WO2020004198A1 - Semiconductor device and high frequency module - Google Patents

Semiconductor device and high frequency module Download PDF

Info

Publication number
WO2020004198A1
WO2020004198A1 PCT/JP2019/024368 JP2019024368W WO2020004198A1 WO 2020004198 A1 WO2020004198 A1 WO 2020004198A1 JP 2019024368 W JP2019024368 W JP 2019024368W WO 2020004198 A1 WO2020004198 A1 WO 2020004198A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
drain electrode
layer
source
semiconductor device
Prior art date
Application number
PCT/JP2019/024368
Other languages
French (fr)
Japanese (ja)
Inventor
孝紀 東
将志 柳田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2020527448A priority Critical patent/JP7345464B2/en
Publication of WO2020004198A1 publication Critical patent/WO2020004198A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • the present disclosure relates to a semiconductor device and a high-frequency module.
  • a high electron mobility transistor (HEMT) using a heterojunction of a compound semiconductor has characteristics such as high withstand voltage, high heat resistance, high saturation electron velocity, and high channel electron concentration compared to other transistors. Have. Therefore, the high electron mobility transistor is expected to be applied to a small and high-performance power device or high-frequency device.
  • a channel layer and a barrier layer formed of different compound semiconductors are heterojuncted to form a two-dimensional electron gas serving as a channel at an interface of the channel layer in contact with the barrier layer.
  • the barrier layer has a high potential barrier and it is difficult to form a favorable ohmic contact, the high electron mobility transistor tends to have a high contact resistance.
  • Patent Literature 1 a compound semiconductor layer having a small band gap is selectively regrown under a source electrode or a drain electrode, and a source electrode or a drain electrode and a two-dimensional electron gas are formed by the compound semiconductor layer.
  • a technique for forming a contact is disclosed. According to the technique disclosed in Patent Literature 1, the ohmic characteristics between the source or drain electrode and the two-dimensional electron gas serving as the channel can be improved, so that the contact resistance of the high electron mobility transistor is reduced. can do.
  • the growth rate and crystal quality of the compound semiconductor differ depending on the plane area on which the compound semiconductor is grown. Therefore, when a plurality of types of transistors having different source or drain areas are mixedly mounted on one chip or substrate, the crystal quality or the thickness of the regrown compound semiconductor layer may be different. In such a case, it has been difficult to obtain the same ohmic characteristics with a plurality of mixed transistors.
  • a channel layer formed of a first compound semiconductor, a barrier layer formed on the channel layer with a second compound semiconductor different from the first compound semiconductor, and the barrier layer A gate electrode provided on the layer, a source electrode and a drain electrode provided on both sides of the gate electrode on the barrier layer, and the barrier layer below the source electrode and the drain electrode, respectively. And a contact layer provided therethrough.
  • the source and drain electrodes of the first transistor each have a planar area equal to the source electrode of the second transistor.
  • a cross section larger than a plane area of the drain electrode and cut by a straight line connecting the source electrode and the drain electrode of the first transistor. Width of the contact layer in is sized to correspond to the width of the contact layer in the source electrode and the section cut along a straight line connecting said drain electrode of said second transistor, a semiconductor device is provided.
  • a contact layer provided through the layer.
  • the first and second transistors each have a contact layer, and the planar area of the source electrode or the drain electrode of the first transistor is the same as that of the second transistor.
  • the width of the contact layer in the cross section taken is a size corresponding to the width of the contact layer in a cross section cut by a straight line connecting the source electrode and the drain electrode of the second transistor.
  • the areas of the contact layers are formed so as to correspond to each other. According to this, in each of the first transistor and the second transistor, the growth rate of the crystal of the contact layer can be made substantially the same.
  • FIG. 1 is a longitudinal sectional view illustrating an outline of a semiconductor device according to an embodiment of the present disclosure.
  • FIG. 2 is a plan view and a longitudinal sectional view showing a planar structure and a sectional structure of a source or drain region SD2 in FIG. 1.
  • 2A and 2B are a plan view and a longitudinal sectional view showing a planar structure and a sectional structure of a source or drain region SD1 in FIG. 4A and 4B are a vertical cross-sectional view and a plan view illustrating a specific cross-sectional structure and a specific planar structure of a first transistor.
  • FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment.
  • FIG. 1 is a longitudinal sectional view illustrating an outline of a semiconductor device according to an embodiment of the present disclosure.
  • FIG. 2 is a plan view and a longitudinal sectional view showing a planar structure and a sectional structure of a
  • FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment.
  • FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment.
  • FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment.
  • FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment.
  • FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment.
  • FIGS. 9A and 9B are a vertical cross-sectional view and a plan view illustrating a cross-sectional structure and a planar structure of a first transistor according to a first modification.
  • FIGS. 9A and 9B are a vertical cross-sectional view and a plan view illustrating a cross-sectional structure and a planar structure of a first transistor according to a second modification.
  • FIGS. 13A and 13B are a vertical cross-sectional view and a plan view illustrating a cross-sectional structure and a planar structure of a first transistor according to a third modification.
  • FIGS. FIGS. 15A and 15B are a vertical cross-sectional view and a plan view illustrating a cross-sectional structure and a planar structure of a first transistor according to a fourth modification.
  • FIGS. FIGS. 19A and 19B are a vertical cross-sectional view and a plan view illustrating a cross-sectional structure and a planar structure of a first transistor according to a fifth modification.
  • FIGS. FIG. 3 is a schematic perspective view illustrating a high-frequency module to which the semiconductor device according to the same embodiment is applied.
  • the expression “substantially the same” allows the case where there is a difference due to a manufacturing or design factor, in addition to the case where they completely match.
  • the expression “substantially the same” may include a case where there is a difference of 10% or less, in addition to a case where there is a perfect match.
  • FIG. 1 is a longitudinal sectional view showing an outline of the semiconductor device according to the present embodiment.
  • the semiconductor device includes a first transistor 11 and a second transistor 12 having different shapes or sizes from each other.
  • the first transistor 11 includes a substrate 110, a channel layer 111, a barrier layer 113, a gate insulating film 121, a gate electrode 120, a source or drain electrode 140, and a contact layer 130.
  • the second transistor 12 includes a substrate 110, a channel layer 111, a barrier layer 113, a gate insulating film 121, a gate electrode 220, a source or drain electrode 240, and a contact layer 230.
  • the first transistor 11 and the second transistor 12 are high electron mobility transistors in which a high mobility two-dimensional electron gas 150 is formed at an interface between the channel layer 111 and the barrier layer 113.
  • the semiconductor device according to the present embodiment is described as including two types of high electron mobility transistors having different shapes or sizes from each other, but the present embodiment is not limited to this example.
  • the semiconductor device according to the present embodiment may include three or more types of high electron mobility transistors having different shapes or sizes.
  • the high electron mobility transistor will be described below with reference to the second transistor 12 as an example.
  • the gate electrode 120, the source or drain electrode 140, and the contact layer 130 are substantially the same as the gate electrode 220, the source or drain electrode 240, and the contact layer 230 except that the shape or size is different.
  • the second transistor 12 will be described as a high electron mobility transistor having a so-called MIS (Metal-Insulator-Semiconductor) gate structure, but the present embodiment is not limited to this example.
  • the gate structure of the second transistor 12 may be any known gate structure.
  • the substrate 110 is a substrate on which each layer of the first transistor 11 or the second transistor 12 is stacked.
  • the substrate 110 may be, for example, a substrate formed of a compound semiconductor.
  • the substrate 110 may be a substrate used for a general semiconductor device such as a silicon (Si) substrate, a silicon carbide (SiC) substrate, or a sapphire substrate.
  • the channel layer 111 is formed using the first compound semiconductor and is provided over the substrate 110.
  • a two-dimensional electron gas 150 in which electrons travel with high mobility is formed in the channel layer 111 due to a difference in polarization charge amount from the barrier layer 113.
  • the channel layer 111 may be formed of, for example, a nitride semiconductor.
  • the barrier layer 113 is formed of a second compound semiconductor different from the first compound semiconductor, and is provided on the channel layer 111.
  • the barrier layer 113 accumulates electrons in the channel layer 111 due to a difference in polarization charge amount from the channel layer 111, and forms a two-dimensional electron gas 150 in the channel layer 111.
  • the barrier layer 113 may be formed of, for example, a nitride semiconductor different from the channel layer 111.
  • the gate insulating film 121 is formed of an insulating dielectric and provided on the barrier layer 113. Specifically, the gate insulating film 121 is provided over the barrier layer 113 in a region excluding a region where the source or drain electrode 240 is provided.
  • the gate insulating film 121 may be formed of, for example, an inorganic oxide or an inorganic nitride.
  • the gate electrode 220 is formed of a conductive material and provided on the gate insulating film 121.
  • the gate electrode 220 may be configured by, for example, stacking a plurality of metal materials.
  • the source or drain electrode 240 is formed of a conductive material, and is provided on the barrier layer 113 on both sides of the gate electrode 220.
  • One of the source or drain electrodes 240 is a source electrode with the gate electrode 220 interposed therebetween, and the other is a drain electrode.
  • the source or drain electrode 240 is electrically connected to the two-dimensional electron gas 150 formed in the channel layer 111 via a contact layer 230 provided below the source or drain electrode 240.
  • the source or drain electrode 240 may be configured by, for example, stacking a plurality of metal materials.
  • the contact layer 230 is formed of a compound semiconductor into which a conductive impurity is introduced, and is provided below the source or drain electrode 240 so as to reach the channel layer 111 through the barrier layer 113.
  • the contact layer 230 is formed of the same compound semiconductor as the channel layer 111 or a compound semiconductor having a small band gap with the channel layer 111 so that the contact layer 230 is in contact with the two-dimensional electron gas 150 of the channel layer 111. Decrease contact resistance.
  • the contact layer 230 may be formed of a nitride semiconductor like the channel layer 111.
  • the contact layer 230 lowers the contact resistance with the source or drain electrode 240 by introducing a conductive impurity at a high concentration.
  • the contact layer 230 can form a current path from the source or drain electrode 240 to the two-dimensional electron gas 150.
  • the compound semiconductor is recrystallized while adding a conductive impurity into the opening. It can be formed by growing.
  • the first transistor 11 and the second transistor 12 are formed so as to have different shapes or sizes from each other. Specifically, the first transistor 11 is formed so that the source or drain electrode 140, the gate electrode 120, and the channel length are increased in order to reduce power loss when a large current flows. On the other hand, the second transistor 12 is formed so that the source or drain electrode 240, the gate electrode 220, and the channel length are reduced in order to reduce signal loss due to parasitic capacitance.
  • the first transistor 11 is provided at, for example, about several tens of ⁇ m
  • the second transistor 12 is provided at, for example, about several ⁇ m.
  • the contact layers 130 and 230 are formed by crystal regrowth of the compound semiconductor, and the crystal growth rate in the crystal regrowth increases as the area of the area decreases. This is because the crystal growth rate in the crystal regrowth of the compound semiconductor depends on the supply amount of the raw material. Therefore, when a contact layer is simultaneously formed in regions having different areas by crystal regrowth, the thickness of the formed contact layer, crystal quality, and connectivity at the interface with the channel layer 111 form the contact layer. It depends on the area of the region.
  • the contact layers having different thicknesses, crystal qualities, and connectivity at the interface with the channel layer 111 have different contact resistances with the channel layer 111.
  • the amount of the conductive impurity introduced is also different, and the contact resistance with the source or drain electrode is also different. Therefore, when the contact layers 130 and 230 are simultaneously formed by crystal regrowth in the regions below the source or drain electrodes 140 and the source or drain electrodes 240 having different areas, the first transistor 11 and the second transistor 12 are formed. Will be different from each other. According to this, there is a high possibility that a desired contact resistance cannot be achieved with either the first transistor 11 or the second transistor 12.
  • the areas of the contact layers 130 and 230 are formed to have sizes corresponding to each other.
  • the contact layer 130 formed below the source or drain electrode 140 is formed in a part of the region where the source or drain electrode 140 is formed, and has approximately the same ohmic width as the contact layer 230. It is formed as follows.
  • the contact layers 130 and 230 of the first transistor 11 and the second transistor 12 can be formed to have the same thickness, crystal quality, and the like.
  • the ohmic width indicates the width of the contact layer in a cross section obtained by cutting the transistor with a straight line connecting each of the source and drain electrodes.
  • the ohmic width may represent a width in a direction orthogonal to a direction in which the contact layer extends. Note that, in the following, a straight extending direction connecting each of the source or drain electrodes 140 and 240 is also referred to as a channel direction.
  • the semiconductor device can achieve the same appropriate contact resistance for each. It is.
  • the ohmic width of the contact layer of each transistor is substantially equal to the ohmic width of the contact layer of the smallest transistor. It can be formed to be the same.
  • FIGS. 2A and 2B are planar structures of the contact layer 130 of the first transistor 11 and the planar structure of the contact layer 230 of the second transistor 12.
  • 2A is a plan view and a longitudinal sectional view showing a planar structure and a sectional structure of the source or drain region SD2 of FIG. 1
  • FIG. 2B is a plan view showing a planar structure and a sectional structure of the source or drain region SD1 of FIG. It is a figure and a longitudinal cross-sectional view.
  • 2A and 2B are cross-sectional views taken along line AAA of the plan views of the upper part of FIGS. 2A and 2B.
  • the source or drain electrode 240 is formed in a rectangular planar shape extending in a direction orthogonal to the channel direction, and is provided below the source or drain electrode 240.
  • the contact layer 230 is formed in a region corresponding to the region where the source or drain electrode 240 is formed.
  • the contact layer 230 may be formed in a region having substantially the same size as a region where the source or drain electrode 240 is formed.
  • the ohmic width of the contact layer 230 (the width of the contact layer 230 in the channel direction) is w2.
  • the width of the source or drain electrode 240 in the channel direction is substantially the same.
  • the source or drain electrode 140 is formed in a rectangular planar shape extending in the channel direction, and a contact layer provided below the source or drain electrode 140. 130 is formed in a part of the region where the source or drain electrode 140 is formed.
  • the source or drain electrode 140 may be formed in a hollow rectangular shape along the outer periphery of the source or drain electrode 140.
  • the crystal growth speed can be reduced.
  • the semiconductor device according to the present embodiment can control the contact resistance of the first transistor 11 and the second transistor 12 that are mounted together at the same level.
  • the length of the source or drain electrode 140, 240 in the direction orthogonal to the channel direction is the same for the first transistor 11 and the second transistor 12.
  • the contact layer 130 of the first transistor 11 may have various planar shapes other than the hollow rectangular shape shown in FIG. 2B. That is, the planar shape of the contact layer 130 of the first transistor 11 may be any shape as long as the crystal growth rate can be made substantially the same as that of the contact layer 230 of the second transistor 12.
  • the planar shape of the contact layer 130 of the first transistor 11 may be a shape obtained by modifying or combining a plurality of planar shapes of the contact layer 230 of the second transistor 12.
  • FIG. 3 is a longitudinal sectional view and a plan view showing a specific sectional structure and a planar structure of the first transistor 11.
  • the upper cross-sectional view of FIG. 3 shows a cross section taken along line AAA of the lower plan view of FIG.
  • the first transistor 11 includes a substrate 110, a buffer layer 115, a channel layer 111, a barrier layer 113, a gate insulating film 121, a gate electrode 120, a source or drain electrode 140, , And a contact layer 130.
  • the first transistor 11 is assumed to be mounted on the same substrate 110 as the second transistor 12 having a smaller planar area than the first transistor 11.
  • the first transistor 11 is electrically insulated from other transistors (for example, the second transistor 12 and the like) by the element isolation region 117.
  • the element isolation region 117 may be formed by, for example, increasing the resistance of the channel layer 111 and the barrier layer 113 by introducing boron (B), and removing the channel layer 111 and the barrier layer 113 by etching or the like. It may be formed.
  • the substrate 110 is a support for each component of the first transistor 11.
  • the substrate 110 may be a substrate formed of a compound semiconductor, and more specifically, may be a substrate formed of a III-V compound semiconductor.
  • the substrate 110 may be a single-crystal gallium nitride (GaN) substrate having a semi-insulating property.
  • GaN gallium nitride
  • the substrate 110 does not have to have a lattice constant substantially equal to that of the channel layer 111.
  • a substrate formed of a material having a different lattice constant from the channel layer 111 such as silicon (Si), silicon carbide (SiC), or sapphire can be used as the substrate 110.
  • the buffer layer 115 is formed of a compound semiconductor and provided on the substrate 110. Specifically, the buffer layer 115 is formed by epitaxially growing a compound semiconductor having a lattice constant close to that of the first compound semiconductor forming the channel layer 111 on the substrate 110.
  • the buffer layer 115 can improve the crystal state of the channel layer 111 by controlling the lattice constant of the surface on which the channel layer 111 is formed, and can reduce the warpage of the substrate 110 after the channel layer 111 is formed. Can be controlled.
  • the buffer layer 115 may be formed of AlN, AlGaN, or GaN.
  • the channel layer 111 is formed using the first compound semiconductor and is provided over the buffer layer 115.
  • the channel layer 111 accumulates electrons serving as carriers due to a difference in polarization charge amount from the barrier layer 113.
  • a two-dimensional electron gas 150 functioning as a channel is formed in the channel layer 111.
  • the channel layer 111 may be a layer formed of a nitride semiconductor, for example, epitaxial growth of Al 1-ab Ga a In b N (where 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, a + b ⁇ 1). It may be a layer.
  • the barrier layer 113 is formed using a second compound semiconductor different from the first compound semiconductor, and is provided over the channel layer 111.
  • the barrier layer 113 causes carriers serving as carriers to be accumulated in the channel layer 111 due to a difference in polarization charge amount from the channel layer 111.
  • Barrier layer 113 may be a layer formed of a different nitride semiconductor as a channel layer 111, for example, Al 1-c-d Ga c In d N ( However, 0 ⁇ c ⁇ 1,0 ⁇ d ⁇ 1, The epitaxial growth layer may satisfy c + d ⁇ 1, (c, d) ⁇ (a, b)).
  • the barrier layer 113 impurities are not added (i.e., undoped) may be formed of Al 1-c-d Ga c In d N. In such a case, the barrier layer 113 can suppress impurity scattering of electrons in the channel layer 111, so that the mobility of the two-dimensional electron gas 150 can be further increased.
  • the gate insulating film 121 is formed of a dielectric having an insulating property, and is provided on the barrier layer 113. Specifically, the gate insulating film 121 is provided over the barrier layer 113 in a region excluding a region where the source or drain electrode 240 is provided.
  • the gate insulating film 121 may be formed of a dielectric having an insulating property with respect to the barrier layer 113 and the gate electrode 120, and may be formed of SiO 2 , Si 3 N 4, Al 2 O 3 , HfO 2 , or the like. May be done.
  • the gate electrode 120 is formed of a conductive material and provided on the gate insulating film 121. Specifically, the gate electrode 120 is provided so as to cross the gate insulating film 121 from one element isolation region 117 to the other element isolation region 117.
  • the gate electrode 120 may be formed by, for example, sequentially stacking nickel (Ni) and gold (Au) from the gate insulating film 121 side.
  • the source or drain electrode 140 is provided on both sides of the gate electrode 120 on the barrier layer 113.
  • One of the source or drain electrodes 140 is a source electrode with the gate electrode 120 interposed therebetween, and the other is a drain electrode.
  • the source or drain electrode 140 is electrically connected to a two-dimensional electron gas 150 formed in the channel layer 111 through a contact layer 130 provided in a partial region below the source or drain electrode 140.
  • the source or drain electrode 140 may be formed, for example, by sequentially stacking titanium (Ti), A aluminum (Al), nickel (Ni), and gold (Au) from the barrier layer 113 side.
  • the contact layer 130 is formed of a compound semiconductor into which a conductive impurity is introduced, and is provided below the source or drain electrode 140 so as to reach the channel layer 111 through the barrier layer 113.
  • the contact layer 130 is formed using the same compound semiconductor as the channel layer 111 or a compound semiconductor having a small difference in band gap from the channel layer 111 so that the channel layer 111 can be in contact with the two-dimensional electron gas 150. Decrease resistance.
  • the contact layer 130 lowers the contact resistance with the source or drain electrode 140 by introducing a conductive impurity at a high concentration.
  • contact layer 130 may be formed of a nitride semiconductor into which an n-type impurity has been introduced.
  • the contact layer 130 is formed by forming an epitaxial layer of Al 1-ab Ga a In b N (0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, a + b ⁇ 1) on silicon (Si) or germanium (Ge). Or the like may be introduced at 1 ⁇ 10 18 / cm 3 or more.
  • the contact layer 130 is provided in a partial region below the source or drain electrode 140 in a planar shape based on the planar shape of the contact layer 230 of the second transistor 12.
  • the contact layer 130 may be provided in a hollow rectangular shape along the outer periphery of the region where the source or drain electrode 140 is formed.
  • the difference between the outer diameter and the inner diameter of the hollow rectangular shape, which is the planar shape of the contact layer 130 (ie, the width of the frame shape) is substantially the same as the width of the contact layer 230 of the second transistor 12 in the channel direction. It may be.
  • the contact layer 130 can have a crystal growth rate substantially equal to that of the contact layer 230 of the second transistor 12. Therefore, in the semiconductor device, the first transistor 11 and the second transistor 12 can be formed with approximately the same contact resistance.
  • the contact layer 130 may be provided at least in a region facing the gate electrode 120 in a region where the source or drain electrode 140 is formed. Specifically, when the source or drain electrode 140 is formed in a rectangular shape, the contact layer 130 may be provided at least on a side of the rectangular shape of the source or drain electrode 140 facing the gate electrode 120.
  • the channel length of the first transistor 11 is determined by the distance at which each of the contact layers 130 connects to the two-dimensional electron gas 150. Therefore, according to this configuration, the first transistor 11 can control the channel length formed between one and the other of the source or drain electrode 140 with higher accuracy.
  • the contact layer 130 penetrates through the barrier layer 113 and is formed up to the inside of the channel layer 111 so as to fill a recess formed in the channel layer 111.
  • the structure of the first transistor 11 Is not limited to such an example.
  • the contact layer 130 may be provided on the surface of the channel layer 111 on which the barrier layer 113 is provided. That is, no concave portion is formed in the channel layer 111, and the contact layer 130 may be provided on one main surface of the channel layer 111, similarly to the barrier layer 113.
  • the two-dimensional electron gas 150 serving as a channel in the first transistor 11 is formed at the interface between the barrier layer 113 and the channel layer 111. Therefore, if the contact layer 130 is provided on one main surface of the channel layer 111 as in the case of the barrier layer 113, the contact layer 130 can be electrically connected to the two-dimensional electron gas 150 at the bottom surface.
  • the semiconductor device according to the present embodiment can obtain the same good contact resistance with any of the transistors having different planar areas.
  • FIGS. 4A to 4H are vertical cross-sectional views illustrating each step of the method for manufacturing the first transistor 11 provided in the semiconductor device according to the present embodiment.
  • a buffer layer 115, a channel layer 111, a barrier layer 113, and an insulating layer 160 are sequentially stacked on a substrate 110 formed of silicon or the like.
  • the buffer layer 115 is formed by epitaxially growing AlN, AlGaN, or GaN on the substrate 110 formed of silicon or the like.
  • the channel layer 111 is formed by epitaxially growing GaN on the buffer layer 115 without adding an impurity.
  • the barrier layer 113 is formed by epitaxially growing AlInN on the channel layer 111.
  • the insulating layer 160 is formed of SiO 2 on the barrier layer 113 by using CVD (Chemical Vapor Deposition) or the like.
  • an opening 161 is formed by patterning the insulating layer 160, the barrier layer 113, and the channel layer 111.
  • the barrier layer 113 and the channel layer 111 are wet-etched or dry-etched using the resist as a mask.
  • an opening 161 can be formed in the insulating layer 160, the barrier layer 113, and the channel layer 111.
  • a recess structure may be formed in the outer peripheral region by etching the outer peripheral region of the region serving as the source or drain of the first transistor 11.
  • a contact layer 130 is selectively formed on the channel layer 111 inside the opening 161.
  • the contact layer 130 is epitaxially grown on the channel layer 111 inside the opening 161 using the insulating layer 160 formed on the barrier layer 113 as a mask.
  • the contact layer 130 may be formed of GaN similarly to the channel layer 111.
  • Such epitaxial growth of the contact layer 130 is also called crystal regrowth.
  • the introduction of the n-type impurity into the contact layer 130 may be performed by performing epitaxial growth while incorporating an n-type impurity such as Si or Ge at the time of crystal regrowth.
  • the introduction of the n-type impurity into the contact layer 130 may be performed by ion-implanting an n-type impurity such as Si or Ge after crystal regrowth.
  • the concentration of the n-type impurity introduced into the contact layer 130 may be, for example, 1 ⁇ 10 18 / cm 3 or more.
  • the regrowth of the crystal of the contact layer 130 is performed under the condition that an etching gas or the like is not used.
  • the deposition rate can be controlled for each deposition region by using an etching gas or the like.
  • etching is performed in the crystal regrowth of the contact layer 130 where it is important to grow a crystal epitaxially. It is difficult to adjust with gas or the like. Therefore, in the semiconductor device according to this embodiment, the growth rate of the crystal of the contact layer 130 is controlled by the planar shape of the contact layer 130.
  • the insulating layer 160 is removed by wet etching or dry etching.
  • a source or drain electrode 140 is formed on the contact layer 130 and in a region to be a source or a drain of the first transistor 11.
  • the source or drain electrode 140 is formed by sequentially stacking Ti, Al, Ni, and Au in a region to be a source or a drain of the first transistor 11.
  • an element isolation region 117 is formed around the first transistor 11 to electrically insulate the first transistor 11 from other transistors (for example, the second transistor 12 and the like).
  • the element isolation region 117 may be formed by, for example, introducing boron (B) by ion implantation and increasing the resistance of the barrier layer 113 and the channel layer 111 formed of a compound semiconductor.
  • the element isolation region 117 may be formed by, for example, removing the barrier layer 113 and the channel layer 111 by dry etching.
  • the gate insulating film 121 is formed uniformly over the source or drain electrode 140 and the barrier layer 113.
  • the gate insulating film 121 may be formed of, for example, Al 2 O 3 or may be formed of a stacked structure of a plurality of dielectrics or insulating materials.
  • a gate electrode 120 is formed on the gate insulating film 121 as shown in FIG. 4G. Specifically, the gate electrode 120 is formed by sequentially stacking Ni and Au on the gate insulating film 121 between the source or drain electrodes 140.
  • the gate insulating film 121 formed on the source or drain electrode 140 is removed. Specifically, the source or drain electrode 140 is exposed by removing the gate insulating film 121 formed over the source or drain electrode 140 by wet etching or dry etching.
  • the first transistor 11 provided in the semiconductor device according to the present embodiment can be manufactured.
  • FIGS. 5 to 9 are a longitudinal sectional view and a plan view showing a sectional structure and a planar structure of a first transistor according to first to fifth modifications, respectively.
  • 5 to 9 are cross-sectional views taken along line A-AA of the plan views in the lower part of FIGS. 5 to 9, respectively.
  • the source or drain electrode 141 is patterned similarly to the contact layer 130, and the source or drain electrode 141 is provided in a planar shape corresponding to the contact layer 130. obtain. That is, the first transistor 11A is different from the first transistor 11 shown in FIG. 3 in that the source or drain electrode 141 is formed only on the contact layer 130.
  • the source or drain electrode 141 is provided in a hollow rectangular planar shape
  • the contact layer 130 is provided in a hollow rectangular planar shape like the source or drain electrode 141.
  • the difference between the outer diameter and the inner diameter of the hollow rectangular shape of the source or drain electrode 141 and the contact layer 130 depends on the channel direction of the contact layer 230 of the second transistor 12. It is almost the same as the width.
  • the ohmic width of the contact layer 130 can be made substantially the same as the ohmic width of the contact layer 230 of the second transistor 12, so that the crystal growth rate can be reduced. Can be substantially the same as Therefore, the contact resistance of the contact layer 130 can be substantially the same as that of the contact layer 230 of the second transistor 12.
  • the source or drain electrode 141 since the source or drain electrode 141 is not provided on the barrier layer 113, it is possible to suppress occurrence of an unintended leak current from the source or drain electrode 141. Further, according to the first modification, it is possible to prevent the occurrence of resistance or loss between the source or drain electrode 141 and the barrier layer 113.
  • the contact layer 131 is provided in a partial region below the source or drain electrode 140 in a plurality of rectangular planar shapes extending in a direction orthogonal to the channel direction. Can be That is, the first transistor 11B is different from the first transistor 11 shown in FIG. 3 in that the planar shape of the contact layer 131 is different.
  • the contact layer 131 can be provided in three rectangular planar shapes extending in a direction orthogonal to the channel direction.
  • the width of the contact layer 131 in the channel direction may be substantially the same as the width of the contact layer 230 of the second transistor 12 in the channel direction. That is, one rectangular shape of the planar shape of the contact layer 131 may be substantially the same as the planar shape of the contact layer 230 of the second transistor 12.
  • the ohmic width of the contact layer 131 can be made substantially the same as the ohmic width of the contact layer 230 of the second transistor 12, so that the crystal growth rate can be reduced. Can be substantially the same as Therefore, the contact resistance of the contact layer 131 can be substantially the same as that of the contact layer 230 of the second transistor 12.
  • the planar shape of the contact layer 131 is formed by a combination of the planar shape of the contact layer 230 of the second transistor 12, the crystal growth rate of the contact layer 131 is reduced by the second transistor 12. Can be made more consistent with the contact layer 230 of FIG. Therefore, according to the second modification, it is possible to make the contact resistances of the first transistor 11 and the second transistor 12 more consistent.
  • the source or drain electrode 142 is patterned similarly to the contact layer 131, and the source or drain electrode 142 is provided in a planar shape corresponding to the contact layer 131. obtain. That is, the first transistor 11C is different from the first transistor 11B shown in FIG. 6 in that the source or drain electrode 142 is formed only on the contact layer 131.
  • the source or drain electrode 142 is provided in a plurality of rectangular planar shapes extending in a direction orthogonal to the channel direction, and the contact layer 131 is orthogonal to the channel direction like the source or drain electrode 142. It is provided in a plurality of rectangular planar shapes extending in the direction.
  • the width of the source or drain electrode 142 and the contact layer 131 in the channel direction may be substantially the same as the width of the contact layer 230 of the second transistor 12 in the channel direction. That is, one of the planar shapes of the source or drain electrode 142 and the contact layer 131 may be substantially the same as the planar shape of the contact layer 230 of the second transistor 12.
  • the ohmic width of the contact layer 131 can be made substantially the same as the ohmic width of the contact layer 230 of the second transistor 12, so that the crystal growth rate can be reduced. Can be substantially the same as Therefore, the contact resistance of the contact layer 131 can be substantially the same as that of the contact layer 230 of the second transistor 12.
  • the source or drain electrode 142 since the source or drain electrode 142 is not provided on the barrier layer 113, it is possible to suppress the occurrence of an unintended leak current from the source or drain electrode 142. Further, according to the third modification, it is possible to prevent the occurrence of resistance or loss between the source or drain electrode 142 and the barrier layer 113.
  • the contact layer 132 is provided in a partial region below the source or drain electrode 140 in a plurality of rectangular planar shapes extending in a direction orthogonal to the channel direction. Can be That is, the first transistor 11D is different from the first transistor 11 shown in FIG. 3 in that the planar shape of the contact layer 132 is different.
  • the contact layer 132 can be provided in two rectangular planar shapes extending in a direction orthogonal to the channel direction. More specifically, the contact layer 132 may be provided in two rectangular shapes along two sides of the rectangular shape of the source or drain electrode 140 in the channel direction. At this time, the width of the contact layer 132 in the channel direction may be substantially the same as the width of the contact layer 230 of the second transistor 12 in the channel direction. That is, one rectangular shape of the planar shape of the contact layer 132 may be substantially the same as the planar shape of the contact layer 230 of the second transistor 12.
  • the ohmic width of the contact layer 132 can be made substantially the same as the ohmic width of the contact layer 230 of the second transistor 12, the crystal growth rate can be reduced. Can be substantially the same as Therefore, the contact resistance of the contact layer 132 can be substantially the same as that of the contact layer 230 of the second transistor 12.
  • the planar shape of the contact layer 132 is formed by a combination of the planar shape of the contact layer 230 of the second transistor 12, the crystal growth rate of the contact layer 132 is reduced. Can be made more consistent with the contact layer 230 of FIG. Therefore, according to the fourth modification, it is possible to make the contact resistances of the first transistor 11 and the second transistor 12 more consistent.
  • the source or drain electrode 143 is patterned similarly to the contact layer 132, and the source or drain electrode 143 is provided in a planar shape corresponding to the contact layer 132. obtain. That is, the first transistor 11E is different from the first transistor 11D shown in FIG. 8 in that the source or drain electrode 143 is formed only on the contact layer 132.
  • the source or drain electrode 143 is provided in two rectangular planar shapes extending in a direction orthogonal to the channel direction, and the contact layer 132 is orthogonal to the channel direction similarly to the source or drain electrode 143.
  • the width of the source or drain electrode 143 and the contact layer 132 in the channel direction may be substantially the same as the width of the contact layer 230 of the second transistor 12 in the channel direction. That is, one of the planar shapes of the source or drain electrode 143 and the contact layer 132 may be substantially the same as the planar shape of the contact layer 230 of the second transistor 12.
  • the ohmic width of the contact layer 132 can be made substantially the same as the ohmic width of the contact layer 230 of the second transistor 12, the crystal growth rate can be reduced. Can be substantially the same as Therefore, the contact resistance of the contact layer 132 can be substantially the same as that of the contact layer 230 of the second transistor 12.
  • the source or drain electrode 143 since the source or drain electrode 143 is not provided on the barrier layer 113, the occurrence of an unintended leak current from the source or drain electrode 143 can be suppressed. Further, according to the fifth modification, it is possible to prevent the occurrence of resistance or loss between the source or drain electrode 143 and the barrier layer 113.
  • FIG. 10 is a schematic perspective view illustrating a high-frequency module to which the semiconductor device according to the present embodiment is applied.
  • the high-frequency module 1 includes, for example, an edge antenna 20, a driver 31, a phase adjustment circuit 32, a switch 10, a low-noise amplifier 41, a band-pass filter 42, a power amplifier 43, Is provided.
  • the high-frequency module 1 is an antenna in which an edge antenna 20 formed in an array and front-end components such as a switch 10, a low-noise amplifier 41, a band-pass filter 42, and a power amplifier 43 are integrally mounted as one module. It is an integrated module. Such a high-frequency module 1 can be used, for example, as a transceiver for communication.
  • the transistors included in the switch 10, the low-noise amplifier 41, the power amplifier 43, and the like included in the high-frequency module 1 may be configured by, for example, high electron mobility transistors in order to increase the gain at high frequencies.
  • the transistors constituting the switch 10 and the low-noise amplifier 41 can be formed smaller to reduce signal loss.
  • the transistors constituting the control IC (Integrated @ Circuit) of the high-frequency module 1 can be formed smaller to reduce the power consumption.
  • such a transistor can be formed on the order of several ⁇ m.
  • the transistor constituting the power amplifier 43 can be formed larger to reduce power loss when a large current flows.
  • a transistor can be formed on the order of tens of ⁇ m.
  • the high-frequency module 1 may include high electron mobility transistors of different sizes mixedly.
  • the semiconductor device according to the present embodiment it is possible to realize good contact resistance in each of transistors formed simultaneously on one chip and having different sizes. is there.
  • the semiconductor device includes the first transistor 11 and the second transistor 12 having different shapes or sizes from each other, but the technology according to the present disclosure is not limited to such an example.
  • the semiconductor device according to the present embodiment may include a transistor having a single shape or size. Even in such a case, the semiconductor device according to the present embodiment can obtain the favorable contact resistance as described above by patterning the planar shape of the contact layer of the transistor as described above.
  • a channel layer formed of the first compound semiconductor A barrier layer formed on the channel layer with a second compound semiconductor different from the first compound semiconductor; A gate electrode provided on the barrier layer, Source and drain electrodes provided on both sides of the gate electrode on the barrier layer, Contact layers provided under the source electrode and the drain electrode, respectively, through the barrier layer; And a first and a second transistor respectively having The planar area of the source electrode or the drain electrode of the first transistor is larger than the planar area of the source electrode or the drain electrode of the second transistor, A width of the contact layer in a cross section cut by a straight line connecting the source electrode and the drain electrode of the first transistor is a cross section cut by a straight line connecting the source electrode and the drain electrode of the second transistor.
  • a semiconductor device having a size corresponding to the width of the contact layer (2) The semiconductor device according to (1), wherein the width of the contact layer of the first transistor is substantially the same as the width of the contact layer of the second transistor. (3) The semiconductor device according to (1) or (2), wherein the source electrode or the drain electrode of the second transistor is provided in a single rectangular shape. (4) The semiconductor device according to any one of (1) to (3), wherein the contact layer of the first transistor is provided in a part of a planar region where the source electrode or the drain electrode is provided. . (5) The semiconductor device according to (4), wherein the contact layer of the first transistor is provided in a part of the source electrode or the drain electrode facing the gate electrode.
  • planar shape of the contact layer of the first transistor is a hollow rectangular shape provided along an outer periphery of a planar region provided with the source electrode or the drain electrode. 3.
  • the planar shape of the contact layer of the first transistor is a plurality of rectangular shapes extending in a direction orthogonal to a straight line connecting the source electrode and the drain electrode. apparatus.
  • a planar shape of the source electrode or the drain electrode of the first transistor is a hollow rectangular shape.
  • the planar shape of the source electrode or the drain electrode of the first transistor is a plurality of rectangular shapes extending in a direction orthogonal to a straight line connecting the source electrode and the drain electrode. apparatus.
  • the first compound semiconductor and the second compound semiconductor are nitride semiconductors.
  • the contact layers of the first and second transistors are formed of a compound semiconductor into which a conductive impurity is introduced.
  • a high-frequency module having a size corresponding to the width of the contact layer in the above.

