WO2020004175A1 - X-ray device, x-ray image generation method, and production method for structure - Google Patents

X-ray device, x-ray image generation method, and production method for structure Download PDF

Info

Publication number
WO2020004175A1
WO2020004175A1 PCT/JP2019/024299 JP2019024299W WO2020004175A1 WO 2020004175 A1 WO2020004175 A1 WO 2020004175A1 JP 2019024299 W JP2019024299 W JP 2019024299W WO 2020004175 A1 WO2020004175 A1 WO 2020004175A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
rays
intensity distribution
information
relative position
Prior art date
Application number
PCT/JP2019/024299
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 矢野
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2020004175A1 publication Critical patent/WO2020004175A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers

Definitions

  • the present invention relates to an X-ray apparatus, an X-ray image generation method, and a structure manufacturing method.
  • an X-ray apparatus that generates an image of an internal structure of an object to be measured based on phase information of an X-ray deflected by the object to be measured has been known.
  • an X-ray apparatus that arranges a mask between an X-ray source and an object to be measured and between an object to be measured and a detector and measures deflected X-rays (
  • Patent Document 1 The resolution (resolution) of the image of the internal structure of the object to be measured generated by such an X-ray apparatus is determined by the size of the opening provided in the shielding member. Because of the difficulty, it is difficult to increase the resolution of an image.
  • the X-ray apparatus has an X-ray source that emits X-rays toward an object to be measured, and a passing unit that passes the X-rays, and shields the X-rays other than the passing unit.
  • a shielding member to be changed a changing unit that changes a relative position between the shielding member and the device under test in a direction intersecting with the traveling direction of the X-ray, and a plurality of positions changed by the changing unit.
  • a detector that outputs, as an output signal, an intensity distribution of the X-rays that have passed through the passing portion and the object to be measured, and a magnitude along the direction of the passing portion using an output signal from the detector.
  • the X-ray image generation method includes: emitting X-rays toward an object to be measured; passing the X-rays through the passing portion by a shielding member having a passing portion; In a direction intersecting with the traveling direction of the X-ray, changing the relative position between the shielding member and the object to be measured, at the plurality of changed positions, the passing portion and the object to be measured Outputting the intensity distribution of the passed X-rays as an output signal; and using the output signal, regarding the intensity distribution of the X-rays in a region having a size smaller than the size of the passing portion along the direction. Generating information.
  • FIG. 1 It is a figure which shows typically an example of the principal part structure of the X-ray apparatus by embodiment. It is a figure which shows an example of an optical unit typically.
  • FIG. 5 is a flowchart illustrating an operation of the X-ray apparatus according to the embodiment.
  • FIG. 9 is a diagram illustrating a simulation result when differential phase image data is generated. It is a block diagram showing typically composition of a structure manufacturing system by an embodiment. 5 is a flowchart illustrating a process executed by the structure manufacturing system according to the embodiment.
  • An X-ray apparatus irradiates an object to be measured with X-rays and detects X-rays transmitted through the object to destroy internal information (for example, an internal structure) of the object to be measured. Get without.
  • the X-ray apparatus can be used for biochemistry, medical treatment, and the like, for example, using a living body as an object to be measured.
  • FIG. 1 is a diagram showing an example of the configuration of the X-ray apparatus 100 according to the present embodiment.
  • a coordinate system including the X axis, the Y axis, and the Z axis is set as illustrated.
  • the X-ray apparatus 100 includes a housing 1, an X-ray source 2, a receiver 3, a detector 4, a controller 5, and an optical unit 6.
  • the housing 1 is arranged so that its lower surface is substantially parallel (horizontal) to the floor surface of a factory or the like.
  • An X-ray source 2, a receiver 3, a detector 4, and an optical unit 6 are housed inside the housing 1.
  • the housing 1 includes an X-ray shielding material to prevent X-rays from leaking out of the housing 1. Note that lead is included as an X-ray shielding material.
  • the X-ray source 2 emits X-rays in the + Z-axis direction along the optical axis Zr parallel to the Z-axis with the emission point P shown in FIG.
  • This emission point P coincides with the focal position of the electron beam accelerated and focused inside the X-ray source 2 described later. That is, the optical axis Zr is an axis connecting the emission point P, which is the focal position of the electron beam of the X-ray source 2, and the center of an imaging area of the detector 4 described later.
  • the X-rays radiated from the X-ray source 2 may be any of a cone-shaped X-ray (so-called cone beam), a fan-shaped X-ray (so-called fan beam), and a linear X-ray (so-called pencil beam). May be.
  • cone beam cone-shaped X-ray
  • fan beam fan-shaped X-ray
  • pencil beam linear X-ray
  • the X-ray source 2 emits at least one of ultra soft X-rays of about 50 eV, soft X-rays of about 0.1 to 2 keV, X-rays of about 2 to 20 keV, and hard X-rays of about 20 keV to several MeV. .
  • the mounting section 3 includes a mounting table 31 on which the device to be measured S is mounted, and a manipulator section 36 including a rotation driving section 32, an X-axis moving section 33, a Y-axis moving section 34, and a Z-axis moving section 35. , X-ray source 2 on the Z axis + side.
  • the mounting table 31 is rotatably provided by the rotation drive unit 32. As will be described later, when the rotation axis Yr by the rotation drive unit 32 moves in the X-axis, Y-axis, and Z-axis directions, the mounting table 31 moves together.
  • the rotation drive unit 32 is configured by, for example, an electric motor or the like, and rotates the mounting table 31 by the rotation force generated by the electric motor driven and controlled by the control device 5 described later.
  • the rotation axis Yr of the mounting table 31 is parallel to the Y axis and passes through the center of the mounting table 31.
  • the X-axis moving unit 33, the Y-axis moving unit 34, and the Z-axis moving unit 35 are controlled by the control device 5 to move the mounting table 31 in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively.
  • the Z-axis moving unit 35 is controlled by the control device 5 so that the distance from the X-ray source 2 to the object S is a distance corresponding to the magnification of the object S in a captured image.
  • the table 31 is moved in the Z-axis direction.
  • the detector 4 is provided on the Z axis + side of the mounting table 31. That is, the mounting table 31 is provided between the X-ray source 2 and the detector 4 in the Z-axis direction.
  • the detector 4 includes a scintillator unit including a known scintillation substance, a photomultiplier tube, a light receiving unit such as a CCD, and the like.
  • the detector 4 emits light from the X-ray source 2 and is mounted on the mounting table 31. X-rays including transmitted X-rays that have passed through are received. After converting the received X-ray energy into light energy, the detector 4 converts the light energy into electric energy and outputs the same as an electric signal.
  • the detector 4 may convert the energy of the incident X-rays into an electric signal without converting the energy into light energy and output the electric signal.
  • the detector 4 has a plurality of pixels, and the pixels are two-dimensionally arranged. Thereby, two-dimensional intensity distribution data of X-rays radiated from the X-ray source 2 and passing through the object S can be collectively acquired. Therefore, it is possible to acquire the entire projected image of the DUT S by one photographing.
  • the optical unit 6 has a first optical unit 61 and a second optical unit 62 for generating at least one of phase image data and scattered image data of the measured object S.
  • the optical unit 6 is described as having a structure for generating at least one of phase image data and scattered image data by a known coded aperture (CA) method.
  • CA coded aperture
  • the first optical unit 61 is arranged in the path of X-rays between the X-ray source 2 and the object S.
  • the first optical unit 61 has a first optical element 611 and an adjusting unit 613 that adjusts the position of the first optical element 611.
  • the first optical element 611 is a shielding member that has a plurality of openings formed in, for example, a metal plate-like member, allows X-rays to pass through the openings, and shields X-rays in other than the openings.
  • the shape of the opening may be a slit shape, a polygon such as a triangle or a rectangle, or a circle including a perfect circle and an ellipse.
  • the first optical element 611 has an opening as a passage portion through which X-rays pass is described as an example.
  • the present invention is not limited to this example. Further, it may have a passage portion formed of a material that transmits X-rays.
  • the first optical element 611 is attached to the adjustment unit 613 via an attachment structure (not shown).
  • the adjusting unit 613 adjusts the position of the first optical element 611 under the control of the control device 5 described below.
  • the adjusting unit 613 includes an X-axis adjusting unit 614 that adjusts the position of the first optical element 611 in the X-axis direction, a Y-axis adjusting unit 615 that adjusts the position in the Y-axis direction, and a Z that adjusts the position in the Z-axis direction. And an axis adjusting unit 616.
  • the second optical unit 62 is arranged in the path of X-rays between the object S and the detector 4.
  • the second optical unit 62 has a second optical element 621 and an adjusting unit 623, like the first optical unit 61.
  • the second optical element 621 is a shielding member that has a plurality of openings formed in, for example, a metal plate-shaped member, allows X-rays to pass through the openings, and shields X-rays in other than the openings.
  • the shape of the opening may be a slit shape, a polygon such as a triangle or a rectangle, or a circle including a perfect circle and an ellipse.
  • the second optical element 621 has an opening as a passage portion when X-rays pass therethrough is described as an example, but the present invention is not limited to this example. Instead, it may have a passage portion formed of a member that transmits X-rays.
  • the second optical element 621 is attached to the adjustment unit 623 via an attachment structure (not shown).
  • the adjustment unit 623 adjusts the position of the second optical element 621 according to the control of the control device 5 described later.
  • the adjustment unit 623 includes an X-axis adjustment unit 624 for adjusting the position of the second optical element 621 in the X-axis direction, a Y-axis adjustment unit 625 for adjusting the position in the Y-axis direction, and a Z-axis for adjusting the position in the Z-axis direction. And an axis adjusting unit 626. Note that the shape of the opening of the second optical element 621 corresponds to the shape of the opening of the first optical element 611.
  • FIG. 2 schematically shows an example of the first optical element 611 and the second optical element 621.
  • FIG. 2A is a diagram schematically showing the shapes of the first optical element 611 and the second optical element 621 on the XY plane, and shows an example in which the opening has a slit shape.
  • the first optical element 611 has a plurality of openings 619 (619a, 619b, 619c, 619d), and the second optical element 621 has a plurality of openings 629 (629a, 629b, 629c, 629d).
  • the pitch of the openings 629 of the second optical element 621 is determined by the arrangement pitch of the pixels of the detector 4.
  • the pitch of the opening 619 of the first optical element 611 is based on the arrangement pitch of the pixels of the detector 4, the distance from the X-ray source 2 to the device under test S, and the distance from the X-ray source 2 to the detector 4. Is determined.
  • the number of openings 619 and 629 shown in FIG. 2A is an example, and may be larger or smaller than the number shown in the figure.
  • the X-rays emitted from the X-ray source 2 pass through the opening 619 of the first optical element 611, and are absorbed in a region other than the opening 619.
  • the X-ray that has passed through the opening 619 passes through the opening 629 of the second optical element 621, and is absorbed in a region other than the opening 629.
  • the X-rays that have passed through the openings 619a, 619b, 619c, and 619d pass through the openings 629a, 629b, 629c, and 629d, respectively.
  • the openings 619a, 619b, 619c, 619d of the first optical element 611 and the openings 629a, 629b, 629c, 629d of the second optical element 621 are arranged so as to correspond one-to-one.
  • the X-ray transmitted through the opening 629 enters the detector 4.
  • the X-rays that have passed through the openings 629a, 629b, 629c, and 629d enter the pixels 411a, 411b, 411c, and 411d of the detector 4, respectively.
  • the X-ray passes through the opening 619 and passes through the inside of the DUT. It is slightly deflected by refraction and scattering.
  • the X-ray when there is no object S shown by a solid line. Compared to the path of the line, it is deflected as shown by the dashed line.
  • the X-ray dose passing through the openings 629b and 629c of the second optical element 621 and entering the pixels 411b and 411c of the detector 4 is compared with the case where the object S shown in FIG. Increase or decrease.
  • the increased / decreased X-ray dose includes information on X-rays whose phase has been changed due to deflection and contrast has occurred.
  • the image generation unit 53 described later generates at least one of the phase image data and the scattered image data based on the contrast generated by the change in the phase.
  • the control device 5 shown in FIG. 1 has a microprocessor, its peripheral circuits, and the like, and reads and executes a control program stored in advance in a storage medium (not shown) (for example, a flash memory or the like) to execute X control. Each part of the wire device 100 is controlled.
  • the control device 5 is controlled based on an X-ray control unit 51 that controls the operation of the X-ray source 2, a mounting table control unit 52 that controls the driving operation of the manipulator unit 36, and an electric signal output from the detector 4.
  • An image generation unit 53 that generates X-ray projection image data of the measurement object S, and an optical unit control unit 54 that controls driving operations of adjustment units 613 and 623 that adjust the positions of the first optical element 611 and the second optical element 621.
  • a storage medium for example, a flash memory or the like
  • the image generation unit 53 generates at least one of phase image data and scattered image data based on information on a change in the intensity distribution of X-rays caused by at least one of X-ray scattering and phase modulation inside the object S. I do.
  • the image reconstructing unit 56 projects the X-ray irradiation direction relative to the measurement target S while relatively changing the X-ray irradiation direction, and based on at least one of the plurality of phase image data and the scattered image data obtained thereby, a known image.
  • a reconstructed image of the device under test S is generated by using the reconstruction processing method.
  • the image reconstruction processing generates cross-sectional image data and three-dimensional data that are the internal structure (cross-sectional structure) of the DUT S. Note that the cross-sectional image data includes structural data of the DUT S in a plane parallel to the XZ plane.
  • the image reconstruction processing includes a back projection method, a filtered back projection method, a successive approximation method, and the like.
  • FIGS. 3A and 3D show the X-ray source 2, the opening 619 of the first optical element 611, the opening 629 of the second optical element 621, the DUT S, and the pixel 411 of the detector 4. Is schematically shown in an enlarged manner. 3 (a) and 3 (d), the mounting table 31 is omitted.
  • the X-ray emitted from the X-ray source 2 passes through the opening 619 of the first optical element 611, and the other is absorbed by the first optical element 611.
  • the X-ray that has passed through the opening 619 transmits through some of the regions R1 and R2 of the measured object S.
  • the length in the X direction that is, the direction intersecting the direction in which the X-rays travel
  • the regions R1 and R2 of the DUT through which the X-rays pass is equal to the opening 619.
  • the X direction (opening width) d.
  • the X-ray transmitted through the regions R1 and R2 of the device S passes through the opening 629 of the second optical element 621 and enters the pixel 411 of the detector 4.
  • the X-axis adjusting unit 624 of the adjusting unit 623 is controlled by the optical unit control unit 54 to move the second optical element 621 in the X direction. Accordingly, the opening 629 of the second optical element 621 moves in the range of the pixel 411 along the X direction. For example, in FIG. 3A, the opening 629 moves from the left end to the right end of the pixel 411 at a constant speed in the negative direction in the X direction. As a result, a distribution of X-ray detection intensities in the pixel 411 along the X direction is obtained. That is, the X-rays whose phases are modulated inside the regions R1 and R2 of the device S are deflected, pass through the aperture 629, and enter the pixel 411.
  • the pixel 411 outputs an output signal corresponding to the intensity distribution of the incident X-ray, that is, the X-ray transmitted through some of the regions R1 and R2 of the device S.
  • This output signal includes information on a change in the X-ray intensity distribution caused by at least one of X-ray scattering and phase modulation inside the regions R1 and R2 of the device S.
  • FIG. 3B shows an intensity distribution I1 (x) of the X-rays that have passed through the apertures 619 of the first optical element 611 and transmitted through the regions R1 and R2 of the device under test S and entered the pixels 411 in this case. Is schematically shown. Note that x indicates a position in the X direction in the pixel 411.
  • the X-ray intensity detected by the pixel 411 is near the position x0. And becomes smaller as the distance from the position x0 increases. Therefore, the intensity of the X-rays detected by the pixel 411 becomes maximum when the center of the opening 629 is near the position x0, and decreases as the center of the opening 629 moves away from the position x0.
  • the X-ray intensity distribution I1 (x) shown in FIG. 3 (b) has intensity information r1 (x) of the X-ray transmitted through the region R1 of the measured object S as shown in FIG. 3 (c). And intensity information r2 of the X-ray transmitted through the region R2.
  • the optical unit control unit 54 controls the adjustment unit 613 to move the first optical element 611 by a predetermined amount in the X direction to the negative side in the X direction, and controls the adjustment unit 623 to control the second optical element.
  • the element 621 is moved along the X direction, and the opening 629 is moved within the range of the pixel 411 (dithering). Due to the movement of the first optical element 611, the relative position between the first optical element 611 and the device under test S is changed along the X direction.
  • the adjustment unit 613 moves the first optical element 611 such that the movement amount of the device under test S is smaller than the opening width d of the opening 619 of the first optical element 611.
  • 3D shows an example in which the amount of movement of the first optical element 611 from the state of FIG. 3A is 1 / of the opening width d of the opening 619.
  • the amount of movement of the first optical element 611 is not limited to a half of the opening width d of the opening 619, but is a fraction of the opening width d, for example, 1/3 or 1/4 or less. May be.
  • movement of the second optical element 621 by a movement amount smaller than the opening width d along the X direction is referred to as dithering.
  • the first optical element 611 Since the relative position of the first optical element 611 and the device under test S in the X direction is changed to 1 / in the X direction by ⁇ of the opening width d, the first optical element 611 has passed through the opening 619 of the first optical element 611.
  • X-rays pass through the regions R2 and R3 of the object S.
  • the X-ray transmitted through the regions R2 and R3 of the device S passes through the opening 629 of the second optical element 621 and enters the pixel 411 of the detector 4.
