs, and Ro by the master piston PM.
  • the master piston PM can move smoothly along the central axis Jm of the master cylinder CM.
  • the master cylinder chamber (also simply referred to as “master chamber”) Rm is a hydraulic chamber partitioned by the “small-diameter inner peripheral portion and small-diameter bottom portion of the master cylinder CM” and the end of the master piston PM.
  • a servo hydraulic chamber (simply referred to as a “servo chamber”) Rs and a reaction force hydraulic chamber (simply referred to as a “reaction force chamber”) Ro are formed by a flange portion Tm of the master piston PM. It is divided into.
  • the servo chamber Rs is a hydraulic chamber partitioned by “the large-diameter inner peripheral portion and the large-diameter bottom portion of the master cylinder CM” and the collar portion Tm of the master piston PM.
  • the master chamber Rm and the servo chamber Rs are arranged to face each other with the collar Tm interposed therebetween.
  • the front chamber pressure adjusting fluid passage HF is connected to the servo chamber Rs, and the adjusting hydraulic pressure Pc is introduced from the pressure adjusting unit YC.
  • the reaction chamber Ro is a hydraulic chamber partitioned by a large-diameter inner peripheral portion of the master cylinder CM, a stepped portion, and a flange portion Tm of the master piston PM.
  • the reaction chamber Ro is sandwiched between the master hydraulic chamber Rm and the servo hydraulic chamber Rs in the direction of the central axis Jm, and is located therebetween.
  • a simulator fluid passage HS is connected to the reaction force chamber Ro.
  • a master elastic body (for example, a compression spring) SM is provided between the end of the master piston PM and the small diameter bottom of the master cylinder CM.
  • the master elastic body SM presses the master piston PM against the large-diameter bottom portion of the master cylinder CM in the direction of the center axis Jm of the master cylinder CM.
  • the master piston PM is in contact with the large-diameter bottom of the master cylinder CM.
  • the master room Rm is in communication with the reservoir RV.
  • the master chamber Rm generates an urging force Fb (referred to as “retracting force”) in the retreating direction Hb along the central axis Jm by its internal pressure (“master cylinder pressure”, also referred to as “master pressure”) Pm. Assigned to master piston PM.
  • the servo chamber Rs applies an urging force Fa (referred to as “forward force”) in the forward direction Ha, which opposes the backward force Fb, to the master piston PM by its internal pressure (that is, the introduced adjusted hydraulic pressure Pc).
  • a master cylinder pressure sensor PQ is provided to detect master pressure Pm.
  • the master cylinder fluid pressure sensor PQ can be provided in the master cylinder fluid passage HM.
  • master cylinder hydraulic pressure sensor PQ may be included in lower fluid unit YL.
  • the pressure adjustment unit YC includes an electric pump DC, a check valve GC, first and second pressure adjustment valves UB and UC, and first and second adjustment fluid pressure sensors PB and PC.
  • the fluid pressure (front wheel braking fluid pressure) Pwf of the front wheel cylinder CWf and the fluid pressure (rear wheel braking fluid pressure) Pwr of the rear wheel cylinder CWr are independently and individually regulated by the pressure regulating unit YC.
  • the brake fluid pressure Pwf of the front wheel WHf provided with the generator GN is independently adjusted within the range of the brake fluid pressure Pwr of the rear wheel WHr not provided with the generator GN.
  • the electric pump DC is composed of an electric motor MC and a fluid pump HP, which rotate integrally.
  • the suction port is connected to the first reservoir fluid path HV
  • the discharge port is connected to one end of the pressure regulating fluid path HC.
  • a check valve GC is provided in the pressure regulating fluid path HC.
  • the other end of the pressure regulating fluid path HC is connected to the second reservoir fluid path HX via the second pressure regulating valve UC.
  • the first and second reservoir fluid paths HV, HX are connected to a reservoir RV.
  • Two pressure regulating valves UB and UC are provided in series in the pressure regulating fluid path HC.
  • the pressure regulating fluid path HC is provided with a first pressure regulating valve UB.
  • a second pressure regulating valve UC is arranged at the other end of the pressure regulating fluid path HC.
  • the end of the second reservoir fluid passage HX is connected to the second pressure regulating valve UC.
  • the first and second pressure regulating valves UB and UC each have a normally-open linear solenoid valve whose valve opening amount (lift amount) is continuously controlled based on an energized state (for example, supply current). (Proportional valve, differential pressure valve).
  • a return (A) of the brake fluid BF is formed, such as “HV ⁇ HP ⁇ GC ⁇ UB ⁇ UC ⁇ HX ⁇ RV ⁇ HV”. That is, the return path (A) of the brake fluid BF includes the fluid pump HP, the first and second pressure regulating valves UB and UC, and the reservoir RV. In addition, as shown in the first embodiment, the second pressure regulating valve UC may be connected to the first reservoir fluid passage HV. In this case, the return path (A) is in the order of “HV ⁇ HP ⁇ GC ⁇ UB ⁇ UC ⁇ HV”.
  • the fluid pressures (first and second regulated fluid pressures) Pb and Pc in the pressure regulating fluid passage HC are substantially “0 (atmospheric pressure)”. ".
  • the fluid pressure upstream of the first pressure regulating valve UB in the pressure regulating fluid passage HC for example, the fluid pump HP
  • the hydraulic pressure (first adjusted hydraulic pressure) Pb) between the first control valve UB and the first pressure control valve UB is increased from “0”.
  • the fluid pressure for example, the second pressure
  • the hydraulic pressure (second adjusted hydraulic pressure) Pc) between the first pressure regulating valve UB and the second pressure regulating valve UC is increased from “0”.
  • the second regulated hydraulic pressure Pc regulated by the second regulated pressure valve UC is equal to the first regulated hydraulic pressure Pb. It is as follows. In other words, the second pressure adjustment valve UC adjusts the second adjustment hydraulic pressure Pc so as to increase from “0 (atmospheric pressure)”, and the first pressure adjustment valve UB adjusts the first adjustment hydraulic pressure Pb to the second adjustment hydraulic pressure Pb. It is adjusted to increase from the adjusted hydraulic pressure Pc.
  • first and second adjustment hydraulic pressure sensors PB and PC are provided to detect the first and second adjustment hydraulic pressures Pb and Pc.
  • a mass cylinder hydraulic pressure sensor PQ may be used instead of the second adjustment hydraulic pressure sensor PC. That is, the second adjustment hydraulic pressure sensor PC can be omitted.
  • the pressure regulating fluid passage HC is branched to a rear wheel pressure regulating fluid passage HR at a portion Bh between the fluid pump HP and the first pressure regulating valve UB.
  • the rear wheel pressure adjusting fluid passage HR is connected to the rear wheel cylinder CWr via the lower fluid unit YL.
  • the pressure regulating fluid path HC is branched into a front wheel pressure regulating fluid path HF at a portion Bg between the first pressure regulating valve UB and the second pressure regulating valve UC.
  • the front wheel pressure adjusting fluid passage HF is connected to the servo chamber Rs. Therefore, the second adjusted hydraulic pressure Pc is introduced (supplied) to the servo chamber Rs.
  • the regenerative cooperation unit YK By the regenerative cooperative unit YK, cooperative control of friction braking and regenerative braking (referred to as “regenerative cooperative control”) is achieved. For example, a state where the braking operation member BP is operated by the regenerative cooperation unit YK but the braking hydraulic pressure Pw is not generated may be formed.
  • the regenerative cooperation unit YK includes an input cylinder CN, an input piston PK, an input elastic body SN, a first on-off valve VA, a second on-off valve VB, a stroke simulator SS, a simulator hydraulic pressure sensor PS, and an input hydraulic pressure sensor PN. Be composed.
  • the input cylinder CN is a cylinder member having a bottom fixed to the master cylinder CM.
  • the input piston PK is a piston member inserted inside the input cylinder CN.
  • the input piston PK is mechanically connected to the braking operation member BP so as to interlock with the braking operation member BP.
  • the input piston PK is provided with a flange portion (flange) Tn, and an input elastic body (for example, a compression spring) SN is provided between the flange portion Tn and a mounting surface to the master cylinder CM. Therefore, the input elastic body SN presses the collar portion Tn of the input piston PK against the bottom of the input cylinder CN in the direction of the central axis Jm.
  • a gap Ks between the end face Mq of the master piston PM and the end face Mg of the input piston PK is set to a predetermined distance ks (referred to as an “initial gap”) inside the input cylinder CN.
  • the master piston PM and the PK are at the most retreating direction Hb (the direction opposite to the forward direction Ha) (referred to as the “initial position” of each piston) (that is, at the time of non-braking), the master piston PM and the PK
  • the input piston PK is separated by a predetermined distance ks.
  • the predetermined distance ks corresponds to the maximum value of the regeneration amount Rg.
  • a first on-off valve VA is provided in the simulator fluid path HS.
  • the first on-off valve VA is a normally closed solenoid valve (on / off valve) having an open position and a closed position.
  • a third reservoir fluid passage HT is connected to a portion Bs of the simulator fluid passage HS between the first opening / closing valve VA and the reaction force chamber Ro.
  • a second on-off valve VB is provided in the third reservoir fluid passage HT.
  • the second on-off valve VB is a normally-open solenoid valve (on / off valve) having an open position and a closed position.
  • the simulator SS is connected to the simulator fluid path HS at a portion Bo between the first on-off valve VA and the reaction force chamber Ro.
  • the input chamber Rn of the regenerative cooperation unit YK is connected to the simulator SS by the simulator fluid path HS.
  • the first on-off valve VA is set to the open position and the second on-off valve VB is set to the closed position. Since the second on-off valve VB is in the closed position, the flow path to the reservoir RV in the third reservoir fluid path HT is shut off. Therefore, the brake fluid BF is moved from the input chamber Rn of the input cylinder CN into the simulator SS.
  • the simulator SS generates an operating force Fp when the braking operation member BP is operated.
  • a simulator fluid pressure sensor PS is provided in the simulator fluid path HS between the first on-off valve VA and the reaction force chamber Ro so as to detect a fluid pressure (referred to as “simulator fluid pressure”) Ps in the simulator SS.
  • An input hydraulic pressure sensor PN is provided in the simulator fluid path HS between the first on-off valve VA and the input chamber Rn so as to detect a hydraulic pressure (referred to as “input hydraulic pressure”) Pn in the input chamber Rn.
  • the simulator hydraulic pressure sensor PS and the input hydraulic pressure sensor PN are one of the above-described braking operation amount sensors BA.
  • the detected hydraulic pressures Ps and Pn are input to the upper controller ECU as the braking operation amount Ba.
  • the electric motor MC and the solenoid valves VA, VB, UB, and UC are controlled by the upper controller ECU based on various signals (such as Ba). Specifically, the upper controller ECU calculates drive signals Va, Vb, Ub, and Uc for controlling various solenoid valves VA, VB, UB, and UC. Similarly, a drive signal Mc for controlling the electric motor MC is calculated. Then, based on the drive signals Va, Vb, Ub, Uc, Mc, the solenoid valves VA, VB, UB, UC and the electric motor MC are driven. Note that the master cylinder hydraulic pressure Pm may be employed instead of the second adjustment hydraulic pressure Pc.
  • step S310 the braking control device SC is initialized.
  • step S320 the first and second on-off valves VA and VB are energized, the first on-off valve VA is set to the open position, and the second on-off valve VB is set to the closed position.
  • step S330 the braking operation amount Ba, the first and second adjusted hydraulic pressures (detected values) Pb and Pc (or the master cylinder hydraulic pressure Pm), and the vehicle speed Vx are read.
  • step S340 “whether or not braking is in progress” is determined based on the braking operation amount Ba. If “Ba> bo (predetermined value)”, the process proceeds to step S350. If “Ba ⁇ bo”, the process returns to step S330.
  • step S350 the required braking force Fd (the target value of the total braking force F) is calculated based on the calculation map Zfd of the block X350 and the operation amount Ba.
  • the required braking force Fd is determined to be “0” when the operation amount Ba is in the range from “0” to the predetermined value bo. Is calculated to increase monotonically from.
  • step S360 the maximum regenerative force (the maximum regenerative braking force that can be generated) Fx is calculated based on the calculation map Zfx of the block X160 and the vehicle speed Vx (or the generator speed Ng).
  • the maximum regenerative force Fx is calculated so that the maximum regenerative force Fx increases as the vehicle speed Vx increases.
  • the maximum regenerative force Fx is determined to the upper limit value fx.
  • the calculation is performed such that the maximum regenerative force Fx decreases as the vehicle speed Vx increases.
  • a distribution ratio of the braking force (particularly, a ratio of the rear wheel braking force to the entire braking force F, referred to as a "rear wheel ratio Hr") is set.
  • the rear wheel ratio Hr is set in advance. May be determined as a constant (predetermined value) hr. Further, the rear wheel ratio Hr can be determined based on at least one of the turning amount Ta, the vehicle speed Vx, and the required braking force Fd.
  • the turning state amount Ta is a variable representing the turning state of the vehicle, and corresponds to, for example, a yaw rate and a lateral acceleration.
  • step S380 it is determined whether or not the required braking force Fd is equal to or less than the maximum regenerative force Fx based on the required braking force Fd and the maximum regenerative force Fx. That is, it is determined whether the required braking force Fd can be achieved only by the regenerative braking force.
  • the process proceeds to step S390 when “Fd ⁇ Fx”, and proceeds to step S400 when “Fd> Fx”.
  • step S400 the target regenerative braking force Fg, the supplementary braking force Fh, and the rear wheel reference force Fs are calculated.
  • the rear wheel reference force Fs is calculated based on the required braking force Fd and the rear wheel ratio Hr.
  • step S410 the supplementary braking force Fh is compared with the rear wheel reference force Fs, and it is determined whether or not the supplementary braking force Fh is equal to or less than the rear wheel reference force Fs. If “Fh ⁇ Fs”, the process proceeds to step S420, and if “Fh> Fs”, the process proceeds to step S430.
  • the supplementary braking force Fh is equal to or less than the rear wheel reference force Fs, no front wheel friction braking force Fmf is generated on the front wheel WHf, and only the regenerative braking force Fg is applied. Then, a friction braking force Fmr is generated on the rear wheel WHr so that the required braking force Fd is satisfied.
  • the rear wheel friction braking force Fmr is set to the rear wheel reference force Fs in consideration of the rear wheel ratio Hr, and is insufficient for the required braking force Fd.
  • a regenerative amount Rg is calculated based on the regenerative braking force Fg.
  • the regeneration amount Rg is a target value of the regeneration amount of the generator GN.
  • the regeneration amount Rg is transmitted from the upper controller ECU to the drive controller ECD via the communication bus BS.
  • the rear wheel target hydraulic pressure Ptr is a target value of the hydraulic pressure of the rear wheel cylinder CWr corresponding to the first adjusted hydraulic pressure Pb.
  • the front wheel target hydraulic pressure Ptf is a target value of the hydraulic pressure of the front wheel cylinder CWf corresponding to the second adjusted hydraulic pressure Pc.
  • the switching operation is started at the time when the process of step S430 is started (that is, at the time when step S410 is denied for the first time) with the decrease in the vehicle body speed Vx (as a result, the maximum regenerative force Fx). Accordingly, in the precedent pressure control, when the process of step S420 is being executed, the front wheel target hydraulic pressure Ptf (the actual adjusted hydraulic pressure Pc) is slightly increased to the predetermined hydraulic pressure pp.
  • step S470 the electric motor MC is controlled based on the front wheel target hydraulic pressure Ptf and the rear wheel target hydraulic pressure Ptr.
  • the target rotation speed Nt is determined based on the target flow rate Qt, and the rotation speed feedback control is executed so that the actual rotation speed Na approaches and matches the target rotation speed Nt.
  • step S470 if at least one of the front wheel and rear wheel hydraulic pressure change amounts dPf and dPr is greater than “0”, the sum of the front wheel and rear wheel adjustment flow rates Qhf and Qhr (“Qhf + Qhr”, Is calculated to be greater than “0”. Then, the total flow rate (Qhf + Qhr) is determined to be larger as the front wheel and rear wheel hydraulic pressure change amounts dPf and dPr are larger (for example, when the braking operation member BP is suddenly operated and a sudden pressure increase is required). The rotation speed Nt is calculated to be large.
  • the target rotation speed Nt (the actual rotation speed Na) of the electric pump DC is increased, and the discharge flow rate thereof is increased.
  • the first and second regulated hydraulic pressures Pb and Pc are kept constant” and “when the first and second regulated hydraulic pressures Pb and Pc are reduced”, the electric pump DC As for the discharge flow rate, the reference flow rate Qo is sufficient. In these cases, the total flow rate (Qhf + Qhr) is calculated to “0”, and the increased target rotation speed Nt is decreased.
  • step S470 the first and second pressure regulating valves UB and UC are controlled based on the front wheel target hydraulic pressure Ptf and the rear wheel target hydraulic pressure Ptr.
  • the two pressure regulating valves UC, UB are controlled such that the actual adjusted hydraulic pressures Pc, Pb approach and coincide with the front wheel and rear wheel target hydraulic pressures Ptf, Ptr.
  • the first adjustment hydraulic pressure Pb and the second adjustment hydraulic pressure Pc are independently and separately adjusted within a range of “Pb ⁇ Pc”.
  • the regenerative cooperative control is executed in consideration of the front-rear distribution of the braking force, so that the deceleration and stability of the vehicle can be ensured, and the regenerative energy can be maximized.
  • the advance pressurizing is unnecessary, so that the control is prohibited.
  • the front wheel target hydraulic pressure Ptf (as a result, the adjusted hydraulic pressure Pc) is gradually increased to a predetermined hydraulic pressure pp with a predetermined increasing gradient so as to avoid an influence on the vehicle deceleration, and is maintained at the predetermined hydraulic pressure pp.
  • the regenerative braking force Fg is reduced.
  • the front wheel friction braking force Fmf is increased so that the decrease in the regenerative braking force Fg is compensated and the total braking force F of the vehicle matches the required braking force Fd.
  • the front wheel target hydraulic pressure Ptf is increased from the predetermined hydraulic pressure pp in accordance with the increase in the front wheel friction braking force Fmf. That is, at time point u1 (after the preceding pressurization is performed), the switching operation between the regenerative braking force Fg and the friction braking force Fmf by the adjustment hydraulic pressure Pc is started.
  • the second embodiment also achieves the same effects as the first embodiment.
  • the electric pump DC is controlled based on the hydraulic pressure change amount dP, power saving is achieved. Specifically, when “dP ⁇ 0”, the electric pump DC is stopped or driven at a low rotation. When “dP> 0”, the electric pump DC is controlled such that the target rotation speed Nt (actually, the actual rotation speed Na) increases as the hydraulic pressure change amount dP increases. Thereafter, when the hydraulic pressure change amount dP becomes “0” or less again, the electric pump DC is stopped or driven at a low speed.
  • the brake fluid BF of the initial consumption fluid amount needs to be supplied to the front wheel cylinder CWf.
  • the brake fluid BF corresponding to this amount is supplied in advance of the switching operation, so that the adjustment accuracy and the responsiveness of the brake fluid pressure Pw can be improved.
  • the operation noise is reduced.
  • the first adjustment hydraulic pressure Pb and the second adjustment hydraulic pressure Pc are adjusted independently and separately, the energy regenerated by the regenerative cooperative control is maximized. In addition, deceleration and directional stability of the vehicle can be ensured.
  • the combination of the tandem master cylinder CM and the pressure adjustment unit YA is illustrated, and in the second embodiment, the combination of the single master cylinder CM and the pressure adjustment unit YC is illustrated.
  • the master unit YM having the tandem type master cylinder CM and the pressure regulation unit YA can be combined.
  • the adjusted hydraulic pressure Pa is supplied to the servo chamber Rs.
  • a pressure control unit YC is combined with a tandem type master cylinder CM employing a front-rear type fluid passage. Then, the first adjusted hydraulic pressure Pb is supplied to the rear wheel cylinder CWr, and the second adjusted hydraulic pressure Pc is supplied to the front wheel cylinder CWf.
  • the generator GN is provided on the front wheel WHf, but may be provided on the rear wheel WHr. That is, the rear wheel WHr can be used as a regenerative wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