Abstract

This semiconductor device comprises first and second transistors that are high-electron-mobility transistors. The plane area of a source electrode or drain electrode (140) of the first transistor (11) is larger than the plane area of a source electrode or drain electrode (140) of the second transistor (12), and the cross-sectional width of a contact layer (130) provided below the source electrode or drain electrode (140) of the first transistor (11) is of a size that corresponds to the cross-sectional width of a contact layer (130) provided below the source electrode or drain electrode (140) of the second transistor (12).

Description

半導体装置及び高周波モジュールSemiconductor device and high frequency module
 本開示は、半導体装置及び高周波モジュールに関する。 The present disclosure relates to a semiconductor device and a high-frequency module.
 化合物半導体のヘテロ接合を用いた高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)は、他のトランジスタと比較して、高耐圧、高耐熱、高飽和電子速度、及び高チャネル電子濃度という特性を有する。そのため、高電子移動度トランジスタは、小型かつ高性能のパワーデバイス又は高周波デバイス等への適用が期待されている。 A high electron mobility transistor (HEMT) using a heterojunction of a compound semiconductor has characteristics such as high withstand voltage, high heat resistance, high saturation electron velocity, and high channel electron concentration compared to other transistors. Have. Therefore, the high electron mobility transistor is expected to be applied to a small and high-performance power device or high-frequency device.
 このような高電子移動度トランジスタでは、異なる化合物半導体にて形成されるチャネル層及びバリア層をヘテロ接合することで、バリア層と接するチャネル層の界面にチャネルとなる二次元電子ガスを形成している。ただし、バリア層は、ポテンシャル障壁が高く、良好なオーミックコンタクトを形成することが困難であるため、高電子移動度トランジスタでは、コンタクト抵抗が高くなり易かった。 In such a high electron mobility transistor, a channel layer and a barrier layer formed of different compound semiconductors are heterojuncted to form a two-dimensional electron gas serving as a channel at an interface of the channel layer in contact with the barrier layer. I have. However, since the barrier layer has a high potential barrier and it is difficult to form a favorable ohmic contact, the high electron mobility transistor tends to have a high contact resistance.
 そのため、高電子移動度トランジスタのコンタクト抵抗を低減させる手法が種々検討されている。 Therefore, various methods for reducing the contact resistance of the high electron mobility transistor have been studied.
 例えば、下記の特許文献1には、バンドギャップが小さい化合物半導体層をソース電極又はドレイン電極の下に選択的に再成長させ、該化合物半導体層によってソース電極又はドレイン電極と二次元電子ガスとのコンタクトを形成する技術が開示されている。特許文献1に開示された技術によれば、ソース電極又はドレイン電極と、チャネルである二次元電子ガスとの間のオーミック特性を向上させることができるため、高電子移動度トランジスタのコンタクト抵抗を低減することができる。 For example, in Patent Literature 1 below, a compound semiconductor layer having a small band gap is selectively regrown under a source electrode or a drain electrode, and a source electrode or a drain electrode and a two-dimensional electron gas are formed by the compound semiconductor layer. A technique for forming a contact is disclosed. According to the technique disclosed in Patent Literature 1, the ohmic characteristics between the source or drain electrode and the two-dimensional electron gas serving as the channel can be improved, so that the contact resistance of the high electron mobility transistor is reduced. can do.
特開2011-159795号公報JP 2011-159799 A
 しかし、化合物半導体の成長速度及び結晶品質は、化合物半導体を成長させる平面面積によって異なる。そのため、1つのチップ又は基板に、ソース又はドレインの面積が異なる複数種のトランジスタが混載する場合、再成長させた化合物半導体層の結晶品質又は膜厚等が異なってしまうことがあった。このような場合、混載された複数種のトランジスタで、同様なオーミック特性を得ることが困難であった。 However, the growth rate and crystal quality of the compound semiconductor differ depending on the plane area on which the compound semiconductor is grown. Therefore, when a plurality of types of transistors having different source or drain areas are mixedly mounted on one chip or substrate, the crystal quality or the thickness of the regrown compound semiconductor layer may be different. In such a case, it has been difficult to obtain the same ohmic characteristics with a plurality of mixed transistors.
 そこで、ソース又はドレインの面積が異なるトランジスタのいずれでも、同程度の良好なコンタクト抵抗を得ることが可能な技術が求められていた。 Therefore, there has been a demand for a technique capable of obtaining the same good contact resistance in any of the transistors having different source or drain areas.
 本開示によれば、第1の化合物半導体にて形成されたチャネル層と、前記第1の化合物半導体と異なる第2の化合物半導体にて前記チャネル層の上に形成されたバリア層と、前記バリア層の上に設けられたゲート電極と、前記バリア層の上に前記ゲート電極を挟んで両側に設けられたソース電極及びドレイン電極と、前記ソース電極及び前記ドレイン電極の下にそれぞれ前記バリア層を貫通して設けられたコンタクト層と、をそれぞれ有する第1及び第2のトランジスタを備え、前記第1のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積は、前記第2のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積よりも大きく、前記第1のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅は、前記第2のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅に対応する大きさである、半導体装置が提供される。 According to the present disclosure, a channel layer formed of a first compound semiconductor, a barrier layer formed on the channel layer with a second compound semiconductor different from the first compound semiconductor, and the barrier layer A gate electrode provided on the layer, a source electrode and a drain electrode provided on both sides of the gate electrode on the barrier layer, and the barrier layer below the source electrode and the drain electrode, respectively. And a contact layer provided therethrough. The source and drain electrodes of the first transistor each have a planar area equal to the source electrode of the second transistor. Alternatively, a cross section larger than a plane area of the drain electrode and cut by a straight line connecting the source electrode and the drain electrode of the first transistor. Width of the contact layer in is sized to correspond to the width of the contact layer in the source electrode and the section cut along a straight line connecting said drain electrode of said second transistor, a semiconductor device is provided.
 また、本開示によれば、第1の化合物半導体にて形成されたチャネル層と、前記第1の化合物半導体と異なる第2の化合物半導体にて前記チャネル層の上に形成されたバリア層と、前記バリア層の上に設けられたゲート電極と、前記バリア層の上に前記ゲート電極を挟んで両側に設けられたソース電極及びドレイン電極と、前記ソース電極及び前記ドレイン電極の下にそれぞれ前記バリア層を貫通して設けられたコンタクト層と、をそれぞれ有する第1及び第2のトランジスタを備え、前記第1のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積は、前記第2のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積よりも大きく、前記第1のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅は、前記第2のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅に対応する大きさである、高周波モジュールが提供される。 Further, according to the present disclosure, a channel layer formed of a first compound semiconductor, a barrier layer formed on the channel layer with a second compound semiconductor different from the first compound semiconductor, A gate electrode provided on the barrier layer, a source electrode and a drain electrode provided on both sides of the gate electrode with the gate electrode interposed therebetween, and the barrier electrode provided under the source electrode and the drain electrode, respectively. And a contact layer provided through the layer. The first and second transistors each have a contact layer, and the planar area of the source electrode or the drain electrode of the first transistor is the same as that of the second transistor. Cut by a straight line that is larger than the plane area of the source electrode or the drain electrode and that connects the source electrode and the drain electrode of the first transistor; The width of the contact layer in the cross section taken is a size corresponding to the width of the contact layer in a cross section cut by a straight line connecting the source electrode and the drain electrode of the second transistor. You.
 本開示によれば、形状又は大きさが異なる第1のトランジスタ及び第2のトランジスタにおいて、コンタクト層の面積を互いに対応する大きさにて形成する。これによれば、第1のトランジスタ及び第2のトランジスタの各々において、コンタクト層の結晶の成長速度を略同じとすることができる。 According to the present disclosure, in the first transistor and the second transistor having different shapes or sizes, the areas of the contact layers are formed so as to correspond to each other. According to this, in each of the first transistor and the second transistor, the growth rate of the crystal of the contact layer can be made substantially the same.
 以上説明したように本開示によれば、ソース又はドレインの面積が異なるトランジスタのいずれでも同程度の良好なコンタクト抵抗を得ることが可能である。 According to the present disclosure as described above, it is possible to obtain the same good contact resistance in any of the transistors having different source and drain areas.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects described in the present specification or other effects that can be grasped from the present specification, together with or instead of the above effects. May be played.
本開示の一実施形態に係る半導体装置の概要を示す縦断面図である。1 is a longitudinal sectional view illustrating an outline of a semiconductor device according to an embodiment of the present disclosure. 図1のソース又はドレイン領域SD2の平面構造及び断面構造を示す平面図及び縦断面図である。FIG. 2 is a plan view and a longitudinal sectional view showing a planar structure and a sectional structure of a source or drain region SD2 in FIG. 1. 図1のソース又はドレイン領域SD1の平面構造及び断面構造を示す平面図及び縦断面図である。2A and 2B are a plan view and a longitudinal sectional view showing a planar structure and a sectional structure of a source or drain region SD1 in FIG. 第1のトランジスタの具体的な断面構造及び平面構造を示す縦断面図及び平面図である。4A and 4B are a vertical cross-sectional view and a plan view illustrating a specific cross-sectional structure and a specific planar structure of a first transistor. 同実施形態に係る半導体装置に備えられる第1のトランジスタの製造方法の一工程を説明する縦断面図である。FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment. 同実施形態に係る半導体装置に備えられる第1のトランジスタの製造方法の一工程を説明する縦断面図である。FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment. 同実施形態に係る半導体装置に備えられる第1のトランジスタの製造方法の一工程を説明する縦断面図である。FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment. 同実施形態に係る半導体装置に備えられる第1のトランジスタの製造方法の一工程を説明する縦断面図である。FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment. 同実施形態に係る半導体装置に備えられる第1のトランジスタの製造方法の一工程を説明する縦断面図である。FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment. 同実施形態に係る半導体装置に備えられる第1のトランジスタの製造方法の一工程を説明する縦断面図である。FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment. 同実施形態に係る半導体装置に備えられる第1のトランジスタの製造方法の一工程を説明する縦断面図である。FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment. 同実施形態に係る半導体装置に備えられる第1のトランジスタの製造方法の一工程を説明する縦断面図である。FIG. 4 is a longitudinal sectional view illustrating one step of a method for manufacturing a first transistor included in the semiconductor device according to the same embodiment. 第1の変形例に係る第1のトランジスタの断面構造及び平面構造を示す縦断面図及び平面図である。FIGS. 9A and 9B are a vertical cross-sectional view and a plan view illustrating a cross-sectional structure and a planar structure of a first transistor according to a first modification. FIGS. 第2の変形例に係る第1のトランジスタの断面構造及び平面構造を示す縦断面図及び平面図である。FIGS. 9A and 9B are a vertical cross-sectional view and a plan view illustrating a cross-sectional structure and a planar structure of a first transistor according to a second modification. FIGS. 第3の変形例に係る第1のトランジスタの断面構造及び平面構造を示す縦断面図及び平面図である。FIGS. 13A and 13B are a vertical cross-sectional view and a plan view illustrating a cross-sectional structure and a planar structure of a first transistor according to a third modification. FIGS. 第4の変形例に係る第1のトランジスタの断面構造及び平面構造を示す縦断面図及び平面図である。FIGS. 15A and 15B are a vertical cross-sectional view and a plan view illustrating a cross-sectional structure and a planar structure of a first transistor according to a fourth modification. FIGS. 第5の変形例に係る第1のトランジスタの断面構造及び平面構造を示す縦断面図及び平面図である。FIGS. 19A and 19B are a vertical cross-sectional view and a plan view illustrating a cross-sectional structure and a planar structure of a first transistor according to a fifth modification. FIGS. 同実施形態に係る半導体装置が適用される高周波モジュールを説明する模試的な斜視図である。FIG. 3 is a schematic perspective view illustrating a high-frequency module to which the semiconductor device according to the same embodiment is applied.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the specification and the drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
 以下の説明にて参照する各図面では、説明の便宜上、一部の構成部材の大きさを誇張して表現している場合がある。したがって、各図面において図示される構成部材同士の相対的な大きさは、必ずしも実際の構成部材同士の大小関係を正確に表現するものではない。また、以下の説明では、基板及び層の積層方向を上下方向と表現し、基板が存在する方向を下方向と表現し、該下方向と対向する方向を上方向と表現する。 で は In the drawings referred to in the following description, the size of some components may be exaggerated for convenience of explanation. Therefore, the relative sizes of the components illustrated in the drawings do not always accurately represent the magnitude relationship between the actual components. In the following description, the direction in which the substrate and the layers are stacked is referred to as an up-down direction, the direction in which the substrate is present is referred to as a down direction, and the direction facing the down direction is referred to as an up direction.
 また、本明細書において、「略同じ」という表現は、完全一致している場合に加えて、製造上又は設計上の要因による差が存在する場合を許容するものとする。例えば、「略同じ」という表現は、完全一致している場合に加えて、10%以内の差が存在する場合も含んでいてもよい。 In this specification, the expression “substantially the same” allows the case where there is a difference due to a manufacturing or design factor, in addition to the case where they completely match. For example, the expression “substantially the same” may include a case where there is a difference of 10% or less, in addition to a case where there is a perfect match.
 なお、説明は以下の順序で行うものとする。
 1.概要
 2.構造例
 3.製造方法
 4.変形例
 5.適用例
The description will be made in the following order.
1. Overview 2. Structure example 3. 3. Manufacturing method Modification 5. Application example
 <1.概要>
 まず、図1~図2Bを参照して、本開示の一実施形態に係る半導体装置の概要について説明する。図1は、本実施形態に係る半導体装置の概要を示す縦断面図である。
<1. Overview>
First, an overview of a semiconductor device according to an embodiment of the present disclosure will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view showing an outline of the semiconductor device according to the present embodiment.
 図1に示すように、本実施形態に係る半導体装置は、形状又は大きさが互いに異なる第1のトランジスタ11及び第2のトランジスタ12を含む。具体的には、第1のトランジスタ11は、基板110と、チャネル層111と、バリア層113と、ゲート絶縁膜121と、ゲート電極120と、ソース又はドレイン電極140と、コンタクト層130と、を備える。第2のトランジスタ12は、基板110と、チャネル層111と、バリア層113と、ゲート絶縁膜121と、ゲート電極220と、ソース又はドレイン電極240と、コンタクト層230と、を備える。第1のトランジスタ11及び第2のトランジスタ12は、チャネル層111及びバリア層113の界面に高移動度の二次元電子ガス150が形成される高電子移動度トランジスタである。 As shown in FIG. 1, the semiconductor device according to the present embodiment includes a first transistor 11 and a second transistor 12 having different shapes or sizes from each other. Specifically, the first transistor 11 includes a substrate 110, a channel layer 111, a barrier layer 113, a gate insulating film 121, a gate electrode 120, a source or drain electrode 140, and a contact layer 130. Prepare. The second transistor 12 includes a substrate 110, a channel layer 111, a barrier layer 113, a gate insulating film 121, a gate electrode 220, a source or drain electrode 240, and a contact layer 230. The first transistor 11 and the second transistor 12 are high electron mobility transistors in which a high mobility two-dimensional electron gas 150 is formed at an interface between the channel layer 111 and the barrier layer 113.
 以下では、本実施形態に係る半導体装置は、形状又は大きさが互いに異なる2種類の高電子移動度トランジスタを含むものとして説明するが、本実施形態はかかる例示に限定されない。本実施形態に係る半導体装置は、形状又は大きさが互いに異なる3種類以上の高電子移動度トランジスタを含んでいてもよい。 In the following, the semiconductor device according to the present embodiment is described as including two types of high electron mobility transistors having different shapes or sizes from each other, but the present embodiment is not limited to this example. The semiconductor device according to the present embodiment may include three or more types of high electron mobility transistors having different shapes or sizes.
 高電子移動度トランジスタについて、第2のトランジスタ12を例に挙げて説明すると以下のとおりである。なお、ゲート電極120、ソース又はドレイン電極140及びコンタクト層130は、ゲート電極220、ソース又はドレイン電極240及びコンタクト層230と形状又は大きさが異なる以外は、実質的に同様である。 The high electron mobility transistor will be described below with reference to the second transistor 12 as an example. Note that the gate electrode 120, the source or drain electrode 140, and the contact layer 130 are substantially the same as the gate electrode 220, the source or drain electrode 240, and the contact layer 230 except that the shape or size is different.
 なお、以下では、第2のトランジスタ12は、いわゆるMIS(Metal-Insulator-Semiconductor)ゲート構造を備える高電子移動度トランジスタとして説明するが、本実施形態はかかる例示に限定されない。第2のトランジスタ12のゲート構造は、公知のいずれのゲート構造であってもよい。 In the following, the second transistor 12 will be described as a high electron mobility transistor having a so-called MIS (Metal-Insulator-Semiconductor) gate structure, but the present embodiment is not limited to this example. The gate structure of the second transistor 12 may be any known gate structure.