  • the X-axis adjustment unit 624 of the adjustment unit 623 is controlled by the optical unit control unit 54 to move the second optical element 621 along the X direction. To move the range of the pixel 411.
  • the X-rays whose phases are modulated inside the regions R2 and R3 of the device under test S are deflected, pass through the aperture 629, and enter the pixel 411.
  • the pixel 411 An output signal is output in accordance with the intensity distribution of the X-rays transmitted, that is, the X-rays transmitted through some of the regions R2 and R3 of the object S.
  • the X-ray intensity detected by the pixel 411 increases near the position (x0-d / 2) shifted from the position on the pixel 411 by x / 2 on the negative side in the X direction, and the position (x0 ⁇ d / 2), the distance decreases. Therefore, the X-ray intensity detected by the pixel 411 becomes maximum when the center of the opening 629 is near the position (x0-d / 2), and as the center of the opening 629 moves away from the position (x0-d / 2). Become smaller. Also in this case, since the X-rays that have passed through the opening 619 pass through the regions R2 and R3 of the measured object S, the X-ray intensity distribution I2 (x) shown in FIG. As shown in ()), it is configured to include the intensity information r2 (x) of the X-ray transmitted through the region R2 of the DUT and the intensity information r3 of the X-ray transmitted through the region R3.
  • Reference numeral 411 outputs an output signal corresponding to the intensity distribution of the X-rays that have passed through the opening 619 and transmitted through a partial region of the device under test S.
  • FIG. 4 schematically shows the positional relationship between the first optical element 611 and the device S after dithering has been performed (n-1) times.
  • the mounting table 31 is omitted for convenience of illustration.
  • the X-ray that has passed through the opening 619 of the first optical element 611 passes through the regions Rn and Rn + 1 of the device under test S and enters the pixel 411.
  • the X-ray intensity detected by the pixel 411 increases near the position (x0-nd / 2) of the pixel 411 and decreases as the position moves away from the position (x0-nd / 2). Therefore, the intensity detected by the pixel 411 becomes maximum when the center of the opening 629 is near the position (x0-nd / 2), and decreases as the center of the opening 629 moves away from the position (x0-nd / 2).
  • the position at which the pixel 411 detects the maximum intensity is away from the position x0, so that the X-ray detection intensity at the position x0 of the pixel 411 decreases.
  • n 3 that is, regarding the detection intensity of the X-ray transmitted through the regions R4 and R5 of the object S at the pixel 411, the intensity information r4 () of the X-ray transmitted through the regions R4 and R5 of the object S. x0) and r5 (x0) are both small, but r5 (x0) is smaller than X-ray intensity information r4 (x0).
  • the image generation unit 53 determines the phase image data and the scattering based on the output signal at the position x0 of the intensity information of the X-ray transmitted through the regions R1, R2,..., Rn, and Rn + 1 of the DUT S. At least one of the image data is generated.
  • the intensity distribution of each X-ray obtained before and after the dithering includes the intensity information of the X-ray transmitted through at least a part of the same region of the object S. That is, the region R2 of the regions R1 and R2 of the DUT through which X-rays pass before dithering (in the case of FIG. 3 (a)) is X-shaped after dithering (in the case of FIG. 3 (d)). It is also a region R2 of the regions R2 and R3 of the DUT through which the line passes. This relationship also applies to the subsequent dithering, and the X-rays pass through some common regions of the device under test S.
  • the intensity of the X-ray at the position x of the pixel 411 obtained for each dithering can be expressed in a form including the respective intensity information as follows.
  • I1 (x) r1 (x) + r2 (x)
  • I2 (x) r2 (x) + r3 (x)
  • In (x) rn (x) + rn + 1 (x)
  • the image generation unit 53 solves the above simultaneous equations to obtain the regions R1, R2, R3,..., Rn, Rn + 1 of the measurement target S that are smaller than the opening width d of the opening 619 of the first optical element 611.
  • the X-ray intensity distribution corresponding to each is calculated.
  • the detection intensity of the X-ray at the position x0 of the pixel 411 decreases every time the dithering is repeated a plurality of times.
  • the intensity information of the X-ray transmitted through the region R5 can be regarded as substantially zero.
  • r5 (x0) in the above simultaneous equations is regarded as 0, and the image generation unit 53 determines the X-ray intensities I1 (x0), I2 (x0), I3 (x0), and I4 (x0).
  • Each of the X-ray intensity information r1 (x0), r2 (x0), r3 (x0), and r4 (x0) at the position x0 of the pixel 411 is calculated from the four equations. Further, the image generation unit 53 similarly calculates X-ray intensity information r1, r2, r3,..., Rn + 1 at a plurality of positions different from the position x0 on the pixel 411. From the X-ray intensity information for each of the plurality of positions, the image generation unit 53 generates X-ray intensity information r1 (x), r2 (x), r3 (x),..., Rn + 1 (x) for the pixel 411. calculate.
  • the image generation unit 53 calculates the X-ray intensity information in the same manner even when the object S is not mounted on the mounting table 31, and calculates the X-ray intensity when the object S is not mounted.
  • the image generation unit 53 connects (combines) the image data for each of these regions R1, R2, R3, R4,..., Rn + 1, and at least one of the phase image data and the scattered image data of the entire DUT.
  • Each process of the flowchart shown in FIG. 5 is performed by executing a program in the control device 5.
  • This program is stored in a memory (not shown), and is started and executed by the control device 5.
  • step S1 the mounting table control unit 52 controls the X-axis moving unit 33 of the manipulator unit 36 to move the mounting table 31 in the X direction, so that the opening 619 of the first optical element 611 and the DUT S Is set in the X direction, and the process proceeds to step S2.
  • step S2 the detector 4 outputs an output signal in accordance with the intensity distribution of the X-ray that has passed through the opening 619 of the first optical element 611 and has passed through a partial area of the object S, and proceeds to step S3. move on. Note that X-rays transmitted through the object S enter the detector 4 as the optical unit controller 54 moves the opening 629 of the second optical element 621 in the X direction.
  • step S3 the image generating unit 53 determines whether or not it is necessary to change (dither) the relative position between the DUT S and the opening 619 of the first optical element 611.
  • step S3 is affirmatively determined and the process returns to step S1. If it is determined that the relative position does not need to be changed, that is, it is determined that dithering has been completed, a negative determination is made in step S3, and the process proceeds to step S4.
  • step S4 the image generation unit 53 is smaller than the opening width d of the opening 619 of the first optical element 611 of the device under test S based on the plurality of output signals output before and after each dithering.
  • step S5 the image generation unit 53 determines the regions R1, R2, R3,... Of the object S based on the calculated X-ray intensity distributions I1 (x), I2 (x), I3 (x),. , The intensity information r1 (x), r2 (x), r3 (x),... Of the X-ray transmitted through.
  • the image generation unit 53 generates at least one of phase image data and scattered image data corresponding to each of the regions R1, R2, R3,... Of the measured object S based on the calculated intensity information, and proceeds to step S6. .
  • step S6 at least one of phase image data and scattered image data of the object S is generated by combining image data for each of the regions R1, R2, R3,... Of the object S, and the process ends.
  • FIG. 6 shows a simulation result in the case where differential phase difference image data is generated by performing the above processing.
  • the phase change of the X-ray passing through the aperture 619 of the first optical element 611 is a cosine function with a period of 45 [ ⁇ m] corresponding to a Gaussian shape having a continuous standard deviation ⁇ of 20 [ ⁇ m] in the ZX cross section.
  • the opening width d of the opening 619 of the first optical element 611 is set to 44.46 [ ⁇ m], and the moving amount of the relative position between the opening 619 and the object S is set to 14.82 [ ⁇ m]. .
  • the derivative of the phase modulation of the X-ray generated by the object S is indicated by L1
  • the differential phase calculated from the intensity distribution of the X-ray generated based on L1 is indicated by L2
  • the differential phase obtained by the processing described in the above embodiment is indicated by L3.
  • L1 is indicated by a dashed line
  • L2 is indicated by a solid line
  • L3 is indicated by a broken line.
  • L2 cannot reproduce the differential phase distribution indicated by L1. That is, when the conventional method is used, the differential phase distribution indicated by L1 cannot be reproduced.
  • L3 forms a waveform having a shape similar to that of L1, it is understood that the differential phase distribution indicated by L1 can be reproduced with high accuracy. That is, it is understood that the change in the phase of the X-ray can be reproduced by the processing described in the above embodiment.
  • the image generation unit 53 uses the X-ray intensity information r1. (X), r2 (x), r3 (x),... Rn (x) are calculated, and the absorption image for each of the regions R1, R2, R3,. Data may be generated. That is, the image generation unit 53 of the present embodiment can generate at least one of the absorption image data, the phase image data, and the scattered image data.
  • the structure manufacturing system according to the present embodiment creates a molded product such as an electronic component including a door portion, an engine portion, a gear portion, and a circuit board of an automobile, for example.
  • FIG. 7 is a block diagram showing an example of the configuration of the structure manufacturing system 400 according to the present embodiment.
  • the structure manufacturing system 400 includes the X-ray device 100 described in the first embodiment, a design device 410, a molding device 420, a control system 430, and a repair device 440.
  • the design device 410 is a device used by a user when creating design information on the shape of a structure, and performs a design process of creating and storing design information.
  • the design information is information indicating the coordinates of each position of the structure.
  • the design information is output to the molding device 420 and a control system 430 described later.
  • the molding device 420 performs a molding process of creating and molding a structure using the design information created by the design device 410.
  • the forming apparatus 420 that performs at least one of lamination processing, casting processing, forging processing, and cutting processing represented by 3D printer technology is also included in one embodiment of the present invention.
  • the X-ray apparatus 100 performs a measurement process for measuring the shape of the structure formed by the forming apparatus 420.
  • the X-ray apparatus 100 outputs information indicating the coordinates of the structure (hereinafter, referred to as shape information), which is a measurement result of the structure, to the control system 430.
  • shape information information indicating the coordinates of the structure
  • the control system 430 includes a coordinate storage unit 431 and an inspection unit 432.
  • the coordinate storage unit 431 stores the design information created by the design device 410 described above.
  • the inspection unit 432 determines whether the structure formed by the forming device 420 has been formed according to the design information created by the design device 410. In other words, the inspection unit 432 determines whether the formed structure is a non-defective product. In this case, the inspection unit 432 performs an inspection process of reading out the design information stored in the coordinate storage unit 431 and comparing the design information with the shape information input from the X-ray apparatus 100. The inspection unit 432 compares, for example, the coordinates indicated by the design information with the coordinates indicated by the corresponding shape information as the inspection process, and, if the coordinates of the design information match the coordinates of the shape information as a result of the inspection process, It is determined that it is a non-defective product molded according to the design information.
  • the inspection unit 432 determines whether the difference between the coordinates is within a predetermined range, and if the difference is within the predetermined range, restoration is possible. Is determined to be a defective product.
  • the inspection unit 432 outputs repair information indicating the defective portion and the repair amount to the repair device 440.
  • the defective part is a part having the coordinates of the shape information that does not match the coordinates of the design information, and the repair amount is the difference between the coordinates of the design information and the coordinates of the shape information in the defective part.
  • the repair device 440 performs a repair process for reworking a defective portion of the structure based on the input repair information.
  • the repair device 440 performs the same process as the molding process performed by the molding device 420 in the repair process again.
  • step S31 the design device 410 is used when a user designs a structure, creates and stores design information on the shape of the structure by a design process, and proceeds to step S32.
  • the present invention is not limited to only the design information created by the design apparatus 410, and the one in which the design information is acquired by inputting the design information when the design information already exists is included in one embodiment of the present invention. It is.
  • step S32 the molding device 420 creates and molds the structure based on the design information by the molding process, and proceeds to step S33.
  • step S33 the X-ray apparatus 100 performs a measurement process to measure the shape of the structure, outputs shape information, and proceeds to step S34.
  • step S34 the inspection unit 432 performs an inspection process of comparing the design information created by the design device 410 with the shape information measured and output by the X-ray device 100, and proceeds to step S35.
  • step S35 based on the result of the inspection process, the inspection unit 432 determines whether the structure formed by the forming device 420 is a non-defective product. If the structure is non-defective, that is, if the difference between the coordinates of the design information and the coordinates of the shape information is within a predetermined range, the determination in step S35 is affirmative and the process ends.
  • step S35 If the structure is not conforming, that is, if the coordinates of the design information do not match the coordinates of the shape information, or if coordinates that are not in the design information are detected, a negative determination is made in step S35 and the process proceeds to step S36.
  • step S36 the inspection unit 432 determines whether the defective part of the structure can be repaired. If the defective part cannot be repaired, that is, if the difference between the coordinates of the design information and the coordinates of the shape information in the defective part exceeds a predetermined range, a negative determination is made in step S36 and the process ends. If the defective portion can be repaired, that is, if the difference between the coordinates of the design information and the coordinates of the shape information at the defective portion is within a predetermined range, the determination in step S36 is affirmative, and the process proceeds to step S37. In this case, the inspection unit 432 outputs the repair information to the repair device 440.
  • step S37 the repair device 440 performs a repair process on the structure based on the input repair information, and returns to step S33. As described above, the repair device 440 performs the same process as the molding process performed by the molding device 420 in the repair process again.
  • the first optical element 611 has an opening 619 through which X-rays from the X-ray source 2 pass.
  • the mounting table control unit 52 controls the manipulator unit 36 to change the relative position between the first optical element 611 and the device under test S in the X direction that intersects the traveling direction of the X-ray.
  • the detector 4 outputs, as output signals, the intensity distribution of X-rays that have passed through the opening 619 and transmitted through the object S at the plurality of changed positions.
  • the image generation unit 53 uses the output signal from the detector 4 to obtain information on the X-ray intensity distribution in a region having a size smaller than the opening width d of the opening 619.
  • the conventional coded aperture method in which the resolution (resolution) of the phase image or the scattering image is determined by the opening width of the opening of the optical element without forming the opening width d of the opening 619 of the first optical element 611 smaller. It is possible to generate a higher resolution image than that.
  • the mounting table controller 52 changes the relative position between the first optical element 611 and the device under test S by a movement amount smaller than the opening width d of the opening 619. This makes it possible to acquire information inside the device under test S corresponding to a region smaller than the opening width d of the opening 619 of the first optical element 611.
  • the image generation unit 53 changes the intensity distribution of the X-rays transmitted through the regions R1 and R2 of the DUT included in the output signal before the relative position is changed, and changes the relative position.
  • the intensity distribution of the X-rays transmitted through the regions R2 and R3 of the DUT included in the output signal after the separation is separated into the intensity distributions of the X-rays transmitted through the regions R1, R2 and R3.
  • absorption image data, phase image data, and scattering image data of each region are generated. This makes it possible to generate absorption image data, phase image data, and scattering image data with a higher resolution than the resolution determined by the opening width d of the opening 619 of the first optical element 611.
  • the X-ray apparatus 100 of the structure manufacturing system 400 performs a measurement process of acquiring shape information of the structure created by the molding device 420 based on the design process of the design device 410, and performs an inspection unit of the control system 430.
  • Reference numeral 432 performs an inspection process of comparing the shape information acquired in the measurement process with the design information created in the design process. Therefore, inspection of structural defects and information inside the structure by non-destructive inspection can be performed to determine whether the structure is a non-defective product created according to the design information. To contribute.
  • the repair device 440 performs a repair process for performing the molding process again on the structure based on the comparison result of the inspection process. Therefore, when the defective portion of the structure can be repaired, the same process as the molding process can be performed on the structure again, which contributes to the manufacture of a high-quality structure close to the design information.
  • the present invention is not limited to the method in which the mounting table 31 is moved and the dithering is performed, and any mode in which the relative position between the first optical element 611 and the device under test S is changed along the X direction may be applied.
  • the mounting table control unit 52 controls the manipulator unit 36 to move the mounting table 31 along the X direction, thereby moving and dithering the device under test S, or the first optical element 611.
  • the mounting table 31 may be moved along the X direction for dithering.
  • control device 5 of the X-ray apparatus 100 has been described as including the image generation unit 53 and the image reconstruction unit 56.
  • the component 56 may not be provided.
  • the image generating unit 53 and the image reconstructing unit 56 are provided in a processing device or the like separate from the X-ray apparatus 100, and acquire a signal output from the detector 4 via, for example, a network or a storage medium.
  • absorption image data, phase image data, scattered image data, and three-dimensional data may be generated.
  • Second optical unit 400 ... structure manufacturing system 410 ... design apparatus 420 ... molding apparatus 430 ... control system 440 ... repair apparatus 611 ... first optical element 621 ... second optical elements 613 and 623 ... adjustment parts 619 and 629 ... opening