制動制御装置は、回生ジェネレータを備えた車両に適用される。制動制御装置は、「電動ポンプ、及び、調圧弁にて構成され、電動ポンプと調圧弁との間の調圧流体路の調整液圧を調節する調圧ユニット」と、「電動ポンプ、及び、調圧弁を制御するコントローラ」と、を備える。コントローラは、回生ジェネレータによる回生制動力と調整液圧による摩擦制動力とのすり替え作動を開始する前に、調整液圧を「0」から所定液圧に増加して維持する先行加圧を行い、先行加圧を行った後に、電動ポンプの回転数を増加し、調整液圧を所定液圧から増加してすり替え作動を実行する。

Description

車両の制動制御装置
 本発明は、車両の制動制御装置に関する。
 特許文献1には、「すり替え開始時に液圧制動力の立ち上がり遅れを改善するよう、すり替え開始に先立ち、ポンプ加圧を開始したときにモータの回転数が回生制動力の減少分を補える回転数となるようにモータの回転数を上昇させるようにする。ポンプにより供給するブレーキ液量が不足することがなく、第2差圧制御弁の差圧指示値通りのホイールシリンダ圧を発生させられ、すり替え後にもすり替え前の減速度を維持することが可能となる」ことが記載されている。
 具体的には、「制動開始の時点では、ブレーキペダルの操作力を倍力装置で倍力した力に基づいてマスタシリンダ内に発生させられたマスタシリンダ圧による液圧制動力に対して、回生ブレーキ装置が発生させる回生制動力を加算したトータルの制動力により、ドライバの要求制動力が発生させられる。そして、時間経過と共に回生制動力がポンプ加圧による液圧制動力にすり替えられる。すり替え開始タイミングにおいて、ポンプ加圧による液圧制動力が回生制動力の減少に追従できるように、つまりポンプ加圧時にホイールシリンダに対して供給するブレーキ液の量が不足しないように、すり替え開始に先立ちモータを予め高回転にしておく」と記載されている。
 エネルギ回生量を更に拡大するよう、出願人は、特許文献2に記載される制動制御装置を開発している。該制動制御装置では、制動中であっても、回生装置を備えた車輪(「回生車輪」という)のホイールシリンダの液圧(制動液圧)が発生されず、液圧が「0」にされる場合が発生する。
 制動液圧が「0」から増加される際には、回転部材と摩擦材との隙間、回転部材に対する摩擦材摺動面の傾き、摩擦材表面の微細な凹凸、等のために相当な量の制動液量が消費される(「初期消費液量」という)。このため、すり替え作動において、制動液圧が「0」から増加される制動制御装置においては、制動初期での上記液量消費のため、電気モータの回転を先行して高回転にしておくだけでは、制動液量が不足する場合が生じ得る。この様な状況において、昇圧応答性の向上が望まれている。
特開2007-276655号公報 特願2018-021735号公報
 本発明の目的は、車両の制動制御装置において、回生制動と摩擦制動とのすり替え作動において、摩擦制動を発生する制動液圧が「0」から増加される際にも十分な昇圧応答性が確保され得るものを提供することである。
 本発明に係る車両の制動制御装置(SC)は、車両の車輪(WH)に回生ジェネレータ(GN)を備えた車両に適用される。制動制御装置(SC)は、「電動ポンプ(DC)、及び、調圧弁(UA、UC)にて構成され、前記電動ポンプ(DC)と前記調圧弁(UA、UC)との間の調圧流体路(HC)の調整液圧(Pa、Pc)を調節する調圧ユニット(YC)と、「前記電動ポンプ(DC)、及び、前記調圧弁(UA、UC)を制御するコントローラ(ECU)」と、を備える。
 本発明に係る車両の制動制御装置(SC)では、前記コントローラ(ECU)は、前記回生ジェネレータ(GN)による回生制動力(Fg)と前記調整液圧(Pa、Pc)による摩擦制動力(Fm、Fmf)とのすり替え作動を開始する前に、前記調整液圧(Pa、Pc)を「0」から所定液圧(pp)に増加して維持する先行加圧を行い、前記先行加圧を行った後に、前記電動ポンプ(DC)の回転数(Na)を増加し、前記調整液圧(Pa、Pc)を前記所定液圧(pp)から増加して前記すり替え作動を実行するよう構成される。
 制動液圧が「0」である場合には、回転部材の振れ等によって、回転部材と摩擦材との間に隙間が生じている。また、摩擦材の摩擦面(回転部材との摺動面)が、回転部材の表面に対して傾いていることもある。更に、摩擦材の表面には、微細な凹凸が存在する。従って、制動液圧は、回転部材と摩擦材との隙間がなくなり、摩擦材の表面凹凸が潰された後に、「0」から増加され始める。上記構成によれば、該隙間、該傾き、表面凹凸等に相当する制動液量(初期消費液量)が、すり替え作動前に補充され、制動液圧が所定液圧ppにまで僅かに上昇される。このため、すり替え作動において、増圧の応答性、及び、調圧精度が向上され得る。
本発明に係る車両の制動制御装置SCの第1の実施形態を説明するための全体構成図である。 第1の実施形態に対応した調圧制御の第1処理例を説明するための制御フロー図である。 電気モータMC、及び、調圧弁UAの駆動処理を説明するための機能ブロック図である。 第1の実施形態の作用・効果を説明するための時系列線図である。 本発明に係る車両の制動制御装置SCの第2の実施形態を説明するための全体構成図である。 第2の実施形態に対応した調圧制御の第2処理例を説明するための制御フロー図である。 第2の実施形態の作用・効果を説明するための時系列線図である。
<構成部材等の記号、及び、記号末尾の添字>
 以下の説明において、「ECU」等の如く、同一記号を付された構成部材、演算処理、信号、特性、及び、値は、同一機能のものである。各車輪に係る記号末尾に付された添字「i」~「l」は、それが何れの車輪に関するものであるかを示す包括記号である。具体的には、「i」は右前輪、「j」は左前輪、「k」は右後輪、「l」は左後輪を示す。例えば、4つの各ホイールシリンダにおいて、右前輪ホイールシリンダCWi、左前輪ホイールシリンダCWj、右後輪ホイールシリンダCWk、及び、左後輪ホイールシリンダCWlと表記される。更に、記号末尾の添字「i」~「l」は、省略され得る。添字「i」~「l」が省略された場合には、各記号は、4つの各車輪の総称を表す。例えば、「WH」は各車輪、「CW」は各ホイールシリンダを表す。
 ダイアゴナル型の制動系統に係る記号の末尾に付された添字「1」、「2」は、2つの制動系統において、それが何れの系統に関するものであるかを示す包括記号である。具体的には、「1」は第1系統、「2」は第2系統を示す。例えば、2つのマスタシリンダ流体路において、第1マスタシリンダ弁VM1、及び、第2マスタシリンダ弁VM2と表記される。更に、記号末尾の添字「1」、「2」は省略され得る。添字「1」、「2」が省略された場合には、各記号は、2つの各制動系統の総称を表す。例えば、「VM」は、各制動系統のマスタシリンダ弁を表す。
 前後型の制動系統に係る記号の末尾に付された添字「f」、「r」は、それが前後輪の何れの系統に関するものであるかを示す包括記号である。具体的には、「f」は前輪系統、「r」は後輪系統を示す。例えば、各車輪のホイールシリンダCWにおいて、前輪ホイールシリンダCWf(=CWi、CWj)、及び、後輪ホイールシリンダCWr(=CWk、CWl)と表記される。更に、記号末尾の添字「f」、「r」は省略され得る。添字「f」、「r」が省略された場合には、各記号は、2つの各制動系統の総称を表す。例えば、「CW」は、前後の制動系統におけるホイールシリンダを表す。
 流体路において、リザーバRVに近い側が「上部」と称呼され、ホイールシリンダCWに近い側が「下部」と称呼される。また、制動液BFの還流(A)において、流体ポンプHPの吐出部に近い側が「上流側」と称呼され、該吐出部から離れた側が「下流側」と称呼される。
<制動制御装置SCの第1実施形態>
 図1の全体構成図を参照して、本発明に係る制動制御装置SCの第1の実施形態について説明する。第1の実施形態では、2系統の流体路として、所謂、ダイアゴナル型(「X型」ともいう)のものが採用されている。ここで、流体路は、制動制御装置SCの作動液体である制動液BFを移動するための経路であり、制動配管、流体ユニットの流路、ホース等が該当する。なお、2系統流体路として、所謂、前後型のものが採用されてもよい。
 車両は、駆動用の電気モータGNを備えたハイブリッド車両、又は、電気自動車である。駆動用の電気モータGNは、エネルギ回生用のジェネレータ(発電機)としても機能する。例えば、ジェネレータGNは、前輪WHi、WHj(=WHf)に備えられる。つまり、前輪WHfが回生車輪である。車両には、制動操作部材BP、ホイールシリンダCW、リザーバRV、マスタシリンダCM、下部流体ユニットYL、及び、車輪速度センサVWが備えられる。
 制動操作部材(例えば、ブレーキペダル)BPは、運転者が車両を減速するために操作する部材である。制動操作部材BPが操作されることによって、車輪WHの制動トルクが調整され、車輪WHに制動力(摩擦制動力)が発生される。具体的には、車両の車輪WHには、回転部材(例えば、ブレーキディスク)KTが固定される。そして、回転部材KTを挟み込むようにブレーキキャリパが配置される。
 ブレーキキャリパには、ホイールシリンダCWが設けられている。ホイールシリンダCW内の制動液BFの圧力(制動液圧)Pwが増加されることによって、摩擦部材(例えば、ブレーキパッド)が、回転部材KTに押し付けられる。回転部材KTと車輪WHとは、一体的に回転するよう固定されているため、回転部材KTの表面と摩擦材の摩擦面とが摺動するときに生じる摩擦力によって、車輪WHに制動トルク(摩擦制動力)が発生される。
 リザーバ(大気圧リザーバ)RVは、作動液体用のタンクであり、その内部に制動液BFが貯蔵されている。マスタシリンダCMは、制動操作部材BPに、機械的に接続されている。マスタシリンダCMとして、タンデム型のものが採用されている。制動操作部材BPの非操作時には、マスタシリンダCMとリザーバRVとは連通状態にある。制動操作部材BPが操作されると、マスタシリンダCMの内壁と第1、第2マスタピストンPR1、PR2とによって形成された、第1、第2マスタシリンダ室Rm1、Rm2は、リザーバRVから遮断される。制動操作部材BPの操作量Baが増加されると、マスタシリンダ室Rmの体積は減少し、制動液BFは、マスタシリンダCMから圧送される。
 マスタシリンダCMには、第1、第2マスタシリンダ流体路HM1、HM2が接続される。ホイールシリンダCWi~CWlには、ホイールシリンダ流体路HWi~HWlが接続される。マスタシリンダ流体路HMは、下部流体ユニットYL内の部位Bwにて、ホイールシリンダ流体路HWに分岐される。従って、第1マスタシリンダ室Rm1がホイールシリンダCWi、CWlに接続され、第2マスタシリンダ室Rm2がホイールシリンダCWj、CWkに接続される。
 下部流体ユニットYLは、アンチスキッド制御、車両安定化制御、等を実行するための公知の流体ユニットである。下部流体ユニットYLは、電動ポンプ、及び、複数の電磁弁を含んで構成される。これらは、下部コントローラECLによって制御される。
 各車輪WHには、車輪速度Vwを検出するよう、車輪速度センサVWが備えられる。車輪速度Vwの信号は、車輪WHのロック傾向を抑制するアンチスキッド制御等に採用される。車輪速度センサVWによって検出された各車輪速度Vwは、下部コントローラECLに入力される。コントローラECLでは、車輪速度Vwに基づいて、車体速度Vxが演算される。
≪制動制御装置SC≫
 制動制御装置SCは、操作量センサBA、ストロークシミュレータSS、シミュレータ弁VS、マスタシリンダ弁VM、調圧ユニットYA、及び、上部コントローラECUにて構成される。
 運転者による制動操作部材(ブレーキペダル)BPの操作量Baを検出するよう、操作量センサBAが設けられる。制動操作量センサBAとして、マスタシリンダCMの圧力Pmを検出するマスタシリンダ液圧センサPQ、制動操作部材BPの操作変位Spを検出する操作変位センサSP、及び、制動操作部材BPの操作力Fpを検出する操作力センサFPのうちの少なくとも1つが採用される。つまり、操作量センサBAによって、制動操作量Baとして、マスタシリンダ液圧Pm、操作変位Sp、及び、操作力Fpのうちの少なくとも1つが検出される。