 基板110は、第1のトランジスタ11又は第2のトランジスタ12の各層が積層される基板である。基板110は、例えば、化合物半導体で形成された基板であってもよい。また、基板110は、シリコン(Si)基板、炭化シリコン(SiC)基板又はサファイア基板などの一般的な半導体装置に用いられる基板であってもよい。 The substrate 110 is a substrate on which each layer of the first transistor 11 or the second transistor 12 is stacked. The substrate 110 may be, for example, a substrate formed of a compound semiconductor. The substrate 110 may be a substrate used for a general semiconductor device such as a silicon (Si) substrate, a silicon carbide (SiC) substrate, or a sapphire substrate.
 チャネル層111は、第1の化合物半導体で形成され、基板110の上に設けられる。チャネル層111には、バリア層113との分極電荷量の差によって、電子が高移動度で走行する二次元電子ガス150が形成される。チャネル層111は、例えば、窒化物半導体で形成されてもよい。 The channel layer 111 is formed using the first compound semiconductor and is provided over the substrate 110. A two-dimensional electron gas 150 in which electrons travel with high mobility is formed in the channel layer 111 due to a difference in polarization charge amount from the barrier layer 113. The channel layer 111 may be formed of, for example, a nitride semiconductor.
 バリア層113は、第1の化合物半導体とは異なる第2の化合物半導体で形成され、チャネル層111の上に設けられる。バリア層113は、チャネル層111との分極電荷量の差によってチャネル層111に電子を蓄積させ、チャネル層111に二次元電子ガス150を形成する。バリア層113は、例えば、チャネル層111とは異なる窒化物半導体で形成されてもよい。 The barrier layer 113 is formed of a second compound semiconductor different from the first compound semiconductor, and is provided on the channel layer 111. The barrier layer 113 accumulates electrons in the channel layer 111 due to a difference in polarization charge amount from the channel layer 111, and forms a two-dimensional electron gas 150 in the channel layer 111. The barrier layer 113 may be formed of, for example, a nitride semiconductor different from the channel layer 111.
 ゲート絶縁膜121は、絶縁性の誘電体で形成され、バリア層113の上に設けられる。具体的には、ゲート絶縁膜121は、ソース又はドレイン電極240が設けられる領域を除いた領域のバリア層113の上に設けられる。ゲート絶縁膜121は、例えば、無機酸化物又は無機窒化物で形成されてもよい。 (4) The gate insulating film 121 is formed of an insulating dielectric and provided on the barrier layer 113. Specifically, the gate insulating film 121 is provided over the barrier layer 113 in a region excluding a region where the source or drain electrode 240 is provided. The gate insulating film 121 may be formed of, for example, an inorganic oxide or an inorganic nitride.
 ゲート電極220は、導電性材料で形成され、ゲート絶縁膜121の上に設けられる。具体的には、ゲート電極220は、例えば、複数の金属材料を積層することで構成されてもよい。 (4) The gate electrode 220 is formed of a conductive material and provided on the gate insulating film 121. Specifically, the gate electrode 220 may be configured by, for example, stacking a plurality of metal materials.
 ソース又はドレイン電極240は、導電性材料で形成され、バリア層113の上にゲート電極220を挟んで両側にそれぞれ設けられる。ソース又はドレイン電極240は、ゲート電極220を挟んで一方がソース電極となり、他方がドレイン電極となる。ソース又はドレイン電極240は、ソース又はドレイン電極240の下に設けられたコンタクト層230を介して、チャネル層111に形成された二次元電子ガス150と電気的に接続する。ソース又はドレイン電極240は、例えば、複数の金属材料を積層することで構成されてもよい。 The source or drain electrode 240 is formed of a conductive material, and is provided on the barrier layer 113 on both sides of the gate electrode 220. One of the source or drain electrodes 240 is a source electrode with the gate electrode 220 interposed therebetween, and the other is a drain electrode. The source or drain electrode 240 is electrically connected to the two-dimensional electron gas 150 formed in the channel layer 111 via a contact layer 230 provided below the source or drain electrode 240. The source or drain electrode 240 may be configured by, for example, stacking a plurality of metal materials.
 コンタクト層230は、導電型不純物が導入された化合物半導体で形成され、ソース又はドレイン電極240の下にバリア層113を貫通してチャネル層111に達するように設けられる。具体的には、コンタクト層230は、チャネル層111と同じ化合物半導体、又はチャネル層111とのバンドギャップの差が小さい化合物半導体で形成されることで、チャネル層111の二次元電子ガス150とのコンタクト抵抗を低下させる。例えば、コンタクト層230は、チャネル層111と同様に窒化物半導体で形成されてもよい。また、コンタクト層230は、導電型不純物が高濃度で導入されることで、ソース又はドレイン電極240とのコンタクト抵抗を低下させる。これにより、コンタクト層230は、ソース又はドレイン電極240から二次元電子ガス150への電流経路を形成することができる。例えば、コンタクト層230は、エッチングによって、バリア層113と、チャネル層111の一部とを除去して開口を形成した後、該開口の内部に、導電型不純物を添加しながら化合物半導体を結晶再成長させることで形成することができる。 The contact layer 230 is formed of a compound semiconductor into which a conductive impurity is introduced, and is provided below the source or drain electrode 240 so as to reach the channel layer 111 through the barrier layer 113. Specifically, the contact layer 230 is formed of the same compound semiconductor as the channel layer 111 or a compound semiconductor having a small band gap with the channel layer 111 so that the contact layer 230 is in contact with the two-dimensional electron gas 150 of the channel layer 111. Decrease contact resistance. For example, the contact layer 230 may be formed of a nitride semiconductor like the channel layer 111. In addition, the contact layer 230 lowers the contact resistance with the source or drain electrode 240 by introducing a conductive impurity at a high concentration. Accordingly, the contact layer 230 can form a current path from the source or drain electrode 240 to the two-dimensional electron gas 150. For example, in the contact layer 230, after the barrier layer 113 and a part of the channel layer 111 are removed by etching to form an opening, the compound semiconductor is recrystallized while adding a conductive impurity into the opening. It can be formed by growing.
 本実施形態に係る半導体装置では、第1のトランジスタ11及び第2のトランジスタ12は、形状又は大きさが互いに異なるように形成される。具体的には、第1のトランジスタ11は、大電流を流した際の電力損失を低減するために、ソース又はドレイン電極140、ゲート電極120、及びチャネル長がより大きくなるように形成される。一方、第2のトランジスタ12は、寄生容量による信号の損失を低減するために、ソース又はドレイン電極240、ゲート電極220、及びチャネル長がより小さくなるように形成される。 で は In the semiconductor device according to the present embodiment, the first transistor 11 and the second transistor 12 are formed so as to have different shapes or sizes from each other. Specifically, the first transistor 11 is formed so that the source or drain electrode 140, the gate electrode 120, and the channel length are increased in order to reduce power loss when a large current flows. On the other hand, the second transistor 12 is formed so that the source or drain electrode 240, the gate electrode 220, and the channel length are reduced in order to reduce signal loss due to parasitic capacitance.
 そのため、第1のトランジスタ11は、例えば、数十μm程度で設けられ、第2のトランジスタ12は、例えば、数μm程度で設けられることになる。このような場合、第1のトランジスタ11のソース又はドレイン電極140が設けられる領域の大きさと、第2のトランジスタ12のソース又はドレイン電極240が設けられる領域の大きさとが大きく異なってしまう。 Therefore, the first transistor 11 is provided at, for example, about several tens of μm, and the second transistor 12 is provided at, for example, about several μm. In such a case, the size of the region where the source or drain electrode 140 of the first transistor 11 is provided and the size of the region where the source or drain electrode 240 of the second transistor 12 is provided greatly differ.
 ここで、コンタクト層130、230は、化合物半導体の結晶再成長によって形成されるが、結晶再成長における結晶の成長速度は、面積が小さい領域ほど結晶の成長速度が高くなる。これは、化合物半導体の結晶再成長における結晶の成長速度は、原料の供給量に依存するためである。したがって、結晶再成長によって、面積が異なる領域に同時にコンタクト層を形成した場合、形成されたコンタクト層の膜厚、結晶品質、及びチャネル層111との界面の結合性は、コンタクト層が形成される領域の面積によって異なってしまう。 Here, the contact layers 130 and 230 are formed by crystal regrowth of the compound semiconductor, and the crystal growth rate in the crystal regrowth increases as the area of the area decreases. This is because the crystal growth rate in the crystal regrowth of the compound semiconductor depends on the supply amount of the raw material. Therefore, when a contact layer is simultaneously formed in regions having different areas by crystal regrowth, the thickness of the formed contact layer, crystal quality, and connectivity at the interface with the channel layer 111 form the contact layer. It depends on the area of the region.
 このような場合、膜厚、結晶品質、及びチャネル層111との界面の結合性が異なるコンタクト層では、チャネル層111とのコンタクト抵抗が異なってしまう。また、これらのコンタクト層では、膜厚が異なるため、導電型不純物の導入量も異なってしまい、ソース又はドレイン電極とのコンタクト抵抗も異なってしまう。したがって、互いに面積が異なるソース又はドレイン電極140、及びソース又はドレイン電極240の下の領域に、結晶再成長によって同時にコンタクト層130、230を形成した場合、第1のトランジスタ11及び第2のトランジスタ12のコンタクト抵抗は、互いに異なることになる。これによれば、第1のトランジスタ11又は第2のトランジスタ12のいずれかで所望のコンタクト抵抗を実現できない可能性が高い。 In such a case, the contact layers having different thicknesses, crystal qualities, and connectivity at the interface with the channel layer 111 have different contact resistances with the channel layer 111. In addition, since these contact layers have different thicknesses, the amount of the conductive impurity introduced is also different, and the contact resistance with the source or drain electrode is also different. Therefore, when the contact layers 130 and 230 are simultaneously formed by crystal regrowth in the regions below the source or drain electrodes 140 and the source or drain electrodes 240 having different areas, the first transistor 11 and the second transistor 12 are formed. Will be different from each other. According to this, there is a high possibility that a desired contact resistance cannot be achieved with either the first transistor 11 or the second transistor 12.
 本実施形態に係る半導体装置では、形状又は大きさが異なる第1のトランジスタ11及び第2のトランジスタ12において、コンタクト層130、230の面積を互いに対応する大きさにて形成する。具体的には、ソース又はドレイン電極140の下に形成されるコンタクト層130を、ソース又はドレイン電極140が形成された領域の一部領域に形成し、かつコンタクト層230と略同じオーミック幅となるように形成する。これにより、本実施形態に係る半導体装置では、第1のトランジスタ11及び第2のトランジスタ12のコンタクト層130、230を同様の膜厚及び結晶品質等になるように形成することができる。 In the semiconductor device according to the present embodiment, in the first transistor 11 and the second transistor 12 having different shapes or sizes, the areas of the contact layers 130 and 230 are formed to have sizes corresponding to each other. Specifically, the contact layer 130 formed below the source or drain electrode 140 is formed in a part of the region where the source or drain electrode 140 is formed, and has approximately the same ohmic width as the contact layer 230. It is formed as follows. Thus, in the semiconductor device according to the present embodiment, the contact layers 130 and 230 of the first transistor 11 and the second transistor 12 can be formed to have the same thickness, crystal quality, and the like.
 ここで、オーミック幅とは、ソース又はドレイン電極の各々を結ぶ直線でトランジスタを切断した断面におけるコンタクト層の幅を表す。または、ソース又はドレイン電極が直線又は折線形状で形成される場合、オーミック幅とは、コンタクト層の延伸方向と直交する方向の幅を表してもよい。なお、以下では、ソース又はドレイン電極140、240の各々を結ぶ直線の延伸方向をチャネル方向とも称する。 Here, the ohmic width indicates the width of the contact layer in a cross section obtained by cutting the transistor with a straight line connecting each of the source and drain electrodes. Alternatively, when the source or drain electrode is formed in a straight line or a broken line shape, the ohmic width may represent a width in a direction orthogonal to a direction in which the contact layer extends. Note that, in the following, a straight extending direction connecting each of the source or drain electrodes 140 and 240 is also referred to as a channel direction.
 本実施形態によれば、半導体装置は、形状又は大きさが異なる第1のトランジスタ11及び第2のトランジスタ12が混載された場合でも、それぞれに同程度の適切なコンタクト抵抗を実現することが可能である。 According to the present embodiment, even when the first transistor 11 and the second transistor 12 having different shapes or sizes are mixedly mounted, the semiconductor device can achieve the same appropriate contact resistance for each. It is.
 なお、本実施形態に係る半導体装置が、形状又は大きさが異なる3種類以上のトランジスタを含む場合、各トランジスタのコンタクト層のオーミック幅は、最も大きさが小さいトランジスタのコンタクト層のオーミック幅と略同じとなるように形成され得る。 When the semiconductor device according to this embodiment includes three or more types of transistors having different shapes or sizes, the ohmic width of the contact layer of each transistor is substantially equal to the ohmic width of the contact layer of the smallest transistor. It can be formed to be the same.
 ここで、図2A及び図2Bを参照して、第1のトランジスタ11のコンタクト層130の平面構造、並びに第2のトランジスタ12のコンタクト層230の平面構造について、より具体的に説明する。図2Aは、図1のソース又はドレイン領域SD2の平面構造及び断面構造を示す平面図及び縦断面図であり、図2Bは、図1のソース又はドレイン領域SD1の平面構造及び断面構造を示す平面図及び縦断面図である。図2A及び図2Bの下段の断面図は、図2A及び図2Bの上段の平面図のA-AA線で切断した断面を示す。 Here, the planar structure of the contact layer 130 of the first transistor 11 and the planar structure of the contact layer 230 of the second transistor 12 will be described more specifically with reference to FIGS. 2A and 2B. 2A is a plan view and a longitudinal sectional view showing a planar structure and a sectional structure of the source or drain region SD2 of FIG. 1, and FIG. 2B is a plan view showing a planar structure and a sectional structure of the source or drain region SD1 of FIG. It is a figure and a longitudinal cross-sectional view. 2A and 2B are cross-sectional views taken along line AAA of the plan views of the upper part of FIGS. 2A and 2B.
 図2Aに示すように、第2のトランジスタ12では、ソース又はドレイン電極240は、チャネル方向と直交する方向に延伸した矩形形状の平面形状にて形成され、ソース又はドレイン電極240の下に設けられるコンタクト層230は、ソース又はドレイン電極240が形成された領域に対応する領域に形成される。例えば、コンタクト層230は、ソース又はドレイン電極240が形成された領域と略同じ大きさの領域に形成されてもよい。このとき、第2のトランジスタ12の特性で決定されるソース又はドレイン電極240のチャネル方向の幅をw2とすると、コンタクト層230のオーミック幅(チャネル方向のコンタクト層230の幅)は、w2であり、ソース又はドレイン電極240のチャネル方向の幅と略同じとなる。 As shown in FIG. 2A, in the second transistor 12, the source or drain electrode 240 is formed in a rectangular planar shape extending in a direction orthogonal to the channel direction, and is provided below the source or drain electrode 240. The contact layer 230 is formed in a region corresponding to the region where the source or drain electrode 240 is formed. For example, the contact layer 230 may be formed in a region having substantially the same size as a region where the source or drain electrode 240 is formed. At this time, assuming that the width in the channel direction of the source or drain electrode 240 determined by the characteristics of the second transistor 12 is w2, the ohmic width of the contact layer 230 (the width of the contact layer 230 in the channel direction) is w2. , The width of the source or drain electrode 240 in the channel direction is substantially the same.
 一方、図2Bに示すように、第1のトランジスタ11では、ソース又はドレイン電極140は、チャネル方向に延伸した矩形形状の平面形状にて形成され、ソース又はドレイン電極140の下に設けられるコンタクト層130は、ソース又はドレイン電極140が形成された領域の一部領域に形成される。例えば、ソース又はドレイン電極140は、ソース又はドレイン電極140の外周に沿って中空の矩形形状にて形成されてもよい。このとき、第1のトランジスタ11の特性で決定されるソース又はドレイン電極140のチャネル方向の幅をw1とすると、中空の矩形形状で形成されるコンタクト層130のオーミック幅は、w1よりも小さいws1となる。 On the other hand, as shown in FIG. 2B, in the first transistor 11, the source or drain electrode 140 is formed in a rectangular planar shape extending in the channel direction, and a contact layer provided below the source or drain electrode 140. 130 is formed in a part of the region where the source or drain electrode 140 is formed. For example, the source or drain electrode 140 may be formed in a hollow rectangular shape along the outer periphery of the source or drain electrode 140. At this time, assuming that the width of the source or drain electrode 140 in the channel direction determined by the characteristics of the first transistor 11 is w1, the ohmic width of the contact layer 130 formed in a hollow rectangular shape is ws1 smaller than w1. It becomes.
 ここで、コンタクト層130のオーミック幅ws1を第2のトランジスタ12のコンタクト層230のオーミック幅w2と略同じとしてコンタクト層130を形成することで、結晶の成長速度をコンタクト層230の結晶の成長速度と略同じとすることができる。これにより、本実施形態に係る半導体装置は、混載される第1のトランジスタ11及び第2のトランジスタ12のコンタクト抵抗を同程度に制御することができる。ただし、ソース又はドレイン電極140、240のチャネル方向と直交する方向の長さは、第1のトランジスタ11及び第2のトランジスタ12で同じである。 Here, by forming the contact layer 130 with the ohmic width ws1 of the contact layer 130 being substantially the same as the ohmic width w2 of the contact layer 230 of the second transistor 12, the crystal growth speed can be reduced. Can be substantially the same as As a result, the semiconductor device according to the present embodiment can control the contact resistance of the first transistor 11 and the second transistor 12 that are mounted together at the same level. However, the length of the source or drain electrode 140, 240 in the direction orthogonal to the channel direction is the same for the first transistor 11 and the second transistor 12.
 なお、第1のトランジスタ11のコンタクト層130の平面形状については、図2Bで示した中空の矩形形状以外にも種々のバリエーションが考えられ得る。すなわち、第1のトランジスタ11のコンタクト層130の平面形状は、第2のトランジスタ12のコンタクト層230と結晶の成長速度を略同じにすることができれば、どのような形状であってもよい。例えば、第1のトランジスタ11のコンタクト層130の平面形状は、第2のトランジスタ12のコンタクト層230の平面形状を変形又は複数組み合わせた形状であってもよい。 Note that the contact layer 130 of the first transistor 11 may have various planar shapes other than the hollow rectangular shape shown in FIG. 2B. That is, the planar shape of the contact layer 130 of the first transistor 11 may be any shape as long as the crystal growth rate can be made substantially the same as that of the contact layer 230 of the second transistor 12. For example, the planar shape of the contact layer 130 of the first transistor 11 may be a shape obtained by modifying or combining a plurality of planar shapes of the contact layer 230 of the second transistor 12.
 <2.構造例>
 続いて、図3を参照して、本実施形態に係る半導体装置に備えられる第1のトランジスタ11の具体的な構造例について説明する。図3は、第1のトランジスタ11の具体的な断面構造及び平面構造を示す縦断面図及び平面図である。図3の上段の断面図は、図3の下段の平面図のA-AA線で切断した断面を示す。