Abstract

An x-ray device that comprises an x-ray source, a shielding member, an alteration part, a detector, and a generation part. The x-ray source emits x-rays toward an object to be measured. The shielding member: has a passage part that allows x-rays to pass; but blocks x-rays other than at the passage part. The alteration part alters the relative position between the shielding member and the object to be measured in a direction that intersects the advancement direction of the x-rays. The detector outputs, as an output signal, an intensity distribution for x-rays that have passed through the passage part and the object to be measured as in a plurality of positions reached by means of alterations made by the alteration part. The generation part uses the output signal from the detector to generate information about the intensity distribution for the x-rays for a region that is smaller than the size of the passage part in the abovementioned direction.

Description

X線装置、X線画像生成方法および構造物の製造方法X-ray apparatus, X-ray image generation method, and structure manufacturing method
 本発明は、X線装置、X線画像生成方法および構造物の製造方法に関する。 The present invention relates to an X-ray apparatus, an X-ray image generation method, and a structure manufacturing method.
 従来から、被測定物にて偏向したX線の位相情報に基づいて、被測定物の内部構造の画像を生成するX線装置が知られている。X線の位相情報を取得するために、X線源および被測定物の間と、被測定物および検出器の間とにマスクを配置し、偏向したX線を計測するX線装置がある(たとえば特許文献1)。このようなX線装置で生成される被測定物の内部構造の画像の解像度(分解能)は遮蔽部材に設けられた開口部の大きさによって決まるが、開口部が小さい遮蔽部材を作成することが困難であるため、画像の高解像度化が困難である。 Conventionally, an X-ray apparatus that generates an image of an internal structure of an object to be measured based on phase information of an X-ray deflected by the object to be measured has been known. In order to acquire X-ray phase information, there is an X-ray apparatus that arranges a mask between an X-ray source and an object to be measured and between an object to be measured and a detector and measures deflected X-rays ( For example, Patent Document 1). The resolution (resolution) of the image of the internal structure of the object to be measured generated by such an X-ray apparatus is determined by the size of the opening provided in the shielding member. Because of the difficulty, it is difficult to increase the resolution of an image.
日本国特許第5280361号Japanese Patent No. 5280361
 第1の態様によると、X線装置は、被測定物へ向けてX線を出射するX線源と、前記X線を通過させる通過部を有し、前記通過部以外で前記X線を遮蔽する遮蔽部材と、前記X線の進行方向と交差する方向において、前記遮蔽部材と前記被測定物との間の相対的な位置を変更する変更部と、前記変更部により変更された複数の位置において、前記通過部および前記被測定物を通過した前記X線の強度分布を出力信号として出力する検出器と、前記検出器からの出力信号を用いて、前記通過部の前記方向に沿った大きさよりも小さい大きさの領域における前記X線の前記強度分布に関する情報を生成する生成部と、を備える。
 第2の態様によると、X線画像生成方法は、被測定物へ向けてX線を出射することと、通過部を有する遮蔽部材により前記通過部にて前記X線を通過させることと、前記X線の進行方向と交差する方向において、前記遮蔽部材と前記被測定物との間の相対的な位置を変更すること、変更された複数の前記位置において、前記通過部および前記被測定物を通過した前記X線の強度分布を出力信号として出力することと、前記出力信号を用いて、前記通過部の前記方向に沿った大きさよりも小さい大きさの領域における前記X線の前記強度分布に関する情報を生成することと、を備える。
According to the first aspect, the X-ray apparatus has an X-ray source that emits X-rays toward an object to be measured, and a passing unit that passes the X-rays, and shields the X-rays other than the passing unit. A shielding member to be changed, a changing unit that changes a relative position between the shielding member and the device under test in a direction intersecting with the traveling direction of the X-ray, and a plurality of positions changed by the changing unit. A detector that outputs, as an output signal, an intensity distribution of the X-rays that have passed through the passing portion and the object to be measured, and a magnitude along the direction of the passing portion using an output signal from the detector. A generation unit that generates information on the intensity distribution of the X-rays in a region having a size smaller than the size.
According to a second aspect, the X-ray image generation method includes: emitting X-rays toward an object to be measured; passing the X-rays through the passing portion by a shielding member having a passing portion; In a direction intersecting with the traveling direction of the X-ray, changing the relative position between the shielding member and the object to be measured, at the plurality of changed positions, the passing portion and the object to be measured Outputting the intensity distribution of the passed X-rays as an output signal; and using the output signal, regarding the intensity distribution of the X-rays in a region having a size smaller than the size of the passing portion along the direction. Generating information.
実施の形態によるX線装置の要部構成の一例を模式的に示す図である。It is a figure which shows typically an example of the principal part structure of the X-ray apparatus by embodiment. 光学ユニットの一例を模式的に示す図である。It is a figure which shows an example of an optical unit typically. 画像データを生成する際のX線源と、第1光学素子の開口と、第2光学素子の開口と、被測定物と、検出器の画素との位置関係を拡大して模式的に示す図である。The figure which expands and shows typically the positional relationship of the X-ray source at the time of producing | generating image data, the opening of a 1st optical element, the opening of a 2nd optical element, a measured object, and the pixel of a detector. It is. 画像データを生成する際のX線源と、第1光学素子の開口と、第2光学素子の開口と、被測定物と、検出器の画素との位置関係を拡大して模式的に示す図である。The figure which expands and shows typically the positional relationship of the X-ray source at the time of producing | generating image data, the opening of a 1st optical element, the opening of a 2nd optical element, a measured object, and the pixel of a detector. It is. 実施の形態によるX線装置の動作を説明するフローチャートである。5 is a flowchart illustrating an operation of the X-ray apparatus according to the embodiment. 微分位相画像データを生成する場合のシミュレーション結果を示す図である。FIG. 9 is a diagram illustrating a simulation result when differential phase image data is generated. 実施の形態による構造物製造システムの構成を模式的に示すブロック図である。It is a block diagram showing typically composition of a structure manufacturing system by an embodiment. 実施の形態による構造物製造システムが実行する処理を説明するフローチャートである。5 is a flowchart illustrating a process executed by the structure manufacturing system according to the embodiment.
 図面を参照しながら、一実施の形態によるX線装置について説明する。X線装置は、被測定物にX線を照射して、被測定物を透過したX線を検出することにより、被測定物の内部情報(たとえば内部構造)等を被測定物を破壊することなく取得する。X線装置は、例えば、生体を被測定物として、生化学や医療等にも用いることができる。 An X-ray apparatus according to an embodiment will be described with reference to the drawings. An X-ray apparatus irradiates an object to be measured with X-rays and detects X-rays transmitted through the object to destroy internal information (for example, an internal structure) of the object to be measured. Get without. The X-ray apparatus can be used for biochemistry, medical treatment, and the like, for example, using a living body as an object to be measured.
 図1は本実施の形態によるX線装置100の構成の一例を示す図である。なお、説明の都合上、X軸、Y軸、Z軸からなる座標系を図示の通りに設定する。 FIG. 1 is a diagram showing an example of the configuration of the X-ray apparatus 100 according to the present embodiment. For convenience of explanation, a coordinate system including the X axis, the Y axis, and the Z axis is set as illustrated.
 X線装置100は、筐体1と、X線源2と、載置部3と、検出器4と、制御装置5と、光学ユニット6とを備える。筐体1は、その下面が工場等の床面に実質的に平行(水平)となるように配置されている。筐体1の内部には、X線源2と、載置部3と、検出器4と、光学ユニット6とが収容される。筐体1は、X線が筐体1の外部に漏洩しないようにするため、X線遮蔽材料を含む。なお、X線遮蔽材料として鉛を含む。 The X-ray apparatus 100 includes a housing 1, an X-ray source 2, a receiver 3, a detector 4, a controller 5, and an optical unit 6. The housing 1 is arranged so that its lower surface is substantially parallel (horizontal) to the floor surface of a factory or the like. An X-ray source 2, a receiver 3, a detector 4, and an optical unit 6 are housed inside the housing 1. The housing 1 includes an X-ray shielding material to prevent X-rays from leaking out of the housing 1. Note that lead is included as an X-ray shielding material.
 X線源2は、制御装置5による制御に応じて、図1に示す出射点Pを頂点としてZ軸に平行な光軸Zrに沿って、Z軸+方向へ向けてX線を放射する。この出射点Pは後述するX線源2の内部で加速、集束された電子線の焦点位置と一致する。すなわち、光軸Zrは、X線源2の電子線の焦点位置である出射点Pと、後述する検出器4の撮像領域の中心とを結ぶ軸である。なお、X線源2から放射するX線は、円錐状に拡がるX線(いわゆるコーンビーム)、扇状のX線(いわゆるファンビーム)、および直線状のX線(いあわゆるペンシルビーム)のいずれでもよい。なお、ファンビームおよびペンシルビームを用いる場合は、被測定物S全体を検査するために、ビームと被測定物Sとを相対的に移動させるスキャン動作を行う必要がある。X線源2は、たとえば約50eVの超軟X線、約0.1~2keVの軟X線、約2~20keVのX線および約20keV~数MeVの硬X線の少なくとも1つを照射する。 The X-ray source 2 emits X-rays in the + Z-axis direction along the optical axis Zr parallel to the Z-axis with the emission point P shown in FIG. This emission point P coincides with the focal position of the electron beam accelerated and focused inside the X-ray source 2 described later. That is, the optical axis Zr is an axis connecting the emission point P, which is the focal position of the electron beam of the X-ray source 2, and the center of an imaging area of the detector 4 described later. The X-rays radiated from the X-ray source 2 may be any of a cone-shaped X-ray (so-called cone beam), a fan-shaped X-ray (so-called fan beam), and a linear X-ray (so-called pencil beam). May be. When a fan beam and a pencil beam are used, it is necessary to perform a scanning operation for relatively moving the beam and the object S in order to inspect the entire object S. The X-ray source 2 emits at least one of ultra soft X-rays of about 50 eV, soft X-rays of about 0.1 to 2 keV, X-rays of about 2 to 20 keV, and hard X-rays of about 20 keV to several MeV. .
 載置部3は、被測定物Sが載置される載置台31と、回転駆動部32、X軸移動部33、Y軸移動部34およびZ軸移動部35からなるマニピュレータ部36とを備え、X線源2よりもZ軸+側に設けられている。 The mounting section 3 includes a mounting table 31 on which the device to be measured S is mounted, and a manipulator section 36 including a rotation driving section 32, an X-axis moving section 33, a Y-axis moving section 34, and a Z-axis moving section 35. , X-ray source 2 on the Z axis + side.
 載置台31は、回転駆動部32により回転可能に設けられる。後述するように、回転駆動部32による回転軸YrがX軸、Y軸、Z軸方向に移動する際に、載置台31はともに移動する。 The mounting table 31 is rotatably provided by the rotation drive unit 32. As will be described later, when the rotation axis Yr by the rotation drive unit 32 moves in the X-axis, Y-axis, and Z-axis directions, the mounting table 31 moves together.
 回転駆動部32は、たとえば電動モータ等によって構成され、後述する制御装置5により制御されて駆動した電動モータが発生する回転力によって、載置台31を回転させる。載置台31の回転軸Yrは、Y軸に平行、かつ、載置台31の中心を通過する。 The rotation drive unit 32 is configured by, for example, an electric motor or the like, and rotates the mounting table 31 by the rotation force generated by the electric motor driven and controlled by the control device 5 described later. The rotation axis Yr of the mounting table 31 is parallel to the Y axis and passes through the center of the mounting table 31.
 X軸移動部33、Y軸移動部34およびZ軸移動部35は、制御装置5により制御されて、載置台31をX軸方向、Y軸方向およびZ軸方向にそれぞれ移動させる。Z軸移動部35は、制御装置5により制御されて、X線源2から被測定物Sまでの距離が、撮影される画像における被測定物Sの拡大率に応じた距離となるように載置台31をZ軸方向に移動させる。 The X-axis moving unit 33, the Y-axis moving unit 34, and the Z-axis moving unit 35 are controlled by the control device 5 to move the mounting table 31 in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively. The Z-axis moving unit 35 is controlled by the control device 5 so that the distance from the X-ray source 2 to the object S is a distance corresponding to the magnification of the object S in a captured image. The table 31 is moved in the Z-axis direction.
 検出器4は、載置台31よりもZ軸+側に設けられている。すなわち、載置台31は、Z軸方向において、X線源2と検出器4との間に設けられる。検出器4は、公知のシンチレーション物質を含むシンチレータ部、光電子増倍管、CCD等の受光部等によって構成され、X線源2から出射され、載置台31上に載置された被測定物Sを透過した透過X線を含むX線を受光する。検出器4は、受光したX線のエネルギーを光エネルギーに変換した後、当該光エネルギーを電気エネルギーに変換し、電気信号として出力する。 The detector 4 is provided on the Z axis + side of the mounting table 31. That is, the mounting table 31 is provided between the X-ray source 2 and the detector 4 in the Z-axis direction. The detector 4 includes a scintillator unit including a known scintillation substance, a photomultiplier tube, a light receiving unit such as a CCD, and the like. The detector 4 emits light from the X-ray source 2 and is mounted on the mounting table 31. X-rays including transmitted X-rays that have passed through are received. After converting the received X-ray energy into light energy, the detector 4 converts the light energy into electric energy and outputs the same as an electric signal.
 なお、検出器4は、入射するX線のエネルギーを光エネルギーに変換することなく電気信号に変換して出力してもよい。また、検出器4は、複数の画素を有しており、それらの画素は2次元的に配列されている。これにより、X線源2から放射され、被測定物Sを通過したX線の2次元的な強度分布データを一括して取得できる。従って、1回の撮影で被測定物Sの全体の投影像を取得することができる。 The detector 4 may convert the energy of the incident X-rays into an electric signal without converting the energy into light energy and output the electric signal. The detector 4 has a plurality of pixels, and the pixels are two-dimensionally arranged. Thereby, two-dimensional intensity distribution data of X-rays radiated from the X-ray source 2 and passing through the object S can be collectively acquired. Therefore, it is possible to acquire the entire projected image of the DUT S by one photographing.
 光学ユニット6は、被測定物Sの位相画像データおよび散乱画像データの少なくとも一方を生成するための第1光学ユニット61と第2光学ユニット62とを有する。なお、本実施の形態においては、光学ユニット6は公知のコーデッドアパーチャ(CA)方式により位相画像データおよび散乱画像データの少なくとも一方を生成するための構造を有するものとして説明を行う。 The optical unit 6 has a first optical unit 61 and a second optical unit 62 for generating at least one of phase image data and scattered image data of the measured object S. In the present embodiment, the optical unit 6 is described as having a structure for generating at least one of phase image data and scattered image data by a known coded aperture (CA) method.
 第1光学ユニット61は、X線源2と被測定物Sとの間のX線の経路中に配置される。第1光学ユニット61は、第1光学素子611と、第1光学素子611の位置を調節する調節部613とを有する。第1光学素子611は、たとえば金属製の板状部材に形成された複数の開口を有し、開口にてX線を通過させ、開口以外でX線を遮蔽する遮蔽部材である。開口の形状はスリット状でもよいし、三角形や矩形等の多角形もしくは真円および楕円を含む円形でもよい。なお、本実施の形態においては第1光学素子611が、X線を通過させる通過部として開口を有する場合を例に挙げるが、この例に限定されず、第1光学素子611が、開口に代えて、X線を透過する材料で形成された通過部を有してもよい。第1光学素子611は、取付構造(不図示)を介して調節部613に取り付けられる。調節部613は、後述する制御装置5の制御に応じて、第1光学素子611の位置を調節する。調節部613は、第1光学素子611のX軸方向の位置を調節するX軸調節部614と、Y軸方向の位置を調節するY軸調節部615と、Z軸方向の位置を調節するZ軸調節部616とを有する。 The first optical unit 61 is arranged in the path of X-rays between the X-ray source 2 and the object S. The first optical unit 61 has a first optical element 611 and an adjusting unit 613 that adjusts the position of the first optical element 611. The first optical element 611 is a shielding member that has a plurality of openings formed in, for example, a metal plate-like member, allows X-rays to pass through the openings, and shields X-rays in other than the openings. The shape of the opening may be a slit shape, a polygon such as a triangle or a rectangle, or a circle including a perfect circle and an ellipse. Note that, in the present embodiment, a case where the first optical element 611 has an opening as a passage portion through which X-rays pass is described as an example. However, the present invention is not limited to this example. Further, it may have a passage portion formed of a material that transmits X-rays. The first optical element 611 is attached to the adjustment unit 613 via an attachment structure (not shown). The adjusting unit 613 adjusts the position of the first optical element 611 under the control of the control device 5 described below. The adjusting unit 613 includes an X-axis adjusting unit 614 that adjusts the position of the first optical element 611 in the X-axis direction, a Y-axis adjusting unit 615 that adjusts the position in the Y-axis direction, and a Z that adjusts the position in the Z-axis direction. And an axis adjusting unit 616.
 第2光学ユニット62は、被測定物Sと検出器4との間のX線の経路中に配置される。第2光学ユニット62は、第1光学ユニット61と同様に、第2光学素子621と、調節部623とを有する。第2光学素子621は、たとえば金属製の板状部材に形成された複数の開口を有、開口にてX線を通過させ、開口以外でX線を遮蔽する遮蔽部材である。開口の形状はスリット状でもよいし、三角形や矩形等の多角形もしくは真円および楕円を含む円形でもよい。なお、本実施の形態においては第2光学素子621が、X線を通過させると通過部として開口を有する場合を例に挙げるが、この例に限定されず、第2光学素子621が、開口に代えて、X線を透過する部材で形成された通過部を有してもよい。第2光学素子621は、取付構造(不図示)を介して調節部623に取り付けられる。調節部623は、後述する制御装置5の制御に応じて、第2光学素子621の位置を調節する。調節部623は、第2光学素子621のX軸方向の位置を調節するX軸調節部624と、Y軸方向の位置を調節するY軸調節部625と、Z軸方向の位置を調節するZ軸調節部626とを有する。なお、第2光学素子621が有する開口の形状は、第1光学素子611が有する開口の形状に対応した形状とする。 The second optical unit 62 is arranged in the path of X-rays between the object S and the detector 4. The second optical unit 62 has a second optical element 621 and an adjusting unit 623, like the first optical unit 61. The second optical element 621 is a shielding member that has a plurality of openings formed in, for example, a metal plate-shaped member, allows X-rays to pass through the openings, and shields X-rays in other than the openings. The shape of the opening may be a slit shape, a polygon such as a triangle or a rectangle, or a circle including a perfect circle and an ellipse. Note that, in the present embodiment, a case where the second optical element 621 has an opening as a passage portion when X-rays pass therethrough is described as an example, but the present invention is not limited to this example. Instead, it may have a passage portion formed of a member that transmits X-rays. The second optical element 621 is attached to the adjustment unit 623 via an attachment structure (not shown). The adjustment unit 623 adjusts the position of the second optical element 621 according to the control of the control device 5 described later. The adjustment unit 623 includes an X-axis adjustment unit 624 for adjusting the position of the second optical element 621 in the X-axis direction, a Y-axis adjustment unit 625 for adjusting the position in the Y-axis direction, and a Z-axis for adjusting the position in the Z-axis direction. And an axis adjusting unit 626. Note that the shape of the opening of the second optical element 621 corresponds to the shape of the opening of the first optical element 611.