 ストロークシミュレータ(単に、「シミュレータ」ともいう)SSが、制動操作部材BPに操作力Fpを発生させるために設けられる。つまり、制動操作部材BPの操作特性(操作変位Spと操作力Fpとの関係)は、シミュレータSSによって形成される。マスタシリンダ室RmとシミュレータSSとの間には、シミュレータ弁VSが設けられる。シミュレータ弁VSは、開位置と閉位置とを有する、常閉型の電磁弁(オン・オフ弁)である。制動制御装置SCが起動されると、シミュレータ弁VSが開位置にされ、マスタシリンダCMとシミュレータSSとは連通状態にされる。
 第1、第2マスタシリンダ流体路HM1、HM2の途中に、第1、第2マスタシリンダ弁VM1、VM2が設けられる。マスタシリンダ弁VMは、開位置と閉位置とを有する、常開型の電磁弁(オン・オフ弁)である。制動制御装置SCの起動時に、マスタシリンダ弁VMは閉位置にされ、マスタシリンダCMとホイールシリンダCWとは遮断状態(非連通状態)にされる。
[調圧ユニットYA]
 調圧ユニットYAによって、制動液圧Pwが制御される。調圧ユニットYAは、電動ポンプDC、逆止弁GC、調圧弁UA、調整液圧センサPA、及び、分離弁VCを備えている。
 電動ポンプDCは、電気モータMC、及び、流体ポンプHPによって構成される。電動ポンプDCでは、電気モータMCと流体ポンプHPとが一体となって回転する。電動ポンプDC(特に、電気モータMC)は、制動液圧Pwを増加するための動力源である。電気モータMCは、上部コントローラECUによって制御される。
 流体ポンプHPの吸込口には、リザーバ流体路HVが接続されている。また、流体ポンプHPの吐出口には、調圧流体路HCが接続される。電動ポンプDC(特に、流体ポンプHP)の駆動によって、制動液BFが、リザーバ流体路HVから吸入され、調圧流体路HCに排出される。例えば、流体ポンプHPとしてギヤポンプが採用される。
 調圧流体路HCには、逆止弁GC(「チェック弁」ともいう)が介装される。逆止弁GCによって、制動液BFは、リザーバ流体路HVから調圧流体路HCに向けては移動可能であるが、調圧流体路HCからリザーバ流体路HVに向けての移動(即ち、制動液BFの逆流)が阻止される。
 調圧弁UAは、調圧流体路HC、及び、リザーバ流体路HVに接続される。調圧弁UAは、通電状態(例えば、供給電流)に基づいて開弁量(リフト量)が連続的に制御される常開型のリニア電磁弁(「比例弁」、又は、「差圧弁」ともいう)である。
 電動ポンプDCが作動している場合には、制動液BFは、破線矢印(A)で示すように、「HV→HP→GC→UA→HV」の順で還流している。つまり、調圧ユニットYAでは、流体ポンプHP、逆止弁GC、調圧弁UAを含む、制動液BFの還流路(制動液BFの流れが、再び元の流れに戻る流体路)が形成されている。
 調圧弁UAは、第1リザーバ流体路HVとは異なる、第2リザーバ流体路HXを介して、リザーバRVに接続され得る。この場合、制動液BFの還流路(A)は、リザーバRVを含み、「HV→HP→GC→UA→HX→RV→HV」の順となる。
 調圧弁UAが全開状態にある場合(非通電時)、調圧流体路HC内の液圧(調整液圧)Paは低く、略「0(大気圧)」である。調圧弁UAへの通電量が増加され、調圧弁UAによって還流路(A)が絞られると、調整液圧Paは増加される。即ち、調圧弁UAのオリフィス効果によって調整液圧Paの調整が行われる。調圧流体路HCには、調整液圧Paを検出するよう、調整液圧センサPAが設けられる。検出された調整液圧Paは、コントローラECUに入力される。
 調圧流体路HCは、第1、第2導入流体路HD1、HD2を介して、第1、第2マスタシリンダ流体路HM1、HM2に接続される。具体的には、調圧流体路HCの部位Bc、及び、マスタシリンダ流体路HMの部位Bwとの間で、導入流体路HDが接続される。導入流体路HDの途中には、分離弁VCが設けられる。分離弁VCは、開位置と閉位置とを有する、常閉型の電磁弁(オン・オフ弁)である。制動制御装置SCの起動時には、分離弁VCは開位置にされる。従って、制動制御装置SCが作動する場合には、マスタシリンダ弁VMは閉位置にされているため、調圧ユニットYAからホイールシリンダCWに、調整液圧Paが導入(供給)される。つまり、4つのホイールシリンダCWi~CWlには、同一の調整液圧Paが供給される。該制御は、「同一調圧」と称呼される。
 上部コントローラ(「上部電子制御ユニット」ともいう)ECUは、マイクロプロセッサMP、及び、駆動回路DRが実装された電気回路基板と、マイクロプロセッサMPにプログラムされた制御アルゴリズムにて構成されている。コントローラECUによって、各種信号(Ba等)に基づいて、電気モータMC、及び、各種電磁弁VM、VS、VC、UAが制御される。具体的には、マイクロプロセッサMP内の制御アルゴリズムに基づいて、各種電磁弁VM、VS、VC、UAを制御するための駆動信号Vm、Vs、Vc、Uaが演算される。同様に、電気モータMCを制御するための駆動信号Mcが演算される。そして、これらの駆動信号Vm、Vs、Vc、Ua、Mcに基づいて、電磁弁VM、VS、VC、UA、及び、電気モータMCが駆動される。
 コントローラECUは、車載通信バスBSを介して、他のコントローラとネットワーク接続されている。摩擦制動と回生制動との協調制御(所謂、回生協調制御)を実行するよう、コントローラECUからは、駆動用のコントローラECDに回生量Rgが送信される。「回生量Rg」は、駆動用モータGNによって発生される回生制動力の大きさを表す状態量である。また、下部コントローラECLにて演算された車体速度Vxが、通信バスBSを介して、上部コントローラECUに送信される。
 コントローラECUには、電磁弁VM、VS、VC、UA、及び、電気モータMCを駆動するよう、駆動回路DRが備えられる。駆動回路DRには、電気モータMCを駆動するよう、スイッチング素子(MOS-FET、IGBT等のパワー半導体デバイス)によってブリッジ回路が形成される。モータ駆動信号Mcに基づいて、各スイッチング素子の通電状態が制御され、電気モータMCの出力が制御される。また、駆動回路DRでは、電磁弁VM、VS、VC、UAを駆動するよう、駆動信号Vm、Vs、Vc、Uaに基づいて、それらの励磁状態が制御される。
<調圧制御の第1処理例>
 図2の制御フロー図を参照して、第1の実施形態に対応した調圧制御の第1処理例について説明する。調圧制御は、調整液圧Paを制御するための、電気モータMC、及び、調圧弁UAの駆動制御である。該制御のアルゴリズムは、上部コントローラECU内にプログラムされている。
 ステップS110にて、制動制御装置SCの初期化が行われ、各構成要素の初期診断が実行される。ステップS120にて、電磁弁VM、VC、VSに通電が行われる。つまり、装置SCの起動スイッチがオンされた場合に、シミュレータ弁VS、及び、分離弁VCが開位置にされ、マスタシリンダ弁VMが閉位置にされる。
 ステップS130にて、制動操作量Ba、調整液圧(検出値)Pa、及び、車体速度Vxが読み込まれる。操作量Baは、操作量センサBA(操作変位センサSP、マスタシリンダ液圧センサPQ、操作力センサFP)によって検出される。調整液圧Paは、調整液圧センサPAによって検出される。車体速度Vxは、通信バスBSを介して、下部コントローラECLから取得される。なお、車体速度Vxは、車輪速度Vwが上部コントローラECUに入力され、車輪速度Vwに基づいて、上部コントローラECUにて演算されてもよい。
 ステップS140にて、制動操作量Baに基づいて、「制動中であるか、否か」が判定される。例えば、操作量Baが、所定値boよりも大きい場合には、ステップS140は肯定され、処理はステップS150に進む。一方、操作量Baが所定値bo以下である場合には、ステップS140は否定され、処理はステップS130に戻される。ここで、所定値boは、制動操作部材BPの遊びに相当する、予め設定された定数である。
 ステップS150にて、ブロックX150に示す様に、操作量Baに基づいて、要求制動力Fdが演算される。要求制動力Fdは、車両に作用する総制動力Fの目標値であり、「制動制御装置SCによる摩擦制動力Fm」と「ジェネレータGNによる回生制動力Fg」とを合わせた制動力である。要求制動力Fdは、演算マップZfdに従って、操作量Baが「0」から所定値boの範囲では、「0」に決定され、操作量Baが所定値bo以上では、操作量Baが増加するに伴い、「0」から単調増加するよう演算される。
 ステップS160にて、ブロックX160に示す様に、車体速度Vx、及び、演算マップZfxに基づいて、回生制動力の最大値(「最大回生力」という)Fxが演算される。ジェネレータGNの回生量Rgは、駆動コントローラECDのパワートランジスタ(IGBT等)の定格、及び、バッテリの充電受入性によって制限される。例えば、ジェネレータGNの回生量Rgは、所定の電力(単位時間当りの電気エネルギ)に制御される。電力(仕事率)が一定であるため、ジェネレータGNによる車輪軸まわりの回生トルクは、車輪WHの回転数(つまり、車体速度Vx)に反比例する。また、ジェネレータGNの回転数Ngが低下すると、回生量Rgは減少する。更に、回生量Rgには、上限値が設けられる。
 最大回生力Fx用の演算マップZfxでは、車体速度Vxが、「0」以上、第1所定速度vo未満の範囲では、車体速度Vxの増加に従って、最大回生力Fxが増加するように設定される。また、車体速度Vxが、第1所定速度vo以上、第2所定速度vp未満の範囲では、最大回生力Fxは、上限値fxに決定される。そして、車体速度Vxが、第2所定速度vp以上では、車体速度Vxが増加するに従って、最大回生力Fxが減少するように設定されている。例えば、最大回生力Fxの減少特性(「Vx≧vp」の特性)では、車体速度Vxと最大回生力Fxとの関係は双曲線で表される(即ち、回生電力が一定)。ここで、各所定値vo、vpは予め設定された定数である。なお、演算マップZfxでは、車体速度Vxに代えて、ジェネレータGNの回転数Ngが採用され得る。
 ステップS170にて、要求制動力Fd、及び、最大回生力Fxに基づいて、「要求制動力Fdが、最大回生力Fx以下であるか、否か」が判定される。つまり、運転者によって要求されている制動力Fdが、回生制動力Fgのみによって達成可能か、否かが判定される。「Fd≦Fx」であり、ステップS170が肯定される場合には、処理はステップS180に進む。一方、「Fd>Fx」であり、ステップS170が否定される場合には、処理はステップS200に進む。
 ステップS180にて、要求制動力Fdが、回生制動力Fgに決定される(即ち、「Fg=Fd」)。そして、回生制動力Fgに基づいて、回生量Rgが演算される。回生量Rgは、ジェネレータGNの回生量の目標値である。回生量Rgは、通信バスBSを介して、制動コントローラECUから駆動コントローラECDに送信される。
 ステップS190では、目標摩擦制動力Fmが「0」に演算される(即ち、「Fm=0」)。目標摩擦制動力Fmは、摩擦制動によって達成されるべき制動力の目標値である。この場合、車両減速には、摩擦制動が採用されず、回生制動のみによって、要求制動力Fdが達成される。
 ステップS200にて、回生制動力Fgが、最大回生力Fxに決定される(即ち、「Fg=Fx」)。そして、回生制動力Fg(=Fx)に基づいて、回生量Rgが演算される。上記同様、回生量Rgは、通信バスBSを通して駆動コントローラECDに送信される。
 ステップS210では、目標摩擦制動力Fmが、要求制動力Fd、及び、最大回生力Fxに基づいて演算される。具体的には、目標摩擦制動力Fmは、要求制動力Fdから、最大回生力Fxが減算されて決定される(即ち、「Fm=Fd-Fx」)。つまり、要求制動力Fdにおいて、回生制動力Fg(=Fx)では不足する分が、目標摩擦制動力Fmによって補われる。
 ステップS220にて、摩擦制動力の目標値Fmに基づいて、要求液圧Puが演算される。要求液圧Puは、調整液圧Paの目標値である。具体的には、目標摩擦制動力Fmが液圧に換算されて、要求液圧Puが決定される。
 ステップS230にて、車体速度Vx(又は、ジェネレータ回転数Ng)、及び、調整液圧Pa(調整液圧センサPAの検出値)に基づいて、先行加圧制御が実行される。「先行加圧制御」は、「回生ジェネレータGNによる回生制動力Fg」と「制動液圧Pwによる摩擦制動力Fm」とのすり替え作動が開始される前に、制動液圧Pw(=Pa)が、「0」から所定液圧ppに増加され、維持される制御である。ここで、「すり替え作動」とは、回生制動力Fgの減少を、摩擦制動力Fmの増加によって補償するものである。また、先行加圧制御によって、調整液圧Paが、所定液圧ppにまで、僅かに増加されることが、「先行加圧」と称呼される。換言すれば、先行加圧が行われた後に、回生協調制御のすり替え作動が開始される。