<2. Structure example>
Subsequently, a specific structure example of the first transistor 11 provided in the semiconductor device according to the present embodiment will be described with reference to FIG. FIG. 3 is a longitudinal sectional view and a plan view showing a specific sectional structure and a planar structure of the first transistor 11. The upper cross-sectional view of FIG. 3 shows a cross section taken along line AAA of the lower plan view of FIG.
 図3に示すように、第1のトランジスタ11は、基板110と、バッファ層115と、チャネル層111と、バリア層113と、ゲート絶縁膜121と、ゲート電極120と、ソース又はドレイン電極140と、コンタクト層130と、を備える。また、図示しないが、第1のトランジスタ11は、第1のトランジスタ11よりも平面面積が小さい第2のトランジスタ12と同じ基板110に混載されているものとする。 As shown in FIG. 3, the first transistor 11 includes a substrate 110, a buffer layer 115, a channel layer 111, a barrier layer 113, a gate insulating film 121, a gate electrode 120, a source or drain electrode 140, , And a contact layer 130. Although not illustrated, the first transistor 11 is assumed to be mounted on the same substrate 110 as the second transistor 12 having a smaller planar area than the first transistor 11.
 なお、第1のトランジスタ11は、素子分離領域117によって、他のトランジスタ(例えば、第2のトランジスタ12等)と電気的に絶縁されている。素子分離領域117は、例えば、チャネル層111及びバリア層113をホウ素(B)の導入によって高抵抗化することで形成されてもよく、チャネル層111及びバリア層113をエッチング等で除去することで形成されてもよい。 Note that the first transistor 11 is electrically insulated from other transistors (for example, the second transistor 12 and the like) by the element isolation region 117. The element isolation region 117 may be formed by, for example, increasing the resistance of the channel layer 111 and the barrier layer 113 by introducing boron (B), and removing the channel layer 111 and the barrier layer 113 by etching or the like. It may be formed.
 基板110は、第1のトランジスタ11の各構成の支持体である。基板110は、化合物半導体で形成された基板であってもよく、具体的には、III-V族化合物半導体で形成された基板であってもよい。例えば、基板110は、半絶縁性を有する単結晶の窒化ガリウム(GaN)基板であってもよい。ただし、後述するバッファ層115を設けることによって、基板110は、チャネル層111と格子定数を略一致させずともよくなる。このような場合、基板110は、シリコン(Si)、炭化シリコン(SiC)又はサファイア等のチャネル層111と格子定数が異なる材質で形成された基板を用いることも可能である。 The substrate 110 is a support for each component of the first transistor 11. The substrate 110 may be a substrate formed of a compound semiconductor, and more specifically, may be a substrate formed of a III-V compound semiconductor. For example, the substrate 110 may be a single-crystal gallium nitride (GaN) substrate having a semi-insulating property. However, by providing the buffer layer 115 described later, the substrate 110 does not have to have a lattice constant substantially equal to that of the channel layer 111. In such a case, as the substrate 110, a substrate formed of a material having a different lattice constant from the channel layer 111 such as silicon (Si), silicon carbide (SiC), or sapphire can be used.
 バッファ層115は、化合物半導体で形成され、基板110の上に設けられる。具体的には、バッファ層115は、チャネル層111を形成する第1の化合物半導体と格子定数が近い化合物半導体を基板110の上にエピタキシャル成長させることで形成される。バッファ層115は、チャネル層111が形成される面の格子定数を制御することで、チャネル層111の結晶状態を良好とすることができると共に、チャネル層111を形成した後の基板110の反りを制御することができる。例えば、基板110がシリコンで形成され、チャネル層111がGaNで形成される場合、バッファ層115は、AlN、AlGaN又はGaNで形成されてもよい。 The buffer layer 115 is formed of a compound semiconductor and provided on the substrate 110. Specifically, the buffer layer 115 is formed by epitaxially growing a compound semiconductor having a lattice constant close to that of the first compound semiconductor forming the channel layer 111 on the substrate 110. The buffer layer 115 can improve the crystal state of the channel layer 111 by controlling the lattice constant of the surface on which the channel layer 111 is formed, and can reduce the warpage of the substrate 110 after the channel layer 111 is formed. Can be controlled. For example, when the substrate 110 is formed of silicon and the channel layer 111 is formed of GaN, the buffer layer 115 may be formed of AlN, AlGaN, or GaN.
 チャネル層111は、第1の化合物半導体で形成され、バッファ層115の上に設けられる。チャネル層111は、バリア層113との分極電荷量の差によって、キャリアとなる電子を蓄積する。これにより、チャネル層111には、チャネルとして機能する二次元電子ガス150が形成される。チャネル層111は、窒化物半導体で形成された層でもよく、例えば、Al1-a-bGaInN(ただし、0≦a≦1、0≦b≦1、a+b≦1)のエピタキシャル成長層であってもよい。 The channel layer 111 is formed using the first compound semiconductor and is provided over the buffer layer 115. The channel layer 111 accumulates electrons serving as carriers due to a difference in polarization charge amount from the barrier layer 113. Thus, a two-dimensional electron gas 150 functioning as a channel is formed in the channel layer 111. The channel layer 111 may be a layer formed of a nitride semiconductor, for example, epitaxial growth of Al 1-ab Ga a In b N (where 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, a + b ≦ 1). It may be a layer.
 バリア層113は、第1の化合物半導体と異なる第2の化合物半導体で形成され、チャネル層111の上に設けられる。バリア層113は、チャネル層111との分極電荷量の差によって、チャネル層111にキャリアとなる電子を蓄積させる。バリア層113は、チャネル層111とは異なる窒化物半導体で形成された層でもよく、例えば、Al1-c-dGaInN(ただし、0≦c≦1、0≦d≦1、c+d≦1、(c,d)≠(a,b))のエピタキシャル成長層であってもよい。 The barrier layer 113 is formed using a second compound semiconductor different from the first compound semiconductor, and is provided over the channel layer 111. The barrier layer 113 causes carriers serving as carriers to be accumulated in the channel layer 111 due to a difference in polarization charge amount from the channel layer 111. Barrier layer 113 may be a layer formed of a different nitride semiconductor as a channel layer 111, for example, Al 1-c-d Ga c In d N ( However, 0 ≦ c ≦ 1,0 ≦ d ≦ 1, The epitaxial growth layer may satisfy c + d ≦ 1, (c, d) ≠ (a, b)).
 また、バリア層113は、不純物が添加されていない(すなわち、アンドープの)Al1-c-dGaInNで形成されてもよい。このような場合、バリア層113は、チャネル層111中の電子の不純物散乱を抑制することができるため、二次元電子ガス150の移動度をより高くすることができる。 The barrier layer 113, impurities are not added (i.e., undoped) may be formed of Al 1-c-d Ga c In d N. In such a case, the barrier layer 113 can suppress impurity scattering of electrons in the channel layer 111, so that the mobility of the two-dimensional electron gas 150 can be further increased.
 ゲート絶縁膜121は、絶縁性を有する誘電体で形成され、バリア層113の上に設けられる。具体的には、ゲート絶縁膜121は、ソース又はドレイン電極240が設けられる領域を除いた領域のバリア層113の上に設けられる。例えば、ゲート絶縁膜121は、バリア層113及びゲート電極120に対して絶縁性を有する誘電体で形成されてもよく、SiO、Si若しくはAl、又はHfO等で形成されてもよい。 The gate insulating film 121 is formed of a dielectric having an insulating property, and is provided on the barrier layer 113. Specifically, the gate insulating film 121 is provided over the barrier layer 113 in a region excluding a region where the source or drain electrode 240 is provided. For example, the gate insulating film 121 may be formed of a dielectric having an insulating property with respect to the barrier layer 113 and the gate electrode 120, and may be formed of SiO 2 , Si 3 N 4, Al 2 O 3 , HfO 2 , or the like. May be done.
 ゲート電極120は、導電性材料で形成され、ゲート絶縁膜121の上に設けられる。具体的には、ゲート電極120は、一方の素子分離領域117から他方の素子分離領域117にかけて、ゲート絶縁膜121を横断するように設けられる。例えば、ゲート電極120は、例えば、ゲート絶縁膜121側から、ニッケル(Ni)及び金(Au)を順次積層することで形成されてもよい。 The gate electrode 120 is formed of a conductive material and provided on the gate insulating film 121. Specifically, the gate electrode 120 is provided so as to cross the gate insulating film 121 from one element isolation region 117 to the other element isolation region 117. For example, the gate electrode 120 may be formed by, for example, sequentially stacking nickel (Ni) and gold (Au) from the gate insulating film 121 side.
 ソース又はドレイン電極140は、バリア層113の上にゲート電極120を挟んで両側にそれぞれ設けられる。ソース又はドレイン電極140は、ゲート電極120を挟んで一方がソース電極であり、他方がドレイン電極である。ソース又はドレイン電極140は、ソース又はドレイン電極140の下の一部領域に設けられたコンタクト層130を介して、チャネル層111に形成された二次元電子ガス150と電気的に接続する。ソース又はドレイン電極140は、例えば、バリア層113側から、チタン(Ti)、Aアルミニウム(Al)、ニッケル(Ni)及び金(Au)を順次積層することで形成されてもよい。 The source or drain electrode 140 is provided on both sides of the gate electrode 120 on the barrier layer 113. One of the source or drain electrodes 140 is a source electrode with the gate electrode 120 interposed therebetween, and the other is a drain electrode. The source or drain electrode 140 is electrically connected to a two-dimensional electron gas 150 formed in the channel layer 111 through a contact layer 130 provided in a partial region below the source or drain electrode 140. The source or drain electrode 140 may be formed, for example, by sequentially stacking titanium (Ti), A aluminum (Al), nickel (Ni), and gold (Au) from the barrier layer 113 side.
 コンタクト層130は、導電型不純物が導入された化合物半導体で形成され、ソース又はドレイン電極140の下にバリア層113を貫通してチャネル層111に達するように設けられる。具体的には、コンタクト層130は、チャネル層111と同じ化合物半導体、又はチャネル層111とバンドギャップの差が小さい化合物半導体で形成されることで、チャネル層111の二次元電子ガス150とのコンタクト抵抗を低下させる。また、コンタクト層130は、導電型不純物が高濃度で導入されることで、ソース又はドレイン電極140とのコンタクト抵抗を低下させる。具体的には、コンタクト層130は、n型不純物を導入した窒化物半導体で形成されてもよい。例えば、コンタクト層130は、Al1-a-bGaInN(ただし、0≦a≦1、0≦b≦1、a+b≦1)のエピタキシャル成長層にシリコン(Si)又はゲルマニウム(Ge)などを1×1018個/cm以上にて導入することで形成されてもよい。 The contact layer 130 is formed of a compound semiconductor into which a conductive impurity is introduced, and is provided below the source or drain electrode 140 so as to reach the channel layer 111 through the barrier layer 113. Specifically, the contact layer 130 is formed using the same compound semiconductor as the channel layer 111 or a compound semiconductor having a small difference in band gap from the channel layer 111 so that the channel layer 111 can be in contact with the two-dimensional electron gas 150. Decrease resistance. In addition, the contact layer 130 lowers the contact resistance with the source or drain electrode 140 by introducing a conductive impurity at a high concentration. Specifically, contact layer 130 may be formed of a nitride semiconductor into which an n-type impurity has been introduced. For example, the contact layer 130 is formed by forming an epitaxial layer of Al 1-ab Ga a In b N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, a + b ≦ 1) on silicon (Si) or germanium (Ge). Or the like may be introduced at 1 × 10 18 / cm 3 or more.
 コンタクト層130は、ソース又はドレイン電極140の下の一部領域に、第2のトランジスタ12のコンタクト層230の平面形状に基づいた平面形状にて設けられる。具体的には、コンタクト層130は、ソース又はドレイン電極140が形成された領域の外周に沿った中空の矩形形状にて設けられてもよい。また、コンタクト層130の平面形状である中空の矩形形状の外径と内径との差(すなわち、額縁状形状の幅)は、第2のトランジスタ12のコンタクト層230のチャネル方向の幅と略同じであってもよい。これによれば、コンタクト層130は、結晶の成長速度を第2のトランジスタ12のコンタクト層230と略同じとすることができる。したがって、半導体装置では、第1のトランジスタ11及び第2のトランジスタ12を同程度のコンタクト抵抗にて形成することが可能である。 The contact layer 130 is provided in a partial region below the source or drain electrode 140 in a planar shape based on the planar shape of the contact layer 230 of the second transistor 12. Specifically, the contact layer 130 may be provided in a hollow rectangular shape along the outer periphery of the region where the source or drain electrode 140 is formed. The difference between the outer diameter and the inner diameter of the hollow rectangular shape, which is the planar shape of the contact layer 130 (ie, the width of the frame shape), is substantially the same as the width of the contact layer 230 of the second transistor 12 in the channel direction. It may be. According to this, the contact layer 130 can have a crystal growth rate substantially equal to that of the contact layer 230 of the second transistor 12. Therefore, in the semiconductor device, the first transistor 11 and the second transistor 12 can be formed with approximately the same contact resistance.
 ただし、コンタクト層130は、ソース又はドレイン電極140が形成された領域のうち、少なくともゲート電極120に対向する領域に設けられ得る。具体的には、ソース又はドレイン電極140が矩形形状で形成される場合、コンタクト層130は、ソース又はドレイン電極140の矩形形状のうちゲート電極120と対向する辺に少なくとも設けられ得る。第1のトランジスタ11のチャネル長は、コンタクト層130の各々が二次元電子ガス150と接続する位置の距離で定まる。そのため、この構成によれば、第1のトランジスタ11は、ソース又はドレイン電極140の一方から他方までの間に形成されるチャネル長をより高い精度で制御することが可能である。 However, the contact layer 130 may be provided at least in a region facing the gate electrode 120 in a region where the source or drain electrode 140 is formed. Specifically, when the source or drain electrode 140 is formed in a rectangular shape, the contact layer 130 may be provided at least on a side of the rectangular shape of the source or drain electrode 140 facing the gate electrode 120. The channel length of the first transistor 11 is determined by the distance at which each of the contact layers 130 connects to the two-dimensional electron gas 150. Therefore, according to this configuration, the first transistor 11 can control the channel length formed between one and the other of the source or drain electrode 140 with higher accuracy.
 なお、図3では、コンタクト層130は、バリア層113を貫通し、チャネル層111に形成された凹部を埋め込むようにチャネル層111の内部にまで形成されているが、第1のトランジスタ11の構造はかかる例に限定されない。例えば、コンタクト層130は、チャネル層111のバリア層113が設けられた面上に設けられてもよい。すなわち、チャネル層111には凹部が形成されず、コンタクト層130は、バリア層113と同様にチャネル層111の一主面上に設けられてもよい。 In FIG. 3, the contact layer 130 penetrates through the barrier layer 113 and is formed up to the inside of the channel layer 111 so as to fill a recess formed in the channel layer 111. However, the structure of the first transistor 11 Is not limited to such an example. For example, the contact layer 130 may be provided on the surface of the channel layer 111 on which the barrier layer 113 is provided. That is, no concave portion is formed in the channel layer 111, and the contact layer 130 may be provided on one main surface of the channel layer 111, similarly to the barrier layer 113.
 第1のトランジスタ11でチャネルとなる二次元電子ガス150は、バリア層113及びチャネル層111の界面に形成される。したがって、コンタクト層130は、バリア層113と同様にチャネル層111の一主面上に設けられていれば、底面にて二次元電子ガス150と電気的に接続することが可能である。 {Circle around (2)} The two-dimensional electron gas 150 serving as a channel in the first transistor 11 is formed at the interface between the barrier layer 113 and the channel layer 111. Therefore, if the contact layer 130 is provided on one main surface of the channel layer 111 as in the case of the barrier layer 113, the contact layer 130 can be electrically connected to the two-dimensional electron gas 150 at the bottom surface.
 以上の構造を備える第1のトランジスタ11によれば、本実施形態に係る半導体装置は、平面面積が異なるトランジスタのいずれでも、同程度の良好なコンタクト抵抗を得ることが可能である。 According to the first transistor 11 having the above structure, the semiconductor device according to the present embodiment can obtain the same good contact resistance with any of the transistors having different planar areas.
 <3.製造方法>
 次に、図4A~図4Hを参照して、本実施形態に係る半導体装置に備えられる第1のトランジスタ11の製造方法について説明する。図4A~図4Hは、本実施形態に係る半導体装置に備えられる第1のトランジスタ11の製造方法の各工程を説明する縦断面図である。
<3. Manufacturing method>
Next, a method for manufacturing the first transistor 11 included in the semiconductor device according to the present embodiment will be described with reference to FIGS. 4A to 4H. 4A to 4H are vertical cross-sectional views illustrating each step of the method for manufacturing the first transistor 11 provided in the semiconductor device according to the present embodiment.
 まず、図4Aに示すように、シリコン等で形成された基板110の上にバッファ層115、チャネル層111、バリア層113及び絶縁層160を順次積層する。 First, as shown in FIG. 4A, a buffer layer 115, a channel layer 111, a barrier layer 113, and an insulating layer 160 are sequentially stacked on a substrate 110 formed of silicon or the like.
 具体的には、シリコン等で形成された基板110の上にAlN、AlGaN又はGaNをエピタキシャル成長させることでバッファ層115を形成する。次に、バッファ層115の上に不純物を添加せずにGaNをエピタキシャル成長させることでチャネル層111を形成する。続いて、チャネル層111の上にAlInNをエピタキシャル成長させることでバリア層113を形成する。その後、CVD(Chemical Vapor Deposition)等を用いて、バリア層113の上にSiOにて絶縁層160を形成する。 Specifically, the buffer layer 115 is formed by epitaxially growing AlN, AlGaN, or GaN on the substrate 110 formed of silicon or the like. Next, the channel layer 111 is formed by epitaxially growing GaN on the buffer layer 115 without adding an impurity. Subsequently, the barrier layer 113 is formed by epitaxially growing AlInN on the channel layer 111. After that, the insulating layer 160 is formed of SiO 2 on the barrier layer 113 by using CVD (Chemical Vapor Deposition) or the like.
 次に、図4Bに示すように、絶縁層160、バリア層113及びチャネル層111をパターニングすることで、開口161を形成する。 (4) Next, as shown in FIG. 4B, an opening 161 is formed by patterning the insulating layer 160, the barrier layer 113, and the channel layer 111.
 具体的には、フォトリソグラフィによってパターニングされたレジストを絶縁層160の上に形成した後、該レジストをマスクとして、バリア層113及びチャネル層111をウェットエッチング又はドライエッチングする。これにより、絶縁層160、バリア層113及びチャネル層111に開口161を形成することができる。なお、このとき、第1のトランジスタ11のソース又はドレインとなる領域の外周領域もエッチングすることで、該外周領域にリセス構造を形成してもよい。 Specifically, after a resist patterned by photolithography is formed on the insulating layer 160, the barrier layer 113 and the channel layer 111 are wet-etched or dry-etched using the resist as a mask. Thus, an opening 161 can be formed in the insulating layer 160, the barrier layer 113, and the channel layer 111. Note that, at this time, a recess structure may be formed in the outer peripheral region by etching the outer peripheral region of the region serving as the source or drain of the first transistor 11.