 図2に、第1光学素子611と第2光学素子621の一例を模式的に示す。図2(a)は、第1光学素子611と第2光学素子621のXY平面における形状を模式的に示す図であり、開口の形状をスリット状にした場合を例として示す。第1光学素子611は複数の開口619(619a、619b、619c、619d)を有し、第2光学素子621は複数の開口629(629a、629b、629c、629d)を有する。第2光学素子621の開口629のピッチは、検出器4の画素の配列ピッチにより決定される。第1光学素子611の開口619のピッチは、検出器4の画素の配列ピッチと、X線源2から被測定物Sまでの距離と、X線源2から検出器4までの距離とに基づいて決定される。なお、図2(a)に示す開口619、629の個数は一例であり、図に示す個数よりも多くてもよいし、少なくてもよい。 FIG. 2 schematically shows an example of the first optical element 611 and the second optical element 621. FIG. 2A is a diagram schematically showing the shapes of the first optical element 611 and the second optical element 621 on the XY plane, and shows an example in which the opening has a slit shape. The first optical element 611 has a plurality of openings 619 (619a, 619b, 619c, 619d), and the second optical element 621 has a plurality of openings 629 (629a, 629b, 629c, 629d). The pitch of the openings 629 of the second optical element 621 is determined by the arrangement pitch of the pixels of the detector 4. The pitch of the opening 619 of the first optical element 611 is based on the arrangement pitch of the pixels of the detector 4, the distance from the X-ray source 2 to the device under test S, and the distance from the X-ray source 2 to the detector 4. Is determined. The number of openings 619 and 629 shown in FIG. 2A is an example, and may be larger or smaller than the number shown in the figure.
 図2(b)に示すように、X線源2から出射したX線は、第1光学素子611の開口619を透過し、開口619以外の領域では吸収される。開口619を通過したX線は、第2光学素子621の開口629を通過し、開口629以外の領域では吸収される。図2(b)に示すように開口619a、619b、619c、619dを通過したX線は、それぞれ開口629a、629b、629c、629dを通過する。すなわち、第1光学素子611の開口619a、619b、619c、619dと第2光学素子621の開口629a、629b、629c、629dとはそれぞれ一対一に対応するように配置される。開口629を透過したX線は検出器4に入射する。図に示す例では、開口629a、629b、629c、629dを通過したX線は、それぞれ検出器4の画素411a、411b、411c、411dに入射する。 XAs shown in FIG. 2B, the X-rays emitted from the X-ray source 2 pass through the opening 619 of the first optical element 611, and are absorbed in a region other than the opening 619. The X-ray that has passed through the opening 619 passes through the opening 629 of the second optical element 621, and is absorbed in a region other than the opening 629. As shown in FIG. 2B, the X-rays that have passed through the openings 619a, 619b, 619c, and 619d pass through the openings 629a, 629b, 629c, and 629d, respectively. That is, the openings 619a, 619b, 619c, 619d of the first optical element 611 and the openings 629a, 629b, 629c, 629d of the second optical element 621 are arranged so as to correspond one-to-one. The X-ray transmitted through the opening 629 enters the detector 4. In the example shown in the figure, the X-rays that have passed through the openings 629a, 629b, 629c, and 629d enter the pixels 411a, 411b, 411c, and 411d of the detector 4, respectively.
 図2(c)に示すように、第1光学素子611と第2光学素子621との間に被測定物Sが存在する場合、開口619を通過しX線は被測定物Sの内部にて屈折、散乱等をして、わずかに偏向する。図2(c)に示す例では、第1光学素子611の開口619b、619cを通過したX線は被測定物S内部で位相が変調するため、実線で示す被測定物Sが無い場合のX線の経路と比較して、破線で示すように偏向する。この偏向により、第2光学素子621の開口629b、629cを通過して検出器4の画素411b、411cへ入射するX線量は、図2(b)に示す被測定物Sが存在しない場合と比較して増減する。この増減したX線量には、偏向により位相が変化しコントラストが生じたX線の情報が含まれる。後述する画像生成部53は、この位相が変化して生じたコントラストに基づいて位相画像データおよび散乱画像データの少なくとも一方を生成する。 As shown in FIG. 2C, when the DUT exists between the first optical element 611 and the second optical element 621, the X-ray passes through the opening 619 and passes through the inside of the DUT. It is slightly deflected by refraction and scattering. In the example shown in FIG. 2C, since the phase of the X-ray that has passed through the openings 619b and 619c of the first optical element 611 is modulated inside the object S, the X-ray when there is no object S shown by a solid line. Compared to the path of the line, it is deflected as shown by the dashed line. Due to this deflection, the X-ray dose passing through the openings 629b and 629c of the second optical element 621 and entering the pixels 411b and 411c of the detector 4 is compared with the case where the object S shown in FIG. Increase or decrease. The increased / decreased X-ray dose includes information on X-rays whose phase has been changed due to deflection and contrast has occurred. The image generation unit 53 described later generates at least one of the phase image data and the scattered image data based on the contrast generated by the change in the phase.
 図1に示す制御装置5は、マイクロプロセッサやその周辺回路等を有しており、不図示の記憶媒体(たとえばフラッシュメモリ等)に予め記憶されている制御プログラムを読み込んで実行することにより、X線装置100の各部を制御する。制御装置5は、X線源2の動作を制御するX線制御部51と、マニピュレータ部36の駆動動作を制御する載置台制御部52と、検出器4から出力された電気信号に基づいて被測定物SのX線投影画像データを生成する画像生成部53と、第1光学素子611および第2光学素子621の位置を調節する調節部613、623の駆動動作を制御する光学ユニット制御部54と、を有する。 The control device 5 shown in FIG. 1 has a microprocessor, its peripheral circuits, and the like, and reads and executes a control program stored in advance in a storage medium (not shown) (for example, a flash memory or the like) to execute X control. Each part of the wire device 100 is controlled. The control device 5 is controlled based on an X-ray control unit 51 that controls the operation of the X-ray source 2, a mounting table control unit 52 that controls the driving operation of the manipulator unit 36, and an electric signal output from the detector 4. An image generation unit 53 that generates X-ray projection image data of the measurement object S, and an optical unit control unit 54 that controls driving operations of adjustment units 613 and 623 that adjust the positions of the first optical element 611 and the second optical element 621. And
 画像生成部53は、被測定物Sの内部でのX線の散乱および位相変調の少なくとも一方により生じるX線の強度分布の変化に関する情報に基づいて位相画像データおよび散乱画像データの少なくとも一方を生成する。 The image generation unit 53 generates at least one of phase image data and scattered image data based on information on a change in the intensity distribution of X-rays caused by at least one of X-ray scattering and phase modulation inside the object S. I do.
 画像再構成部56は、被測定物Sに対するX線照射方向を相対的に変化させて投影し、それにより得られた複数の位相画像データおよび散乱画像データの少なくとも一方に基づいて、公知の画像再構成処理方法を用いることで、被測定物Sの再構成画像を生成する。画像再構成処理により、被測定物Sの内部構造(断面構造)である断面画像データや3次元データが生成される。なお、断面画像データとは、XZ平面と平行な面内における被測定物Sの構造データを含む。画像再構成処理としては、逆投影法、フィルタ補正逆投影法、逐次近似法等がある。 The image reconstructing unit 56 projects the X-ray irradiation direction relative to the measurement target S while relatively changing the X-ray irradiation direction, and based on at least one of the plurality of phase image data and the scattered image data obtained thereby, a known image. A reconstructed image of the device under test S is generated by using the reconstruction processing method. The image reconstruction processing generates cross-sectional image data and three-dimensional data that are the internal structure (cross-sectional structure) of the DUT S. Note that the cross-sectional image data includes structural data of the DUT S in a plane parallel to the XZ plane. The image reconstruction processing includes a back projection method, a filtered back projection method, a successive approximation method, and the like.
 以下、本実施の形態のX線装置100が行う位相画像データおよび散乱画像データの少なくとも一方を生成する処理について説明する。
 図3(a)、(d)は、X線源2と、第1光学素子611の開口619と、第2光学素子621の開口629と、被測定物Sと、検出器4の画素411との位置関係を拡大して模式的に示す。なお、図3(a)、(d)においては、載置台31を省略している。
Hereinafter, a process of generating at least one of the phase image data and the scattered image data performed by the X-ray apparatus 100 of the present embodiment will be described.
FIGS. 3A and 3D show the X-ray source 2, the opening 619 of the first optical element 611, the opening 629 of the second optical element 621, the DUT S, and the pixel 411 of the detector 4. Is schematically shown in an enlarged manner. 3 (a) and 3 (d), the mounting table 31 is omitted.
 上述したように、X線源2から出射されたX線は、一部が第1光学素子611の開口619を通過し、他は第1光学素子611にて吸収される。開口619を通過したX線は、被測定物Sの一部の領域R1とR2とを透過する。図3(a)に示すように、X線が透過する被測定物Sの領域R1とR2とを合わせたX方向(すなわちX線が進行する方向と交差する方向)の長さは、開口619のX方向の長さ(開口幅)dに対応する。被測定物Sの領域R1とR2とを透過したX線は、第2光学素子621の開口629を通過して検出器4の画素411に入射する。 As described above, a part of the X-ray emitted from the X-ray source 2 passes through the opening 619 of the first optical element 611, and the other is absorbed by the first optical element 611. The X-ray that has passed through the opening 619 transmits through some of the regions R1 and R2 of the measured object S. As shown in FIG. 3A, the length in the X direction (that is, the direction intersecting the direction in which the X-rays travel) in which the regions R1 and R2 of the DUT through which the X-rays pass is equal to the opening 619. In the X direction (opening width) d. The X-ray transmitted through the regions R1 and R2 of the device S passes through the opening 629 of the second optical element 621 and enters the pixel 411 of the detector 4.
 調節部623のX軸調節部624は、光学ユニット制御部54に制御され、第2光学素子621をX方向に沿って移動させる。これにより、第2光学素子621の開口629は画素411の範囲をX方向に沿って移動する。例えば、開口629は、図3(a)において、画素411の左端から右端までX方向-側に等速で移動する。これにより、画素411におけるX方向に沿ったX線の検出強度の分布が得られる。すなわち、被測定物Sの領域R1とR2との内部で位相が変調されたX線は偏向し、開口629を通過して画素411に入射する。開口629の移動に伴って、画素411は、入射したX線、すなわち被測定物Sの一部の領域R1とR2とを透過したX線の強度分布に応じた出力信号を出力する。この出力信号には、被測定物Sの領域R1およびR2の内部でのX線の散乱および位相変調の少なくとも一方により生じるX線の強度分布の変化に関する情報が含まれる。図3(b)は、この場合に第1光学素子611の開口619を通過して被測定物Sの領域R1とR2とを透過して画素411に入射したX線の強度分布I1(x)を模式的に示す。なお、xは画素411におけるX方向の位置を示す。 The X-axis adjusting unit 624 of the adjusting unit 623 is controlled by the optical unit control unit 54 to move the second optical element 621 in the X direction. Accordingly, the opening 629 of the second optical element 621 moves in the range of the pixel 411 along the X direction. For example, in FIG. 3A, the opening 629 moves from the left end to the right end of the pixel 411 at a constant speed in the negative direction in the X direction. As a result, a distribution of X-ray detection intensities in the pixel 411 along the X direction is obtained. That is, the X-rays whose phases are modulated inside the regions R1 and R2 of the device S are deflected, pass through the aperture 629, and enter the pixel 411. Along with the movement of the opening 629, the pixel 411 outputs an output signal corresponding to the intensity distribution of the incident X-ray, that is, the X-ray transmitted through some of the regions R1 and R2 of the device S. This output signal includes information on a change in the X-ray intensity distribution caused by at least one of X-ray scattering and phase modulation inside the regions R1 and R2 of the device S. FIG. 3B shows an intensity distribution I1 (x) of the X-rays that have passed through the apertures 619 of the first optical element 611 and transmitted through the regions R1 and R2 of the device under test S and entered the pixels 411 in this case. Is schematically shown. Note that x indicates a position in the X direction in the pixel 411.
 領域R1とR2との境界を通過したX線が到達する画素411上の位置をx0とすると、図3(b)に示すように、画素411により検出されるX線強度は、位置x0の近傍で大きく、位置x0から離れるにつれて小さくなる。従って、画素411が検出するX線の強度は、開口629の中心が位置x0の近傍にある時点で最大となり、開口629の中心が位置x0から離れるに従って小さくなる。 Assuming that the position on the pixel 411 to which the X-ray that has passed through the boundary between the regions R1 and R2 reaches is x0, as shown in FIG. 3B, the X-ray intensity detected by the pixel 411 is near the position x0. And becomes smaller as the distance from the position x0 increases. Therefore, the intensity of the X-rays detected by the pixel 411 becomes maximum when the center of the opening 629 is near the position x0, and decreases as the center of the opening 629 moves away from the position x0.
 第1光学素子611の開口619と被測定物Sとの位置関係が図3(a)に示すような場合、上述したように、開口619を通過したX線は、被測定物Sの領域R1とR2とを透過する。このため、図3(b)に示すX線の強度分布I1(x)は、図3(c)に示すように、被測定物Sの領域R1を透過したX線の強度情報r1(x)と、領域R2を透過したX線の強度情報r2とを含んで構成される。 When the positional relationship between the opening 619 of the first optical element 611 and the device under test S is as shown in FIG. 3A, the X-rays passing through the opening 619 pass through the region R1 of the device under test S as described above. And R2. Therefore, the X-ray intensity distribution I1 (x) shown in FIG. 3 (b) has intensity information r1 (x) of the X-ray transmitted through the region R1 of the measured object S as shown in FIG. 3 (c). And intensity information r2 of the X-ray transmitted through the region R2.
 次に、光学ユニット制御部54は、調節部613を制御して、第1光学素子611をX方向に沿ってX方向-側へ所定量移動させ、調節部623を制御して、第2光学素子621をX方向に沿って移動させ開口629を画素411の範囲で移動させる(ディザリング)。この第1光学素子611の移動により、第1光学素子611と被測定物Sとの相対的な位置がX方向に沿って変更される。このとき、調節部613は、被測定物Sの移動量が第1光学素子611の開口619の開口幅dよりも小さな移動量となるように、第1光学素子611を移動させる。図3(d)は、図3(a)の状態からの第1光学素子611の移動量が開口619の開口幅dの1/2の場合を一例として示す。なお、第1光学素子611の移動量は、開口619の開口幅dの1/2であるものに限定されず、開口幅dの整数分の1、たとえば1/3や1/4やそれ以下でもよい。なお、本明細書においては、説明の便宜上、以下の説明において、第2光学素子621をX方向に沿った開口幅dよりも小さな移動量での移動をディザリングと呼ぶ。 Next, the optical unit control unit 54 controls the adjustment unit 613 to move the first optical element 611 by a predetermined amount in the X direction to the negative side in the X direction, and controls the adjustment unit 623 to control the second optical element. The element 621 is moved along the X direction, and the opening 629 is moved within the range of the pixel 411 (dithering). Due to the movement of the first optical element 611, the relative position between the first optical element 611 and the device under test S is changed along the X direction. At this time, the adjustment unit 613 moves the first optical element 611 such that the movement amount of the device under test S is smaller than the opening width d of the opening 619 of the first optical element 611. FIG. 3D shows an example in which the amount of movement of the first optical element 611 from the state of FIG. 3A is 1 / of the opening width d of the opening 619. Note that the amount of movement of the first optical element 611 is not limited to a half of the opening width d of the opening 619, but is a fraction of the opening width d, for example, 1/3 or 1/4 or less. May be. In this specification, for the sake of convenience, in the following description, movement of the second optical element 621 by a movement amount smaller than the opening width d along the X direction is referred to as dithering.
 第1光学素子611と被測定物SとのX方向の相対的な位置が開口幅dの1/2だけX方向-側に変更されたことにより、第1光学素子611の開口619を通過したX線は、被測定物Sの領域R2とR3とを透過する。被測定物Sの領域R2とR3とを透過したX線は、第2光学素子621の開口629を通過して検出器4の画素411に入射する。この場合も、図3(a)を参照して説明した場合と同様に、調節部623のX軸調節部624は、光学ユニット制御部54に制御され、第2光学素子621をX方向に沿って画素411の範囲を移動させる。被測定物Sの領域R2とR3との内部で位相が変調されたX線が偏向し、開口629を通過して画素411に入射するので、開口629の移動に伴って、画素411は、入射したX線、すなわち被測定物Sの一部の領域R2とR3とを透過したX線の強度分布に応じた出力信号を出力する。 Since the relative position of the first optical element 611 and the device under test S in the X direction is changed to 1 / in the X direction by の of the opening width d, the first optical element 611 has passed through the opening 619 of the first optical element 611. X-rays pass through the regions R2 and R3 of the object S. The X-ray transmitted through the regions R2 and R3 of the device S passes through the opening 629 of the second optical element 621 and enters the pixel 411 of the detector 4. Also in this case, similarly to the case described with reference to FIG. 3A, the X-axis adjustment unit 624 of the adjustment unit 623 is controlled by the optical unit control unit 54 to move the second optical element 621 along the X direction. To move the range of the pixel 411. The X-rays whose phases are modulated inside the regions R2 and R3 of the device under test S are deflected, pass through the aperture 629, and enter the pixel 411. As the aperture 629 moves, the pixel 411 An output signal is output in accordance with the intensity distribution of the X-rays transmitted, that is, the X-rays transmitted through some of the regions R2 and R3 of the object S.