 ステップS230では、要求液圧Pu、及び、先行加圧の有無に基づいて、目標液圧Ptが決定される。目標液圧Ptは、調整液圧Paの最終的な目標値である。
 ステップS240にて、電気モータMCが駆動され、流体ポンプHP、及び、調圧弁UAを含んだ制動液BFの還流路(A)が形成される。更に、目標液圧Pt、及び、調整液圧(調整液圧センサPAの検出値)Paに基づいて、調整液圧Paが目標液圧Ptに近づき、一致するよう、調圧弁UAがフィードバック制御される。電気モータMC、及び、調圧弁UAの処理の詳細については後述する。
<電気モータMC、及び、調圧弁UAの駆動処理>
 図3の機能ブロック図を参照して、電気モータMC、及び、調圧弁UAの駆動処理について説明する。該処理は、上部コントローラECUにプログラムされている。≪電気モータMCの駆動制御≫
 先ず、電気モータMCの駆動制御について説明する。該処理は、要求液圧演算ブロックPU、先行加圧制御ブロックPP、目標液圧演算ブロックPT、基準流量演算ブロックQO、液圧変化量演算ブロックDP、調整流量演算ブロックQH、目標流量演算ブロックQT、目標回転数演算ブロックNT、実回転数演算ブロックNA、及び、回転数フィードバック制御ブロックNCを含んで構成される。
 要求液圧演算ブロックPUでは、目標摩擦制動力Fm、及び、演算マップZpuに基づいて、要求液圧Puが演算される。要求液圧Puは、調圧ユニットYAによって調節される調整液圧Paの目標値である。要求液圧Puは、演算マップZpuに従って、目標摩擦制動力Fmが「0」から増加するに伴い、「0」から単調増加するように決定される。
 先行加圧制御ブロックPPでは、車体速度Vx、及び、調整液圧Paに基づいて、先行加圧の要否が判定される。先行加圧では、回生制動力Fgと摩擦制動力Fmとのすり替え作動が開始されるに先立って、制動液圧Pwが所定液圧ppにまで、僅かに増加され、保持される。ここで、所定液圧ppは、車両減速度の影響が発生せず、且つ、摩擦材(ブレーキパッド)の摩擦面(摺動面)の全体が、回転部材(ブレーキディスク)に接触するよう、予め設定された所定値(微小な定数)である。
 ブロックX160に示す様に、車体速度Vxの低下に伴い、回生制動力Fgは減少する。具体的には、車体速度Vxが第1所定速度vo以下になると、回生制動力Fgの減少が始まる。従って、「Vx=vo」にて、すり替え作動が開始される。先行加圧制御ブロックPPから、車体速度Vxが所定速度vxより大きい場合には何も出力されず、車体速度Vxが所定速度vxに達した時点で、先行加圧制御として、所定液圧ppが出力される。ここで、所定速度(しきい速度)vxは、第1所定速度voよりも大きい、予め設定されたしきい定値(定数)である。「vx>vo」の関係にあるため、先行加圧の所定液圧ppは、すり替え作動の前に出力される。
 目標液圧演算ブロックPTでは、要求液圧Pu、及び、所定液圧ppに基づいて、目標液圧Ptが演算される。目標液圧Ptは、調整液圧Paの最終的な目標値である。具体的には、先行加圧制御ブロックPPからの出力がない場合(先行加圧制御の非実行時)には、要求液圧Puが、そのまま、目標液圧Ptとして決定される。先行加圧制御が実行されている場合には、要求液圧Pu、及び、所定液圧ppのうちで、大きい方が、目標液圧Ptとして決定される。換言すれば、要求液圧Puが所定液圧pp以上であれば、先行加圧制御は実行されない(つまり、制御禁止状態にされる)。既に、「Pu≧pp」の場合には、先行加圧が実行される必要がないことに基づく。
 基準流量演算ブロックQOでは、目標液圧Pt、及び、演算マップZqoに基づいて、基準流量Qoが演算される。基準流量Qoは、調圧弁UAのオリフィス効果によって、液圧が調整されるために最低限必要な、電動ポンプDC(即ち、流体ポンプHP)の吐出量(流量)の目標値である。基準流量Qoは、演算マップZqoに従って、目標液圧Ptが「0」から増加するに伴い、所定流量qoから単調増加するように決定される。これは、液圧が高くなるほど、流体ポンプHPの内部漏れが大きくなることに基づく。なお、所定流量qoは予め設定された定数である。
 液圧変化量演算ブロックDPでは、目標液圧Ptに基づいて、液圧変化量dPが演算される。具体的には、目標液圧Ptが時間微分されて、液圧変化量dPが決定される。液圧変化量dPは、制動操作部材BPの操作速度dB(操作量Baの時間変化量)の増加に従って、大きくなるよう演算される。
 調整流量演算ブロックQHでは、液圧変化量dP、目標液圧Pt、及び、演算マップZqhに基づいて、調整流量Qhが演算される。調整流量Qhは、調整液圧Paを増加させるために必要な、電動ポンプDCの吐出流量の目標値である。調整流量Qhは、演算マップZqhに従って、液圧変化量dPが「0」以下では、「0」に演算され、液圧変化量dPが「0」から増加するに伴い、「0」から単調増加するように決定される。液圧変化量dPが大きいほど、ホイールシリンダCWに多量の制動液BFが供給されるよう、調整流量Qhが大きく決定される。つまり、制動操作部材BPが保持されている場合(即ち、「dP=0」)、又は、制動操作部材BPが戻されている場合(即ち、「dP<0」)には、「Qh=0」に決定される。
 また、調整流量Qhは、演算マップZqhに従って、目標液圧Ptが小さいほど、大きくなるように決定され、目標液圧Ptが大きいほど、小さくなるように決定される。調整液圧Pa(結果、制動液圧Pw)は、ブレーキキャリパ、摩擦材等の剛性(非線形ばね定数)に応じて、増加することに基づく。つまり、調整液圧Paが低い場合には、多量の流量が必要であるが、調整液圧Paが高い場合には、流量は然程、必要とされない。従って、目標液圧Ptが小さいほど、調整流量Qhが大きくなるように決定される。
 目標流量演算ブロックQTでは、基準流量Qo、及び、調整流量Qhに基づいて、目標流量Qtが演算される。目標流量Qtは、電動ポンプDC(即ち、流体ポンプHP)の吐出流量の目標値である。具体的には、基準流量Qoと調整流量Qhとが合算されて、目標流量Qtが決定される(即ち、「Qt=Qo+Qh」)。目標回転数演算ブロックNTでは、目標流量Qtに基づいて、目標回転数Ntが演算される。目標回転数Ntは、電動ポンプDC(特に、電気モータMC)の回転数の目標値である。流体ポンプHPの1回転当りの吐出量は既知であるため、目標流量Qtが目標回転数Ntに変換演算される。実回転数演算ブロックNAでは、実際の回転角Ka(回転角センサKAの検出値)に基づいて、実際の回転数Naが演算される。具体的には、実回転角Kaが時間微分されて、実回転数Naが決定される。
 回転数フィードバック制御ブロックNCでは、目標回転数Nt、及び、実回転数Naに基づいて、電気モータMCの回転数フィードバック制御が実行される。つまり、実際の回転数Naが、目標回転数Ntに近づき、最終的には一致するよう、駆動信号Mcが決定される。駆動信号Mcに基づいて、駆動回路DRのスイッチング素子が駆動され、電気モータMCが制御される。
≪調圧弁UAの駆動制御≫
 次に、調圧弁UAの駆動制御について説明する。該処理は、目標液圧演算ブロックPT、液圧変化量演算ブロックDP、要求通電量演算ブロックIS、補償通電量演算ブロックIH、目標通電量演算ブロックIT、及び、通電量フィードバック制御ブロックCAを含んで構成される。なお、目標液圧演算ブロックPT、及び、液圧変化量演算ブロックDPは、電気モータMCと共通の処理であるため、説明を省略する。
 要求通電量演算ブロックISでは、目標液圧Pt、基準流量Qo、及び、演算マップZisに基づいて、要求通電量Isが演算される。要求通電量Isは、調圧弁UAに供給される通電量(電流)の目標値である。要求通電量Isは、演算マップZisに従って、目標液圧Ptが「0」から増加するに伴い、「0」から「上に凸」の特性で単調増加するように決定される。また、要求通電量Isは、調圧弁UAに流されるべき流量に基づいて演算される。具体的には、演算マップZisに従って、基準流量Qoが小さいほど、大きくなるように決定され、基準流量Qoが大きいほど、小さくなるように決定される。調圧弁UAは常開型であるため、基準流量Qoが大きいほど、要求通電量Isが小さくなるように演算され、調圧弁UAの開弁量が増加される。なお、調整流量Qhに相当する制動液BFは、制動液圧Pwを増加するため、ホイールシリンダCWに向けて移動される。
 補償通電量演算ブロックIHでは、目標液圧Ptと調整液圧Paとの偏差hP、及び、演算マップZihに基づいて、補償通電量Ihが演算される。補償通電量Ihは、調整液圧Paを目標液圧Ptに一致させるための、調圧弁UAへ供給される通電量(電流)の目標値である。先ず、目標液圧Ptから調整液圧Pa(調整液圧センサPAの検出値)が減算されて、液圧偏差hPが演算される(即ち、「hP=Pt-Pa」)。そして、補償通電量Ihは、偏差hPが所定値「-po」以下の場合、及び、偏差hPが所定値po以上の場合には、液圧偏差hPの増加に従って、増加するように決定される。また、液圧偏差hPが所定値「-po」から所定値poまでの範囲では、補償通電量Ihは「0」に決定される。ここで、所定値poは予め設定された正の定数である。
 目標通電量演算ブロックITでは、要求通電量Is、及び、補償通電量Ihに基づいて、目標通電量Itが演算される。目標通電量Itは、調圧弁UAに供給される通電量(電流)の最終的な目標値である。具体的には、要求通電量Isと補償通電量Ihとが合算されて、目標通電量Itが演算される(即ち、「It=Is+Ih」)。
 通電量フィードバック制御ブロックCAでは、目標通電量It、及び、実際の通電量Iaに基づいて、調圧弁UAの通電量フィードバック制御が実行される。つまり、実通電量Iaが、目標通電量Itに一致するよう、駆動信号Uaが決定される。ここで、実通電量Iaは、駆動回路DRに設けられた通電量センサIAによって検出される。そして、駆動信号Uaに基づいて、駆動回路DRが駆動され、調圧弁UAが制御される。
 液圧変化量dPが「0」よりも大きい場合には、調整流量Qhが「0」よりも大きくなるように演算される。そして、液圧変化量dPが大きいほど(調整液圧Paの増加勾配が大であるほど)、調整流量Qhが大きくなるように決定される。結果、「dP>0」では、液圧変化量dPの増加に従って、目標回転数Ntが増加される。一方、調整液圧Paが一定に維持される場合には、制動液BFの流量(電動ポンプDCの吐出流量)は、基準流量Qoで十分である。また、調整液圧Paが減少される場合も同様である。このため、液圧変化量dPが「0」以下である場合には、調整流量Qhは「0」に演算される。従って、制動操作部材BPの操作が増加された後に、保持、又は、減少された場合には、増加されていた目標回転数Ntが減少される。
 制動操作部材BPの操作に対応する液圧変化量dPが演算され、電動ポンプDC(特に、電気モータMC)の回転数(回転速度)が決定され、電動ポンプDC(特に、流体ポンプHP)が不必要な流量を吐出しないため、制動制御装置SCが省電力化され得る。更に、制動液圧Pwの急増が必要な場合(例えば、制動操作部材BPが急操作された場合)には、電気モータMCの回転数Naが急増され、ホイールシリンダCWに十分な液量(制動液BFの体積)が供給される。このため、制動液圧Pwの昇圧応答性が向上されるとともに、偏差hPに基づくフィードバック制御における時間遅れが低減され、制動液圧Pwの調圧精度が確保される。
 更に、調圧ユニットYAには、逆止弁GCが設けられているため、調圧弁UAが完全に閉じられると、調整液圧Paが一定に保たれ得る。また、調圧弁UAが、僅かに開かれれば、調整液圧Paは徐々に減少され得る。液圧変化量dPが「0」以下の場合(即ち、制動操作部材BPは保持、又は、戻される場合)には、「Qo=0」にされ、目標流量Qtが「0」に決定され得る。結果、電動ポンプDC(=MC)の回転が停止される(即ち、「Nt=0」)。制動操作部材BPは保持時、又は、戻し時に、電気モータMCが停止状態にされることにより、更に、省電力化が図られる。なお、電気モータMCが停止されている状態から、制動液圧Pwが増加される場合には、目標流量Qtは、調整流量Qhに決定され得る(即ち、「Qt=Qh」)。
 調整液圧Pa(即ち、制動液圧Pw)が「0」である場合には、回転部材KTの振れ(回転軸に垂直な面に対する、回転部材摺動面の振れ)等によって、回転部材KTと摩擦材との間に隙間が生じている。また、摩擦材の摩擦面(回転部材KTの表面と摺動する面)が、回転部材KTの表面(摺動面)に対して傾いている場合も生じ得る。更に、摩擦材の表面(摺動面)は、均一な平面ではなく、微細な凹凸が存在する。このため、回転部材KTと摩擦材摺動面との隙間、及び、回転部材KTに対する摩擦材摺動面の傾きがなくなり、摩擦材の表面凹凸が潰された後に、調整液圧Paが「0」から増加され始める。該隙間、該傾き、表面凹凸等に相当する制動液量が消費される(「初期消費液量」という)。制動制御装置SCでは、すり替え作動が開始される前に、初期消費液量に相当する液量(制動液BFの体積)が供給されるよう、先行加圧が行われる。具体的には、「Pu=0」の場合に、車体速度Vxに基づいて、最大回生力Fxが減少される前の時点にて、「Pt=pp」が決定され、調整液圧Pa(=Pw)が所定液圧ppにまで増加され、保持される。ここで、所定液圧ppは、車両の減速度に影響が及ばず、上記の隙間や傾きがなくなり、摩擦材の摺動面全体が、回転部材KTに接触する液圧であり、予め設定された定数である。先行加圧によって、すり替え作動での、増圧の応答性、及び、調圧精度が確保され得る。
 先行加圧は、初期消費液量を補充するためのものである。従って、先行加圧の前における調整液圧Paが所定液圧pp以上である場合には、先行加圧の実行が禁止される。具体的には、目標液圧演算ブロックPTにおいて、要求液圧Pu、及び、所定液圧ppのうちの大きい方が、最終的な目標液圧Ptに決定される。また、先行加圧制御ブロックPPにおいて、先行加圧制御の開始条件(即ち、「Vx≦vx」)が満足された時点で、調整液圧Paに基づいて、調整液圧Paが所定液圧pp以上である場合には、何も出力されない(つまり、所定液圧ppが出力されない)ようにされてもよい。なお、先行加圧制御ブロックPPでは、車体速度Vxに代えて、ジェネレータ回転数Ngが、先行加圧制御の実行条件に採用され得る。
<第1の実施形態の作用・効果>
 図4の時系列線図を参照して、第1の実施形態の作用・効果について説明する。
 制動制御装置SCでは、制動操作部材BPの操作量Baに応じて目標液圧Ptが演算され、この目標液圧Ptに基づいて液圧変化量dPが演算される。液圧変化量dPに基づいて電動ポンプDCの回転数Naが調整される。具体的には、「dP≦0」の場合には、電動ポンプDCの回転数Naは、「0(停止)」又は、一定値に維持される。そして、「dP>0」になった場合には、液圧変化量dPが大きいほど、回転数Naが大きくなるように、回転数Naが増加される。ここで、線図は、要求制動力Fdが一定に維持され、「dP=0」の場合に、電動ポンプDCが停止される状況が想定されている。
 「Fd=fa」の状態が維持されている。時点t0までは、「Fd<Fx」であるため、「Fg=fa、Fm=0」が決定される。更に、「dP=0」であるため、「Na=0(電気モータMCの停止)」である。時点t0にて、車体速度Vxがしきい速度vxにまで低下する。先行加圧制御の開始条件「Vx≦vx」が満足されるため、所定液圧ppが出力され、目標液圧Ptの増加が開始される。目標液圧Pt(結果、調整液圧Pa)は、車両減速度への影響を回避するよう、所定の増加勾配をもって、徐々に所定液圧ppまで増加され、その後、所定液圧ppに維持される。時点t0からは、目標液圧Ptが増加されるため、「dP>0」が演算され、目標回転数Ntが「0」から増加される。このため、実際の回転数Naが、値naまで増加される。
 時点t1にて、車体速度Vxが第1所定速度voに達し、最大回生力Fxが減少されるため、回生制動力Fgが減少される。回生制動力Fgの低下を補償するため、摩擦制動力Fmが増加される。摩擦制動力の増加に従って、目標液圧Pt(結果、調整液圧Pa、制動液圧Pw)が、所定液圧ppから増加される。これにより、車両に作用する制動力Fは、要求制動力Fd(=fa)に一致される。つまり、先行加圧が行われた後の時点t1にて、回生制動力Fgと摩擦制動力Fmとのすり替え作動が開始される。すり替え作動での目標液圧Ptの増加に伴い、液圧変化量dPが増加され、目標回転数Ntが増加される。結果、実際の回転数Naが値nbにまで増加される(特性Caを参照)。
 時点t2にて、すり替え作動が終了される。時点t2以降は、調整液圧Paは、一定に維持されるため、回転数Naは、値ncにまで減少される。なお、調圧弁UAが全閉状態にされることによって、回転数Naが「0(停止)」されてもよい。
 制動制御装置SCでは、電動ポンプDCが必要に応じて駆動されるため、省電力化が図られる。具体的には、「dP≦0」では、電動ポンプDCが停止(即ち、「Nt、Na=0」)、又は、低回転(即ち、基準流量Qoに相当する回転数」)で駆動される。そして、「dP>0」では、液圧変化量dPが大きいほど、目標回転数Nt(結果、実際の回転数Na)が大となるように制御される。
 調整液圧Paが「0」から増加される場合には、先ず、初期消費液量分の制動液BFが、ホイールシリンダCWに供給される必要がある。ここで、初期消費液量は、回転部材KTと摩擦材との隙間を詰め、回転部材KTと摩擦材との傾きを是正し、摩擦材表面の凹凸を潰し、摩擦材の表面全体が回転部材KTに接触するために必要な、制動液BFの体積である。先行加圧制御が実行されない場合が、点線の特性Cbにて示される。目標液圧Ptの増加に伴い、液圧変化量dPに基づいて、回転数Naが値ndにまで急増される。しかし、電動ポンプDCの慣性質量に起因して、制動液BFの供給に遅れが生じ得る。このため、調整液圧Paの応答性が確保され難い。また、回転数Naが急に起ち上げられるため、作動音の課題も生じ得る。
 制動制御装置SCでは、「Pa=0」の状態ですり替え作動が行われる場合には、すり替え作動が開始される前(時点t0)にて、先行加圧制御が実行される。先行加圧制御によって、初期消費液量分の制動液BFが供給され、調整液圧Paの昇圧応答性が確保され得る。更に、目標液圧Ptの増加に伴う、回転数Naの増加が、然程、大きくはならず、作動音は小さい。
<制動制御装置SCの第2実施形態>
 図5の全体構成図を参照して、本発明に係る制動制御装置SCの第2の実施形態について説明する。第2の実施形態では、2系統流体路として、所謂、前後型のものが採用されている。第1の実施形態では、4つのホイールシリンダCWに調整液圧Paが供給される「同一調圧」であったが、第2の実施形態では、前輪ホイールシリンダCWfと後輪ホイールシリンダCWrとが個別に制御される。該制御は、「独立調圧」を称呼される。
 上記同様、同一記号を付された構成部材、演算処理、信号、特性、及び、値は、同一機能のものである。各車輪に係る記号末尾に付された添字「i」~「l」は、それが何れの車輪に関するものであるかを示す包括記号である。具体的には、「i」は右前輪、「j」は左前輪、「k」は右後輪、「l」は左後輪を示す。記号末尾の添字「i」~「l」は、省略され得る。この場合には、各記号は、4つの各車輪の総称を表す。前後型の制動系統に係る記号の末尾に付された添字「f」、「r」は、それが前後輪の何れの系統に関するものであるかを示す包括記号であり、「f」は前輪系統、「r」は後輪系統を示す。また、ダイアゴナル型の制動系統に係る記号の末尾に付された添字「1」、「2」は、それが何れの系統に関するものであるかを示す包括記号であり、「1」は第1系統、「2」は第2系統を示す。記号末尾の添字「f」、「r」、「1」、「2」は省略され得る。この場合には、各記号は、2つの各制動系統の総称を表す。
≪制動制御装置SC≫
 第2の実施形態に係る制動制御装置SCは、上部流体ユニットYUを含んで構成される。上部流体ユニットYUは上部コントローラECUによって制御される。第1の実施形態と同様に、第2の実施形態でも、車両には、下部コントローラECLによって制御される下部流体ユニットYLが設けられる。上部コントローラECUと下部コントローラECLとは、各信号(センサ検出値、演算値、等)が共有されるよう、通信バスBSを介して接続されている。
 第2の実施形態でも、ジェネレータGNは前輪WHf(回生車輪)に備えられる。第2の実施形態での上部流体ユニットYUは、操作量センサBA、マスタユニットYM、調圧ユニットYC、及び、回生協調ユニットYKにて構成される。
 制動操作部材(ブレーキペダル)BPの操作量Baを検出するよう、操作量センサBAが設けられる。操作量センサBAとして、操作変位センサSP、操作力センサFPに加え、シミュレータSS内の液圧(シミュレータ液圧)Psを検出する、シミュレータ液圧センサPS、回生協調ユニットYKの入力室Rn内の液圧(入力液圧)Pnを検出する、入力液圧センサPNが設けられる。即ち、制動操作量Baとして、操作変位Sp、操作力Fp、シミュレータ液圧Ps、及び、入力液圧Pnのうちの少なくとも1つが採用される。検出された制動操作量Baは、上部コントローラECUに入力される。なお、第2の実施形態では、マスタシリンダ液圧Pmは、操作量Baには該当しない。
[マスタユニットYM]
 マスタユニットYMによって、マスタシリンダ室Rmを介して、前輪ホイールシリンダCWf内の液圧(前輪制動液圧)Pwfが調整される。マスタユニットYMは、マスタシリンダCM、及び、マスタピストンPM、及び、マスタ弾性体SMを含んで構成される。
 マスタシリンダCMは、底部を有する段付きのシリンダ部材である(即ち、小径部と大径部とを有する)。マスタシリンダCMとして、シングル型のものが採用されている。マスタピストンPMは、マスタシリンダCMの内部に挿入されたピストン部材であり、つば部(フランジ)Tmを有する。マスタシリンダCMとマスタピストンPMとは、シールSLにて封止されている。マスタピストンPMは、制動操作部材BPの操作に連動して移動可能である。マスタシリンダCMの内部は、マスタピストンPMによって、3つの液圧室Rm、Rs、Roに区画されている。マスタピストンPMは、マスタシリンダCMの中心軸Jmに沿って、滑らかに移動可能である。
 マスタシリンダ室(単に、「マスタ室」ともいう)Rmは、「マスタシリンダCMの小径内周部、小径底部」、及び、マスタピストンPMの端部によって区画された液圧室である。マスタ室Rmには、マスタシリンダ流体路HMが接続され、下部流体ユニットYLを介して、最終的には、前輪ホイールシリンダCWf(=CWi、CWj)に接続される。
 マスタシリンダCMの内部は、マスタピストンPMのつば部Tmによって、サーボ液圧室(単に、「サーボ室」ともいう)Rsと反力液圧室(単に、「反力室」ともいう)Roとに仕切られている。サーボ室Rsは、「マスタシリンダCMの大径内周部、大径底部」、及び、マスタピストンPMのつば部Tmによって区画された液圧室である。マスタ室Rmとサーボ室Rsとは、つば部Tmを挟んで、相対するように配置される。サーボ室Rsには、前輪調圧流体路HFが接続され、調圧ユニットYCから調整液圧Pcが導入される。
 反力室Roは、マスタシリンダCMの大径内周部、段付部、及び、マスタピストンPMのつば部Tmによって区画された液圧室である。反力室Roは、中心軸Jmの方向において、マスタ液圧室Rmとサーボ液圧室Rsとに挟まれ、それらの間に位置する。反力室Roには、シミュレータ流体路HSが接続される。
 マスタピストンPMの端部とマスタシリンダCMの小径底部との間には、マスタ弾性体(例えば、圧縮ばね)SMが設けられる。マスタ弾性体SMは、マスタシリンダCMの中心軸Jmの方向に、マスタピストンPMをマスタシリンダCMの大径底部に対して押し付けている。非制動時には、マスタピストンPMは、マスタシリンダCMの大径底部に当接している。この状態では、マスタ室Rmは、リザーバRVと連通状態にされている。
 マスタ室Rmは、その内圧(「マスタシリンダ液圧」であり、「マスタ液圧」ともいう)Pmによって、中心軸Jmに沿った後退方向Hbの付勢力Fb(「後退力」という)を、マスタピストンPMに対して付与する。サーボ室Rsは、その内圧(即ち、導入された調整液圧Pc)によって、後退力Fbに対向する前進方向Haの付勢力Fa(「前進力」という)を、マスタピストンPMに付与する。つまり、マスタピストンPMにおいて、サーボ室Rs内の液圧Pcによる前進力Faとマスタ室Rm内の液圧(マスタ液圧)Pmによる後退力Fbとは、中心軸Jmの方向で互いに対抗し(向き合い)、静的には均衡している。マスタ液圧Pmを検出するよう、マスタシリンダ液圧センサPQが設けられる。例えば、マスタシリンダ液圧センサPQは、マスタシリンダ流体路HMに設けられ得る。また、マスタシリンダ液圧センサPQは、下部流体ユニットYLに含まれていてもよい。
[調圧ユニットYC]
 調圧ユニットYCは、電動ポンプDC、逆止弁GC、第1、第2調圧弁UB、UC、及び、第1、第2調整液圧センサPB、PCを備えている。調圧ユニットYCによって、前輪ホイールシリンダCWfの液圧(前輪制動液圧)Pwfと後輪ホイールシリンダCWrの液圧(後輪制動液圧)Pwrとが、独立、且つ、個別に調節される。具体的には、ジェネレータGNが備えられる前輪WHfの制動液圧Pwfが、ジェネレータGNが備えられない後輪WHrの制動液圧Pwr以下の範囲で独立に調整される。
 電動ポンプDCは、電気モータMC、及び、流体ポンプHPによって構成され、それらが一体となって回転する。流体ポンプHPにおいて、吸込口は、第1リザーバ流体路HVに接続され、吐出口は、調圧流体路HCの一方の端部に接続される。調圧流体路HCには、逆止弁GCが設けられる。調圧流体路HCの他方の端部は、第2調圧弁UCを介して、第2リザーバ流体路HXに接続される。第1、第2リザーバ流体路HV、HXは、リザーバRVに接続される。
 調圧流体路HCには、2つの調圧弁UB、UCが直列に設けられる。具体的には、調圧流体路HCには、第1調圧弁UBが設けられ。調圧流体路HCの他方の端部には、第2調圧弁UCが配置される。第2調圧弁UCには、第2リザーバ流体路HXの端部が接続される。第1、第2調圧弁UB、UCは、調圧弁UAと同様に、通電状態(例えば、供給電流)に基づいて開弁量(リフト量)が連続的に制御される常開型リニア電磁弁(比例弁、差圧弁)である。
 電動ポンプDCが駆動されると、「HV→HP→GC→UB→UC→HX→RV→HV」ような、制動液BFの還流(A)が形成される。即ち、制動液BFの還流路(A)には、流体ポンプHP、第1、第2調圧弁UB、UC、及び、リザーバRVが含まれている。なお、第1の実施形態で示したように、第2調圧弁UCが第1リザーバ流体路HVに接続されてもよい。この場合、還流路(A)は、「HV→HP→GC→UB→UC→HV」の順となる。
 第1、第2調圧弁UB、UCが全開状態にある場合、調圧流体路HC内の液圧(第1、第2調整液圧)Pb、Pcは、共に、略「0(大気圧)」である。第1調圧弁UBへの通電量が増加され、調圧弁UBによって還流(A)が絞られると、調圧流体路HCにおいて、第1調圧弁UBの上流側の液圧(例えば、流体ポンプHPと第1調圧弁UBと間の液圧(第1調整液圧)Pb)が、「0」から増加される。また、第2調圧弁UCへの通電量が増加され、調圧弁UCによって還流(A)が絞られると、調圧流体路HCにおいて、第2調圧弁UCの上流側の液圧(例えば、第1調圧弁UBと第2調圧弁UCと間の液圧(第2調整液圧)Pc)が、「0」から増加される。
 第1、第2調圧弁UB、UCは、調圧流体路HCに対して直列に配置されるため、第2調圧弁UCによって調整される第2調整液圧Pcは、第1調整液圧Pb以下である。換言すれば、第2調圧弁UCによって、第2調整液圧Pcが、「0(大気圧)」から増加するよう調整され、第1調圧弁UBによって、第1調整液圧Pbが、第2調整液圧Pcから増加するよう調整される。調圧ユニットYCでは、第1、第2調整液圧Pb、Pcを検出するよう、第1、第2調整液圧センサPB、PCが設けられる。なお、マスタユニットYMの諸元(マスタピストンPMの受圧面積等)は既知であるため、第2調整液圧センサPCに代えて、マスシリンダ液圧センサPQが用いられてもよい。つまり、第2調整液圧センサPCは、省略され得る。
 調圧流体路HCは、流体ポンプHPと第1調圧弁UBとの間の部位Bhにて、後輪調圧流体路HRに分岐される。後輪調圧流体路HRは、下部流体ユニットYLを介して、後輪ホイールシリンダCWrに接続される。また、調圧流体路HCは、第1調圧弁UBと第2調圧弁UCとの間の部位Bgにて、前輪調圧流体路HFに分岐される。前輪調圧流体路HFは、サーボ室Rsに接続される。従って、第2調整液圧Pcは、サーボ室Rsに導入(供給)される。
[回生協調ユニットYK]
 回生協調ユニットYKによって、摩擦制動と回生制動との協調制御(「回生協調制御」という)が達成される。例えば、回生協調ユニットYKによって、制動操作部材BPは操作されているが、制動液圧Pwが発生しない状態が形成され得る。回生協調ユニットYKは、入力シリンダCN、入力ピストンPK、入力弾性体SN、第1開閉弁VA、第2開閉弁VB、ストロークシミュレータSS、シミュレータ液圧センサPS、及び、入力液圧センサPNにて構成される。
 入力シリンダCNは、マスタシリンダCMに固定された、底部を有するシリンダ部材である。入力ピストンPKは、入力シリンダCNの内部に挿入されたピストン部材である。入力ピストンPKは、制動操作部材BPに連動するよう、制動操作部材BPに機械的に接続されている。入力ピストンPKには、つば部(フランジ)Tnが設けられ、つば部TnとマスタシリンダCMへの取付面との間には、入力弾性体(例えば、圧縮ばね)SNが設けられる。従って、入力弾性体SNは、中心軸Jmの方向に、入力ピストンPKのつば部Tnを入力シリンダCNの底部に対して押し付けている。
 非制動時には、マスタピストンPMの段付部がマスタシリンダCMの大径底部に当接し、入力ピストンPKのつば部Tnが入力シリンダCNの底部に当接している。非制動時には、入力シリンダCNの内部にて、マスタピストンPMの端面Mqと入力ピストンPKの端面Mgとの隙間Ksは、所定距離ks(「初期隙間」という)にされている。即ち、2つのピストンPM、PKが最も後退方向Hb(前進方向Haとは反対方向)の位置(各ピストンの「初期位置」という)にある場合(即ち、非制動時)に、マスタピストンPMと入力ピストンPKとは、所定距離ksだけ離れている。ここで、所定距離ksは、回生量Rgの最大値に対応している。回生協調制御が実行される場合には、隙間(「離間変位」ともいう)Ksは、調整液圧Pcによって制御(調節)される。
 制動操作部材BPが、「Ba=0」の状態から踏み込まれると、入力ピストンPKは、その初期位置から、前進方向Haに移動される。このとき、調整液圧Pcが「0」のままであれば、マスタピストンPMは初期位置のままなので、隙間Ks(端面Mgと端面Mqとの間の距離)は、徐々に減少する。一方、調整液圧Pcが「0」から増加されると、マスタピストンPMは、その初期位置から、前進方向Haに移動される。このため、隙間Ksは、調整液圧Pcによって、「0≦Ks≦ks」の範囲で制動操作量Baとは独立して調整可能である。つまり、調整液圧Paが調整されることにより、入力ピストンPKとマスタピストンPMとの隙間Ksが調節され、回生協調制御が達成される。
 回生協調ユニットYKの入力室Rnと、マスタユニットYMの反力室Roとが、シミュレータ流体路HSにて接続される。シミュレータ流体路HSには、第1開閉弁VAが設けられる。第1開閉弁VAは、開位置、及び、閉位置を有する常閉型電磁弁(オン・オフ弁)である。シミュレータ流体路HSの第1開閉弁VAと反力室Roとの間の部位Bsに、第3リザーバ流体路HTが接続される。第3リザーバ流体路HTには、第2開閉弁VBが設けられる。第2開閉弁VBは、開位置、及び、閉位置を有する常開型電磁弁(オン・オフ弁)である。
 シミュレータSSが、第1開閉弁VAと反力室Roとの間の部位Boにて、シミュレータ流体路HSに接続される。換言すれば、回生協調ユニットYKの入力室Rnは、シミュレータ流体路HSによって、シミュレータSSに接続される。回生協調制御が実行される場合には、第1開閉弁VAが開位置、第2開閉弁VBが閉位置にされる。第2開閉弁VBが閉位置にされているため、第3リザーバ流体路HTにおいて、リザーバRVへの流路は遮断されている。従って、制動液BFが、入力シリンダCNの入力室RnからシミュレータSS内に移動される。シミュレータSSによって、制動操作部材BPが操作される場合の操作力Fpが発生される。
 第1開閉弁VAと反力室Roとの間のシミュレータ流体路HSには、シミュレータSS内の液圧(「シミュレータ液圧」という)Psを検出するよう、シミュレータ液圧センサPSが設けられる。また、第1開閉弁VAと入力室Rnとの間のシミュレータ流体路HSには、入力室Rn内の液圧(「入力液圧」という)Pnを検出するよう、入力液圧センサPNが設けられる。シミュレータ液圧センサPS、及び、入力液圧センサPNは、上述した制動操作量センサBAの1つである。検出された液圧Ps、Pnは、制動操作量Baとして、上部コントローラECUに入力される。なお、第1、第2開閉弁VA、VBに通電が行われている場合には「Ps=Pn」であるため、シミュレータ液圧センサPS、及び、入力液圧センサPNのうちの何れか一方は省略可能である。
 電気モータMC、及び、電磁弁VA、VB、UB、UCは、上部コントローラECUによって、各種信号(Ba等)に基づいて制御される。具体的には、上部コントローラECUでは、各種電磁弁VA、VB、UB、UCを制御するための駆動信号Va、Vb、Ub、Ucが演算される。同様に、電気モータMCを制御するための駆動信号Mcが演算される。そして、駆動信号Va、Vb、Ub、Uc、Mcに基づいて、電磁弁VA、VB、UB、UC、及び、電気モータMCが駆動される。なお、第2調整液圧Pcに代えて、マスタシリンダ液圧Pmが採用されてもよい。
<調圧制御の第2処理例>
 図6の制御フロー図を参照して、第2の実施形態に対応した調圧制御の第2処理例について説明する。第1の処理例では、4つのホイールシリンダCWの全てに、同一の調整液圧Paが供給された。第2処理例では、前輪ホイールシリンダCWfの液圧Pwfと後輪ホイールシリンダCWrの液圧Pwrとが、「Pb≧Pc」の範囲で、個別に制御される。ステップS310~ステップS360の処理は、ステップS110~ステップS160の処理と同様であるため、簡潔に説明する。
 ステップS310にて、制動制御装置SCの初期化が行われる。ステップS320にて、第1、第2開閉弁VA、VBに通電が行われ、第1開閉弁VAが開位置にされ、第2開閉弁VBが閉位置にされる。ステップS330にて、制動操作量Ba、第1、第2調整液圧(検出値)Pb、Pc(又は、マスタシリンダ液圧Pm)、及び、車体速度Vxが読み込まれる。ステップS340にて、制動操作量Baに基づいて、「制動中であるか、否か」が判定される。「Ba>bo(所定値)」の場合には、処理はステップS350に進む。「Ba≦bo」の場合には、処理はステップS330に戻される。
 ステップS350にて、ブロックX350の演算マップZfd、及び、操作量Baに基づいて、要求制動力Fd(総制動力Fの目標値)が演算される。要求制動力Fdは、操作量Baが「0」から所定値boの範囲では、「0」に決定され、操作量Baが所定値bo以上では、操作量Baが増加するに伴い、「0」から単調増加するよう演算される。ステップS360にて、ブロックX160の演算マップZfx、及び、車体速度Vx(又は、ジェネレータ回転数Ng)に基づいて、最大回生力(発生可能な回生制動力の最大値)Fxが演算される。最大回生力Fxは、「0≦Vx<vo(所定速度)」の場合には、車体速度Vxの増加に従って、最大回生力Fxが増加するように演算される。「vo≦Vx<vp(所定速度)」の場合には、最大回生力Fxは上限値fxに決定される。「Vx≧vp」の場合には、車体速度Vxが増加するに従って、最大回生力Fxが減少するように演算されている。
 ステップS370にて、制動力の配分比率(特に、制動力全体Fに対する後輪制動力の比率であり、「後輪比率Hr」という)が設定される、例えば、後輪比率Hrは、予め設定された定数(所定値)hrとして決定され得る。また、後輪比率Hrは、旋回状態量Ta、車体速度Vx、及び、要求制動力Fdのうちの少なくとも1つに基づいて決定され得る。ここで、旋回状態量Taが、車両の旋回状態を表す変数であり、例えば、ヨーレイト、横加速度が相当する。
 ステップS380にて、要求制動力Fd、及び、最大回生力Fxに基づいて、「要求制動力Fdが、最大回生力Fx以下であるか、否か」が判定される。つまり、要求されている制動力Fdが、回生制動力のみによって達成可能か、否かが判定される。処理は、「Fd≦Fx」の場合には、ステップS390に進み、「Fd>Fx」の場合には、ステップS400に進む。
 ステップS390にて、要求制動力Fdに基づいて、回生制動力(目標値)Fg、及び、前後輪の摩擦制動力(目標値)Fmf、Fmrが演算される。具体的には、目標回生制動力Fgが、要求制動力Fdに一致するように決定され、前後輪の目標摩擦制動力Fmf、Fmrが、「0」に演算される(即ち、「Fg=Fd、Fmf=Fmr=0」)。つまり、回生制動力Fgが、最大回生力Fxに達していない場合(「Fg<Fx」の場合)には、車両減速には、摩擦制動が採用されず、回生制動のみによって、要求制動力Fdが達成される。
 ステップS400にて、目標回生制動力Fg、補完制動力Fh、及び、後輪基準力Fsが演算される。回生制動力Fgは、最大回生力Fxに一致するように演算される。つまり、回生制動力Fgが、最大回生力Fxに達した場合(「Fg≧Fx」の場合)には、「Fg=Fx」が演算され、回生エネルギが最大化される。後輪基準力Fsは、要求制動力Fd、及び、後輪比率Hrに基づいて演算される。後輪基準力Fsは、要求制動力Fdに対して制動力の前後比率(即ち、後輪比率Hr)が考慮された値であり、後輪比率Hrを達成するために基準とされる。具体的には、要求制動力Fdに後輪比率Hrが乗算されて、後輪基準力Fsが演算される(即ち、「Fs=Hr×Fd」)。また、補完制動力Fhが、要求制動力Fd、及び、最大回生力Fxに基づいて演算される。補完制動力Fhは、要求制動力Fdを達成するために、摩擦制動によって補完されるべき制動力である。具体的には、要求制動力Fdから最大回生力Fxが減算されて、補完制動力Fhが演算される(即ち、「Fh=Fd-Fx」)。
 ステップS410では、補完制動力Fhと後輪基準力Fsとが比較され、「補完制動力Fhが後輪基準力Fs以下であるか、否か」が判定される。「Fh≦Fs」である場合にはステップS420に進み、「Fh>Fs」である場合にはステップS430に進む。
 ステップS420にて、前輪摩擦制動力Fmfが「0」に決定され、後輪摩擦制動力Fmrは、補完制動力Fhに一致するよう演算される(即ち、「Fmf=0、Fmr=Fh」)。補完制動力Fhが後輪基準力Fs以下である場合には、前輪WHfには、前輪摩擦制動力Fmfが発生されず、回生制動力Fgのみが作用される。そして、要求制動力Fdが満足されるように、後輪WHrには、摩擦制動力Fmrが発生される。
 一方、ステップS430では、後輪摩擦制動力Fmrが後輪基準力Fsに一致するよう演算されるとともに、前輪摩擦制動力Fmfが、補完制動力Fhから後輪基準力Fsを減じた値(「前輪指示力」という)Fcに一致するよう演算される(即ち、「Fmf=Fc=Fh-Fs、Fmr=Fs」)。補完制動力Fhが後輪基準力Fsよりも大きい場合には、後輪摩擦制動力Fmrは、後輪比率Hrが考慮された後輪基準力Fsにされ、要求制動力Fdに対して不足する分(=Fc)が、前輪摩擦制動力Fmfとして決定される。
 ステップS440にて、回生制動力Fgに基づいて、回生量Rgが演算される。回生量Rgは、ジェネレータGNの回生量の目標値である。回生量Rgは、通信バスBSを介して、上部コントローラECUから駆動コントローラECDに送信される。
 ステップS450にて、摩擦制動力の目標値Fm(=Fmf、Fmr)に基づいて、目標液圧Pt(=Ptf、Ptr)が演算される。つまり、摩擦制動力Fmが液圧換算されて、目標液圧Ptが決定される。後輪目標液圧Ptrは、第1調整液圧Pbに対応した後輪ホイールシリンダCWrの液圧の目標値である。また、前輪目標液圧Ptfは、第2調整液圧Pcに対応した前輪ホイールシリンダCWfの液圧の目標値である。
 ステップS460にて、車体速度Vx(又は、ジェネレータ回転数Ng)、及び、第1、第2調整液圧Pb、Pc(第1、第2調整液圧センサPB、PCの検出値)に基づいて、先行加圧制御が実行される。第1の実施形態と同様に、「先行加圧制御」は、「回生ジェネレータGNによる回生制動力Fg」と「調整液圧Pcによる前輪摩擦制動力Fmf」とのすり替え作動が開始される前に、前輪制動液圧Pwf(=Pc)が、「0」から所定液圧ppに増加され、維持される制御である。すり替え作動は、車体速度Vx(結果、最大回生力Fx)の減少に伴い、ステップS430の処理が開始された時点(即ち、ステップS410が初めて否定された時点)にて開始される。従って、先行加圧制御は、ステップS420の処理が実行されている場合に、前輪目標液圧Ptf(結果、実際の調整液圧Pc)が、所定液圧ppにまで、僅かに増加される。
 ステップS470にて、前輪目標液圧Ptf、及び、後輪目標液圧Ptrに基づいて、電気モータMCが制御される。第1の実施形態と同様に、目標液圧Pt(=Ptf、Ptr)が時間微分されて、液圧変化量dPが演算される。目標液圧Ptに基づく基準流量Qoと、液圧変化量dPに基づく調整流量Qhが合算されて、目標流量Qtが演算される(即ち、「Qt=Qo+Qhf+Qhr」)。そして、目標流量Qtに基づいて、目標回転数Ntが決定され、実際の回転数Naが目標回転数Ntに近づき、一致するよう、回転数フィードバック制御が実行される。
 ステップS470では、前輪、後輪液圧変化量dPf、dPrのうちの少なくとも1つが「0」より大きい場合に、前輪、後輪調整流量Qhf、Qhrの和(「Qhf+Qhr」であり、「合計流量」という」)が「0」よりも大きくなるように演算される。そして、前輪、後輪液圧変化量dPf、dPrが大きいほど(例えば、制動操作部材BPが急操作され、急増圧が必要な場合)、合計流量(Qhf+Qhr)が大きくなるように決定され、目標回転数Ntが大きく演算される。つまり、制動液圧Pwf、Pwrの増圧勾配に応じて、電動ポンプDCの目標回転数Nt(結果、実際の回転数Na)が増加され、その吐出流量が増加される。一方、「第1、第2調整液圧Pb、Pcが一定に維持される場合」、及び、「第1、第2調整液圧Pb、Pcが減少される場合」には、電動ポンプDCの吐出流量は、基準流量Qoで十分である。これらの場合には、合計流量(Qhf+Qhr)が「0」に演算され、増加されていた目標回転数Ntが減少される。
 また、ステップS470では、前輪目標液圧Ptf、及び、後輪目標液圧Ptrに基づいて、第1、第2調圧弁UB、UCが制御される。第1の実施形態と同様に、液圧変化量dP(=dPf、dPr)に基づいて要求通電量Is(=Isf、Isr)が決定される。前輪、後輪目標液圧Ptf、Ptr、及び、液圧センサ検出値Pc、Pbとの偏差hP(=hPf、hPr)に基づいて、補償通電量Ih(=Ihf、Ihr)が演算される。そして、要求通電量Is、及び、補償通電量Ihに基づき、目標通電量It(=Itf、Itr)が決定され、目標通電量Itに基づいて、通電量フィードバック制御が実行される。結果、実際の調整液圧Pc、Pbが、前輪、後輪目標液圧Ptf、Ptrに近づき、一致されるよう、2つの調圧弁UC、UBが制御される。
 第2の実施形態では、「Pb≧Pc」の範囲で、第1調整液圧Pb、及び、第2調整液圧Pcが、独立、且つ、別々に調整される。これにより、制動力の前後配分が考慮された上で、回生協調制御が実行されるため、車両の減速性、安定性が確保されるとともに、回生エネルギが最大化され得る。
 なお、第2の実施形態でも、前輪目標液圧Ptf(=Pc)が所定液圧pp以上である場合には、先行加圧は不要であるため、制御禁止の状態にされる。また、調圧ユニットYCには、逆止弁GCが設けられているため、第1、第2調圧弁UB、UCが完全に閉じられると、調整液圧Pb、Pcが一定に保たれる。また、調圧弁UB、UCの開弁によって、調整液圧Pb、Pcの減少は可能である。従って、「dPf≦0、且つ、dPr≦0」の場合には、「Qo=0」にされ、目標流量Qtが「0」に決定される。そして、電動ポンプDC(=MC)の回転が停止され得る(即ち、「Nt=0」)。制動操作部材BPは保持時、又は、戻し時に、電気モータMCが停止状態にされることにより、更なる省電力が達成され得る。
<第2の実施形態の作用・効果>
 図7の時系列線図を参照して、第2の実施形態の作用・効果について説明する。第1の実施形態と同様に、線図は、要求制動力Fdが一定に維持され、車体速度Vxが減少している状況が想定されている。
 「Fd=fb+fc」の状態が維持されている。時点u0までは、「Vx>vx」であるため、「Fg=fb、Fmf=0、Fmr=fc」が決定される。これに従い、「Ptf=0、Ptr=pb」が演算され、回転数Naが値neで駆動されている。時点u0にて、先行加圧制御の開始条件である、「車体速度Vxがしきい速度vx以下であること」が満足されるため、前輪目標液圧Ptfの増加が開始される。前輪目標液圧Ptf(結果、調整液圧Pc)は、車両減速度への影響を回避するよう、所定の増加勾配をもって、徐々に所定液圧ppにまで増加され、所定液圧ppに維持される。
 時点u1にて、車体速度Vxの低下に伴い最大回生力Fxが減少されるため、回生制動力Fgが減少される。回生制動力Fgの低下を補償し、車両の総制動力Fが、要求制動力Fdに一致するよう、前輪摩擦制動力Fmfが増加される。そして、前輪摩擦制動力Fmfの増加に応じて、前輪目標液圧Ptfが、所定液圧ppから増加される。つまり、時点u1(先行加圧が行われた後)にて、回生制動力Fgと、調整液圧Pcによる摩擦制動力Fmfとのすり替え作動が開始される。前輪目標液圧Ptfの増加に伴い、後輪液圧変化量dPfが増加されるため、回転数Naが値nhにまで増加される。時点u2にて、すり替え作動が終了されると、前輪目標液圧Ptf(=Pc)は、一定に維持される。「dPf=0」であるため、回転数Naは、値ngにまで減少される。
 第2の実施形態でも、第1の実施形態と同様の効果を奏する。制動制御装置SCでは、電動ポンプDCが液圧変化量dPに基づいて制御されるため、省電力化が図られる。具体的には、「dP≦0」では、電動ポンプDCが停止、又は、低回転で駆動される。そして、「dP>0」になると、液圧変化量dPが大きいほど、目標回転数Nt(結果、実際の回転数Na)が大となるように、電動ポンプDCが制御される。その後、液圧変化量dPが、再度、「0」以下になると、電動ポンプDCは停止、又は、低速駆動される。
 すり替え作動において、前輪制動液圧Pwfが「0」から増加される場合には、先ず、初期消費液量分の制動液BFが、前輪ホイールシリンダCWfに供給される必要がある。先行加圧制御によって、この量に相当する制動液BFが、すり替え作動の事前に供給されるため、制動液圧Pwの調整精度、応答性が向上され得る。また、電動ポンプDCの急回転が回避されるため、作動音が低減される。加えて、第2の実施形態では、第1調整液圧Pb、及び、第2調整液圧Pcが、独立、且つ、別々に調整されるため、回生協調制御によって回生されるエネルギが最大化される上に、車両の減速性、及び、方向安定性が確保され得る。
<他の実施形態>
 以下、他の実施形態について説明する。他の実施形態においても、上記同様の効果(すり替え作動における液圧応答性の向上等)を奏する。
 第1実施形態では、タンデム型マスタシリンダCMと調圧ユニットYAとの組み合わせが、第2実施形態では、シングル型マスタシリンダCMと調圧ユニットYCとの組み合わせが、例示された。これらの構成は、組み合わせが可能である。同一調圧においては、タンデム型マスタシリンダCMを有するマスタユニットYMと調圧ユニットYAとが組み合わされ得る。該構成では、サーボ室Rsに調整液圧Paが供給される。独立調圧においては、前後型流体路が採用されたタンデム型マスタシリンダCMに、調圧ユニットYCが組み合わされる。そして、後輪ホイールシリンダCWrに第1調整液圧Pbが供給され、前輪ホイールシリンダCWfに第2調整液圧Pcが供給される。
 上記実施形態では、前輪WHfにジェネレータGNが備えられたが、後輪WHrに備えられてもよい。つまり、後輪WHrが回生車輪にされ得る。第2の実施形態において、ジェネレータGNが後輪WHrに備えられる構成では、第1調整液圧Pbがサーボ室Rs(又は、前輪ホイールシリンダCWf)に導入され、第2調整液圧Pcが後輪ホイールシリンダCWrに導入される。従って、すり替え作動は、「Ptr=0」の状態から、最大回生力Fxの減少分を補償するように、後輪目標液圧Ptr(=Pc)が増加される。そして、先行加圧制御では、すり替え作動が開始される前に、後輪目標液圧Ptrが所定液圧ppにまで、徐々に増加される。同様に、後輪目標液圧Ptr(=Pc)が所定液圧pp以上である場合には、先行加圧制御は禁止される。
 
 

Claims (2)

  1.  車両の車輪に回生ジェネレータを備えた車両の制動制御装置であって、
     電動ポンプ、及び、調圧弁にて構成され、
     前記電動ポンプと前記調圧弁との間の調圧流体路の調整液圧を調節する調圧ユニットと、
     前記電動ポンプ、及び、前記調圧弁を制御するコントローラと、
     を備え、
     前記コントローラは、
     前記回生ジェネレータによる回生制動力と前記調整液圧による摩擦制動力とのすり替え作動を開始する前に、
     前記調整液圧をゼロから所定液圧に増加して維持する先行加圧を行い、
     前記先行加圧を行った後に、前記電動ポンプの回転数を増加し、前記調整液圧を前記所定液圧から増加して前記すり替え作動を実行するよう構成された、車両の制動制御装置。
  2.  請求項1に記載の車両の制動制御装置において、
     前記コントローラは、
     前記車両の制動操作部材の操作量に応じた目標液圧に基づいて液圧変化量を演算し、
     前記液圧変化量に基づいて前記電動ポンプの回転数を増加するよう構成された、車両の制動制御装置。
     
     
PCT/JP2019/024629 2018-06-26 2019-06-21 車両の制動制御装置 WO2020004241A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980043427.0A CN112313124B (zh) 2018-06-26 2019-06-21 车辆制动控制装置
US17/251,414 US11807215B2 (en) 2018-06-26 2019-06-21 Brake control device for vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018120580A JP7146167B2 (ja) 2018-06-26 2018-06-26 車両の制動制御装置
JP2018-120580 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020004241A1 true WO2020004241A1 (ja) 2020-01-02

Family

ID=68984977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024629 WO2020004241A1 (ja) 2018-06-26 2019-06-21 車両の制動制御装置

Country Status (4)

Country Link
US (1) US11807215B2 (ja)
JP (1) JP7146167B2 (ja)
CN (1) CN112313124B (ja)
WO (1) WO2020004241A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7040316B2 (ja) * 2018-06-25 2022-03-23 株式会社アドヴィックス 車両の制動制御装置
JP7425974B2 (ja) 2021-02-17 2024-02-01 株式会社豊田自動織機 産業車両の制動制御装置
JP2023008331A (ja) * 2021-07-05 2023-01-19 株式会社Subaru 車両の運転支援装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018411A (ja) * 2011-07-13 2013-01-31 Hitachi Automotive Systems Ltd 車両制御装置
JP2017060343A (ja) * 2015-09-18 2017-03-23 日立オートモティブシステムズ株式会社 制動制御装置
WO2018030083A1 (ja) * 2016-08-10 2018-02-15 株式会社アドヴィックス 車両用制動装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276655A (ja) 2006-04-07 2007-10-25 Advics:Kk 車両用ブレーキ制御装置
US8366210B2 (en) 2006-04-03 2013-02-05 Advics Co., Ltd. Braking apparatus for vehicle
JP5736673B2 (ja) * 2010-06-07 2015-06-17 日産自動車株式会社 複合ブレーキの制動力協調制御装置
JP5626168B2 (ja) * 2011-09-27 2014-11-19 株式会社アドヴィックス 車両用制動制御装置
JP5990548B2 (ja) * 2014-01-28 2016-09-14 株式会社アドヴィックス 車両の制動制御装置
JP6935710B2 (ja) * 2017-09-26 2021-09-15 株式会社アドヴィックス 車両の制動制御装置
JP7146165B2 (ja) 2018-02-09 2022-10-04 株式会社アドヴィックス 車両の制動制御装置
JP7067099B2 (ja) * 2018-02-09 2022-05-16 株式会社アドヴィックス 車両の制動制御装置
JP7070145B2 (ja) * 2018-06-25 2022-05-18 株式会社アドヴィックス 車両の制動制御装置
JP7040316B2 (ja) * 2018-06-25 2022-03-23 株式会社アドヴィックス 車両の制動制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018411A (ja) * 2011-07-13 2013-01-31 Hitachi Automotive Systems Ltd 車両制御装置
JP2017060343A (ja) * 2015-09-18 2017-03-23 日立オートモティブシステムズ株式会社 制動制御装置
WO2018030083A1 (ja) * 2016-08-10 2018-02-15 株式会社アドヴィックス 車両用制動装置

Also Published As

Publication number Publication date
CN112313124A (zh) 2021-02-02
CN112313124B (zh) 2023-04-14
US11807215B2 (en) 2023-11-07
JP2020001478A (ja) 2020-01-09
US20210276534A1 (en) 2021-09-09
JP7146167B2 (ja) 2022-10-04

Similar Documents

Publication Publication Date Title
JP7040316B2 (ja) 車両の制動制御装置
US11377082B2 (en) Braking control device for vehicle
JP7146165B2 (ja) 車両の制動制御装置
JP6935710B2 (ja) 車両の制動制御装置
WO2020004240A1 (ja) 車両の制動制御装置
WO2020004241A1 (ja) 車両の制動制御装置
JP7247490B2 (ja) 車両の制動制御装置
WO2019017385A1 (ja) 車両の制動制御装置
JP7172526B2 (ja) 車両の制動制御装置
JP6935711B2 (ja) 車両の制動制御装置
JP7091797B2 (ja) 車両の制動制御装置
JP7070001B2 (ja) 車両の制動制御装置
JP2020032833A (ja) 車両の制動制御装置
WO2023033021A1 (ja) 車両の制動制御装置
JP2023034693A (ja) 車両の制動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827359

Country of ref document: EP

Kind code of ref document: A1