 続いて、図4Cに示すように、開口161の内部のチャネル層111の上にコンタクト層130を選択的に形成する。 Subsequently, as shown in FIG. 4C, a contact layer 130 is selectively formed on the channel layer 111 inside the opening 161.
 具体的には、バリア層113の上に形成された絶縁層160をマスクとして、開口161の内部のチャネル層111の上にコンタクト層130をエピタキシャル成長させる。このとき、コンタクト層130は、チャネル層111と同様にGaNにて形成されてもよい。このようなコンタクト層130のエピタキシャル成長は、結晶再成長ともいう。コンタクト層130へのn型不純物の導入は、結晶再成長の際にSi又はGeなどのn型不純物を取り込ませながらエピタキシャル成長させることで行われてもよい。または、コンタクト層130へのn型不純物の導入は、結晶再成長の後、Si又はGeなどのn型不純物をイオン注入することで行われてもよい。なお、コンタクト層130に導入されるn型不純物の濃度は、例えば、1×1018個/cm以上としてもよい。 Specifically, the contact layer 130 is epitaxially grown on the channel layer 111 inside the opening 161 using the insulating layer 160 formed on the barrier layer 113 as a mask. At this time, the contact layer 130 may be formed of GaN similarly to the channel layer 111. Such epitaxial growth of the contact layer 130 is also called crystal regrowth. The introduction of the n-type impurity into the contact layer 130 may be performed by performing epitaxial growth while incorporating an n-type impurity such as Si or Ge at the time of crystal regrowth. Alternatively, the introduction of the n-type impurity into the contact layer 130 may be performed by ion-implanting an n-type impurity such as Si or Ge after crystal regrowth. Note that the concentration of the n-type impurity introduced into the contact layer 130 may be, for example, 1 × 10 18 / cm 3 or more.
 なお、コンタクト層130の結晶再成長は、エッチングガス等が用いられない条件で行われる。CVD等の通常の堆積では、エッチングガス等を用いることで、堆積領域ごとに堆積速度を制御することができるが、エピタキシャルに結晶を成長させることが重要なコンタクト層130の結晶再成長では、エッチングガス等による調整が困難である。そのため、本実施形態に係る半導体装置では、コンタクト層130の結晶の成長速度をコンタクト層130の平面形状にて制御している。 The regrowth of the crystal of the contact layer 130 is performed under the condition that an etching gas or the like is not used. In normal deposition such as CVD, the deposition rate can be controlled for each deposition region by using an etching gas or the like. However, in the crystal regrowth of the contact layer 130 where it is important to grow a crystal epitaxially, etching is performed. It is difficult to adjust with gas or the like. Therefore, in the semiconductor device according to this embodiment, the growth rate of the crystal of the contact layer 130 is controlled by the planar shape of the contact layer 130.
 次に、図4Dに示すように、ウェットエッチング又はドライエッチングによって絶縁層160を除去する。 Next, as shown in FIG. 4D, the insulating layer 160 is removed by wet etching or dry etching.
 続いて、図4Eに示すように、コンタクト層130の上、かつ第1のトランジスタ11のソース又はドレインとなる領域にソース又はドレイン電極140を形成する。 (4) Subsequently, as shown in FIG. 4E, a source or drain electrode 140 is formed on the contact layer 130 and in a region to be a source or a drain of the first transistor 11.
 具体的には、第1のトランジスタ11のソース又はドレインとなる領域に、Ti、Al、Ni及びAuを順次積層することで、ソース又はドレイン電極140を形成する。その後、図示しないが、第1のトランジスタ11の周囲に素子分離領域117を形成することで、第1のトランジスタ11を他のトランジスタ(例えば、第2のトランジスタ12等)と電気的に絶縁する。素子分離領域117は、例えば、イオン注入によってホウ素(B)を導入し、化合物半導体で形成されたバリア層113及びチャネル層111を高抵抗化することで形成されてもよい。また、素子分離領域117は、例えば、ドライエッチングによってバリア層113及びチャネル層111を除去することで形成されてもよい。 {Specifically, the source or drain electrode 140 is formed by sequentially stacking Ti, Al, Ni, and Au in a region to be a source or a drain of the first transistor 11. After that, although not shown, an element isolation region 117 is formed around the first transistor 11 to electrically insulate the first transistor 11 from other transistors (for example, the second transistor 12 and the like). The element isolation region 117 may be formed by, for example, introducing boron (B) by ion implantation and increasing the resistance of the barrier layer 113 and the channel layer 111 formed of a compound semiconductor. The element isolation region 117 may be formed by, for example, removing the barrier layer 113 and the channel layer 111 by dry etching.
 次に、図4Fに示すように、ソース又はドレイン電極140、及びバリア層113の上にゲート絶縁膜121を一様に形成する。ゲート絶縁膜121は、例えば、Alにて形成されてもよく、複数の誘電体又は絶縁材料の積層構造で形成されてもよい。 Next, as shown in FIG. 4F, the gate insulating film 121 is formed uniformly over the source or drain electrode 140 and the barrier layer 113. The gate insulating film 121 may be formed of, for example, Al 2 O 3 or may be formed of a stacked structure of a plurality of dielectrics or insulating materials.
 続いて、図4Gに示すように、ゲート絶縁膜121の上にゲート電極120を形成する。具体的には、ソース又はドレイン電極140の間のゲート絶縁膜121の上に、Ni及びAuを順次積層することで、ゲート電極120を形成する。 4G, a gate electrode 120 is formed on the gate insulating film 121 as shown in FIG. 4G. Specifically, the gate electrode 120 is formed by sequentially stacking Ni and Au on the gate insulating film 121 between the source or drain electrodes 140.
 その後、図4Hに示すように、ソース又はドレイン電極140の上に形成されたゲート絶縁膜121を除去する。具体的には、ウェットエッチング又はドライエッチングによって、ソース又はドレイン電極140の上に形成されたゲート絶縁膜121を除去することで、ソース又はドレイン電極140を露出させる。 (4) Thereafter, as shown in FIG. 4H, the gate insulating film 121 formed on the source or drain electrode 140 is removed. Specifically, the source or drain electrode 140 is exposed by removing the gate insulating film 121 formed over the source or drain electrode 140 by wet etching or dry etching.
 以上の工程によれば、本実施形態に係る半導体装置に備えられる第1のトランジスタ11を製造することができる。 According to the above steps, the first transistor 11 provided in the semiconductor device according to the present embodiment can be manufactured.
 <4.変形例>
 続いて、図5~図9を参照して、本実施形態に係る半導体装置に備えられる第1のトランジスタ11の構造の変形例について説明する。図5~図9は、第1~第5の変形例に係る第1のトランジスタの断面構造及び平面構造を示す縦断面図及び平面図である。図5~図9の上段の断面図は、それぞれ図5~図9の下段の平面図のA-AA線で切断した断面を示す。
<4. Modification>
Subsequently, a modification of the structure of the first transistor 11 provided in the semiconductor device according to the present embodiment will be described with reference to FIGS. 5 to 9 are a longitudinal sectional view and a plan view showing a sectional structure and a planar structure of a first transistor according to first to fifth modifications, respectively. 5 to 9 are cross-sectional views taken along line A-AA of the plan views in the lower part of FIGS. 5 to 9, respectively.
 (第1の変形例)
 図5に示すように、第1のトランジスタ11Aでは、ソース又はドレイン電極141がコンタクト層130と同様にパターニングされており、ソース又はドレイン電極141は、コンタクト層130と対応する平面形状にて設けられ得る。すなわち、第1のトランジスタ11Aは、ソース又はドレイン電極141がコンタクト層130の上にだけ形成される点が図3で示す第1のトランジスタ11と異なる。
(First Modification)
As shown in FIG. 5, in the first transistor 11A, the source or drain electrode 141 is patterned similarly to the contact layer 130, and the source or drain electrode 141 is provided in a planar shape corresponding to the contact layer 130. obtain. That is, the first transistor 11A is different from the first transistor 11 shown in FIG. 3 in that the source or drain electrode 141 is formed only on the contact layer 130.
 具体的には、ソース又はドレイン電極141は、中空の矩形形状の平面形状にて設けられ、コンタクト層130は、ソース又はドレイン電極141と同様に中空の矩形形状の平面形状にて設けられる。このとき、ソース又はドレイン電極141、及びコンタクト層130の中空の矩形形状の外径と内径との差(すなわち、額縁状形状の幅)は、第2のトランジスタ12のコンタクト層230のチャネル方向の幅と略同じとなる。 Specifically, the source or drain electrode 141 is provided in a hollow rectangular planar shape, and the contact layer 130 is provided in a hollow rectangular planar shape like the source or drain electrode 141. At this time, the difference between the outer diameter and the inner diameter of the hollow rectangular shape of the source or drain electrode 141 and the contact layer 130 (that is, the width of the frame shape) depends on the channel direction of the contact layer 230 of the second transistor 12. It is almost the same as the width.
 このような場合でも、コンタクト層130は、オーミック幅を第2のトランジスタ12のコンタクト層230のオーミック幅と略同じとすることができるため、結晶の成長速度を第2のトランジスタ12のコンタクト層230と略同じとすることができる。したがって、コンタクト層130は、コンタクト抵抗を第2のトランジスタ12のコンタクト層230と略同じにすることが可能である。 Even in such a case, the ohmic width of the contact layer 130 can be made substantially the same as the ohmic width of the contact layer 230 of the second transistor 12, so that the crystal growth rate can be reduced. Can be substantially the same as Therefore, the contact resistance of the contact layer 130 can be substantially the same as that of the contact layer 230 of the second transistor 12.
 第1の変形例によれば、ソース又はドレイン電極141がバリア層113の上に設けられないため、ソース又はドレイン電極141からの意図しないリーク電流が発生することを抑制することができる。また、第1の変形例によれば、ソース又はドレイン電極141及びバリア層113の間で抵抗又は損失等が発生することを防止することができる。 According to the first modification, since the source or drain electrode 141 is not provided on the barrier layer 113, it is possible to suppress occurrence of an unintended leak current from the source or drain electrode 141. Further, according to the first modification, it is possible to prevent the occurrence of resistance or loss between the source or drain electrode 141 and the barrier layer 113.
 (第2の変形例)
 図6に示すように、第1のトランジスタ11Bでは、コンタクト層131は、ソース又はドレイン電極140の下の一部領域に、チャネル方向と直交する方向に延伸する複数の矩形の平面形状にて設けられ得る。すなわち、第1のトランジスタ11Bは、コンタクト層131の平面形状が異なる点が図3で示す第1のトランジスタ11と異なる。
(Second Modification)
As shown in FIG. 6, in the first transistor 11B, the contact layer 131 is provided in a partial region below the source or drain electrode 140 in a plurality of rectangular planar shapes extending in a direction orthogonal to the channel direction. Can be That is, the first transistor 11B is different from the first transistor 11 shown in FIG. 3 in that the planar shape of the contact layer 131 is different.
 具体的には、コンタクト層131は、チャネル方向と直交する方向に延伸する3つの矩形の平面形状にて設けられ得る。このとき、コンタクト層131のチャネル方向の幅は、第2のトランジスタ12のコンタクト層230のチャネル方向の幅と略同じであってもよい。すなわち、コンタクト層131の平面形状のうちの1つの矩形形状は、第2のトランジスタ12のコンタクト層230の平面形状と略同じであってもよい。 Specifically, the contact layer 131 can be provided in three rectangular planar shapes extending in a direction orthogonal to the channel direction. At this time, the width of the contact layer 131 in the channel direction may be substantially the same as the width of the contact layer 230 of the second transistor 12 in the channel direction. That is, one rectangular shape of the planar shape of the contact layer 131 may be substantially the same as the planar shape of the contact layer 230 of the second transistor 12.
 このような場合でも、コンタクト層131は、オーミック幅を第2のトランジスタ12のコンタクト層230のオーミック幅と略同じとすることができるため、結晶の成長速度を第2のトランジスタ12のコンタクト層230と略同じとすることができる。したがって、コンタクト層131は、コンタクト抵抗を第2のトランジスタ12のコンタクト層230と略同じにすることが可能である。 Even in such a case, the ohmic width of the contact layer 131 can be made substantially the same as the ohmic width of the contact layer 230 of the second transistor 12, so that the crystal growth rate can be reduced. Can be substantially the same as Therefore, the contact resistance of the contact layer 131 can be substantially the same as that of the contact layer 230 of the second transistor 12.
 第2の変形例によれば、コンタクト層131の平面形状が第2のトランジスタ12のコンタクト層230の平面形状の組み合わせで形成されるため、コンタクト層131の結晶の成長速度を第2のトランジスタ12のコンタクト層230とより一致させることが可能となる。したがって、第2の変形例によれば、第1のトランジスタ11及び第2のトランジスタ12のコンタクト抵抗をより一致させることが可能である。 According to the second modification, since the planar shape of the contact layer 131 is formed by a combination of the planar shape of the contact layer 230 of the second transistor 12, the crystal growth rate of the contact layer 131 is reduced by the second transistor 12. Can be made more consistent with the contact layer 230 of FIG. Therefore, according to the second modification, it is possible to make the contact resistances of the first transistor 11 and the second transistor 12 more consistent.
 (第3の変形例)
 図7に示すように、第1のトランジスタ11Cでは、ソース又はドレイン電極142がコンタクト層131と同様にパターニングされており、ソース又はドレイン電極142は、コンタクト層131と対応する平面形状にて設けられ得る。すなわち、第1のトランジスタ11Cは、ソース又はドレイン電極142がコンタクト層131の上にだけ形成される点が図6で示す第1のトランジスタ11Bと異なる。
(Third Modification)
As shown in FIG. 7, in the first transistor 11C, the source or drain electrode 142 is patterned similarly to the contact layer 131, and the source or drain electrode 142 is provided in a planar shape corresponding to the contact layer 131. obtain. That is, the first transistor 11C is different from the first transistor 11B shown in FIG. 6 in that the source or drain electrode 142 is formed only on the contact layer 131.
 具体的には、ソース又はドレイン電極142は、チャネル方向と直交する方向に延伸する複数の矩形の平面形状にて設けられ、コンタクト層131は、ソース又はドレイン電極142と同様にチャネル方向と直交する方向に延伸する複数の矩形の平面形状にて設けられる。このとき、ソース又はドレイン電極142、及びコンタクト層131のチャネル方向の幅は、第2のトランジスタ12のコンタクト層230のチャネル方向の幅と略同じであってもよい。すなわち、ソース又はドレイン電極142、及びコンタクト層131の平面形状のうちの1つの矩形形状は、第2のトランジスタ12のコンタクト層230の平面形状と略同じであってもよい。 Specifically, the source or drain electrode 142 is provided in a plurality of rectangular planar shapes extending in a direction orthogonal to the channel direction, and the contact layer 131 is orthogonal to the channel direction like the source or drain electrode 142. It is provided in a plurality of rectangular planar shapes extending in the direction. At this time, the width of the source or drain electrode 142 and the contact layer 131 in the channel direction may be substantially the same as the width of the contact layer 230 of the second transistor 12 in the channel direction. That is, one of the planar shapes of the source or drain electrode 142 and the contact layer 131 may be substantially the same as the planar shape of the contact layer 230 of the second transistor 12.
 このような場合でも、コンタクト層131は、オーミック幅を第2のトランジスタ12のコンタクト層230のオーミック幅と略同じとすることができるため、結晶の成長速度を第2のトランジスタ12のコンタクト層230と略同じとすることができる。したがって、コンタクト層131は、コンタクト抵抗を第2のトランジスタ12のコンタクト層230と略同じにすることが可能である。 Even in such a case, the ohmic width of the contact layer 131 can be made substantially the same as the ohmic width of the contact layer 230 of the second transistor 12, so that the crystal growth rate can be reduced. Can be substantially the same as Therefore, the contact resistance of the contact layer 131 can be substantially the same as that of the contact layer 230 of the second transistor 12.
 第3の変形例によれば、ソース又はドレイン電極142がバリア層113の上に設けられないため、ソース又はドレイン電極142からの意図しないリーク電流が発生することを抑制することができる。また、第3の変形例によれば、ソース又はドレイン電極142及びバリア層113の間で抵抗又は損失等が発生することを防止することができる。 According to the third modification, since the source or drain electrode 142 is not provided on the barrier layer 113, it is possible to suppress the occurrence of an unintended leak current from the source or drain electrode 142. Further, according to the third modification, it is possible to prevent the occurrence of resistance or loss between the source or drain electrode 142 and the barrier layer 113.
 (第4の変形例)
 図8に示すように、第1のトランジスタ11Dでは、コンタクト層132は、ソース又はドレイン電極140の下の一部領域に、チャネル方向と直交する方向に延伸する複数の矩形の平面形状にて設けられ得る。すなわち、第1のトランジスタ11Dは、コンタクト層132の平面形状が異なる点が図3で示す第1のトランジスタ11と異なる。
(Fourth modification)
As shown in FIG. 8, in the first transistor 11D, the contact layer 132 is provided in a partial region below the source or drain electrode 140 in a plurality of rectangular planar shapes extending in a direction orthogonal to the channel direction. Can be That is, the first transistor 11D is different from the first transistor 11 shown in FIG. 3 in that the planar shape of the contact layer 132 is different.
 具体的には、コンタクト層132は、チャネル方向と直交する方向に延伸する2つの矩形の平面形状にて設けられ得る。より具体的には、コンタクト層132は、ソース又はドレイン電極140の矩形形状のチャネル方向の二辺に沿った2つの矩形形状にて設けられてもよい。このとき、コンタクト層132のチャネル方向の幅は、第2のトランジスタ12のコンタクト層230のチャネル方向の幅と略同じであってもよい。すなわち、コンタクト層132の平面形状のうちの1つの矩形形状は、第2のトランジスタ12のコンタクト層230の平面形状と略同じであってもよい。 Specifically, the contact layer 132 can be provided in two rectangular planar shapes extending in a direction orthogonal to the channel direction. More specifically, the contact layer 132 may be provided in two rectangular shapes along two sides of the rectangular shape of the source or drain electrode 140 in the channel direction. At this time, the width of the contact layer 132 in the channel direction may be substantially the same as the width of the contact layer 230 of the second transistor 12 in the channel direction. That is, one rectangular shape of the planar shape of the contact layer 132 may be substantially the same as the planar shape of the contact layer 230 of the second transistor 12.
 このような場合でも、コンタクト層132は、オーミック幅を第2のトランジスタ12のコンタクト層230のオーミック幅と略同じとすることができるため、結晶の成長速度を第2のトランジスタ12のコンタクト層230と略同じとすることができる。したがって、コンタクト層132は、コンタクト抵抗を第2のトランジスタ12のコンタクト層230と略同じにすることが可能である。 Even in such a case, since the ohmic width of the contact layer 132 can be made substantially the same as the ohmic width of the contact layer 230 of the second transistor 12, the crystal growth rate can be reduced. Can be substantially the same as Therefore, the contact resistance of the contact layer 132 can be substantially the same as that of the contact layer 230 of the second transistor 12.