 この場合、画素411により検出されるX線強度は、画素411上の位置をx0からX方向-側にd/2ずれた位置(x0-d/2)の近傍で大きくなり、位置(x0-d/2)から離れるにつれて小さくなる。従って、画素411が検出するX線強度は、開口629の中心が位置(x0-d/2)の近傍にある時点で最大となり、開口629の中心が位置(x0-d/2)から離れるに従って小さくなる。この場合も、開口619を通過したX線は、被測定物Sの領域R2とR3とを透過すため、図3(e)に示すX線の強度分布I2(x)は、図3(f)に示すように、被測定物Sの領域R2を透過したX線の強度情報r2(x)と、領域R3を透過したX線の強度情報r3とを含んで構成される。 In this case, the X-ray intensity detected by the pixel 411 increases near the position (x0-d / 2) shifted from the position on the pixel 411 by x / 2 on the negative side in the X direction, and the position (x0− d / 2), the distance decreases. Therefore, the X-ray intensity detected by the pixel 411 becomes maximum when the center of the opening 629 is near the position (x0-d / 2), and as the center of the opening 629 moves away from the position (x0-d / 2). Become smaller. Also in this case, since the X-rays that have passed through the opening 619 pass through the regions R2 and R3 of the measured object S, the X-ray intensity distribution I2 (x) shown in FIG. As shown in ()), it is configured to include the intensity information r2 (x) of the X-ray transmitted through the region R2 of the DUT and the intensity information r3 of the X-ray transmitted through the region R3.
 以後、同様にして、第1光学素子611と被測定物Sとの相対的な位置をX方向に沿って開口幅dの1/2だけ変更するディザリングを行うごとに、検出器4の画素411は、開口619を通過し被測定物Sの一部の領域を透過したX線の強度分布に応じた出力信号を出力する。 Thereafter, similarly, each time dithering is performed to change the relative position between the first optical element 611 and the device under test S by の of the aperture width d along the X direction, the pixel of the detector 4 is changed. Reference numeral 411 outputs an output signal corresponding to the intensity distribution of the X-rays that have passed through the opening 619 and transmitted through a partial region of the device under test S.
 図4は、ディザリングを(n-1)回行った後の第1光学素子611と被測定物Sとの位置関係を模式的に示す。なお、図4(a)においても、図示の都合から載置台31を省略している。図4(a)に示す位置関係の場合、第1光学素子611の開口619を通過したX線は、被測定物Sの領域RnとRn+1とを透過して画素411に入射する。画素411により検出されるX線強度は、画素411の位置(x0-nd/2)の近傍で大きく、位置(x0-nd/2)から離れるにつれて小さくなる。従って、画素411が検出する強度は、開口629の中心が位置(x0-nd/2)の近傍にある時点で最大となり、開口629の中心が位置(x0-nd/2)から離れるに従って小さくなる。 FIG. 4 schematically shows the positional relationship between the first optical element 611 and the device S after dithering has been performed (n-1) times. In FIG. 4A, the mounting table 31 is omitted for convenience of illustration. In the case of the positional relationship shown in FIG. 4A, the X-ray that has passed through the opening 619 of the first optical element 611 passes through the regions Rn and Rn + 1 of the device under test S and enters the pixel 411. The X-ray intensity detected by the pixel 411 increases near the position (x0-nd / 2) of the pixel 411 and decreases as the position moves away from the position (x0-nd / 2). Therefore, the intensity detected by the pixel 411 becomes maximum when the center of the opening 629 is near the position (x0-nd / 2), and decreases as the center of the opening 629 moves away from the position (x0-nd / 2). .
 ディザリングを繰り返すごとに、画素411が最大強度を検出する位置は、位置x0から離れるので、画素411の位置x0におけるX線の検出強度は小さくなる。例えば、n=3、すなわち被測定物Sの領域R4およびR5を透過したX線の画素411のおける検出強度については、被測定物Sの領域R4およびR5を透過したX線の強度情報r4(x0)、r5(x0)は共に小さいが、X線の強度情報r4(x0)に比べてr5(x0)はより小さくなる。 Every time dithering is repeated, the position at which the pixel 411 detects the maximum intensity is away from the position x0, so that the X-ray detection intensity at the position x0 of the pixel 411 decreases. For example, n = 3, that is, regarding the detection intensity of the X-ray transmitted through the regions R4 and R5 of the object S at the pixel 411, the intensity information r4 () of the X-ray transmitted through the regions R4 and R5 of the object S. x0) and r5 (x0) are both small, but r5 (x0) is smaller than X-ray intensity information r4 (x0).
 画像生成部53は、上述したようにして、被測定物Sの領域R1、R2、…、Rn、Rn+1を透過したX線の強度情報の位置x0における出力信号に基づいて、位相画像データおよび散乱画像データの少なくとも一方を生成する。 As described above, the image generation unit 53 determines the phase image data and the scattering based on the output signal at the position x0 of the intensity information of the X-ray transmitted through the regions R1, R2,..., Rn, and Rn + 1 of the DUT S. At least one of the image data is generated.
 ディザリングされる前後で得られるそれぞれのX線の強度分布には、被測定物Sの少なくとも一部の同一の領域を透過したX線の強度情報が含まれる。すなわち、ディザリング前(図3(a)の場合)においてX線が透過する被測定物Sの領域R1およびR2のうちの領域R2は、ディザリング後(図3(d)の場合)においてX線が透過する被測定物Sの領域R2およびR3のうちの領域R2でもある。この関係は、以後のディザリングにおいても同様に、X線は、被測定物Sの一部の共通の領域を透過する。 強度 The intensity distribution of each X-ray obtained before and after the dithering includes the intensity information of the X-ray transmitted through at least a part of the same region of the object S. That is, the region R2 of the regions R1 and R2 of the DUT through which X-rays pass before dithering (in the case of FIG. 3 (a)) is X-shaped after dithering (in the case of FIG. 3 (d)). It is also a region R2 of the regions R2 and R3 of the DUT through which the line passes. This relationship also applies to the subsequent dithering, and the X-rays pass through some common regions of the device under test S.
 このため、ディザリングごとに得られた、画素411の位置xにおけるX線の強度は、以下のように、それぞれの強度情報を含む形で表現することができる。
 I1(x)=r1(x)+r2(x)
 I2(x)=r2(x)+r3(x)
       ・・・
 In(x)=rn(x)+rn+1(x)
Therefore, the intensity of the X-ray at the position x of the pixel 411 obtained for each dithering can be expressed in a form including the respective intensity information as follows.
I1 (x) = r1 (x) + r2 (x)
I2 (x) = r2 (x) + r3 (x)
...
In (x) = rn (x) + rn + 1 (x)
 画像生成部53は、上記の連立方程式を解くことにより、被測定物Sのうち、第1光学素子611の開口619の開口幅dよりも小さい領域R1、R2、R3、…、Rn、Rn+1のそれぞれに対応するX線の強度分布を算出する。 The image generation unit 53 solves the above simultaneous equations to obtain the regions R1, R2, R3,..., Rn, Rn + 1 of the measurement target S that are smaller than the opening width d of the opening 619 of the first optical element 611. The X-ray intensity distribution corresponding to each is calculated.
 上記の連立方程式は、式の数より未知数の数が多いので、そのままでは解けない。この点について、次のような処理を行うことで、未知数を減らして連立方程式を解く手順について次に説明する。 Since the above simultaneous equations have more unknowns than equations, they cannot be solved as they are. Regarding this point, a procedure for solving the simultaneous equations by reducing unknowns by performing the following processing will be described below.
 上記の通り、ディザリングを複数回繰り返すごとに、画素411の位置x0におけるX線の検出強度は小さくなる。例えば、被測定物Sの領域R4およびR5を透過したX線の位置x0における強度が相当小さい場合、領域R5を透過したX線の強度情報はほぼ0と見なすことができる。このような場合、上記の連立方程式のうちr5(x0)を0と見なし、画像生成部53は、X線の強度I1(x0)、I2(x0)、I3(x0)、I4(x0)についての4つの式から、画素411の位置x0におけるX線の強度情報r1(x0)、r2(x0)、r3(x0)、r4(x0)のそれぞれを算出する。さらに、画像生成部53は、同様にして、画素411上の位置x0とは異なる複数の位置のそれぞれにおけるX線の強度情報r1、r2、r3、…、rn+1を算出する。画像生成部53は、これらの複数の位置ごとのX線の強度情報から、画素411におけるX線の強度情報r1(x)、r2(x)、r3(x)、…、rn+1(x)を算出する。画像生成部53は、被測定物Sが載置台31に載置されていない状態においても、同様にしてX線の強度情報を算出し、被測定物Sが載置されていない状態におけるX線の強度情報と、被測定物Sが載置された状態におけるX線の強度情報との差に基づいて、領域R1、R2、R3、R4、…、Rn+1ごとの位相画像データおよび散乱画像データの少なくとも一方を生成する。画像生成部53は、これらの領域R1、R2、R3、R4、…Rn+1ごとの画像データの繋ぎ合わせ(合成)をして、被測定物Sの全体の位相画像データおよび散乱画像データの少なくとも一方を生成する。 As described above, the detection intensity of the X-ray at the position x0 of the pixel 411 decreases every time the dithering is repeated a plurality of times. For example, when the intensity of the X-ray transmitted through the regions R4 and R5 of the DUT at the position x0 is considerably small, the intensity information of the X-ray transmitted through the region R5 can be regarded as substantially zero. In such a case, r5 (x0) in the above simultaneous equations is regarded as 0, and the image generation unit 53 determines the X-ray intensities I1 (x0), I2 (x0), I3 (x0), and I4 (x0). Each of the X-ray intensity information r1 (x0), r2 (x0), r3 (x0), and r4 (x0) at the position x0 of the pixel 411 is calculated from the four equations. Further, the image generation unit 53 similarly calculates X-ray intensity information r1, r2, r3,..., Rn + 1 at a plurality of positions different from the position x0 on the pixel 411. From the X-ray intensity information for each of the plurality of positions, the image generation unit 53 generates X-ray intensity information r1 (x), r2 (x), r3 (x),..., Rn + 1 (x) for the pixel 411. calculate. The image generation unit 53 calculates the X-ray intensity information in the same manner even when the object S is not mounted on the mounting table 31, and calculates the X-ray intensity when the object S is not mounted. Of the phase image data and the scattering image data for each of the regions R1, R2, R3, R4,..., Rn + 1 based on the difference between the intensity information of Generate at least one. The image generation unit 53 connects (combines) the image data for each of these regions R1, R2, R3, R4,..., Rn + 1, and at least one of the phase image data and the scattered image data of the entire DUT. Generate
 図5のフローチャートを参照して、本実施の形態のX線装置100の動作を説明する。図5に示すフローチャートの各処理は、制御装置5でプログラムを実行して行われる。このプログラムは、メモリ(不図示)に格納されており、制御装置5により起動され、実行される。 The operation of the X-ray apparatus 100 according to the present embodiment will be described with reference to the flowchart of FIG. Each process of the flowchart shown in FIG. 5 is performed by executing a program in the control device 5. This program is stored in a memory (not shown), and is started and executed by the control device 5.
 ステップS1では、載置台制御部52は、マニピュレータ部36のX軸移動部33を制御して載置台31をX方向に移動させることにより、第1光学素子611の開口619と被測定物SとのX方向における相対的な位置を設定してステップS2へ進む。ステップS2では、検出器4は、第1光学素子611の開口619を通過し、被測定物Sの一部の領域を透過したX線の強度分布に応じた出力信号を出力してステップS3へ進む。なお、検出器4には、光学ユニット制御部54による第2光学素子621の開口629のX方向に沿った移動に伴って、被測定物Sを透過したX線が入射する。 In step S1, the mounting table control unit 52 controls the X-axis moving unit 33 of the manipulator unit 36 to move the mounting table 31 in the X direction, so that the opening 619 of the first optical element 611 and the DUT S Is set in the X direction, and the process proceeds to step S2. In step S2, the detector 4 outputs an output signal in accordance with the intensity distribution of the X-ray that has passed through the opening 619 of the first optical element 611 and has passed through a partial area of the object S, and proceeds to step S3. move on. Note that X-rays transmitted through the object S enter the detector 4 as the optical unit controller 54 moves the opening 629 of the second optical element 621 in the X direction.
 ステップS3においては、画像生成部53は、被測定物Sと第1光学素子611の開口619との相対的な位置の変更(ディザリング)の要否を判定する。相対的な位置の変更が必要と判定された場合は、ステップS3が肯定判定されてステップS1へ戻る。相対的な位置の変更が不要、すなわちディザリングが完了したと判定された場合は、ステップS3が否定判定されてステップS4へ進む。ステップS4では、画像生成部53は、ディザリング前と各ディザリング後に出力された複数の出力信号に基づいて、被測定物Sのうち第1光学素子611の開口619の開口幅dよりも小さい領域R1とR2、領域R2とR3、…のそれぞれに対応するX線の強度分布I1(x)、I2(x)、I3(x)、…を算出して、ステップS5へ進む。 In step S3, the image generating unit 53 determines whether or not it is necessary to change (dither) the relative position between the DUT S and the opening 619 of the first optical element 611. When it is determined that the relative position needs to be changed, step S3 is affirmatively determined and the process returns to step S1. If it is determined that the relative position does not need to be changed, that is, it is determined that dithering has been completed, a negative determination is made in step S3, and the process proceeds to step S4. In step S4, the image generation unit 53 is smaller than the opening width d of the opening 619 of the first optical element 611 of the device under test S based on the plurality of output signals output before and after each dithering. The X-ray intensity distributions I1 (x), I2 (x), I3 (x),... Corresponding to the regions R1 and R2, the regions R2 and R3,.
 ステップS5では、画像生成部53は、算出したX線の強度分布I1(x)、I2(x)、I3(x)、…に基づいて、被測定物Sの領域R1、R2、R3、…を透過したX線の強度情報r1(x)、r2(x)、r3(x)、…を算出する。画像生成部53は、算出した強度情報に基づいて、被測定物Sの領域R1、R2、R3、…のそれぞれに対応する位相画像データおよび散乱画像データの少なくとも一方を生成してステップS6へ進む。ステップS6では、被測定物Sの領域R1、R2、R3、…ごとの画像データを合成した、被測定物Sの位相画像データおよび散乱画像データの少なくとも一方を生成して処理を終了する。 In step S5, the image generation unit 53 determines the regions R1, R2, R3,... Of the object S based on the calculated X-ray intensity distributions I1 (x), I2 (x), I3 (x),. , The intensity information r1 (x), r2 (x), r3 (x),... Of the X-ray transmitted through. The image generation unit 53 generates at least one of phase image data and scattered image data corresponding to each of the regions R1, R2, R3,... Of the measured object S based on the calculated intensity information, and proceeds to step S6. . In step S6, at least one of phase image data and scattered image data of the object S is generated by combining image data for each of the regions R1, R2, R3,... Of the object S, and the process ends.
 図6に、上記の処理を行って微分位相差画像データを生成する場合のシミュレーション結果を示す。シミュレーションは、第1光学素子611の開口619を通過するX線の位相変化が、ZX断面において標準偏差σが20[μm]で複数連続するガウシアン形状に相当する周期45[μm]の余弦関数とし、第1光学素子611の開口619の開口幅dを44.46[μm]とし、開口619と被測定物Sとの相対的な位置の移動量を14.82[μm]としたものである。 FIG. 6 shows a simulation result in the case where differential phase difference image data is generated by performing the above processing. In the simulation, the phase change of the X-ray passing through the aperture 619 of the first optical element 611 is a cosine function with a period of 45 [μm] corresponding to a Gaussian shape having a continuous standard deviation σ of 20 [μm] in the ZX cross section. The opening width d of the opening 619 of the first optical element 611 is set to 44.46 [μm], and the moving amount of the relative position between the opening 619 and the object S is set to 14.82 [μm]. .
 図6においては、被測定物Sにより生じるX線の位相変調の微分をL1で示し、L1に基づいて生成されたX線の強度分布から算出された微分位相をL2で示し、L1に対して上述した実施の形態にて説明した処理により得られた微分位相をL3で示す。なお、図6においては、L1を一点鎖線、L2を実線、L3を破線で示す。図6に示すように、L2は、L1で示す微分位相分布を再現できていない。すなわち、従来の方法を用いた場合には、L1に示す微分位相分布が再現できない。これに対して、L3はL1と類似する形状の波形を形成することから、L1で示す微分位相分布を高い精度で再現できていることがわかる。すなわち、上述した実施の形態にて説明した処理によりX線の位相変化を再現できることが分かる。 In FIG. 6, the derivative of the phase modulation of the X-ray generated by the object S is indicated by L1, the differential phase calculated from the intensity distribution of the X-ray generated based on L1 is indicated by L2, and The differential phase obtained by the processing described in the above embodiment is indicated by L3. In FIG. 6, L1 is indicated by a dashed line, L2 is indicated by a solid line, and L3 is indicated by a broken line. As shown in FIG. 6, L2 cannot reproduce the differential phase distribution indicated by L1. That is, when the conventional method is used, the differential phase distribution indicated by L1 cannot be reproduced. On the other hand, since L3 forms a waveform having a shape similar to that of L1, it is understood that the differential phase distribution indicated by L1 can be reproduced with high accuracy. That is, it is understood that the change in the phase of the X-ray can be reproduced by the processing described in the above embodiment.
 なお、上述した実施の形態においては、画像生成部53は位相画像データおよび散乱画像データの少なくとも一方を生成する場合を例に挙げて説明したが、画像生成部53は、X線の強度情報r1(x)、r2(x)、r3(x)、…rn(x)のそれぞれを算出し、それぞれのX線の強度情報に基づいて、領域R1、R2、R3、…、Rnごとの吸収画像データを生成してもよい。すなわち、本実施の形態の画像生成部53は、吸収画像データ、位相画像データおよび散乱画像データのうちの少なくとも1つを生成することができる。 In the above-described embodiment, the case where the image generation unit 53 generates at least one of the phase image data and the scattered image data has been described as an example. However, the image generation unit 53 uses the X-ray intensity information r1. (X), r2 (x), r3 (x),... Rn (x) are calculated, and the absorption image for each of the regions R1, R2, R3,. Data may be generated. That is, the image generation unit 53 of the present embodiment can generate at least one of the absorption image data, the phase image data, and the scattered image data.
 次に、図面を参照して、本発明の実施の形態による構造物製造システムを説明する。本実施の形態の構造物製造システムは、たとえば自動車のドア部分、エンジン部分、ギア部分および回路基板を備える電子部品等の成型品を作成する。 Next, a structure manufacturing system according to an embodiment of the present invention will be described with reference to the drawings. The structure manufacturing system according to the present embodiment creates a molded product such as an electronic component including a door portion, an engine portion, a gear portion, and a circuit board of an automobile, for example.
 図7は本実施の形態による構造物製造システム400の構成の一例を示すブロック図である。構造物製造システム400は、第1の実施の形態にて説明したX線装置100と、設計装置410と、成形装置420と、制御システム430と、リペア装置440とを備える。 FIG. 7 is a block diagram showing an example of the configuration of the structure manufacturing system 400 according to the present embodiment. The structure manufacturing system 400 includes the X-ray device 100 described in the first embodiment, a design device 410, a molding device 420, a control system 430, and a repair device 440.
 設計装置410は、構造物の形状に関する設計情報を作成する際にユーザが用いる装置であって、設計情報を作成して記憶する設計処理を行う。設計情報は、構造物の各位置の座標を示す情報である。設計情報は成形装置420および後述する制御システム430に出力される。成形装置420は設計装置410により作成された設計情報を用いて構造物を作成、成形する成形処理を行う。この場合、成形装置420は、3Dプリンター技術で代表される積層加工、鋳造加工、鍛造加工および切削加工のうち少なくとも1つを行うものについても本発明の一態様に含まれる。 The design device 410 is a device used by a user when creating design information on the shape of a structure, and performs a design process of creating and storing design information. The design information is information indicating the coordinates of each position of the structure. The design information is output to the molding device 420 and a control system 430 described later. The molding device 420 performs a molding process of creating and molding a structure using the design information created by the design device 410. In this case, the forming apparatus 420 that performs at least one of lamination processing, casting processing, forging processing, and cutting processing represented by 3D printer technology is also included in one embodiment of the present invention.
 X線装置100は、成形装置420により成形された構造物の形状を測定する測定処理を行う。X線装置100は、構造物を測定した測定結果である構造物の座標を示す情報(以後、形状情報と呼ぶ)を制御システム430に出力する。制御システム430は、座標記憶部431と、検査部432とを備える。座標記憶部431は、上述した設計装置410により作成された設計情報を記憶する。 The X-ray apparatus 100 performs a measurement process for measuring the shape of the structure formed by the forming apparatus 420. The X-ray apparatus 100 outputs information indicating the coordinates of the structure (hereinafter, referred to as shape information), which is a measurement result of the structure, to the control system 430. The control system 430 includes a coordinate storage unit 431 and an inspection unit 432. The coordinate storage unit 431 stores the design information created by the design device 410 described above.
 検査部432は、成形装置420により成形された構造物が設計装置410により作成された設計情報に従って成形されたか否かを判定する。換言すると、検査部432は、成形された構造物が良品か否かを判定する。この場合、検査部432は、座標記憶部431に記憶された設計情報を読み出して、設計情報とX線装置100から入力した形状情報とを比較する検査処理を行う。検査部432は、検査処理としてたとえば設計情報が示す座標と対応する形状情報が示す座標とを比較し、検査処理の結果、設計情報の座標と形状情報の座標とが一致している場合には設計情報に従って成形された良品であると判定する。設計情報の座標と対応する形状情報の座標とが一致していない場合には、検査部432は、座標の差分が所定範囲内であるか否かを判定し、所定範囲内であれば修復可能な不良品と判定する。 The inspection unit 432 determines whether the structure formed by the forming device 420 has been formed according to the design information created by the design device 410. In other words, the inspection unit 432 determines whether the formed structure is a non-defective product. In this case, the inspection unit 432 performs an inspection process of reading out the design information stored in the coordinate storage unit 431 and comparing the design information with the shape information input from the X-ray apparatus 100. The inspection unit 432 compares, for example, the coordinates indicated by the design information with the coordinates indicated by the corresponding shape information as the inspection process, and, if the coordinates of the design information match the coordinates of the shape information as a result of the inspection process, It is determined that it is a non-defective product molded according to the design information. If the coordinates of the design information and the coordinates of the corresponding shape information do not match, the inspection unit 432 determines whether the difference between the coordinates is within a predetermined range, and if the difference is within the predetermined range, restoration is possible. Is determined to be a defective product.
 修復可能な不良品と判定した場合には、検査部432は、不良部位と修復量とを示すリペア情報をリペア装置440へ出力する。不良部位は設計情報の座標と一致していない形状情報の座標を有する部位であり、修復量は不良部位における設計情報の座標と形状情報の座標との差分である。リペア装置440は、入力したリペア情報に基づいて、構造物の不良部位を再加工するリペア処理を行う。リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。 If it is determined that the defective product can be repaired, the inspection unit 432 outputs repair information indicating the defective portion and the repair amount to the repair device 440. The defective part is a part having the coordinates of the shape information that does not match the coordinates of the design information, and the repair amount is the difference between the coordinates of the design information and the coordinates of the shape information in the defective part. The repair device 440 performs a repair process for reworking a defective portion of the structure based on the input repair information. The repair device 440 performs the same process as the molding process performed by the molding device 420 in the repair process again.
 図8に示すフローチャートを参照しながら、構造物製造システム400が行う処理について説明する。 The processing performed by the structure manufacturing system 400 will be described with reference to the flowchart shown in FIG.
 ステップS31では、設計装置410はユーザによって構造物の設計を行う際に用いられ、設計処理により構造物の形状に関する設計情報を作成し記憶してステップS32へ進む。なお、設計装置410で作成された設計情報のみに限定されず、既に設計情報がある場合には、その設計情報を入力することで、設計情報を取得するものについても本発明の一態様に含まれる。ステップS32では、成形装置420は成形処理により、設計情報に基づいて構造物を作成、成形してステップS33へ進む。ステップS33においては、X線装置100は測定処理を行って、構造物の形状を計測し、形状情報を出力してステップS34へ進む。 In step S31, the design device 410 is used when a user designs a structure, creates and stores design information on the shape of the structure by a design process, and proceeds to step S32. Note that the present invention is not limited to only the design information created by the design apparatus 410, and the one in which the design information is acquired by inputting the design information when the design information already exists is included in one embodiment of the present invention. It is. In step S32, the molding device 420 creates and molds the structure based on the design information by the molding process, and proceeds to step S33. In step S33, the X-ray apparatus 100 performs a measurement process to measure the shape of the structure, outputs shape information, and proceeds to step S34.
 ステップS34では、検査部432は、設計装置410により作成された設計情報とX線装置100により測定され、出力された形状情報とを比較する検査処理を行って、ステップS35へ進む。ステップS35では、検査処理の結果に基づいて、検査部432は成形装置420により成形された構造物が良品か否かを判定する。構造物が良品である場合、すなわち設計情報の座標と形状情報の座標との差が所定の範囲内の場合には、ステップS35が肯定判定されて処理を終了する。構造物が良品ではない場合、すなわち設計情報の座標と形状情報の座標とが一致しない場合や設計情報には無い座標が検出された場合には、ステップS35が否定判定されてステップS36へ進む。 In step S34, the inspection unit 432 performs an inspection process of comparing the design information created by the design device 410 with the shape information measured and output by the X-ray device 100, and proceeds to step S35. In step S35, based on the result of the inspection process, the inspection unit 432 determines whether the structure formed by the forming device 420 is a non-defective product. If the structure is non-defective, that is, if the difference between the coordinates of the design information and the coordinates of the shape information is within a predetermined range, the determination in step S35 is affirmative and the process ends. If the structure is not conforming, that is, if the coordinates of the design information do not match the coordinates of the shape information, or if coordinates that are not in the design information are detected, a negative determination is made in step S35 and the process proceeds to step S36.
 ステップS36では、検査部432は構造物の不良部位が修復可能か否かを判定する。不良部位が修復可能ではない場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲を超えている場合には、ステップS36が否定判定されて処理を終了する。不良部位が修復可能な場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲内の場合には、ステップS36が肯定判定されてステップS37へ進む。この場合、検査部432はリペア装置440にリペア情報を出力する。ステップS37においては、リペア装置440は、入力したリペア情報に基づいて、構造物に対してリペア処理を行ってステップS33へ戻る。なお、上述したように、リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。 In step S36, the inspection unit 432 determines whether the defective part of the structure can be repaired. If the defective part cannot be repaired, that is, if the difference between the coordinates of the design information and the coordinates of the shape information in the defective part exceeds a predetermined range, a negative determination is made in step S36 and the process ends. If the defective portion can be repaired, that is, if the difference between the coordinates of the design information and the coordinates of the shape information at the defective portion is within a predetermined range, the determination in step S36 is affirmative, and the process proceeds to step S37. In this case, the inspection unit 432 outputs the repair information to the repair device 440. In step S37, the repair device 440 performs a repair process on the structure based on the input repair information, and returns to step S33. As described above, the repair device 440 performs the same process as the molding process performed by the molding device 420 in the repair process again.
 上述した実施の形態によれば、次の作用効果が得られる。
(1)第1光学素子611は、X線源2からのX線を通過させる開口619を有する。載置台制御部52は、マニピュレータ部36を制御して、X線の進行方向と交差するX方向において、第1光学素子611と被測定物Sとの間の相対的な位置を変更する。検出器4は、変更された複数の位置において、開口619を通過し被測定物Sを透過したX線の強度分布を出力信号として出力する。画像生成部53は、検出器4からの出力信号を用いて、開口619の開口幅dよりも小さい大きさの領域におけるX線の強度分布に関する情報を取得する。これにより、第1光学素子611の開口619の開口幅dより細かい解像度を有する吸収画像データや位相画像データや散乱画像データを生成することができる。これにより、第1光学素子611の開口619の開口幅dをより小さく形成することなく、光学素子の開口の開口幅で位相画像や散乱画像の分解能(解像度)が決定する従来からのコーデッドアパーチャ方式よりも高分解能の画像を生成できる。
According to the above-described embodiment, the following operation and effect can be obtained.
(1) The first optical element 611 has an opening 619 through which X-rays from the X-ray source 2 pass. The mounting table control unit 52 controls the manipulator unit 36 to change the relative position between the first optical element 611 and the device under test S in the X direction that intersects the traveling direction of the X-ray. The detector 4 outputs, as output signals, the intensity distribution of X-rays that have passed through the opening 619 and transmitted through the object S at the plurality of changed positions. The image generation unit 53 uses the output signal from the detector 4 to obtain information on the X-ray intensity distribution in a region having a size smaller than the opening width d of the opening 619. Accordingly, it is possible to generate absorption image data, phase image data, and scattering image data having a resolution smaller than the opening width d of the opening 619 of the first optical element 611. Thus, the conventional coded aperture method in which the resolution (resolution) of the phase image or the scattering image is determined by the opening width of the opening of the optical element without forming the opening width d of the opening 619 of the first optical element 611 smaller. It is possible to generate a higher resolution image than that.
(2)載置台制御部52は、開口619の開口幅dよりも小さな移動量にて第1光学素子611と被測定物Sとの間の相対的な位置を変更する。これにより、第1光学素子611の開口619の開口幅dよりも小さい領域に対応する被測定物Sの内部の情報を取得することが可能になる。 (2) The mounting table controller 52 changes the relative position between the first optical element 611 and the device under test S by a movement amount smaller than the opening width d of the opening 619. This makes it possible to acquire information inside the device under test S corresponding to a region smaller than the opening width d of the opening 619 of the first optical element 611.
(3)画像生成部53は、相対的な位置が変更される前の出力信号に含まれる被測定物Sの領域R1および領域R2を透過したX線の強度分布と、相対的な位置が変更された後の出力信号に含まれる被測定物Sの領域R2および領域R3を透過したX線の強度分布とを、領域R1、領域R2および領域R3のそれぞれを透過したX線の強度分布に分離して、それぞれの領域の吸収画像データや位相画像データや散乱画像データを生成する。これにより、第1光学素子611の開口619の開口幅dで決まる分解能よりも高分解能の吸収画像データや位相画像データや散乱画像データを生成することが可能となる。 (3) The image generation unit 53 changes the intensity distribution of the X-rays transmitted through the regions R1 and R2 of the DUT included in the output signal before the relative position is changed, and changes the relative position. The intensity distribution of the X-rays transmitted through the regions R2 and R3 of the DUT included in the output signal after the separation is separated into the intensity distributions of the X-rays transmitted through the regions R1, R2 and R3. Then, absorption image data, phase image data, and scattering image data of each region are generated. This makes it possible to generate absorption image data, phase image data, and scattering image data with a higher resolution than the resolution determined by the opening width d of the opening 619 of the first optical element 611.
(4)構造物製造システム400のX線装置100は、設計装置410の設計処理に基づいて成形装置420により作成された構造物の形状情報を取得する測定処理を行い、制御システム430の検査部432は、測定処理にて取得された形状情報と設計処理にて作成された設計情報とを比較する検査処理を行う。したがって、構造物の欠陥の検査や構造物の内部の情報を非破壊検査によって取得し、構造物が設計情報の通りに作成された良品であるか否かを判定できるので、構造物の品質管理に寄与する。 (4) The X-ray apparatus 100 of the structure manufacturing system 400 performs a measurement process of acquiring shape information of the structure created by the molding device 420 based on the design process of the design device 410, and performs an inspection unit of the control system 430. Reference numeral 432 performs an inspection process of comparing the shape information acquired in the measurement process with the design information created in the design process. Therefore, inspection of structural defects and information inside the structure by non-destructive inspection can be performed to determine whether the structure is a non-defective product created according to the design information. To contribute.
(5)リペア装置440は、検査処理の比較結果に基づいて、構造物に対して成形処理を再度行うリペア処理を行うようにした。したがって、構造物の不良部分が修復可能な場合には、再度成形処理と同様の処理を構造物に対して施すことができるので、設計情報に近い高品質の構造物の製造に寄与する。 (5) The repair device 440 performs a repair process for performing the molding process again on the structure based on the comparison result of the inspection process. Therefore, when the defective portion of the structure can be repaired, the same process as the molding process can be performed on the structure again, which contributes to the manufacture of a high-quality structure close to the design information.
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(1)載置台31を移動させてディザリングするものに限定されず、第1光学素子611と被測定物Sとの相対的な位置をX方向に沿って変更するあらゆる形態を適用してよい。たとえば、載置台制御部52がマニピュレータ部36を制御して、載置台31をX方向に沿って移動させることにより、被測定物Sを移動させてディザリングしてよいし、第1光学素子611と載置台31とをX方向に沿って移動させてディザリングしてもよい。
The following modifications are also within the scope of the present invention, and one or more of the modifications can be combined with the above-described embodiment.
(1) The present invention is not limited to the method in which the mounting table 31 is moved and the dithering is performed, and any mode in which the relative position between the first optical element 611 and the device under test S is changed along the X direction may be applied. . For example, the mounting table control unit 52 controls the manipulator unit 36 to move the mounting table 31 along the X direction, thereby moving and dithering the device under test S, or the first optical element 611. And the mounting table 31 may be moved along the X direction for dithering.
(2)上述した実施の形態においては、X線装置100の制御装置5は、画像生成部53および画像再構成部56を有するものとして説明したが、制御装置5が画像生成部53と画像再構成部56とを有していなくてもよい。画像生成部53と画像再構成部56とが、X線装置100とは別体の処理装置等に設けられ、検出器4から出力された信号を、たとえばネットワークや記憶媒体等を介して取得して、吸収画像データや位相画像データや散乱画像データや3次元データを生成してもよい。 (2) In the above-described embodiment, the control device 5 of the X-ray apparatus 100 has been described as including the image generation unit 53 and the image reconstruction unit 56. The component 56 may not be provided. The image generating unit 53 and the image reconstructing unit 56 are provided in a processing device or the like separate from the X-ray apparatus 100, and acquire a signal output from the detector 4 via, for example, a network or a storage medium. Thus, absorption image data, phase image data, scattered image data, and three-dimensional data may be generated.
 本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 The present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired, and other forms conceivable within the technical idea of the present invention are also included in the scope of the present invention. .
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2018年第122387号(2018年6月27日出願)
The disclosure of the following priority application is incorporated herein by reference.
Japanese Patent Application No. 2018223887 (filed on June 27, 2018)
2…X線源
3…載置部
4…検出器
5…制御装置
6…光学ユニット
31…載置台
53…画像生成部
54…光学ユニット制御部
61…第1光学ユニット
62…第2光学ユニット
400…構造物製造システム
410…設計装置
420…成形装置
430…制御システム
440…リペア装置
611…第1光学素子
621…第2光学素子
613、623…調節部
619、629…開口
2 X-ray source 3 Mounting unit 4 Detector 5 Control device 6 Optical unit 31 Mounting table 53 Image generating unit 54 Optical unit control unit 61 First optical unit 62 Second optical unit 400 ... structure manufacturing system 410 ... design apparatus 420 ... molding apparatus 430 ... control system 440 ... repair apparatus 611 ... first optical element 621 ... second optical elements 613 and 623 ... adjustment parts 619 and 629 ... opening