 第4の変形例によれば、コンタクト層132の平面形状が第2のトランジスタ12のコンタクト層230の平面形状の組み合わせで形成されるため、コンタクト層132の結晶の成長速度を第2のトランジスタ12のコンタクト層230とより一致させることが可能となる。したがって、第4の変形例によれば、第1のトランジスタ11及び第2のトランジスタ12のコンタクト抵抗をより一致させることが可能である。 According to the fourth modification, since the planar shape of the contact layer 132 is formed by a combination of the planar shape of the contact layer 230 of the second transistor 12, the crystal growth rate of the contact layer 132 is reduced. Can be made more consistent with the contact layer 230 of FIG. Therefore, according to the fourth modification, it is possible to make the contact resistances of the first transistor 11 and the second transistor 12 more consistent.
 (第5の変形例)
 図9に示すように、第1のトランジスタ11Eでは、ソース又はドレイン電極143がコンタクト層132と同様にパターニングされており、ソース又はドレイン電極143は、コンタクト層132と対応する平面形状にて設けられ得る。すなわち、第1のトランジスタ11Eは、ソース又はドレイン電極143がコンタクト層132の上にだけ形成される点が図8で示す第1のトランジスタ11Dと異なる。
(Fifth Modification)
As shown in FIG. 9, in the first transistor 11E, the source or drain electrode 143 is patterned similarly to the contact layer 132, and the source or drain electrode 143 is provided in a planar shape corresponding to the contact layer 132. obtain. That is, the first transistor 11E is different from the first transistor 11D shown in FIG. 8 in that the source or drain electrode 143 is formed only on the contact layer 132.
 具体的には、ソース又はドレイン電極143は、チャネル方向と直交する方向に延伸する2つの矩形の平面形状にて設けられ、コンタクト層132は、ソース又はドレイン電極143と同様に、チャネル方向と直交する方向に延伸する複数の矩形の平面形状にて設けられる。このとき、ソース又はドレイン電極143、及びコンタクト層132のチャネル方向の幅は、第2のトランジスタ12のコンタクト層230のチャネル方向の幅と略同じであってもよい。すなわち、ソース又はドレイン電極143、及びコンタクト層132の平面形状のうちの1つの矩形形状は、第2のトランジスタ12のコンタクト層230の平面形状と略同じであってもよい。 Specifically, the source or drain electrode 143 is provided in two rectangular planar shapes extending in a direction orthogonal to the channel direction, and the contact layer 132 is orthogonal to the channel direction similarly to the source or drain electrode 143. Are provided in a plurality of rectangular planar shapes extending in the direction in which they extend. At this time, the width of the source or drain electrode 143 and the contact layer 132 in the channel direction may be substantially the same as the width of the contact layer 230 of the second transistor 12 in the channel direction. That is, one of the planar shapes of the source or drain electrode 143 and the contact layer 132 may be substantially the same as the planar shape of the contact layer 230 of the second transistor 12.
 このような場合でも、コンタクト層132は、オーミック幅を第2のトランジスタ12のコンタクト層230のオーミック幅と略同じとすることができるため、結晶の成長速度を第2のトランジスタ12のコンタクト層230と略同じとすることができる。したがって、コンタクト層132は、コンタクト抵抗を第2のトランジスタ12のコンタクト層230と略同じにすることが可能である。 Even in such a case, since the ohmic width of the contact layer 132 can be made substantially the same as the ohmic width of the contact layer 230 of the second transistor 12, the crystal growth rate can be reduced. Can be substantially the same as Therefore, the contact resistance of the contact layer 132 can be substantially the same as that of the contact layer 230 of the second transistor 12.
 第5の変形例によれば、ソース又はドレイン電極143がバリア層113の上に設けられないため、ソース又はドレイン電極143からの意図しないリーク電流が発生することを抑制することができる。また、第5の変形例によれば、ソース又はドレイン電極143及びバリア層113の間で抵抗又は損失等が発生することを防止することができる。 According to the fifth modification, since the source or drain electrode 143 is not provided on the barrier layer 113, the occurrence of an unintended leak current from the source or drain electrode 143 can be suppressed. Further, according to the fifth modification, it is possible to prevent the occurrence of resistance or loss between the source or drain electrode 143 and the barrier layer 113.
 <5.適用例>
 次に、図10を参照して、本実施形態に係る半導体装置が適用される高周波モジュールについて説明する。図10は、本実施形態に係る半導体装置が適用される高周波モジュールを説明する模試的な斜視図である。
<5. Application example>
Next, a high-frequency module to which the semiconductor device according to the present embodiment is applied will be described with reference to FIG. FIG. 10 is a schematic perspective view illustrating a high-frequency module to which the semiconductor device according to the present embodiment is applied.
 図10に示すように、高周波モジュール1は、例えば、エッジアンテナ20と、ドライバ31と、位相調整回路32と、スイッチ10と、低ノイズアンプ41と、バンドパスフィルタ42と、パワーアンプ43と、を備える。 As shown in FIG. 10, the high-frequency module 1 includes, for example, an edge antenna 20, a driver 31, a phase adjustment circuit 32, a switch 10, a low-noise amplifier 41, a band-pass filter 42, a power amplifier 43, Is provided.
 高周波モジュール1は、アレイ状に形成されたエッジアンテナ20と、スイッチ10、低ノイズアンプ41、バンドパスフィルタ42及びパワーアンプ43等のフロントエンド部品とが1つのモジュールとして一体化して実装されたアンテナ一体型モジュールである。このような高周波モジュール1は、例えば、通信向けトランシーバとして用いられ得る。高周波モジュール1に備えられるスイッチ10、低ノイズアンプ41、及びパワーアンプ43等を構成するトランジスタは、高周波に対する利得を高くするために、例えば、高電子移動度トランジスタで構成され得る。 The high-frequency module 1 is an antenna in which an edge antenna 20 formed in an array and front-end components such as a switch 10, a low-noise amplifier 41, a band-pass filter 42, and a power amplifier 43 are integrally mounted as one module. It is an integrated module. Such a high-frequency module 1 can be used, for example, as a transceiver for communication. The transistors included in the switch 10, the low-noise amplifier 41, the power amplifier 43, and the like included in the high-frequency module 1 may be configured by, for example, high electron mobility transistors in order to increase the gain at high frequencies.
 ここで、スイッチ10及び低ノイズアンプ41を構成するトランジスタは、信号の損失を低減するために、より小さく形成され得る。また、高周波モジュール1のコントロールIC(Integrated Circuit)を構成するトランジスタについても、消費電力を低減するために、より小さく形成され得る。例えば、このようなトランジスタは、数μm程度で形成され得る。 Here, the transistors constituting the switch 10 and the low-noise amplifier 41 can be formed smaller to reduce signal loss. Also, the transistors constituting the control IC (Integrated @ Circuit) of the high-frequency module 1 can be formed smaller to reduce the power consumption. For example, such a transistor can be formed on the order of several μm.
 一方、パワーアンプ43を構成するトランジスタは、大電流を流した際の電力損失を低減するために、より大きく形成され得る。例えば、このようなトランジスタは、数十μm程度で形成され得る。 On the other hand, the transistor constituting the power amplifier 43 can be formed larger to reduce power loss when a large current flows. For example, such a transistor can be formed on the order of tens of μm.
 すなわち、高周波モジュール1には、異なる大きさの高電子移動度トランジスタが混載され得る。このような高周波モジュール1に本実施形態に係る半導体装置を適用することによって、1つのチップに同時に形成され、かつ大きさが異なるトランジスタの各々にて、良好なコンタクト抵抗を実現することが可能である。 That is, the high-frequency module 1 may include high electron mobility transistors of different sizes mixedly. By applying the semiconductor device according to the present embodiment to such a high-frequency module 1, it is possible to realize good contact resistance in each of transistors formed simultaneously on one chip and having different sizes. is there.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present disclosure have been described above in detail with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is apparent that a person having ordinary knowledge in the technical field of the present disclosure can conceive various changes or modifications within the scope of the technical idea described in the claims. It is understood that also belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 効果 In addition, the effects described in this specification are merely illustrative or exemplary, and are not restrictive. That is, the technology according to the present disclosure can exhibit other effects that are obvious to those skilled in the art from the description in the present specification, in addition to or instead of the above effects.
 例えば、上記実施形態では、半導体装置は、形状又は大きさが互いに異なる第1のトランジスタ11及び第2のトランジスタ12を含むとしたが、本開示に係る技術はかかる例示に限定されない。本実施形態に係る半導体装置は、単一の形状又は大きさのトランジスタを含んでいてもよい。このような場合でも、本実施形態に係る半導体装置は、該トランジスタのコンタクト層の平面形状が上述したようにパターニングされることにより、上述したように良好なコンタクト抵抗を得ることが可能である。 For example, in the above embodiment, the semiconductor device includes the first transistor 11 and the second transistor 12 having different shapes or sizes from each other, but the technology according to the present disclosure is not limited to such an example. The semiconductor device according to the present embodiment may include a transistor having a single shape or size. Even in such a case, the semiconductor device according to the present embodiment can obtain the favorable contact resistance as described above by patterning the planar shape of the contact layer of the transistor as described above.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 第1の化合物半導体にて形成されたチャネル層と、
 前記第1の化合物半導体と異なる第2の化合物半導体にて前記チャネル層の上に形成されたバリア層と、
 前記バリア層の上に設けられたゲート電極と、
 前記バリア層の上に前記ゲート電極を挟んで両側に設けられたソース電極及びドレイン電極と、
 前記ソース電極及び前記ドレイン電極の下にそれぞれ前記バリア層を貫通して設けられたコンタクト層と、
をそれぞれ有する第1及び第2のトランジスタを備え、
 前記第1のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積は、前記第2のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積よりも大きく、
 前記第1のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅は、前記第2のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅に対応する大きさである、半導体装置。
(2)
 前記第1のトランジスタの前記コンタクト層の幅は、前記第2のトランジスタの前記コンタクト層の幅と略同じである、前記(1)に記載の半導体装置。
(3)
 前記第2のトランジスタの前記ソース電極又は前記ドレイン電極は、単一の矩形形状で設けられる、前記(1)又は(2)に記載の半導体装置。
(4)
 前記第1のトランジスタの前記コンタクト層は、前記ソース電極又は前記ドレイン電極が設けられた平面領域の一部領域に設けられる、前記(1)~(3)のいずれか一項に記載の半導体装置。
(5)
 前記第1のトランジスタの前記コンタクト層は、前記ソース電極又は前記ドレイン電極の前記ゲート電極に対向する一部領域に設けられる、前記(4)に記載の半導体装置。
(6)
 前記第1のトランジスタの前記コンタクト層の平面形状は、前記ソース電極又は前記ドレイン電極が設けられた平面領域の外周に沿って設けられた中空の矩形形状である、前記(4)又は(5)に記載の半導体装置。
(7)
 前記第1のトランジスタの前記コンタクト層の平面形状は、前記ソース電極及び前記ドレイン電極を結ぶ直線と直交する方向に延伸する複数の長方形形状である、前記(4)又は(5)に記載の半導体装置。
(8)
 前記第1のトランジスタの前記コンタクト層は、前記ソース電極又は前記ドレイン電極が設けられた平面領域に設けられる、前記(1)~(3)のいずれか一項に記載の半導体装置。
(9)
 前記第1のトランジスタの前記ソース電極又は前記ドレイン電極の平面形状は、中空の矩形形状である、前記(8)に記載の半導体装置。
(10)
 前記第1のトランジスタの前記ソース電極又は前記ドレイン電極の平面形状は、前記ソース電極及び前記ドレイン電極を結ぶ直線と直交する方向に延伸する複数の長方形形状である、前記(8)に記載の半導体装置。
(11)
 前記第1の化合物半導体、及び前記第2の化合物半導体は、窒化物半導体である、前記(1)~(10)のいずれか一項に記載の半導体装置。
(12)
 前記第1及び第2のトランジスタの前記コンタクト層は、導電型不純物が導入された化合物半導体にて形成される、前記(1)~(11)のいずれか一項に記載の半導体装置。
(13)
 前記第1及び第2のトランジスタの前記コンタクト層は、前記チャネル層の前記バリア層が設けられた面上に設けられる、前記(1)~(12)のいずれか一項に記載の半導体装置。
(14)
 前記第1及び第2のトランジスタの前記コンタクト層は、前記チャネル層の前記バリア層が設けられた面に形成された凹部を埋め込むように設けられる、前記(1)~(12)のいずれか一項に記載の半導体装置。
(15)
 前記第1及び第2のトランジスタの前記コンタクト層は、側面で前記バリア層及び前記チャネル層の界面に接触するように設けられる、前記(1)~(14)のいずれか一項に記載の半導体装置。
(16)
 前記ゲート電極は、前記バリア層の上にゲート絶縁膜を介して設けられる、前記(1)に記載の半導体装置。
(17)
 第1の化合物半導体にて形成されたチャネル層と、
 前記第1の化合物半導体と異なる第2の化合物半導体にて前記チャネル層の上に形成されたバリア層と、
 前記バリア層の上に設けられたゲート電極と、
 前記バリア層の上に前記ゲート電極を挟んで両側に設けられたソース電極及びドレイン電極と、
 前記ソース電極及び前記ドレイン電極の下にそれぞれ前記バリア層を貫通して設けられたコンタクト層と、
をそれぞれ有する第1及び第2のトランジスタを備え、
 前記第1のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積は、前記第2のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積よりも大きく、
 前記第1のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅は、前記第2のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅に対応する大きさである、高周波モジュール。
The following configuration also belongs to the technical scope of the present disclosure.
(1)
A channel layer formed of the first compound semiconductor;
A barrier layer formed on the channel layer with a second compound semiconductor different from the first compound semiconductor;
A gate electrode provided on the barrier layer,
Source and drain electrodes provided on both sides of the gate electrode on the barrier layer,
Contact layers provided under the source electrode and the drain electrode, respectively, through the barrier layer;
And a first and a second transistor respectively having
The planar area of the source electrode or the drain electrode of the first transistor is larger than the planar area of the source electrode or the drain electrode of the second transistor,
A width of the contact layer in a cross section cut by a straight line connecting the source electrode and the drain electrode of the first transistor is a cross section cut by a straight line connecting the source electrode and the drain electrode of the second transistor. A semiconductor device having a size corresponding to the width of the contact layer.
(2)
The semiconductor device according to (1), wherein the width of the contact layer of the first transistor is substantially the same as the width of the contact layer of the second transistor.
(3)
The semiconductor device according to (1) or (2), wherein the source electrode or the drain electrode of the second transistor is provided in a single rectangular shape.
(4)
The semiconductor device according to any one of (1) to (3), wherein the contact layer of the first transistor is provided in a part of a planar region where the source electrode or the drain electrode is provided. .
(5)
The semiconductor device according to (4), wherein the contact layer of the first transistor is provided in a part of the source electrode or the drain electrode facing the gate electrode.
(6)
(4) or (5), wherein the planar shape of the contact layer of the first transistor is a hollow rectangular shape provided along an outer periphery of a planar region provided with the source electrode or the drain electrode. 3. The semiconductor device according to claim 1.
(7)
The semiconductor according to (4) or (5), wherein the planar shape of the contact layer of the first transistor is a plurality of rectangular shapes extending in a direction orthogonal to a straight line connecting the source electrode and the drain electrode. apparatus.
(8)
The semiconductor device according to any one of (1) to (3), wherein the contact layer of the first transistor is provided in a plane region where the source electrode or the drain electrode is provided.
(9)
The semiconductor device according to (8), wherein a planar shape of the source electrode or the drain electrode of the first transistor is a hollow rectangular shape.
(10)
The semiconductor according to (8), wherein the planar shape of the source electrode or the drain electrode of the first transistor is a plurality of rectangular shapes extending in a direction orthogonal to a straight line connecting the source electrode and the drain electrode. apparatus.
(11)
The semiconductor device according to any one of (1) to (10), wherein the first compound semiconductor and the second compound semiconductor are nitride semiconductors.
(12)
The semiconductor device according to any one of (1) to (11), wherein the contact layers of the first and second transistors are formed of a compound semiconductor into which a conductive impurity is introduced.
(13)
The semiconductor device according to any one of (1) to (12), wherein the contact layers of the first and second transistors are provided on a surface of the channel layer on which the barrier layer is provided.
(14)
The contact layer of any of (1) to (12), wherein the contact layer of the first and second transistors is provided so as to fill a recess formed in a surface of the channel layer on which the barrier layer is provided. 13. The semiconductor device according to item 9.
(15)
The semiconductor according to any one of (1) to (14), wherein the contact layer of the first and second transistors is provided so as to contact an interface between the barrier layer and the channel layer on a side surface. apparatus.
(16)
The semiconductor device according to (1), wherein the gate electrode is provided on the barrier layer via a gate insulating film.
(17)
A channel layer formed of the first compound semiconductor;
A barrier layer formed on the channel layer with a second compound semiconductor different from the first compound semiconductor;
A gate electrode provided on the barrier layer,
Source and drain electrodes provided on both sides of the gate electrode on the barrier layer,
Contact layers provided under the source electrode and the drain electrode, respectively, through the barrier layer;
And a first and a second transistor respectively having
The planar area of the source electrode or the drain electrode of the first transistor is larger than the planar area of the source electrode or the drain electrode of the second transistor,
A width of the contact layer in a cross section cut by a straight line connecting the source electrode and the drain electrode of the first transistor is a cross section cut by a straight line connecting the source electrode and the drain electrode of the second transistor. A high-frequency module having a size corresponding to the width of the contact layer in the above.
 1    高周波モジュール
 11   第1のトランジスタ
 12   第2のトランジスタ
 110  基板
 111  チャネル層
 113  バリア層
 115  バッファ層
 117  素子分離領域
 120、220  ゲート電極
 121  ゲート絶縁膜
 130、230  コンタクト層
 140、240  ドレイン電極
 150  二次元電子ガス
DESCRIPTION OF SYMBOLS 1 High frequency module 11 1st transistor 12 2nd transistor 110 Substrate 111 Channel layer 113 Barrier layer 115 Buffer layer 117 Element isolation region 120, 220 Gate electrode 121 Gate insulating film 130, 230 Contact layer 140, 240 Drain electrode 150 Two-dimensional Electron gas

Claims (17)

  1.  第1の化合物半導体にて形成されたチャネル層と、
     前記第1の化合物半導体と異なる第2の化合物半導体にて前記チャネル層の上に形成されたバリア層と、
     前記バリア層の上に設けられたゲート電極と、
     前記バリア層の上に前記ゲート電極を挟んで両側に設けられたソース電極及びドレイン電極と、
     前記ソース電極及び前記ドレイン電極の下にそれぞれ前記バリア層を貫通して設けられたコンタクト層と、
    をそれぞれ有する第1及び第2のトランジスタを備え、
     前記第1のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積は、前記第2のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積よりも大きく、
     前記第1のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅は、前記第2のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅に対応する大きさである、半導体装置。
    A channel layer formed of the first compound semiconductor;
    A barrier layer formed on the channel layer with a second compound semiconductor different from the first compound semiconductor;
    A gate electrode provided on the barrier layer,
    Source and drain electrodes provided on both sides of the gate electrode on the barrier layer,
    Contact layers provided under the source electrode and the drain electrode, respectively, through the barrier layer;
    And a first and a second transistor respectively having
    The planar area of the source electrode or the drain electrode of the first transistor is larger than the planar area of the source electrode or the drain electrode of the second transistor,
    A width of the contact layer in a cross section cut by a straight line connecting the source electrode and the drain electrode of the first transistor is a cross section cut by a straight line connecting the source electrode and the drain electrode of the second transistor. A semiconductor device having a size corresponding to the width of the contact layer.
  2.  前記第1のトランジスタの前記コンタクト層の幅は、前記第2のトランジスタの前記コンタクト層の幅と略同じである、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the width of the contact layer of the first transistor is substantially the same as the width of the contact layer of the second transistor.
  3.  前記第2のトランジスタの前記ソース電極又は前記ドレイン電極は、単一の矩形形状で設けられる、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the source electrode or the drain electrode of the second transistor is provided in a single rectangular shape.
  4.  前記第1のトランジスタの前記コンタクト層は、前記ソース電極又は前記ドレイン電極が設けられた平面領域の一部領域に設けられる、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the contact layer of the first transistor is provided in a part of a plane region where the source electrode or the drain electrode is provided.
  5.  前記第1のトランジスタの前記コンタクト層は、前記ソース電極又は前記ドレイン電極の前記ゲート電極に対向する一部領域に設けられる、請求項4に記載の半導体装置。 The semiconductor device according to claim 4, wherein the contact layer of the first transistor is provided in a part of the source electrode or the drain electrode facing the gate electrode.
  6.  前記第1のトランジスタの前記コンタクト層の平面形状は、前記ソース電極又は前記ドレイン電極が設けられた平面領域の外周に沿って設けられた中空の矩形形状である、請求項4に記載の半導体装置。 5. The semiconductor device according to claim 4, wherein a planar shape of the contact layer of the first transistor is a hollow rectangular shape provided along an outer periphery of a planar region provided with the source electrode or the drain electrode. 6. .
  7.  前記第1のトランジスタの前記コンタクト層の平面形状は、前記ソース電極及び前記ドレイン電極を結ぶ直線と直交する方向に延伸する複数の長方形形状である、請求項4に記載の半導体装置。 The semiconductor device according to claim 4, wherein the planar shape of the contact layer of the first transistor is a plurality of rectangular shapes extending in a direction orthogonal to a straight line connecting the source electrode and the drain electrode.
  8.  前記第1のトランジスタの前記コンタクト層は、前記ソース電極又は前記ドレイン電極が設けられた平面領域に設けられる、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the contact layer of the first transistor is provided in a plane region where the source electrode or the drain electrode is provided.
  9.  前記第1のトランジスタの前記ソース電極又は前記ドレイン電極の平面形状は、中空の矩形形状である、請求項8に記載の半導体装置。 The semiconductor device according to claim 8, wherein the planar shape of the source electrode or the drain electrode of the first transistor is a hollow rectangular shape.
  10.  前記第1のトランジスタの前記ソース電極又は前記ドレイン電極の平面形状は、前記ソース電極及び前記ドレイン電極を結ぶ直線と直交する方向に延伸する複数の長方形形状である、請求項8に記載の半導体装置。 9. The semiconductor device according to claim 8, wherein the planar shape of the source electrode or the drain electrode of the first transistor is a plurality of rectangular shapes extending in a direction orthogonal to a straight line connecting the source electrode and the drain electrode. .
  11.  前記第1の化合物半導体、及び前記第2の化合物半導体は、窒化物半導体である、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the first compound semiconductor and the second compound semiconductor are nitride semiconductors.
  12.  前記第1及び第2のトランジスタの前記コンタクト層は、導電型不純物が導入された化合物半導体にて形成される、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the contact layers of the first and second transistors are formed of a compound semiconductor into which a conductive impurity is introduced.
  13.  前記第1及び第2のトランジスタの前記コンタクト層は、前記チャネル層の前記バリア層が設けられた面上に設けられる、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the contact layers of the first and second transistors are provided on a surface of the channel layer on which the barrier layer is provided.
  14.  前記第1及び第2のトランジスタの前記コンタクト層は、前記チャネル層の前記バリア層が設けられた面に形成された凹部を埋め込むように設けられる、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the contact layers of the first and second transistors are provided so as to fill a recess formed in a surface of the channel layer on which the barrier layer is provided. 3.
  15.  前記第1及び第2のトランジスタの前記コンタクト層は、側面で前記バリア層及び前記チャネル層の界面に接触するように設けられる、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the contact layers of the first and second transistors are provided so as to contact an interface between the barrier layer and the channel layer on a side surface. 3.
  16.  前記ゲート電極は、前記バリア層の上にゲート絶縁膜を介して設けられる、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the gate electrode is provided on the barrier layer via a gate insulating film.
  17.  第1の化合物半導体にて形成されたチャネル層と、
     前記第1の化合物半導体と異なる第2の化合物半導体にて前記チャネル層の上に形成されたバリア層と、
     前記バリア層の上に設けられたゲート電極と、
     前記バリア層の上に前記ゲート電極を挟んで両側に設けられたソース電極及びドレイン電極と、
     前記ソース電極及び前記ドレイン電極の下にそれぞれ前記バリア層を貫通して設けられたコンタクト層と、
    をそれぞれ有する第1及び第2のトランジスタを備え、
     前記第1のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積は、前記第2のトランジスタの前記ソース電極又は前記ドレイン電極の平面面積よりも大きく、
     前記第1のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅は、前記第2のトランジスタの前記ソース電極と前記ドレイン電極とを結ぶ直線で切断した断面における前記コンタクト層の幅に対応する大きさである、高周波モジュール。
    A channel layer formed of the first compound semiconductor;
    A barrier layer formed on the channel layer with a second compound semiconductor different from the first compound semiconductor;
    A gate electrode provided on the barrier layer,
    Source and drain electrodes provided on both sides of the gate electrode on the barrier layer,
    Contact layers provided under the source electrode and the drain electrode, respectively, through the barrier layer;
    And a first and a second transistor respectively having
    The planar area of the source electrode or the drain electrode of the first transistor is larger than the planar area of the source electrode or the drain electrode of the second transistor,
    A width of the contact layer in a cross section cut by a straight line connecting the source electrode and the drain electrode of the first transistor is a cross section cut by a straight line connecting the source electrode and the drain electrode of the second transistor. A high-frequency module having a size corresponding to the width of the contact layer in the above.
PCT/JP2019/024368 2018-06-28 2019-06-19 Semiconductor device and high frequency module WO2020004198A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527448A JP7345464B2 (en) 2018-06-28 2019-06-19 Semiconductor equipment and high frequency modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018123232 2018-06-28
JP2018-123232 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004198A1 true WO2020004198A1 (en) 2020-01-02

Family

ID=68985406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024368 WO2020004198A1 (en) 2018-06-28 2019-06-19 Semiconductor device and high frequency module

Country Status (2)

Country Link
JP (1) JP7345464B2 (en)
WO (1) WO2020004198A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000183A1 (en) * 2022-06-28 2024-01-04 Innoscience (suzhou) Semiconductor Co., Ltd. Nitride-based semiconductor device and method for manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196976A (en) * 1985-02-22 1985-10-05 Hitachi Ltd Semiconductor device
JPS61125089A (en) * 1984-11-21 1986-06-12 Fujitsu Ltd Manufacture of semiconductor device
JPS63161677A (en) * 1986-12-25 1988-07-05 Matsushita Electric Ind Co Ltd Field effect transistor
JPH01179458A (en) * 1988-01-07 1989-07-17 Fujitsu Ltd Manufacture of semiconductor device
JPH06310539A (en) * 1993-04-20 1994-11-04 Fujitsu Ltd Manufacture of semiconductor device
JP2004241471A (en) * 2003-02-04 2004-08-26 Renesas Technology Corp Compound semiconductor device, method of manufacturing the same, semiconductor device, and high frequency module
JP2005159157A (en) * 2003-11-27 2005-06-16 Renesas Technology Corp Semiconductor device
JP2007165446A (en) * 2005-12-12 2007-06-28 Oki Electric Ind Co Ltd Ohmic contact structure of semiconductor element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946780B2 (en) 2011-03-01 2015-02-03 National Semiconductor Corporation Ohmic contact schemes for group III-V devices having a two-dimensional electron gas layer
KR102087941B1 (en) * 2013-08-07 2020-03-11 엘지이노텍 주식회사 Power Semiconductor Device
JP2016058546A (en) 2014-09-09 2016-04-21 株式会社東芝 Semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125089A (en) * 1984-11-21 1986-06-12 Fujitsu Ltd Manufacture of semiconductor device
JPS60196976A (en) * 1985-02-22 1985-10-05 Hitachi Ltd Semiconductor device
JPS63161677A (en) * 1986-12-25 1988-07-05 Matsushita Electric Ind Co Ltd Field effect transistor
JPH01179458A (en) * 1988-01-07 1989-07-17 Fujitsu Ltd Manufacture of semiconductor device
JPH06310539A (en) * 1993-04-20 1994-11-04 Fujitsu Ltd Manufacture of semiconductor device
JP2004241471A (en) * 2003-02-04 2004-08-26 Renesas Technology Corp Compound semiconductor device, method of manufacturing the same, semiconductor device, and high frequency module
JP2005159157A (en) * 2003-11-27 2005-06-16 Renesas Technology Corp Semiconductor device
JP2007165446A (en) * 2005-12-12 2007-06-28 Oki Electric Ind Co Ltd Ohmic contact structure of semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000183A1 (en) * 2022-06-28 2024-01-04 Innoscience (suzhou) Semiconductor Co., Ltd. Nitride-based semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP7345464B2 (en) 2023-09-15
JPWO2020004198A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
US9768257B2 (en) Semiconductor device
US20080176366A1 (en) Method for fabricating AIGaN/GaN-HEMT using selective regrowth
US8338862B2 (en) Semiconductor device
WO2006001369A1 (en) Semiconductor device
JP2001230407A (en) Semiconductor device
WO2002021601A1 (en) Semiconductor device
TW201303967A (en) Compound semiconductor device and method of manufacturing the same
WO2019176434A1 (en) Semiconductor device, semiconductor device production method, and electronic device
KR20160132108A (en) Heterojunction field-effect transistor
US20240030332A1 (en) Semiconductor device, semiconductor module, and wireless communication apparatus
US20230014905A1 (en) Semiconductor device and method of producing the same, and electronic device
WO2020004198A1 (en) Semiconductor device and high frequency module
CN114883407B (en) HEMT based on Fin-FET gate structure and manufacturing method thereof
JP4869576B2 (en) Nitride semiconductor device and manufacturing method thereof
JP2008227432A (en) Nitride compound semiconductor element and its production process
JP2015119028A (en) Semiconductor device, field effect transistor and diode
US11888053B2 (en) Field-effect transistor and manufacturing method therefor
JP6301863B2 (en) Nitride semiconductor device and manufacturing method thereof
TW201737354A (en) Semiconductor device, electronic part, electronic apparatus, and method for fabricating semiconductor device
JP2007088186A (en) Semiconductor device and its fabrication process
WO2023276275A1 (en) Semiconductor device, semiconductor module, and wireless communication device
WO2023276972A1 (en) Nitride semiconductor device
CN115274845B (en) Concave Fin-MESFET gate structure HEMT and manufacturing method
WO2023286307A1 (en) Semiconductor device, semiconductor module and electronic machine
US20230261099A1 (en) Semiconductor device, semiconductor module, and wireless communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825955

Country of ref document: EP

Kind code of ref document: A1