Claims (15)

  1.  被測定物へ向けてX線を出射するX線源と、
     前記X線を通過させる通過部を有し、前記通過部以外で前記X線を遮蔽する遮蔽部材と、
     前記X線の進行方向と交差する方向において、前記遮蔽部材と前記被測定物との間の相対的な位置を変更する変更部と、
     前記変更部により変更された複数の前記位置において、前記通過部および前記被測定物を通過した前記X線の強度分布を出力信号として出力する検出器と、
     前記検出器からの出力信号を用いて、前記通過部の前記方向に沿った大きさよりも小さい大きさの領域における前記X線の前記強度分布に関する情報を生成する生成部と、を備えるX線装置。
    An X-ray source that emits X-rays toward an object to be measured;
    A shielding member that has a passage portion that allows the X-ray to pass therethrough, and shields the X-ray except at the passage portion.
    In a direction intersecting with the traveling direction of the X-ray, a changing unit that changes a relative position between the shielding member and the device under test,
    At the plurality of positions changed by the change unit, a detector that outputs, as an output signal, an intensity distribution of the X-rays that have passed through the passing unit and the object to be measured,
    A generator configured to generate information related to the intensity distribution of the X-rays in a region having a size smaller than the size of the passing portion along the direction, using an output signal from the detector. .
  2.  請求項1に記載のX線装置において、
     前記変更部は、前記方向において前記通過部の大きさよりも小さな移動量にて前記相対的な位置を変更する、X線装置。
    The X-ray apparatus according to claim 1,
    The X-ray apparatus, wherein the changing unit changes the relative position in the direction by a movement amount smaller than a size of the passing unit.
  3.  請求項2に記載のX線装置において、
     前記変更部は、前記方向において前記通過部の大きさの整数分の1の移動量で前記相対的な位置を変更する、X線装置。
    The X-ray apparatus according to claim 2,
    The X-ray apparatus, wherein the changing unit changes the relative position in the direction by a moving amount that is a fraction of the size of the passing unit.
  4.  請求項3に記載のX線装置において、
     前記変更部により前記相対的な位置が変更される前に前記検出器から出力される出力信号と、前記相対的な位置が変更された後に前記検出器から出力される出力信号とは、前記被測定物の少なくとも一部の共通の領域を通過した前記X線の強度分布に関する情報を含む、X線装置。
    The X-ray apparatus according to claim 3,
    An output signal output from the detector before the relative position is changed by the changing unit and an output signal output from the detector after the relative position is changed are the same as the output signal. An X-ray apparatus including information on an intensity distribution of the X-ray that has passed through at least a part of a common area of the measurement object.
  5.  請求項4に記載のX線装置において、
     前記生成部は、前記相対的な位置が変更される前に前記X線が前記被測定物の第1領域および第2領域を通過した前記X線の強度分布と、前記相対的な位置が変更された後に前記X線が前記被測定物の前記第2領域および第3領域を通過した前記X線の強度分布とを、前記第1領域、前記第2領域および前記第3領域のそれぞれを通過する前記X線の強度分布に分離して、それぞれの領域ごとに前記X線の強度分布に関する情報を生成する、X線装置。
    The X-ray apparatus according to claim 4,
    The generation unit may be configured to change an intensity distribution of the X-rays through which the X-rays pass through the first area and the second area of the object to be measured before the relative position is changed, and change the relative position. And the intensity distribution of the X-rays after the X-rays have passed through the second and third regions of the object to be measured pass through the first, second, and third regions, respectively. An X-ray apparatus that generates information on the X-ray intensity distribution for each of the regions by separating the X-ray intensity distribution.
  6.  請求項1から5までのいずれか一項に記載のX線装置において、
     前記X線の強度分布に関する情報に基づいて、前記X線の吸収画像データと前記X線の位相画像データと前記X線の散乱画像データとのうちの少なくとも1つを生成する画像生成部を、さらに備えるX線装置。
    The X-ray apparatus according to any one of claims 1 to 5,
    An image generation unit that generates at least one of the X-ray absorption image data, the X-ray phase image data, and the X-ray scattered image data based on the information on the X-ray intensity distribution, X-ray equipment further provided.
  7.  被測定物へ向けてX線を出射することと、
     通過部を有する遮蔽部材により前記通過部にて前記X線を通過させることと、
     前記X線の進行方向と交差する方向において、前記遮蔽部材と前記被測定物との間の相対的な位置を変更すること、
     変更された複数の前記位置において、前記通過部および前記被測定物を通過した前記X線の強度分布を出力信号として出力することと、
     前記出力信号を用いて、前記通過部の前記方向に沿った大きさよりも小さい大きさの領域における前記X線の前記強度分布に関する情報を生成することと、を備えるX線画像生成方法。
    Emitting X-rays toward the object to be measured;
    Passing the X-rays through the passing portion by a shielding member having a passing portion;
    In a direction intersecting with the traveling direction of the X-ray, changing a relative position between the shielding member and the object to be measured,
    At the plurality of changed positions, outputting an intensity distribution of the X-rays that have passed through the passing portion and the object to be measured as an output signal,
    Using the output signal to generate information on the intensity distribution of the X-rays in a region having a size smaller than the size of the passing portion along the direction.
  8.  請求項7に記載のX線画像生成方法において、
     前記方向において前記通過部の大きさよりも小さな移動量にて、前記遮蔽部材と前記被測定物との間の前記相対的な位置を変更する、X線画像生成方法。
    The X-ray image generation method according to claim 7,
    An X-ray image generation method, wherein the relative position between the shielding member and the object to be measured is changed by a movement amount smaller than the size of the passage section in the direction.
  9.  請求項8に記載のX線画像生成方法において、
     前記方向において前記通過部の大きさの整数分の1の移動量で前記相対的な位置を変更する、X線画像生成方法。
    The X-ray image generation method according to claim 8,
    An X-ray image generation method, wherein the relative position is changed in the direction by an amount of movement that is a fraction of the size of the passing portion.
  10.  請求項9に記載のX線画像生成方法において、
     前記相対的な位置が変更される前に出力される出力信号と、前記相対的な位置が変更された後に出力される出力信号とは、前記被測定物の少なくとも一部の共通の領域を通過した前記X線の強度分布に関する情報を含む、X線画像生成方法。
    The X-ray image generation method according to claim 9,
    An output signal output before the relative position is changed and an output signal output after the relative position is changed pass through at least a part of a common area of the device under test. An X-ray image generation method including information on the X-ray intensity distribution described above.
  11.  請求項10に記載のX線画像生成方法において、
     前記相対的な位置が変更される前に前記X線が前記被測定物の第1領域および第2領域を通過した前記X線の強度分布と、前記相対的な位置が変更された後に前記X線が前記被測定物の前記第2領域および第3領域を通過した前記X線の強度分布とを、前記第1領域、前記第2領域および前記第3領域のそれぞれを通過する前記X線の強度分布に分離して、それぞれの領域ごとに前記X線の強度分布に関する情報を生成する、X線画像生成方法。
    The X-ray image generation method according to claim 10,
    Before the relative position is changed, the X-rays pass through the first area and the second area of the device under test, and the X-ray intensity distribution and the X-rays after the relative position is changed. The intensity distribution of the X-rays whose lines have passed through the second and third regions of the object to be measured is compared with the intensity distribution of the X-rays which pass through the first, second and third regions, respectively. An X-ray image generation method, wherein the X-ray image generation method generates information on the X-ray intensity distribution for each of the regions, separated into intensity distributions.
  12.  請求項7から11までのいずれか一項に記載のX線画像生成方法において、
     前記X線の強度分布に関する情報に基づいて、前記X線の吸収画像データと前記X線の位相画像データと前記X線の散乱画像データとのうちの少なくとも1つを生成する、X線画像生成方法。
    The X-ray image generation method according to any one of claims 7 to 11,
    X-ray image generation, wherein at least one of the X-ray absorption image data, the X-ray phase image data, and the X-ray scatter image data is generated based on information on the X-ray intensity distribution. Method.
  13.  構造物の形状に関する設計情報を作成し、
     前記設計情報に基づいて前記構造物を作成し、
     作成された前記構造物の形状を、請求項1から6のいずれか一項に記載のX線装置を用いて計測して形状情報を取得し、
     前記取得された前記形状情報と前記設計情報とを比較する構造物の製造方法。
    Create design information on the shape of the structure,
    Creating the structure based on the design information,
    The shape of the created structure is measured using the X-ray apparatus according to any one of claims 1 to 6 to obtain shape information,
    A method for manufacturing a structure, wherein the acquired shape information is compared with the design information.
  14.  請求項13に記載の構造物の製造方法において、
     前記形状情報と前記設計情報との比較結果に基づいて実行され、前記構造物の再加工を行う、構造物の製造方法。
    The method for manufacturing a structure according to claim 13,
    A method for manufacturing a structure, the method being performed based on a comparison result between the shape information and the design information, wherein the structure is reworked.
  15.  請求項14に記載の構造物の製造方法において、
     前記構造物の再加工は、前記設計情報に基づいて前記構造物の作成を再度行う、構造物の製造方法。
    The method for manufacturing a structure according to claim 14,
    In the method of manufacturing a structure, the rework of the structure is performed again based on the design information.
PCT/JP2019/024299 2018-06-27 2019-06-19 X-ray device, x-ray image generation method, and production method for structure WO2020004175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018122387A JP2021156578A (en) 2018-06-27 2018-06-27 X-ray apparatus, x-ray image generation method and structure manufacturing method
JP2018-122387 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004175A1 true WO2020004175A1 (en) 2020-01-02

Family

ID=68987088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024299 WO2020004175A1 (en) 2018-06-27 2019-06-19 X-ray device, x-ray image generation method, and production method for structure

Country Status (2)

Country Link
JP (1) JP2021156578A (en)
WO (1) WO2020004175A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502977A (en) * 2006-09-08 2010-01-28 ユーシーエル ビジネス パブリック リミテッド カンパニー Phase contrast imaging
JP4445397B2 (en) * 2002-12-26 2010-04-07 敦 百生 X-ray imaging apparatus and imaging method
JP2012228301A (en) * 2011-04-25 2012-11-22 Fujifilm Corp Radiographic apparatus
JP2015075336A (en) * 2013-10-04 2015-04-20 株式会社ニコン Reconstruction image generation device, shape measurement device, structure manufacturing system, reconstruction image generation method and reconstruction image generation program
JP2016523157A (en) * 2013-06-28 2016-08-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Correction in slit scanning phase contrast imaging
WO2017216354A1 (en) * 2016-06-16 2017-12-21 Koninklijke Philips N.V. Apparatus for x-ray imaging an object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445397B2 (en) * 2002-12-26 2010-04-07 敦 百生 X-ray imaging apparatus and imaging method
JP2010502977A (en) * 2006-09-08 2010-01-28 ユーシーエル ビジネス パブリック リミテッド カンパニー Phase contrast imaging
JP2012228301A (en) * 2011-04-25 2012-11-22 Fujifilm Corp Radiographic apparatus
JP2016523157A (en) * 2013-06-28 2016-08-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Correction in slit scanning phase contrast imaging
JP2015075336A (en) * 2013-10-04 2015-04-20 株式会社ニコン Reconstruction image generation device, shape measurement device, structure manufacturing system, reconstruction image generation method and reconstruction image generation program
WO2017216354A1 (en) * 2016-06-16 2017-12-21 Koninklijke Philips N.V. Apparatus for x-ray imaging an object

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENDRIZZI, MARCO ET AL.: "Hard X-ray dark-field imaging with incoherent sample illumination", APPLIED PHYSICS LETTERS, vol. 104, 2014, pages 024106 - 1-024106-4, XP012180661, DOI: 10.1063/1.4861855 *
MATSUNAGA, NORIHITO ET AL.: "Development of Compact X-ray Phase Contrast System using Coded Aperture", LECTURE PREPRINTS OF THE 79TH JSAP AUTUMN MEETING, 5 September 2018 (2018-09-05), pages 06 - 055 *

Also Published As

Publication number Publication date
JP2021156578A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US10809208B2 (en) X-ray inspection device, X-ray inspection method, and method of manufacturing structure
DE102015101378A1 (en) Apparatus and method for measuring characteristics of workpieces with computed tomography
US20200284735A1 (en) Image reconstruction method for x-ray measuring device, structure manufacturing method, image reconstruction program for x-ray measuring device, and x-ray measuring device
WO2016021030A1 (en) X-ray apparatus and structure production method
CN110462390B (en) Quality inspection method
WO2020004175A1 (en) X-ray device, x-ray image generation method, and production method for structure
CN111247424A (en) Inspection position specifying method, three-dimensional image generating method, and inspection device
JP2015075336A (en) Reconstruction image generation device, shape measurement device, structure manufacturing system, reconstruction image generation method and reconstruction image generation program
WO2020045365A1 (en) X-ray apparatus, method for adjusting x-ray apparatus, and method of manufacturing structure
JP2021026926A (en) Image generation method, non-temporary computer readable medium, and system
WO2019163960A1 (en) X-ray measuring method, x-ray device, and method for manufacturing structure
JP6418233B2 (en) X-ray generator, X-ray apparatus, and structure manufacturing method
TWI768027B (en) Inspection apparatus, inspection method, and manufacturing method of inspection object
WO2019117147A1 (en) X-ray apparatus and method for manufacturing structure
WO2016006085A1 (en) X-ray device and structure manufacturing method
WO2016056107A1 (en) Projection data generator, measuring device, and structure manufacturing method
WO2016021031A1 (en) X-ray apparatus and structure production method
WO2018020999A1 (en) X-ray phase difference image capture device
JP2020201212A (en) Method for generating image, holding tool, x-ray device, image generator, and method for manufacturing structure
JP2009109416A (en) Inspection method and inspection system of assembly
JP2019057415A (en) Charged particle beam device, x-ray device, and manufacturing method of structure
WO2015145548A1 (en) X-ray device, x-ray measurement device and structure production method
JP2021028576A (en) X ray apparatus and method for manufacturing structure
JP2009002798A (en) Measuring device and measuring method
JP2016223831A (en) X-ray device and structure manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP