WO2016056107A1 - Projection data generator, measuring device, and structure manufacturing method - Google Patents

Projection data generator, measuring device, and structure manufacturing method Download PDF

Info

Publication number
WO2016056107A1
WO2016056107A1 PCT/JP2014/077086 JP2014077086W WO2016056107A1 WO 2016056107 A1 WO2016056107 A1 WO 2016056107A1 JP 2014077086 W JP2014077086 W JP 2014077086W WO 2016056107 A1 WO2016056107 A1 WO 2016056107A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
detector
projection data
output
generation device
Prior art date
Application number
PCT/JP2014/077086
Other languages
French (fr)
Japanese (ja)
Inventor
将哉 宮崎
山田 篤志
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2014/077086 priority Critical patent/WO2016056107A1/en
Publication of WO2016056107A1 publication Critical patent/WO2016056107A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • the present invention relates to a projection data generation device, a measurement device, and a structure manufacturing method.
  • Patent Document 1 a method for reconstructing a three-dimensional CT image of an object by converting X-ray cone beam data that has passed through a measurement object is known (for example, Patent Document 1).
  • the projection data generating apparatus includes a radiation source that emits radiation to the object to be measured, a detector that detects radiation emitted from the radiation source, and outputs detection data; A generating member that is disposed between the source and the detector and that mounts the object to be measured; and a generation unit that generates projection data of the object to be measured based on the radiation detected by the detector.
  • the unit includes first data output as detection data by the detector when the object to be measured is mounted on a mounting member positioned between the radiation source and the detector, and between the radiation source and the detector.
  • the generation unit further generates a mounting member between the radiation source and the detector when generating the projection data of the measurement object. It is preferable to use the third data output as detection data by the detector when there is no data.
  • the projection data generation apparatus further includes a moving unit that moves the mounting member relative to the radiation source and the detector.
  • the relative position of the mounting member with respect to the radiation source and the detector when the first data is output by the detector, and the detector it is preferable that the relative position of the mounting member with respect to the radiation source and the detector when the second data is output is the same.
  • the storage unit that stores the plurality of second data output for each predetermined relative position in association with the relative position, and the radiation source
  • a position detection unit that detects a relative position of the mounting member with respect to the detector, and the generation unit is detected by the position detection unit when the first data and the first data are output by the detector. It is preferable to generate projection data of the object to be measured based on the second data stored in association with the same relative position as the relative position.
  • the output of the radiation emitted from the radiation source when the first data is output by the detector, and the detector The output of the radiation emitted from the radiation source when the second data is output is preferably the same.
  • the detector detects when a measurement object different from the measurement object is placed on the placement member. It is preferable to generate projection data of different objects to be measured based on the output detection data and the second data.
  • the relative position of the mounting member with respect to the radiation source and the detector when the first data is output by the detector, and the estimated data It is preferable that the relative position of the mounting member with respect to the radiation source and the detector at the time of estimation is the same.
  • a storage unit that stores a plurality of estimated data estimated for each predetermined relative position in association with the relative position, a radiation source, and A position detector that detects a relative position of the mounting member with respect to the detector, and the generator detects the first data, the third data, and the first data when the detector outputs the first data.
  • the projection data of the object to be measured is generated based on the estimated data stored in association with the same relative position as the relative position detected by.
  • the output of radiation emitted from the radiation source when the first data is output by the detector, and the detector It is preferable that the output of the radiation emitted from the radiation source when the third data is output is the same.
  • the detector detects when a measurement object different from the measurement object is placed on the placement member.
  • the estimated data is preferably data generated using the structure information and the material of the mounting member.
  • the relative position includes a relative direction of the mounting member with respect to the radiation.
  • the placing member preferably includes a jig for placing the object to be measured stably.
  • the generation unit uses one of the second data and the estimated data to load the first data. It is preferable to generate projection data of an object to be measured in which the scattered component of X-rays scattered by the mounting member is reduced.
  • the estimation data is simulation data obtained by calculating, by simulation, detection data relating to the placement unit output from the detector. Preferably there is.
  • a measurement device that is different from the projection data generation device according to any one of the first to sixteenth aspects in a state in which the relative positions of the radiation source and the detector with respect to the measurement object are different.
  • a reconstruction unit that generates internal structure information of the measurement object based on the projection data of the plurality of measurement objects generated by the generation unit.
  • the design information relating to the shape of the structure is created, the structure is created based on the design information, and the shape of the created structure is changed to the seventeenth aspect.
  • the shape information is obtained by measurement using the measurement device according to the aspect, and the obtained shape information is compared with the design information.
  • the structure manufacturing method according to the eighteenth aspect it is preferable that the structure is reprocessed based on a comparison result between the shape information and the design information.
  • the rework of the structure is performed again based on the design information.
  • the present invention it is possible to generate a reconstructed image in which the influence of X-ray scattering, reflection, and the like by a mounting table for mounting the object to be measured is suppressed.
  • the figure which shows the structure of the X-ray apparatus by embodiment of this invention The figure which shows typically the structure of the X-ray source by 1st, 2nd embodiment.
  • the figure which shows the pixel value in generated data typically Block diagram illustrating the function of the image generation unit in the embodiment
  • generation process of the projection image data of the to-be-measured object in 1st Embodiment A flowchart for explaining the operation of the X-ray apparatus according to the first embodiment.
  • generation process of the projection image data of the to-be-measured object in a 4th modification The figure which shows typically the method of acquiring the data used for the production
  • generation process of the projection image data of the to-be-measured object in 2nd Embodiment A flowchart for explaining the operation of the X-ray apparatus according to the second embodiment.
  • the block diagram which shows the structure of the structure manufacturing system by 3rd Embodiment.
  • the X-ray apparatus irradiates the object to be measured with X-rays and detects transmitted X-rays transmitted through the object to be measured, thereby acquiring non-destructive internal information (for example, internal structure) of the object to be measured.
  • non-destructive internal information for example, internal structure
  • the X-ray apparatus is called an industrial X-ray CT (Computed Tomography) inspection apparatus that inspects an industrial part.
  • the embodiments are specifically described for understanding the gist of the invention, and do not limit the invention unless otherwise specified.
  • FIG. 1 is a diagram showing an example of the configuration of an X-ray apparatus 100 according to the present embodiment.
  • the X-ray apparatus 100 includes a housing 1, an X-ray source 2, a placement unit 3, a detector 4, a control device 5, a display monitor 6, and a frame 8.
  • the housing 1 is disposed on a floor surface of a factory or the like so as to be substantially parallel (horizontal) to the XZ plane, and inside the X-ray source 2, the placement unit 3, the detector 4, and the frame 8. And is housed.
  • the housing 1 contains lead as a material in order to prevent X-rays from leaking to the outside.
  • the X-ray source 2 is an X-ray that spreads in a conical shape along the optical axis Zr parallel to the Z-axis with the emission point Q shown in FIG. (A so-called cone beam) is emitted.
  • the exit point Q corresponds to the focal spot of the X-ray source 2. That is, the optical axis Zr connects the exit point Q, which is the focal spot of the X-ray source 2, and the center of the imaging region of the detector 4 described later.
  • the X-ray source 2 is not limited to one that emits X-rays in a conical shape, but one that emits fan-shaped X-rays (so-called fan beams) or linear X-rays (so-called pencil beams) is also one aspect of the present invention. Included in embodiments.
  • the X-ray source 2 emits at least one of, for example, an ultra soft X-ray of about 50 eV, a soft X-ray of about 0.1 to 2 keV, an X-ray of about 2 to 20 keV, and a hard X-ray of about 20 to 100 keV Can do.
  • FIG. 2 schematically shows the configuration of the X-ray source 2.
  • the X-ray source 2 includes a Wehnelt power source 20, a filament 21, a target 22, a Wehnelt electrode 23, an electro-optic member 25, and a high voltage application unit 26.
  • the filament 21, the electron optical member 25, and the target 22 are arranged in this order along the electron beam emission direction.
  • the Wehnelt power source 20 is controlled to apply a negative bias voltage to the Wehnelt electrode 23 with respect to the filament 21.
  • the filament 21 is formed so that, for example, a material containing tungsten has a conical shape sharpened toward the target 22.
  • a filament heating power supply circuit 211 is provided at both ends of the filament 21.
  • the filament heating power supply circuit 211 heats the filament 21 by passing a current through the filament 21.
  • the filament 21 is heated by flowing current through the filament heating power supply circuit 211 in a state where a negative bias voltage is applied by the Wehnelt electrode 23, and an electron beam (thermoelectrons) is applied to the target 22 from the sharpened tip. Release towards. That is, the filament 21 functions as an electron beam generator for generating an electron beam.
  • the electron beam emitted from the filament 21 is converged by the electric field generated by the voltage applied to the Wehnelt electrode 23.
  • the target 22 is made of, for example, a material containing tungsten, and generates X-rays by collision of an electron beam emitted from the filament 21 or a change in the traveling direction of the electron beam.
  • 1 and 2 show an example in which the X-ray source 2 according to the present embodiment is configured by a reflection type X-ray generation unit, but the case is configured by a transmission type X-ray generation unit. Is also included in one embodiment of the present invention.
  • Electron optical member 25 is arranged between filament 21 and target 22.
  • the electron optical member 25 is configured by a deflection coil or the like for focusing an electron beam on the target 22.
  • the electron optical member 25 focuses the electron beam from the filament 21 using the action of a magnetic field, and collides the electron beam with a partial region (X-ray focal point) of the target 22.
  • the high voltage application unit 26 is electrically connected to the filament 21 and the target 22, and applies a negative voltage to the filament 21 with respect to the target 22.
  • the high voltage application unit 26 is controlled by the X-ray control unit 51 of the control device 5 and applies a predetermined high DC voltage between the filament 21 and the target 22.
  • the filament 21 functions as a cathode that emits an electron beam when a high voltage is applied by the high voltage application unit 26.
  • thermoelectrons are generated while heating by passing an electric current through the filament 21 to function as a cathode.
  • the present invention is not limited to this example, and may have a heater for heating the cathode separately in addition to the cathode.
  • an electron beam may be emitted by forming a strong electric field around the cathode without heating the cathode.
  • the electron beam emitted from the filament 21 toward the target 22 is focused by the Wehnelt electrode 23, accelerated by the high voltage applied by the high voltage application unit 26, and travels toward the target 22.
  • the potential difference between the filament 21 and the target 22 acts as an acceleration voltage for accelerating the electron beam.
  • the electron beam is focused by the electron optical member 25, and the electron beam collides with the target 22 disposed at the convergence position (focal spot) of the electron beam to generate X-rays from the target 22.
  • the mounting unit 3 shown in FIG. 1 includes a mounting table 30 on which the object to be measured S is mounted, and a manipulator unit including a rotation driving unit 32, a Y-axis moving unit 33, an X-axis moving unit 34, and a Z-axis moving unit 35. 36 and provided on the Z axis + side of the X-ray generator 2.
  • the mounting table 30 is rotatably provided by the rotation driving unit 32, and moves together when the manipulator unit 36 moves in the X-axis, Y-axis, and Z-axis directions.
  • the rotation drive unit 32 is configured to include, for example, an electric motor, and is parallel to the Y-axis and the center of the mounting table 30 by a rotational force generated by an electric motor controlled and driven by the control device 5 described later.
  • the mounting table 30 is rotated with the axis passing through the rotation axis Yr. That is, the rotation drive unit 32 rotates the mounting table 30 to change the relative direction of the mounting table 30 and the object S to be measured on the mounting table 30 with respect to the X-rays radiated from the X-ray source 2. Change.
  • the Y-axis moving unit 33, the X-axis moving unit 34, and the Z-axis moving unit 35 are controlled by the control device 5 so that the object S to be measured is positioned within the irradiation range of the X-rays emitted from the X-ray generation unit 2. In this way, the mounting table 30 is moved in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively. Further, the Z-axis moving unit 35 is controlled by the control device 5 so that the distance from the X-ray source 2 to the object S to be measured is a distance at which the projected image of the object S has a desired magnification. Is moved in the Z-axis direction.
  • the Y position detector 331, the X position detector 341, and the Z position detector 351 are moved in the X axis direction, the Y axis direction, and the Z axis direction by the Y axis moving unit 33, the X axis moving unit 34, and the Z axis moving unit 35. It is an encoder that detects the position of the mounting table 30 and outputs a signal indicating the detected position (hereinafter referred to as a detected movement position) to the control device 5.
  • the rotation position detector 321 detects the position of the mounting table 30 that is rotated about the rotation axis Yr by the rotation drive unit 32, and outputs a signal indicating the detected position (hereinafter referred to as a detected rotation position) to the control device 5.
  • the detected rotation position represents the relative direction of the measurement object S on the mounting table 30 with respect to the X-rays emitted from the X-ray source 2.
  • the detector 4 is provided on the Z axis + side from the X-ray source 2 and the mounting table 30. That is, the mounting table 30 is provided between the X-ray source 2 and the detector 4 in the Z-axis direction.
  • the detector 4 has an incident surface 41 parallel to the XY plane, and X-rays including transmitted X-rays emitted from the X-ray source 2 and transmitted through the measurement object S placed on the mounting table 30 are incident. Incident on the surface 41.
  • the detector 4 includes a scintillator portion containing a known scintillation substance, a photomultiplier tube, a light receiving portion, and the like.
  • the detector 4 converts X-ray energy incident on the incident surface 41 of the scintillator portion into visible light, ultraviolet light, or the like.
  • the light energy is converted into light energy, amplified by a photomultiplier tube, the amplified light energy is converted into electric energy by the light receiving unit, and is output to the control device 5 as an electric signal.
  • the detector 4 may convert incident X-ray energy into electric energy without converting it into light energy, and output the electric energy as an electric signal.
  • the detector 4 has a structure in which a scintillator section, a photomultiplier tube, and a light receiving section are each divided into a plurality of pixels, and these pixels are two-dimensionally arranged.
  • the detector 4 may have a structure in which the scintillator portion is formed directly on the light receiving portion (photoelectric conversion portion) without providing a photomultiplier tube.
  • the frame 8 supports the X-ray source 2, the placement unit 3, and the detector 4.
  • the frame 8 is manufactured with sufficient rigidity. Therefore, it is possible to stably support the X-ray source 2, the placement unit 3, and the detector 4 while acquiring the projection image of the measurement object S. Further, the frame 8 is supported by a vibration isolation mechanism 81 to prevent vibration generated outside from being transmitted to the frame 8 as it is.
  • the control device 5 includes a microprocessor, peripheral circuits, and the like.
  • the control device 5 reads and executes a control program stored in advance in a storage medium (not shown) (for example, a flash memory), thereby executing the control of the X-ray device 100. Control each part.
  • the control device 5 includes an X-ray control unit 51, a movement control unit 52, an image generation unit 53, an image reconstruction unit 54, and a work memory 55.
  • the X-ray control unit 51 controls the operation of the X-ray source 2
  • the movement control unit 52 controls the movement operation of the manipulator unit 36.
  • the image generation unit 53 generates X-ray projection image data of the object S to be measured based on the electrical signal output from the detector 4, and the image reconstruction unit 54 controls the manipulator unit 36 and has different projection directions. Based on the projection image data of the measurement object S, a known image reconstruction process is performed to generate a reconstructed image. By the image reconstruction process, three-dimensional data that is the internal structure (cross-sectional structure) of the DUT S is generated. In this case, the image reconstruction process includes a back projection method, a filtered back projection method, a successive approximation method, and the like.
  • the work memory 55 is configured by, for example, a volatile storage medium, and temporarily stores the X-ray projection image data generated by the image generation unit 53.
  • FIG. 3 schematically shows a data acquisition method used by the image generation unit 53 in the present embodiment to generate projection image data of the object S to be measured.
  • FIG. 3A shows an X-ray emitted from the X-ray source 2 in a state where the object S to be measured is mounted on the mounting table 30 and based on the X-rays acquired (detected) by the detector 4. The case where the 1st data D1 (refer FIG.3 (b)) which is detection data is produced
  • FIG. 3 (b) shows an X-ray emitted from the X-ray source 2 in a state where the object S to be measured is mounted on the mounting table 30 and based on the X-rays acquired (detected) by the detector 4.
  • generated is shown.
  • 3C shows detection data based on the X-rays detected by the detector 4 by emitting X-rays from the X-ray source 2 in a state where the measurement object S is not placed on the mounting table 30.
  • generated is shown.
  • FIG. 3E shows that the mounting table 30 does not exist at least between the X-ray source 2 and the detector 4, that is, the X-ray from the X-ray source 2 is detected by the detector 4 with the mounting table 30 removed.
  • 2 shows the positional relationship between the X-ray source 2 and the detector 4 of the X-ray apparatus 100 when detected by.
  • a solid line connecting the X-ray source 2 and the detector 4 indicates an outline of the X-ray detected by the detector 4 among the X-rays generated from the X-ray source 2.
  • the detection data detected by the detector 4 in the state of FIG. 3 (e) is shown in FIG. 3 (f).
  • the detection data at this time is referred to as third data D3.
  • the third data D3 is generated for each state in which the X-ray output emitted from the X-ray source 2, that is, the combination of the acceleration voltage and the current amount is different, and will be described later in association with the X-ray output at the time of generation. It is stored in the internal storage unit 531 (see FIG. 3).
  • the plurality of third data D3 obtained when the X-ray outputs are different from each other is generated at a predetermined timing, for example, at the time of factory shipment, and thereafter, the same third data D3 may be continuously used.
  • the third data D3 may be generated and updated every predetermined period in consideration of changes in the characteristics of the detector 4 over time. Note that the third data D3 is not limited to the measured value based on the X-ray detected by the detector 4.
  • the third data D3 is also distributed in the detection data signal output from the detector 4 based on the difference in intensity. Have. In addition, reflected X-rays and scattered X-rays from the casing surrounding the entire X-ray apparatus and each member arranged in the casing may reach the image data. A distribution of detected intensity appears. However, the X-rays emitted from the X-ray source 2 may not have an intensity distribution according to the radiation angle. In such a case, the third data D3 may be set as an arbitrary constant.
  • the third data D3 shown in FIG. 3 (f) is shown as data when a constant X-ray intensity is obtained regardless of the X-ray emission angle.
  • the first data D1 and the second data D2 are generated under the same conditions. That is, the detection movement position and the detection rotation position of the mounting table 30 when the first data D1 is generated are the same as the detection movement position and the detection rotation position of the mounting table 30 when the second data D2 are generated. is there. Furthermore, when generating the first data D1, the X-ray output radiated from the X-ray source 2 (for example, the acceleration voltage between the filament 21 and the target 22) and the X-ray source 2 when generating the second data D2 are generated. The output of X-rays radiated from is the same. In the following description, the detection movement position and the detection rotation position of the mounting table 30 are collectively referred to as a relative position.
  • FIG. 3B schematically shows the first data D1.
  • the first data D1 includes the distribution of the X-ray dose transmitted through the object to be measured, the distribution of the X-ray dose transmitted through the mounting table 30, the distribution of the X-ray dose scattered and reflected by the mounting unit 3 including the mounting table 30, and the X
  • the line is composed of a combination with the distribution of the X-ray dose that has directly reached the detector 4 without propagating through the placement unit 3 or the object S to be measured.
  • the region D101 corresponding to the region where X-rays transmitted through the object to be measured reach the detector 4 and the region where X-rays transmitted through the mounting table 30 reach the detector 4.
  • a region D104 corresponding to a region where X-rays directly reach the detector 4 without passing through the measurement object S is shown.
  • a region D101 is an image data region that includes information on the internal structure of the measurement object S according to the intensity of the X-rays emitted from the X-ray source 2 and transmitted through the measurement object S.
  • the region D102 is an image data region that includes information on the structure of the mounting table 30 corresponding to the intensity of X-rays emitted from the X-ray source 2 and transmitted through the mounting table 30.
  • the region D103 includes information related to the intensity emitted from the X-ray source 2 and scattered or reflected by the mounting table 30.
  • the region D103 is shown with dots.
  • a region D104 is information regarding the characteristics of the detector 4 and the intensity of X-rays scattered or reflected by the inner wall of the housing 1 or the like.
  • the X-ray scattering reflection is shown only on the upper side of the mounting table 30, but the present invention is limited to only the mounting portion 3 from which such a scattering reflection distribution is obtained. It is not a thing.
  • the projected image of the manipulator unit 36 positioned below the mounting table 30 usually appears on the detection surface of the detector 4.
  • the influence of the scattered reflection of the manipulator unit 36 should be taken into consideration according to the magnitude of the scattered reflection amount. If the influence is large, the distribution of the scattered reflected X-rays by the manipulator unit 36 may be taken into consideration. . Similarly, you may consider the influence of the scattering reflection of the to-be-measured object S itself by the magnitude
  • FIG. 4 schematically shows pixel values for each pixel for each of the first data D1, the second data D2, and the third data D3.
  • the first data D1 includes a plurality of pixels Ds101 to 116
  • the second data D2 includes a plurality of pixels Ds201 to 216
  • the third data D3 schematically includes a plurality of pixels Ds301 to 316.
  • the region D101, the region D102, or the region D103 is shown superimposed on the pixel value in the first data D1 or the second data D2.
  • FIG. 4 shows a partial area of each of the first data D1, the second data D2, and the third data D3. The pixel values shown in FIG.
  • the X-rays do not pass through the object to be measured S or the mounting table 30, and the influence of scattering and reflection by the mounting table 30 is also affected.
  • the pixel value is indicated as “100”.
  • the pixels Ds 107 and 111 have a pixel value of “80” because X-rays are transmitted through the mounting table 30 or scattered or reflected by the mounting table 30 so that the intensity is reduced when entering the detector 4.
  • the pixels Ds 105 and 109 have a pixel value of “70” because the intensity is weakened when the X-rays pass through the object S to be measured and enter the detector 4.
  • the intensity of X-rays transmitted through the measurement object S is weakened, and the X-rays are incident on the detector 4 due to the influence of scattering and reflection by the mounting table 30 and the like. ". That is, as compared with the pixels Ds 105 and 109, the pixel value is increased by the influence of scattering and reflection by the mounting table 30 and the like.
  • the X-rays are not transmitted through the mounting table 30 and are not affected by scattering or reflection by the mounting table 30 or the like.
  • the pixel value is indicated as “100” as in FIG. 4A. Since the pixels Ds 207 and 211 are weakened in intensity when entering the detector 4 due to the X-ray being transmitted through the mounting table 30 or scattered or reflected by the mounting table 30, as in FIG. The pixel value is shown as “80”.
  • the pixels Ds 206 and 210 do not transmit X-rays through the mounting table 30 but enter the detector 4 due to the influence of scattering and reflection by the mounting table 30, so the pixel value is indicated as “101”. That is, as compared with the pixels Ds205 and 209, the pixel value is increased by the influence of scattering and reflection by the mounting table 30. As shown in FIG. 4C, the pixels Ds301 to 316 of the third data D3 are not affected by the X-rays being transmitted through the object to be measured S or the mounting table 30, and by scattering or reflection by the mounting table 30. Therefore, the pixel value is indicated as “100”.
  • the image generation unit 53 generates the projection image data D200 of the measurement object S as follows using the first data D1, the second data D2, and the third data D3.
  • FIG. 5 is a functional block diagram included in the image generation unit 53
  • FIG. 6 is a diagram schematically illustrating pixel values of data generated by processing by the image generation unit 53.
  • the image generation unit 53 includes an internal storage unit 531, a subtraction processing unit 532, and a projection image data generation unit 533.
  • the internal storage unit 531 is configured by a nonvolatile storage medium, and stores the above-described third data D3.
  • the subtraction processing unit 532 subtracts the second data D2 from the first data D1 to generate intermediate data D150 (see FIG. 6).
  • FIG. 6A schematically shows generation of the intermediate data D150.
  • intermediate data D150 including the pixels Ds151 to 166 is generated. That is, the pixel values of the respective pixels Ds201 to 216 of the corresponding second data D2 are subtracted from the pixel values of the respective pixels Ds101 to 116 of the first data D1. Accordingly, in the intermediate data D150, the pixel values of the pixels Ds151 to 154, 157, 158, 161 to 166 are “0”, and the pixel values of the pixels Ds155, 156, 159, and 160 are “ ⁇ 30”.
  • the projection image data generation unit 533 in FIG. 5 has the same output as the X-ray output when the first data D1 and the second data D2 are generated from the plurality of third data D3 stored in the internal storage unit 531.
  • the third data D3 generated using the X-ray is read out.
  • the projection image data generation unit 533 adds the third data D3 read from the internal storage unit 531 and the intermediate data D150 generated by the subtraction processing unit 532 to generate projection image data D200.
  • FIG. 6B schematically shows the generation of the projection image data D200.
  • the projection image data D200 including the pixels Ds201 to 216 is generated. That is, the pixel values of the respective pixels Ds301 to 316 of the corresponding third data D3 are added to the pixel values of the respective pixels Ds151 to 166 of the intermediate data D150. Therefore, in the projection image data D200, the pixel values of the pixels Ds201 to 204, 207, 208, and 211 to 216 are “100”, and the pixel values of the pixels Ds205, 206, 209, and 210 are “70”.
  • the projection image data D200 corresponds to the measured object transmission data D101 which is information corresponding to the intensity of the X-ray transmitted through the measured object S.
  • the movement control unit 52 of the control device 5 includes the Y-axis moving unit 33, the X-axis moving unit 34, and the manipulator unit 36.
  • the Z-axis moving unit 35 is controlled to move the mounting table 30 in the X direction, the Y direction, and the Z direction so that the target position corresponding to the set shooting magnification and shooting position is obtained.
  • the X-ray control unit 51 of the control device 5 When the mounting table 30 moves to the target position and the workpiece S is mounted on the mounting table 30, the X-ray control unit 51 of the control device 5 outputs an X-ray emitted from the X-ray source 2. Is set to be an X-ray output according to the setting operation by the user. That is, the X-ray control unit 51 sets the voltage value of the acceleration voltage applied by the high voltage application unit 26 between the filament 21 and the target 22 and the amount of current that the filament heating power supply circuit 211 passes through the filament 21. X-rays are emitted from the X-ray source 2.
  • the movement control unit 52 of the control device 5 drives the rotation driving unit 32 to rotate the mounting table 30 and the measurement object S mounted on the mounting table 30 about the rotation axis Yr.
  • the detector 4 detects X-rays emitted from the X-ray source 2 and incident on the incident surface 41 and outputs them as detection data.
  • the first data D1 is generated. That is, the detector 4 generates a plurality of first data D1 corresponding to the rotation of a predetermined angle.
  • the plurality of generated first data D1 is temporarily stored in the work memory 55 in association with a predetermined angle at the time of generation, that is, a detected rotational position detected by the rotational position detector 321.
  • the generation process of the second data D2 is performed in a state where the measurement object S is removed from the mounting table 30.
  • the X-ray control unit 51 determines the voltage value of the acceleration voltage applied by the high voltage application unit 26 between the filament 21 and the target 22 and the amount of current that the filament heating power supply circuit 211 passes through the filament 21.
  • X-rays are emitted from the X-ray source 2 by setting the same value as the voltage value and current amount of the acceleration voltage set when generating one data D1.
  • the movement control unit 52 drives the rotation driving unit 32 to rotate the mounting table 30 about the rotation axis Yr while maintaining the same position as when the mounting table 30 generated the first data D1.
  • the detector 4 detects the X-rays incident on the incident surface 41 and generates an electrical signal.
  • the second data D2 is generated by outputting the detected data. That is, the detector 4 generates a plurality of second data D2 corresponding to the rotation at a predetermined angle, and temporarily stores it in the work memory 55 in association with the detected rotation position that is the predetermined angle at the time of generation.
  • the second data D2 is generated after the first data D1 is generated.
  • the first data D1 is generated after the second data D2 is generated. Included in embodiments.
  • the image generation unit 53 generates the projection image data D200 of the measurement object S using the first data D1, the second data D2, and the third data D3.
  • the image generation unit 53 selects the second data D2 associated with the same predetermined angle as the predetermined angle associated with the first data D1. That is, the image generation unit 53 generates the intermediate data D150 using the first data D1 and the second data D2 that can be regarded as having substantially the same influence of scattering and reflection by the mounting table 30.
  • the image generation unit 53 uses the generated intermediate data D150 and the third data D3 read from the internal storage unit 533 to project the measurement object S with reduced influence of X-ray scattering and reflection by the mounting table 30. Image data D200 is generated.
  • the image reconstruction unit 54 of the control device 5 causes the object to be measured S to be measured.
  • a known image reconstruction process is performed using the plurality of projection image data D200 to generate three-dimensional data that is the internal structure (cross-sectional structure) of the object S to be measured.
  • the image reconstruction process includes a back projection method, a filtered back projection method, a successive approximation method, and the like.
  • the generated three-dimensional data of the internal structure of the measured object S is displayed on the display monitor 6.
  • step S1 the movement control unit 52 moves the mounting table 30 in the X direction, the Y direction, and the Z direction, thereby moving the mounting table 30 and the object to be measured S to the target position, and proceeds to step S2.
  • step S2 the X-ray control unit 51 sets the output of X-rays emitted from the X-ray source 2, and the movement control unit 52 rotates the mounting table 30 about the rotation axis Yr and proceeds to step S3.
  • step S3 the image generating unit 53 detects X-rays emitted from the X-ray source 2 every time the mounting table 30 rotates by a predetermined angle, and uses the detection data to detect a plurality of first rays.
  • One data D1 is generated and stored in the work memory 55 of the image generation unit 53, and the process proceeds to step S4.
  • the work memory 55 also stores the output value of the X-ray source 2 and relative position information.
  • step S4 it is determined whether or not the generation of the first data D1 for each predetermined angle has been completed. When the generation of all the first data D1 is completed, an affirmative determination is made in step S4 and the process proceeds to step S5. If all the first data D1 has not been generated, a negative determination is made in step S4 and the process returns to step S3.
  • step S5 the X-ray control unit 51 sets the output of the X-rays emitted from the X-ray source 2 to the same output as in step S2, and the movement control unit 52 is in a state where the object to be measured S is removed.
  • the mounting table 30 is rotated about the rotation axis Yr, and the process proceeds to step S6.
  • step S6 the image generating unit 53 detects X-rays radiated from the X-ray source 2 every time the mounting table 30 rotates by a predetermined angle, and uses the detection data to detect a plurality of first rays.
  • Two data D2 is generated and the process proceeds to step S7.
  • step S7 it is determined whether or not the generation of the second data D2 for each predetermined angle has been completed.
  • step S7 When the generation of all the second data D2 is completed, an affirmative determination is made in step S7 and the process proceeds to step S8. If all the second data D2 has not been generated, a negative determination is made in step S7 and the process returns to step S6.
  • the first data D1 is generated after the second data D2 is generated, the above steps S5 to S7 are executed, and then the steps S1 to S4 are performed.
  • step S8 the image generation unit 53 generates the intermediate data D150 by subtracting the second data D from the first data D1, and adds the third data D3 to the intermediate data D150, thereby obtaining a plurality of data for each predetermined angle.
  • the projection image data D200 of the object to be measured S is generated, and the process proceeds to step S9. Note that it is not necessary to generate the projection image data D200 in step S8 after acquiring the second data D2 at all predetermined angles. For example, as soon as the second data D2 is acquired at each predetermined angle, the first data D1 having the same predetermined angle stored in the work memory 55 is read, and projection image data of the predetermined angle is generated and stored in the work memory 55. After that, the second data D2 of the next predetermined angle may be acquired. In that case, step S8 may be executed after step S6, and then step S7 may be executed.
  • step S9 it is determined whether or not all the projection image data D200 of the measurement object S for each predetermined angle has been generated.
  • an affirmative determination is made in step S9 and the process proceeds to step S10.
  • a negative determination is made in step S9, and the process returns to step S8.
  • the image reconstruction unit 54 generates and processes three-dimensional data of the measurement object S by performing image reconstruction processing on the generated projection image data D200 of the plurality of measurement objects S. Exit.
  • the image generation unit 53 includes the first data D1 output from the detector 4 when the measurement object S is placed on the placement table 30 located between the X-ray source 2 and the detector 4.
  • Image data D200 is generated. Therefore, since the projection image data D200 of the measurement object S in which the influence of the X-rays scattered or reflected by the mounting table 30 is reduced can be generated, accurate data on the internal structure of the measurement object S is acquired, and the measurement accuracy is obtained. Can be improved.
  • the relative position of the mounting table 30 with respect to the X-ray source 2 and the detector 4 when the two data D2 is output is the same. That is, the image generating unit 53 associates the first data D1 with the second data D2 stored in the work memory 55 in association with the same relative position as the relative position when the first data D1 is output by the detector 4. Based on the above, the projection image data D200 of the measurement object S is generated.
  • the influence of X-rays scattered or reflected by the mounting table 30 can be reduced with high accuracy. This contributes to the improvement of the measurement accuracy of the measurement object S.
  • the X-ray apparatus 100 can be modified as follows. (First modification) A plurality of second data D2 generated at a plurality of relative positions and a plurality of X-ray outputs may be stored in advance. In this case, the second data D2, the relative position, and the X-ray output are stored in the internal storage unit 531 of the image generation unit 53 in association with each other.
  • the image generation unit 53 acquires the relative position of the mounting table 30 from the Y position detector 331, the X position detector 341, the Z position detector 351, and the rotational position detector 321 when generating the first data D1.
  • the first data D1, the relative position, and the X-ray output (acceleration voltage and current amount) set by the X-ray control unit 51 are associated with each other and temporarily stored in the work memory 55.
  • the image generation unit 53 reads out from the internal storage unit 531 the second data D2 associated with the same relative position and X-ray output as the relative position and X-ray output associated with the first data D1. Thereafter, the image generation unit 53 generates the intermediate data D150 by subtracting the second data D2 read from the first data D1, and subtracts the third data D3 from the intermediate data D150 in the same manner as described above. Projection image data D200 of the device under test S is generated.
  • the flowchart of FIG. 8 shows the measurement process of the internal structure of the measurement object S performed by the X-ray apparatus 100 according to the first modification.
  • Each process shown in the flowchart of FIG. 8 is performed by executing a program in the control device 5 as in the flowchart of FIG.
  • Each processing from step S11 (moving the mounting table to the target position) to step S14 (judgment of generation completion of the first data) is performed from step S1 (moving the mounting table to the target position) to step S4 (first data) in FIG. This is the same as the processing up to the generation end determination).
  • step S15 the second data D2 associated with the same relative position and X-ray output as the relative position and X-ray output at the time when the first data D1 is generated is read from the internal storage unit 531 and the process proceeds to step S16. move on.
  • step S16 projection image data generation of the object to be measured
  • step S18 three-dimensional data generation
  • step S10 three-dimensional data generation
  • the second data D2 is stored in advance in the internal storage unit 531 in association with a plurality of relative positions and X-ray outputs, so that the device under test S measures each time.
  • the projection image data of the object to be measured can be generated without newly generating the second data D2 for various objects to be measured having different shapes and materials, so that convenience can be improved. In this way, by using the second data D2 as correction data for the X-ray transmission image data of the object S to be measured, an accurate X-ray absorption amount can be acquired.
  • the correction data is not necessarily limited to the image data from the detector 4 that has acquired the X-ray transmission image data of the object to be measured, and is used for stably mounting the mounting table 30 and the object S to be described later. Any correction data may be used as long as the jig reduces the influence on the transmission image data caused by the X-ray from the X-ray source 2 reaching the position.
  • a configuration in which the second data D2 is generated in a state where a jig for stably placing the measurement object S on the mounting table 30 is disposed is also included in one aspect of the present invention. That is, as the second data D2, in addition to the influence of the mounting table 30, the influence of X-ray scattering and reflection caused by the shape and material of the jig can be included. Therefore, it is possible to reduce the influence of X-ray scattering and reflection by the jig from the first data D1 by the processing by the image generation unit 53, so that the shape and material can be freely selected when manufacturing the jig. The degree can be improved.
  • the jig is preferably made of a structural material having a small atomic weight such as carbon.
  • the amount of X-ray scattering and reflection by the jig can also be reduced. Furthermore, by using the present invention in combination, the influence on the X-ray transmission image and X-ray CT image due to the scattering and reflection of X-rays can be reduced as much as possible.
  • the second data D2 corresponding to at least one of the predetermined angles may be generated.
  • the number of second data D2 may be smaller than the number of first data D1 generated for each predetermined angle. That is, the second data D2 may be generated for each angle larger than a predetermined angle when the first data D1 is generated.
  • the manipulator unit 36, and the like are almost ideal rotationally symmetric at an arbitrary rotation angle with respect to the rotation axis Yr, only the second data D2 with an angle in a certain direction may be generated.
  • FIG. 9 schematically shows the generation of the second projection image data D300.
  • second projection image data D300 including the pixels Ds301 to 316 is generated. That is, the pixel value of each pixel Ds201 to 216 of the projection image data D200 is divided by the pixel value of each pixel Ds301 to 316 of the corresponding third data D3. Accordingly, in the second projection image data D200, the values of the pixels Ds301 to 304, 307, 308, 311 to 316 are “1”, and the values of the pixels Ds305, 306, 309, and 310 are “0.7”.
  • the object S can be represented by the ratio of X-ray absorption.
  • the image reconstruction unit 54 can generate three-dimensional data of the object S to be measured based on the second projection image data D300.
  • FIG. 1 A second embodiment of the X-ray apparatus according to the present invention will be described with reference to the drawings.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the first embodiment.
  • This embodiment is different from the first embodiment in that the projection image data of the object to be measured is generated using the result of simulating the influence of scattering / reflection by the mounting table.
  • the measurement object S is not placed between the X-ray source 2 and the detector 4 in the internal storage unit 531 of the image generation unit 53. Data estimated to be output from the detector 4 when the mounting table 30 is located, that is, simulation data obtained by calculating the estimated data by simulation is stored in advance.
  • FIG. 10 schematically shows a data acquisition method used by the image generation unit 53 in the second embodiment to generate the projection image data of the object S to be measured.
  • FIG. 10A shows a case where the first data D1 is generated, which is the same as FIG. 3A used in the description of the first embodiment.
  • the first data D1 shown in FIG. 10B is also the same as that shown in FIG.
  • FIG. 10C is the same as FIG. 3C used for the description of the first embodiment.
  • the third data D3 shown in FIG. 10 (d) is the same as FIG. 3 (d).
  • FIG. 10 schematically shows a data acquisition method used by the image generation unit 53 in the second embodiment to generate the projection image data of the object S to be measured.
  • FIG. 10A shows a case where the first data D1 is generated, which is the same as FIG. 3A used in the description of the first embodiment.
  • the first data D1 shown in FIG. 10B is also the same as that shown in FIG.
  • FIG. 10C is the same as FIG.
  • FIG. 10 (e) shows simulation data obtained by simulating estimated data estimated by the detector 4 to detect X-rays radiated from the X-ray source 2 when the measurement object S is not placed on the mounting table 30.
  • a virtual relative position of the mounting table 30 with respect to the X-ray source 2 and the detector 4 when calculating as D4 is schematically shown. That is, FIG. 10E shows that the simulation data D4 of FIG. 10F is calculated assuming such a state.
  • the first data D1 schematically shown in FIG. 10B includes the measured object transmission data D101, the data D102 based on the mounting table transmission, and the scattered reflection, as in the case described with reference to FIG. Based data D103 and background-based data D104.
  • the third data D3 schematically shown in FIG. 10 (d) includes data D104 based on the background, as in the case described with reference to FIG. 3 (d).
  • the simulation data D4 schematically shown in FIG. 10 (f) is a mounting table transmission simulation data D102 ′, which is a simulation result corresponding to the data D102 based on the mounting table transmission, and a simulation result corresponding to the data D103 based on the scattered reflection. And some scattered reflection simulation data D103 ′.
  • the third data D3 is the X-ray output emitted from the X-ray source 2, that is, the combination of the acceleration voltage and the amount of current. It is generated for each different state and stored in the internal storage unit 531 in association with the output of the X-ray at the time of generation.
  • the plurality of third data D3 is generated at a predetermined timing, for example, at the time of shipment from the factory, and thereafter, the same third data D3 may be continuously used, or the change of the characteristics of the detector 4 over time is considered. Then, the third data D3 may be generated and updated every predetermined period.
  • the simulation data D4 is generated using design information such as three-dimensional CAD that includes information such as structure information and materials that can specify the three-dimensional shape of the mounting table 30.
  • the mounting table transmission simulation data D102 ′ of the simulation data D4 is based on the structure and material as design information of the mounting table 30 and the X-ray intensity information for each radiation direction from the X-ray source 2, and the transmission image of the mounting table 30. Is generated by calculating.
  • the scattering / reflection simulation data D103 ′ of the simulation data D4 is based on the structure information and material of the mounting table 30, the incident direction and the intensity of the X-rays incident on the mounting table 30, and the three-dimensional shape of the mounting table 30.
  • a plurality of simulation data D4 generated by simulating with a plurality of relative positions and a plurality of X-ray outputs are stored in the internal storage unit 531 in association with the relative positions and the X-ray outputs, respectively.
  • Simulation data D4 is generated by the pixels Ds401 to Ds416.
  • the pixel values of the pixels Ds401 to 405, 408, 409, 412 to 416 are “0”
  • the pixel values of the pixels Ds403 and 411 corresponding to the mounting table transmission simulation data D102 ′ are “ ⁇ 20”
  • the scattered reflection simulation data D103 ′ is “1”.
  • the image generation unit 53 generates the projection image data D200 of the object to be measured S using the first data D1, the third data D3, and the simulation data D4 generated from the design information of the mounting table 30. .
  • the subtraction processing unit 532 of the image generation unit 53 subtracts data generated by adding the third data D3 and the simulation data D4 from the first data D1.
  • the simulation data D4 includes mounting table transmission simulation data D102 'and scattered reflection simulation data D103'. That is, the data generated by adding the third data D3 and the simulation data D4 includes the background-based data D104, the mounting table transmission simulation data D102 ′, and the scattered reflection simulation data D103 ′.
  • the data has information corresponding to the second data D2.
  • the mounting table transmission simulation data D102 ′ is a simulation result corresponding to the data D102 based on the mounting table transmission
  • the scattered reflection simulation data D103 ′ is a simulation result corresponding to the data D103 based on the scattering reflection.
  • Both the mounting table transmission simulation data D102 'and the scattered reflection simulation data D103' simulate the intensity distribution of X-rays reaching the detector 4. Therefore, the data D102 based on the mounting table transmission and the mounting table transmission simulation data D102 ′ can be regarded as substantially the same data, and the data D103 based on the scattering reflection and the scattering reflection simulation data D103 ′ are Since they can be regarded as substantially the same data, they can be subtracted from each other.
  • the subtraction processing unit 532 subtracts data obtained by adding the third data D3 and the simulation data D4 from the first data D1. As described above, since the data obtained by adding the third data D3 and the simulation data D4 has data corresponding to the second data D2 in the first embodiment, the subtraction processing unit 532 performs the above subtraction. To generate intermediate data D150. As in the case of the first embodiment, the projection image data generation unit 533 generates the projection image data D200 by adding the third data D3 to the intermediate data D150. Thereby, as schematically shown in FIG.
  • the mounting table transmission image data D102 and the scattered reflection data D103 are removed from the first data D1 from the first data D1, and the projected image data D200 is This corresponds to the measured object transmission image data D101 which is information corresponding to the intensity of the X-ray transmitted through the measured object S.
  • the movement control unit 52 of the control device 5 sets the X direction, the Y direction, and the Z direction so that the target position corresponding to the shooting magnification and the shooting position set by the user is obtained.
  • the mounting table 30 is moved.
  • the X-ray control unit 51 sets the output of X-rays emitted from the X-ray source 2 in the same manner as in the first embodiment, and the movement control unit 52 drives the rotation driving unit 32 to
  • the mounting table 30 and the object to be measured S mounted on the mounting table 30 are rotated about the rotation axis Yr.
  • the detector 4 Each time the mounting table 30 and the object to be measured S rotate by a predetermined angle on the rotation axis Yr, the detector 4 generates the first data D1, and outputs the set X-ray output and the relative position (that is, the detected movement position). And the detected rotational position) are temporarily stored in the work memory 55.
  • the image generation unit 53 includes the third data D3 and the simulation data D4 associated with the same output as the X-ray output when the first data D1 is generated. Are read from the storage unit 56.
  • the present invention Prior to the generation of the first data D1, the present invention also applies to reading out the third data D3 and the simulation data D4 from the internal storage unit 531 when the output of the X-rays emitted from the X-ray source 2 is set. It is included in one aspect.
  • the image generation unit 53 generates the projection image data D200 of the measurement object S using the first data D1, the third data D3, and the simulation data D4.
  • the image generation unit 53 selects simulation data D4 associated with the same relative position as the relative position associated with the first data D1 from among the plurality of read simulation data D4. That is, the image generation unit 53 uses the first data D1 and the simulation data D4 that can be regarded as having substantially the same influence of scattering and reflection by the mounting table 30.
  • the image generation unit 53 adds the third data D3 indicating the intensity distribution in the X-ray propagation direction and the simulation data D4 to obtain information corresponding to the second data D2 described in the first embodiment. The data which has is generated.
  • the image generation unit 53 subtracts the generated data from the first data D1 to generate intermediate data D150, and adds the third data D3 to the intermediate data D150, whereby a plurality of measured objects for each relative position are obtained.
  • S projection image data D200 is generated.
  • the image reconstruction unit 54 When the projection image data D200 of the plurality of objects to be measured S is generated, the image reconstruction unit 54 generates three-dimensional data that is the internal structure (cross-sectional structure) of the object to be measured S by image reconstruction processing. Since the third data and the simulation data D4 are stored in the internal storage unit 531 in advance, a new generation process of the third data and the simulation data D4 is also performed for various objects to be measured having different shapes and materials.
  • the scattered reflection simulation data D103 is used as the simulation data D4. ' May be used.
  • the relative position of the object S to be measured is such that the placement surface of the object S to be measured matches the optical axis of the X-ray.
  • the scattered reflection simulation data D103 ′ can be used as it is as the simulation data D4.
  • the X-ray optical axis is an axis that coincides with a line connecting the center of the X-ray detection range of the detector 4 and the focal point of the X-ray source 2.
  • step S21 moving the mounting table to the target position
  • step S24 first data generation end determination
  • step S1 moving the mounting table to the target position of FIG. 7 described in the first embodiment. This is the same as each process from (movement) to step S4 (first data generation end determination).
  • step S25 the image generation unit 53 uses the third data D3 and the simulation data D4 stored in association with the same output as the X-ray output set in step S22 when generating the first data D1. Read and proceed to step S26.
  • step S26 the image generation unit 53 uses the first data D1, the third data D3, and the simulation data D4 associated with the same predetermined angle as the predetermined angle associated with the first data D1.
  • the projection image data D200 of the object to be measured S is generated, and the process proceeds to step S27.
  • step S27 projection image data generation end determination
  • step S28 three-dimensional data generation
  • step S10 three-dimensional data generation
  • the image generation unit 53 detects the first data D1, the third data D3 output by the detector 4 when there is no mounting table 30 between the X-ray source 2 and the detector 4, the X-ray source 2 and the detection. Based on simulation data D4 calculated by simulation of detection data relating to the mounting table 30 output by the detector 4 when the mounting table 30 on which the object to be measured S is not mounted is positioned between the device 4 and the device 4. Projection image data D200 of the device under test S is generated.
  • the structure manufacturing system of the present embodiment creates a molded product such as an electronic component including, for example, an automobile door portion, an engine portion, a gear portion, and a circuit board.
  • FIG. 13 is a block diagram showing an example of the configuration of the structure manufacturing system 400 according to the present embodiment.
  • the structure manufacturing system 400 includes an X-ray apparatus 100, a design apparatus 410, a molding apparatus 420, a control system 430, which are described in the first to second embodiments or the first to third modifications.
  • the design device 410 is a device used by a user when creating design information related to the shape of a structure, and performs a design process for creating and storing design information.
  • the design information is information indicating the coordinates of each position of the structure.
  • the design information is output to the molding apparatus 420 and a control system 430 described later.
  • the molding apparatus 420 performs a molding process for creating and molding a structure using the design information created by the design apparatus 410.
  • the molding apparatus 420 includes an apparatus that performs at least one of laminating, casting, forging, and cutting represented by 3D printer technology.
  • the X-ray apparatus 100 performs a measurement process for measuring the shape of the structure molded by the molding apparatus 420.
  • the X-ray apparatus 100 outputs information (hereinafter referred to as shape information) indicating the coordinates of the structure, which is a measurement result of the structure, to the control system 430.
  • the control system 430 includes a coordinate storage unit 431 and an inspection unit 432.
  • the coordinate storage unit 431 stores design information created by the design apparatus 410 described above.
  • the inspection unit 432 determines whether the structure molded by the molding device 420 is molded according to the design information created by the design device 410. In other words, the inspection unit 432 determines whether or not the molded structure is a good product. In this case, the inspection unit 432 reads the design information stored in the coordinate storage unit 431 and performs an inspection process for comparing the design information with the shape information input from the X-ray apparatus 100. The inspection unit 432 compares, for example, the coordinates indicated by the design information with the coordinates indicated by the corresponding shape information as the inspection processing, and if the coordinates of the design information and the coordinates of the shape information match as a result of the inspection processing. It is determined that the product is a non-defective product molded according to the design information.
  • the inspection unit 432 determines whether or not the coordinate difference is within a predetermined range, and if it is within the predetermined range, it can be restored. Judged as a defective product.
  • the inspection unit 432 outputs repair information indicating the defective portion and the repair amount to the repair device 440.
  • the defective part is the coordinate of the shape information that does not match the coordinate of the design information
  • the repair amount is the difference between the coordinate of the design information and the coordinate of the shape information in the defective part.
  • the repair device 440 performs a repair process for reworking a defective portion of the structure based on the input repair information. The repair device 440 performs again the same process as the molding process performed by the molding apparatus 420 in the repair process.
  • step S31 the design device 410 is used when the structure is designed by the user.
  • the design apparatus 410 creates and stores design information related to the shape of the structure by the design process, and the process proceeds to step S32.
  • the present invention is not limited to only the design information created by the design apparatus 410, and when design information already exists, the design information is acquired by inputting the design information and is included in one aspect of the present invention. It is.
  • step S32 the forming apparatus 420 creates and forms a structure based on the design information by the forming process, and proceeds to step S33.
  • step S33 the X-ray apparatus 100 performs measurement processing, measures the shape of the structure, outputs shape information, and proceeds to step S34.
  • step S34 the inspection unit 432 performs an inspection process for comparing the design information created by the design apparatus 410 with the shape information measured and output by the X-ray apparatus 100, and the process proceeds to step S35.
  • step S35 based on the result of the inspection process, the inspection unit 432 determines whether or not the structure formed by the forming apparatus 420 is a non-defective product. If the structure is a non-defective product, that is, if the coordinates of the design information coincide with the coordinates of the shape information, an affirmative determination is made in step S35 and the process ends.
  • step S35 If the structure is not a non-defective product, that is, if the coordinates of the design information do not match the coordinates of the shape information, or if coordinates that are not in the design information are detected, a negative determination is made in step S35 and the process proceeds to step S36.
  • step S36 the inspection unit 432 determines whether or not the defective portion of the structure can be repaired. If the defective part is not repairable, that is, if the difference between the coordinates of the design information and the shape information in the defective part exceeds the predetermined range, a negative determination is made in step S36 and the process ends. If the defective part can be repaired, that is, if the difference between the coordinates of the design information and the shape information in the defective part is within a predetermined range, an affirmative determination is made in step S36 and the process proceeds to step S37. In this case, the inspection unit 432 outputs repair information to the repair device 440. In step S37, the repair device 440 performs a repair process on the structure based on the input repair information, and returns to step S33. As described above, the repair device 440 performs again the same processing as the molding processing performed by the molding device 420 in the repair processing.
  • the X-ray apparatus 100 of the structure manufacturing system 400 performs a measurement process for acquiring shape information of the structure created by the molding apparatus 420 based on the design process of the design apparatus 410, and performs an inspection unit of the control system 430.
  • Reference numeral 432 performs an inspection process for comparing the shape information acquired in the measurement process with the design information created in the design process. Therefore, it is possible to determine whether or not a structure is a non-defective product created according to design information by inspecting the defect of the structure and information inside the structure by nondestructive inspection. Contribute to.
  • the repair device 440 performs the repair process for performing the molding process again on the structure based on the comparison result of the inspection process. Therefore, when the defective portion of the structure can be repaired, the same processing as the molding process can be performed again on the structure, which contributes to the manufacture of a high-quality structure close to design information.
  • the mounting table 30 on which the object to be measured S is mounted is limited to one that is moved in the X-axis, Y-axis, and Z-axis directions by the Y-axis moving unit 33, the X-axis moving unit 34, and the Z-axis moving unit 35. Not.
  • the mounting table 30 does not move in the X-axis, Y-axis, and Z-axis directions, and the X-ray source 2 and the detector 4 are moved in the X-axis, Y-axis, and Z-axis directions, so that What relatively moves the radiation source 2 and the detector 4 is also included in one aspect of the present invention. Further, instead of the table 30 rotating about the rotation axis Yr, the table 30 does not rotate, and the X-ray source 2 and the detector 4 rotate about the rotation axis Yr. Included in embodiments.
  • a radiation source that radiates radiation to the object S to be measured, a detector that detects radiation radiated from the radiation source, and outputs detection data; and a radiation source disposed between the radiation source and the detector.
  • a mounting member that mounts the object S; and a generation unit that generates projection image data of the object S to be measured based on the radiation detected by the detector.
  • the generation unit includes the object acquired from the detector.
  • An apparatus having a correction unit that corrects the transmission image data of the measurement object S so as to reduce the detection error component of the transmission image data generated when the mounting member is exposed to radiation is also included in one aspect of the present invention. It is.
  • the simulation data calculated by the simulation is used as the second data D2.
  • the second data D2 is based on a transmission image of the mounting table 30 or the like based on the empirical rule so far.
  • the X-ray intensity distribution may be estimated by the user or device manufacturer and used as the second data.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

Abstract

A projection data generator is provided with a radiation source, a detector that detects the radiation from the radiation source and outputs the detected data, a mount that is placed between the radiation source and the detector, and a generation unit that generates the projection data of an object to be measured. The generation unit generates the projection data of the object to be measured either based on first data that is output by the detector when the object to be measured is placed on the mount and second data that is output by the detector when the object to be measured is not placed on the mount, or based on the first data and estimated data which is the data estimated to be output by the detector when the mount on which the object to be measured is not placed is positioned between the radiation source and the detector.

Description

投影データ生成装置、計測装置および構造物の製造方法Projection data generation apparatus, measurement apparatus, and structure manufacturing method
 本発明は、投影データ生成装置、計測装置および構造物の製造方法に関する。 The present invention relates to a projection data generation device, a measurement device, and a structure manufacturing method.
 従来から、被測定物を通過したX線の円錐状ビームデータを変換して、物体の3次元CT映像を再構成する方法が知られている(たとえば特許文献1)。 2. Description of the Related Art Conventionally, a method for reconstructing a three-dimensional CT image of an object by converting X-ray cone beam data that has passed through a measurement object is known (for example, Patent Document 1).
米国特許第5257183号US Pat. No. 5,257,183
 しかしながら、X線が、計測装置の構造や、被測定物を載置するための載置台の配置等によって、散乱、反射等を起こすことにより、正確な再構成画像を得られないという問題がある。 However, there is a problem in that an accurate reconstructed image cannot be obtained due to scattering, reflection, and the like caused by the structure of the measuring apparatus and the placement of a mounting table for mounting the object to be measured. .
 本発明の第1の態様によると、投影データ生成装置は、被測定物に放射線を放射する線源と、線源から放射された放射線を検出して、検出データを出力する検出器と、線源と検出器との間に配置され、被測定物を載置する載置部材と、検出器によって検出された放射線に基づいて、被測定物の投影データを生成する生成部とを備え、生成部は、線源と検出器との間に位置する載置部材に被測定物が載置されたときに検出器によって検出データとして出力された第1データと、線源と検出器との間に位置する載置部材に被測定物が載置されないときに検出器によって検出データとして出力された第2データとに基づいて被測定物の投影データを生成するか、または、第1データと、線源と検出器との間に被測定物が載置されていない載置部材が位置している場合に検出器が出力すると推定される推定データとに基づいて被測定物の投影データを生成する。
 本発明の第2の態様によると、第1の態様の投影データ生成装置において、生成部は、測定物の投影データを生成する際に、さらに、線源と検出器との間に載置部材がないときに検出器によって検出データとして出力された第3データを用いることが好ましい。
 本発明の第3の態様によると、第2の態様の投影データ生成装置において、載置部材を線源と検出器とに対して相対移動する移動部をさらに備えることが好ましい。
 本発明の第4の態様によると、第3の態様の投影データ生成装置において、検出器によって第1データが出力されるときの線源および検出器に対する載置部材の相対位置と、検出器によって第2データが出力されるときの線源および検出器に対する載置部材の相対位置とが同一であることが好ましい。
 本発明の第5の態様によると、第4の態様の投影データ生成装置において、所定の相対位置ごとに出力された複数の第2データを、相対位置と関連付けて記憶する記憶部と、線源および検出器に対する載置部材の相対位置を検出する位置検出部と、をさらに備え、生成部は、第1データと、検出器によって第1データが出力されるときに位置検出部によって検出された相対位置と同一の相対位置と関連付けて記憶された第2データとに基づいて被測定物の投影データを生成することが好ましい。
 本発明の第6の態様によると、第4または第5の態様の投影データ生成装置において、検出器によって第1データが出力されるときに線源から放射される放射線の出力と、検出器によって第2データが出力されるときに線源から放射される放射線の出力とは同一であることが好ましい。
 本発明の第7の態様によると、第4乃至第6の何れかの態様の投影データ生成装置において、被測定物とは異なる被測定物が載置部材に載置されたときに検出器によって出力された検出データと、第2データとに基づいて異なる被測定物の投影データを生成することが好ましい。
 本発明の第8の態様によると、第3の態様の投影データ生成装置において、検出器によって第1データが出力されるときの線源および検出器に対する載置部材の相対位置と、推定データを推定する際の線源および検出器に対する載置部材の相対位置とが同一であることが好ましい。
 本発明の第9の態様によると、第8の態様の投影データ生成装置において、所定の相対位置ごとに推定された複数の推定データを、相対位置と関連付けて記憶する記憶部と、線源および検出器に対する載置部材の相対位置を検出する位置検出部と、をさらに備え、生成部は、第1データと、第3データと、検出器によって第1データが出力されるときに位置検出部によって検出された相対位置と同一の相対位置と関連付けて記憶された推定データとに基づいて被測定物の投影データを生成することが好ましい。
 本発明の第10の態様によると、第8または第9の態様の投影データ生成装置において、検出器によって第1データが出力されるときに線源から放射される放射線の出力と、検出器によって第3データが出力されるときに線源から放射される放射線の出力とは同一であることが好ましい。
 本発明の第11の態様によると、第8乃至第10の何れかの態様の投影データ生成装置において、被測定物とは異なる被測定物が載置部材に載置されたときに検出器によって出力された検出データと、第3データと、推定データとに基づいて異なる被測定物の投影データを生成することが好ましい。
 本発明の第12の態様によると、第8乃至第11の何れかの態様投影データ生成装置において、推定データは載置部材の構造情報と材料とを用いて生成されたデータであることが好ましい。
 本発明の第13の態様のよると、第4乃至第12の何れかの態様の投影データ生成装置において、相対位置は、放射線に対する載置部材の相対的な方向を含むことが好ましい。
 本発明の第14の態様によると、第1乃至第13の何れかの態様の投影データ生成装置において、載置部材は、被測定物を安定して載置させる治具を含むことが好ましい。
 本発明の第15の態様によると、第1乃至第14の何れかの態様の投影データ生成装置において、生成部は、第2データおよび推定データの何れか一方を用いて、第1データにおける載置部材によって散乱したX線の散乱成分を低減させた被測定物の投影データを生成することが好ましい。
 本発明の第16の態様によると、第1乃至第14の何れかの態様の投影データ生成装置において、推定データは、検出器が出力する載置部に関する検出データをシミュレーションで算出したシミュレーションデータであることが好ましい。
 本発明の第17の態様によると、計測装置は、第1乃至第16の何れかの態様の投影データ生成装置と、被測定物に対する線源および検出器の相対位置が異なる状態で、検出器により取得され、生成部により生成された複数の被測定物の投影データに基づいて、被測定物の内部構造情報を生成する再構成部とを備える。
 本発明の第18の態様によると、構造物の製造方法は、構造物の形状に関する設計情報を作成し、設計情報に基づいて構造物を作成し、作成された構造物の形状を、第17の態様による計測装置を用いて計測して形状情報を取得し、取得された形状情報と設計情報とを比較する。
 本発明の第19の態様によると、第18の態様の構造物の製造方法において、形状情報と設計情報との比較結果に基づいて実行され、構造物の再加工を行うことが好ましい。
 本発明の第20の態様によると、第19の態様の構造物の製造方法において、構造物の再加工は、設計情報に基づいて構造物の作成を再度行うことが好ましい。
According to the first aspect of the present invention, the projection data generating apparatus includes a radiation source that emits radiation to the object to be measured, a detector that detects radiation emitted from the radiation source, and outputs detection data; A generating member that is disposed between the source and the detector and that mounts the object to be measured; and a generation unit that generates projection data of the object to be measured based on the radiation detected by the detector. The unit includes first data output as detection data by the detector when the object to be measured is mounted on a mounting member positioned between the radiation source and the detector, and between the radiation source and the detector. Generating projection data of the object to be measured based on the second data output as detection data by the detector when the object to be measured is not placed on the placing member positioned at the position, or the first data, There is a mounting member on which the object to be measured is not mounted between the radiation source and the detector. Generating a projection data of the object based upon the estimated data detector is estimated to output if you location.
According to the second aspect of the present invention, in the projection data generation device according to the first aspect, the generation unit further generates a mounting member between the radiation source and the detector when generating the projection data of the measurement object. It is preferable to use the third data output as detection data by the detector when there is no data.
According to the third aspect of the present invention, it is preferable that the projection data generation apparatus according to the second aspect further includes a moving unit that moves the mounting member relative to the radiation source and the detector.
According to the fourth aspect of the present invention, in the projection data generation device according to the third aspect, the relative position of the mounting member with respect to the radiation source and the detector when the first data is output by the detector, and the detector It is preferable that the relative position of the mounting member with respect to the radiation source and the detector when the second data is output is the same.
According to the fifth aspect of the present invention, in the projection data generation device according to the fourth aspect, the storage unit that stores the plurality of second data output for each predetermined relative position in association with the relative position, and the radiation source And a position detection unit that detects a relative position of the mounting member with respect to the detector, and the generation unit is detected by the position detection unit when the first data and the first data are output by the detector. It is preferable to generate projection data of the object to be measured based on the second data stored in association with the same relative position as the relative position.
According to a sixth aspect of the present invention, in the projection data generation apparatus according to the fourth or fifth aspect, the output of the radiation emitted from the radiation source when the first data is output by the detector, and the detector The output of the radiation emitted from the radiation source when the second data is output is preferably the same.
According to the seventh aspect of the present invention, in the projection data generation device according to any one of the fourth to sixth aspects, the detector detects when a measurement object different from the measurement object is placed on the placement member. It is preferable to generate projection data of different objects to be measured based on the output detection data and the second data.
According to the eighth aspect of the present invention, in the projection data generation apparatus according to the third aspect, the relative position of the mounting member with respect to the radiation source and the detector when the first data is output by the detector, and the estimated data It is preferable that the relative position of the mounting member with respect to the radiation source and the detector at the time of estimation is the same.
According to a ninth aspect of the present invention, in the projection data generation apparatus according to the eighth aspect, a storage unit that stores a plurality of estimated data estimated for each predetermined relative position in association with the relative position, a radiation source, and A position detector that detects a relative position of the mounting member with respect to the detector, and the generator detects the first data, the third data, and the first data when the detector outputs the first data. Preferably, the projection data of the object to be measured is generated based on the estimated data stored in association with the same relative position as the relative position detected by.
According to a tenth aspect of the present invention, in the projection data generating apparatus according to the eighth or ninth aspect, the output of radiation emitted from the radiation source when the first data is output by the detector, and the detector It is preferable that the output of the radiation emitted from the radiation source when the third data is output is the same.
According to the eleventh aspect of the present invention, in the projection data generation apparatus according to any one of the eighth to tenth aspects, the detector detects when a measurement object different from the measurement object is placed on the placement member. It is preferable to generate projection data of different objects to be measured based on the output detection data, the third data, and the estimation data.
According to the twelfth aspect of the present invention, in any one of the eighth to eleventh aspect projection data generation apparatuses, the estimated data is preferably data generated using the structure information and the material of the mounting member. .
According to the thirteenth aspect of the present invention, in the projection data generation device according to any one of the fourth to twelfth aspects, it is preferable that the relative position includes a relative direction of the mounting member with respect to the radiation.
According to the fourteenth aspect of the present invention, in the projection data generating apparatus according to any one of the first to thirteenth aspects, the placing member preferably includes a jig for placing the object to be measured stably.
According to a fifteenth aspect of the present invention, in the projection data generation device according to any one of the first to fourteenth aspects, the generation unit uses one of the second data and the estimated data to load the first data. It is preferable to generate projection data of an object to be measured in which the scattered component of X-rays scattered by the mounting member is reduced.
According to the sixteenth aspect of the present invention, in the projection data generation device according to any one of the first to fourteenth aspects, the estimation data is simulation data obtained by calculating, by simulation, detection data relating to the placement unit output from the detector. Preferably there is.
According to the seventeenth aspect of the present invention, there is provided a measurement device that is different from the projection data generation device according to any one of the first to sixteenth aspects in a state in which the relative positions of the radiation source and the detector with respect to the measurement object are different. And a reconstruction unit that generates internal structure information of the measurement object based on the projection data of the plurality of measurement objects generated by the generation unit.
According to an eighteenth aspect of the present invention, in the structure manufacturing method, the design information relating to the shape of the structure is created, the structure is created based on the design information, and the shape of the created structure is changed to the seventeenth aspect. The shape information is obtained by measurement using the measurement device according to the aspect, and the obtained shape information is compared with the design information.
According to the nineteenth aspect of the present invention, in the structure manufacturing method according to the eighteenth aspect, it is preferable that the structure is reprocessed based on a comparison result between the shape information and the design information.
According to the twentieth aspect of the present invention, in the structure manufacturing method according to the nineteenth aspect, it is preferable that the rework of the structure is performed again based on the design information.
 本発明によれば、被測定物を載置するための載置台等によるX線の散乱、反射等の影響を抑制した再構成画像を生成することができる。 According to the present invention, it is possible to generate a reconstructed image in which the influence of X-ray scattering, reflection, and the like by a mounting table for mounting the object to be measured is suppressed.
本発明の実施の形態によるX線装置の構成を示す図The figure which shows the structure of the X-ray apparatus by embodiment of this invention 第1、第2の実施の形態によるX線源の構成を模式的に示す図The figure which shows typically the structure of the X-ray source by 1st, 2nd embodiment. 第1の実施の形態において、被測定物の投影画像データの生成に用いるデータを取得する方法を模式的に示す図The figure which shows typically the method of acquiring the data used for the production | generation of the projection image data of a to-be-measured object in 1st Embodiment. 生成されたデータにおける画素値を模式的に示す図The figure which shows the pixel value in generated data typically 実施の形態における画像生成部の機能を説明するブロック図Block diagram illustrating the function of the image generation unit in the embodiment 第1の実施の形態における被測定物の投影画像データの生成処理を説明する図The figure explaining the production | generation process of the projection image data of the to-be-measured object in 1st Embodiment 第1の実施の形態によるX線装置の動作を説明するフローチャートA flowchart for explaining the operation of the X-ray apparatus according to the first embodiment. 第1変形例によるX線装置の動作を説明するフローチャートA flowchart for explaining the operation of the X-ray apparatus according to the first modification. 第4変形例における被測定物の投影画像データの生成処理を説明する図The figure explaining the production | generation process of the projection image data of the to-be-measured object in a 4th modification 第2の実施の形態において、被測定物の投影画像データの生成に用いるデータを取得する方法を模式的に示す図The figure which shows typically the method of acquiring the data used for the production | generation of the projection image data of a to-be-measured object in 2nd Embodiment. 第2の実施の形態における被測定物の投影画像データの生成処理を説明する図The figure explaining the production | generation process of the projection image data of the to-be-measured object in 2nd Embodiment 第2の実施の形態によるX線装置の動作を説明するフローチャートA flowchart for explaining the operation of the X-ray apparatus according to the second embodiment. 第3の実施の形態による構造物製造システムの構成を示すブロック図The block diagram which shows the structure of the structure manufacturing system by 3rd Embodiment. 第3の実施の形態による構造物製造システムの動作を説明するフローチャートThe flowchart explaining operation | movement of the structure manufacturing system by 3rd Embodiment.
-第1の実施の形態-
 図面を参照しながら、本発明の第1の実施の形態によるX線装置について説明する。X線装置は、被測定物にX線を照射して、被測定物を透過した透過X線を検出することにより、被測定物の内部情報(たとえば内部構造)等を非破壊で取得する。被測定物が、たとえば機械部品や電子部品等の産業用部品が対象である場合には、X線装置は産業用部品を検査する産業用X線CT(Computed Tomography)検査装置と呼ばれる。
 本実施の形態は、発明の趣旨の理解のために具体的に説明するためのものであり、特に指定の無い限り、本発明を限定するものではない。
-First embodiment-
An X-ray apparatus according to a first embodiment of the present invention will be described with reference to the drawings. The X-ray apparatus irradiates the object to be measured with X-rays and detects transmitted X-rays transmitted through the object to be measured, thereby acquiring non-destructive internal information (for example, internal structure) of the object to be measured. When an object to be measured is an industrial part such as a machine part or an electronic part, the X-ray apparatus is called an industrial X-ray CT (Computed Tomography) inspection apparatus that inspects an industrial part.
The embodiments are specifically described for understanding the gist of the invention, and do not limit the invention unless otherwise specified.
 図1は本実施の形態によるX線装置100の構成の一例を示す図である。なお、説明の都合上、X軸、Y軸、Z軸からなる座標系を図示の通りに設定する。
 X線装置100は、筐体1、X線源2、載置部3、検出器4、制御装置5、表示モニタ6およびフレーム8を備えている。筐体1は、工場等の床面上にXZ平面と実質的に平行(水平)となるように配置され、内部にX線源2と、載置部3と、検出器4と、フレーム8とが収容される。筐体1はX線が外部に漏洩しないようにするために、材料として鉛を含む。
FIG. 1 is a diagram showing an example of the configuration of an X-ray apparatus 100 according to the present embodiment. For convenience of explanation, a coordinate system consisting of an X axis, a Y axis, and a Z axis is set as shown.
The X-ray apparatus 100 includes a housing 1, an X-ray source 2, a placement unit 3, a detector 4, a control device 5, a display monitor 6, and a frame 8. The housing 1 is disposed on a floor surface of a factory or the like so as to be substantially parallel (horizontal) to the XZ plane, and inside the X-ray source 2, the placement unit 3, the detector 4, and the frame 8. And is housed. The housing 1 contains lead as a material in order to prevent X-rays from leaking to the outside.
 X線源2は、制御装置5による制御に応じて、図1に示す出射点Qを頂点としてZ軸に平行な光軸Zrに沿って、Z軸+方向へ向けて円錐状に広がるX線(いわゆるコーンビーム)を放射する。出射点QはX線源2のフォーカルスポットに相当する。すなわち、光軸Zrは、X線源2のフォーカルスポットである出射点Qと、後述する検出器4の撮像領域の中心とを結ぶ。なお、X線源2は円錐状にX線を放射するものに代えて、扇状のX線(いわゆるファンビーム)や線状のX線(いわゆるペンシルビーム)を放射するものについても本発明の一態様に含まれる。X線源2は、たとえば約50eVの超軟X線、約0.1~2keVの軟X線、約2~20keVのX線および約20~100keVの硬X線の少なくとも1つを放射することができる。 The X-ray source 2 is an X-ray that spreads in a conical shape along the optical axis Zr parallel to the Z-axis with the emission point Q shown in FIG. (A so-called cone beam) is emitted. The exit point Q corresponds to the focal spot of the X-ray source 2. That is, the optical axis Zr connects the exit point Q, which is the focal spot of the X-ray source 2, and the center of the imaging region of the detector 4 described later. It should be noted that the X-ray source 2 is not limited to one that emits X-rays in a conical shape, but one that emits fan-shaped X-rays (so-called fan beams) or linear X-rays (so-called pencil beams) is also one aspect of the present invention. Included in embodiments. The X-ray source 2 emits at least one of, for example, an ultra soft X-ray of about 50 eV, a soft X-ray of about 0.1 to 2 keV, an X-ray of about 2 to 20 keV, and a hard X-ray of about 20 to 100 keV Can do.
 図2にX線源2の構成を模式的に示す。X線源2は、ウェネルト電源20と、フィラメント21と、ターゲット22と、ウェネルト電極23と、電子光学部材25と、高電圧印加部26とを備える。X線源2においては、電子線の放出方向に沿って、フィラメント21、電子光学部材25、ターゲット22の順序で配置される。ウェネルト電源20は、ウェネルト電極23に、フィラメント21に対して負のバイアス電圧を印加するように制御される。フィラメント21は、たとえばタングステンを含む材料を、ターゲット22へ向けて先鋭化された円錐形状となるように形成される。フィラメント21の両端には、フィラメント加熱用電源回路211が設けられている。フィラメント加熱用電源回路211は、フィラメント21に電流を流すことにより、フィラメント21を加熱する。フィラメント21は、ウェネルト電極23により負のバイアス電圧が印加された状態で、フィラメント加熱用電源回路211により電流を流すことによって加熱され、先鋭化された先端から電子線(熱電子)をターゲット22に向けて放出する。すなわち、フィラメント21は、電子線を発生させるための電子線発生部として機能する。 FIG. 2 schematically shows the configuration of the X-ray source 2. The X-ray source 2 includes a Wehnelt power source 20, a filament 21, a target 22, a Wehnelt electrode 23, an electro-optic member 25, and a high voltage application unit 26. In the X-ray source 2, the filament 21, the electron optical member 25, and the target 22 are arranged in this order along the electron beam emission direction. The Wehnelt power source 20 is controlled to apply a negative bias voltage to the Wehnelt electrode 23 with respect to the filament 21. The filament 21 is formed so that, for example, a material containing tungsten has a conical shape sharpened toward the target 22. A filament heating power supply circuit 211 is provided at both ends of the filament 21. The filament heating power supply circuit 211 heats the filament 21 by passing a current through the filament 21. The filament 21 is heated by flowing current through the filament heating power supply circuit 211 in a state where a negative bias voltage is applied by the Wehnelt electrode 23, and an electron beam (thermoelectrons) is applied to the target 22 from the sharpened tip. Release towards. That is, the filament 21 functions as an electron beam generator for generating an electron beam.
 ウェネルト電極23に印加された電圧により生じる電界によって、フィラメント21から放出された電子線は収束する。ターゲット22は例えばタングステンを含む材料により構成され、フィラメント21から放出された電子線の衝突または電子線の進行方向の変化によりX線を発生する。なお、図1、図2においては、本実施の形態によるX線源2が反射型X線発生部により構成される場合を例として示しているが、透過型X線発生部により構成される場合についても本発明の一態様に含まれる。 The electron beam emitted from the filament 21 is converged by the electric field generated by the voltage applied to the Wehnelt electrode 23. The target 22 is made of, for example, a material containing tungsten, and generates X-rays by collision of an electron beam emitted from the filament 21 or a change in the traveling direction of the electron beam. 1 and 2 show an example in which the X-ray source 2 according to the present embodiment is configured by a reflection type X-ray generation unit, but the case is configured by a transmission type X-ray generation unit. Is also included in one embodiment of the present invention.
 電子光学部材25はフィラメント21とターゲット22との間に配置される。電子光学部材25は、電子線をターゲット22に集束するための偏向コイル等によって構成される。電子光学部材25は、磁界の作用を利用してフィラメント21からの電子線を集束させて、ターゲット22の一部の領域(X線焦点)に電子線を衝突させる。高電圧印加部26は、フィラメント21とターゲット22とに電気的に接続し、ターゲット22に対してフィラメント21に負の電圧を印加する。高電圧印加部26は、制御装置5のX線制御部51により制御され、フィラメント21とターゲット22との間に所定の直流の高電圧を加える。 Electron optical member 25 is arranged between filament 21 and target 22. The electron optical member 25 is configured by a deflection coil or the like for focusing an electron beam on the target 22. The electron optical member 25 focuses the electron beam from the filament 21 using the action of a magnetic field, and collides the electron beam with a partial region (X-ray focal point) of the target 22. The high voltage application unit 26 is electrically connected to the filament 21 and the target 22, and applies a negative voltage to the filament 21 with respect to the target 22. The high voltage application unit 26 is controlled by the X-ray control unit 51 of the control device 5 and applies a predetermined high DC voltage between the filament 21 and the target 22.
 フィラメント21は、高電圧印加部26により高電圧が印加されると、電子線を放出するカソードとして機能する。本実施の形態では、一例として、フィラメント21に電流を流すことにより加熱しながら熱電子を発生させることで、カソードとして機能させる。本発明はこの例に限定されず、カソードの他に別途カソードを加熱するヒータを有するものであっても良い。また、カソードを加熱することなく、カソードの周囲に強い電界を形成することにより電子線を放出させるものであっても良い。フィラメント21からターゲット22に向けて放出された電子線はウェネルト電極23により絞られ、高電圧印加部26により印加された高電圧により加速されターゲット22へ向かう。すなわち、フィラメント21とターゲット22との間の電位差が、電子線を加速させるための加速電圧として作用する。電子線が電子光学部材25により集束され、電子線の収束位置(フォーカルスポット)に配置されたターゲット22に電子線が衝突してターゲット22からX線が発生する。 The filament 21 functions as a cathode that emits an electron beam when a high voltage is applied by the high voltage application unit 26. In the present embodiment, as an example, thermoelectrons are generated while heating by passing an electric current through the filament 21 to function as a cathode. The present invention is not limited to this example, and may have a heater for heating the cathode separately in addition to the cathode. Alternatively, an electron beam may be emitted by forming a strong electric field around the cathode without heating the cathode. The electron beam emitted from the filament 21 toward the target 22 is focused by the Wehnelt electrode 23, accelerated by the high voltage applied by the high voltage application unit 26, and travels toward the target 22. That is, the potential difference between the filament 21 and the target 22 acts as an acceleration voltage for accelerating the electron beam. The electron beam is focused by the electron optical member 25, and the electron beam collides with the target 22 disposed at the convergence position (focal spot) of the electron beam to generate X-rays from the target 22.
 図1に示す載置部3は、被測定物Sが載置される載置台30と、回転駆動部32、Y軸移動部33、X軸移動部34およびZ軸移動部35からなるマニピュレータ部36とを備え、X線発生部2よりもZ軸+側に設けられている。載置台30は、回転駆動部32により回転可能に設けられ、マニピュレータ部36がX軸、Y軸、Z軸方向に移動する際に、ともに移動する。 The mounting unit 3 shown in FIG. 1 includes a mounting table 30 on which the object to be measured S is mounted, and a manipulator unit including a rotation driving unit 32, a Y-axis moving unit 33, an X-axis moving unit 34, and a Z-axis moving unit 35. 36 and provided on the Z axis + side of the X-ray generator 2. The mounting table 30 is rotatably provided by the rotation driving unit 32, and moves together when the manipulator unit 36 moves in the X-axis, Y-axis, and Z-axis directions.
 回転駆動部32は、たとえば電動モータ等を含んで構成され、後述する制御装置5により制御されて駆動した電動モータが発生する回転力によって、Y軸に平行であり、かつ、載置台30の中心を通過する軸を回転軸Yrとして載置台30を回転させる。すなわち、回転駆動部32は、載置台30を回転させることにより、X線源2から放射されるX線に対して、載置台30および載置台30上の被測定物Sの相対的な方向を変化させる。Y軸移動部33、X軸移動部34およびZ軸移動部35は、制御装置5により制御されて、X線発生部2から射出されたX線の照射範囲内に被測定物Sが位置するように、載置台30をX軸方向、Y軸方向およびZ軸方向にそれぞれ移動させる。さらに、Z軸移動部35は、制御装置5により制御されて、X線源2から被測定物Sまでの距離が、被測定物Sの投影像が所望の拡大率となる距離に載置台30をZ軸方向に移動する。 The rotation drive unit 32 is configured to include, for example, an electric motor, and is parallel to the Y-axis and the center of the mounting table 30 by a rotational force generated by an electric motor controlled and driven by the control device 5 described later. The mounting table 30 is rotated with the axis passing through the rotation axis Yr. That is, the rotation drive unit 32 rotates the mounting table 30 to change the relative direction of the mounting table 30 and the object S to be measured on the mounting table 30 with respect to the X-rays radiated from the X-ray source 2. Change. The Y-axis moving unit 33, the X-axis moving unit 34, and the Z-axis moving unit 35 are controlled by the control device 5 so that the object S to be measured is positioned within the irradiation range of the X-rays emitted from the X-ray generation unit 2. In this way, the mounting table 30 is moved in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively. Further, the Z-axis moving unit 35 is controlled by the control device 5 so that the distance from the X-ray source 2 to the object S to be measured is a distance at which the projected image of the object S has a desired magnification. Is moved in the Z-axis direction.
 Y位置検出器331、X位置検出器341およびZ位置検出器351は、Y軸移動部33、X軸移動部34およびZ軸移動部35によってX軸方向、Y軸方向およびZ軸方向に移動した載置台30の位置をそれぞれ検出して、検出した位置(以下、検出移動位置と呼ぶ)を示す信号を制御装置5に出力するエンコーダである。回転位置検出器321は、回転駆動部32によって回転軸Yrにて回転する載置台30の位置を検出し、検出した位置(以下、検出回転位置と呼ぶ)を示す信号を制御装置5に出力するエンコーダである。すなわち、検出回転位置は、X線源2から放射されるX線に対する載置台30上の被測定物Sの相対的な方向を表す。 The Y position detector 331, the X position detector 341, and the Z position detector 351 are moved in the X axis direction, the Y axis direction, and the Z axis direction by the Y axis moving unit 33, the X axis moving unit 34, and the Z axis moving unit 35. It is an encoder that detects the position of the mounting table 30 and outputs a signal indicating the detected position (hereinafter referred to as a detected movement position) to the control device 5. The rotation position detector 321 detects the position of the mounting table 30 that is rotated about the rotation axis Yr by the rotation drive unit 32, and outputs a signal indicating the detected position (hereinafter referred to as a detected rotation position) to the control device 5. It is an encoder. That is, the detected rotation position represents the relative direction of the measurement object S on the mounting table 30 with respect to the X-rays emitted from the X-ray source 2.
 検出器4は、X線源2および載置台30よりもZ軸+側に設けられている。すなわち、載置台30は、Z軸方向において、X線源2と検出器4との間に設けられる。検出器4は、XY平面に平行な入射面41を有し、X線源2から放射され、載置台30上に載置された被測定物Sを透過した透過X線を含むX線が入射面41に入射する。検出器4は、公知のシンチレーション物質を含むシンチレータ部と、光電子増倍管と、受光部等とによって構成され、シンチレータ部の入射面41に入射したX線のエネルギーを可視光や紫外光等の光エネルギーに変換して光電子増倍管で増幅し、当該増幅された光エネルギーを上記の受光部で電気エネルギーに変換し、電気信号として制御装置5へ出力する。なお、検出器4は、入射するX線のエネルギーを光エネルギーに変換することなく電気エネルギーに変換し、電気信号として出力してもよい。検出器4は、シンチレータ部と光電子増倍管と受光部とがそれぞれ複数の画素として分割された構造を有しており、それらの画素は2次元的に配列されている。これにより、X線源2から放射され、被測定物Sを通過したX線の強度分布を一括で取得できる。なお、検出器4として、光電子増倍管を設けずに、シンチレータ部が受光部(光電変換部)の上に直接形成された構造であってもよい。 The detector 4 is provided on the Z axis + side from the X-ray source 2 and the mounting table 30. That is, the mounting table 30 is provided between the X-ray source 2 and the detector 4 in the Z-axis direction. The detector 4 has an incident surface 41 parallel to the XY plane, and X-rays including transmitted X-rays emitted from the X-ray source 2 and transmitted through the measurement object S placed on the mounting table 30 are incident. Incident on the surface 41. The detector 4 includes a scintillator portion containing a known scintillation substance, a photomultiplier tube, a light receiving portion, and the like. The detector 4 converts X-ray energy incident on the incident surface 41 of the scintillator portion into visible light, ultraviolet light, or the like. The light energy is converted into light energy, amplified by a photomultiplier tube, the amplified light energy is converted into electric energy by the light receiving unit, and is output to the control device 5 as an electric signal. The detector 4 may convert incident X-ray energy into electric energy without converting it into light energy, and output the electric energy as an electric signal. The detector 4 has a structure in which a scintillator section, a photomultiplier tube, and a light receiving section are each divided into a plurality of pixels, and these pixels are two-dimensionally arranged. Thereby, the intensity distribution of the X-rays radiated from the X-ray source 2 and passed through the object to be measured S can be acquired at once. The detector 4 may have a structure in which the scintillator portion is formed directly on the light receiving portion (photoelectric conversion portion) without providing a photomultiplier tube.
 フレーム8は、X線源2と載置部3と検出器4とを支持する。このフレーム8は、十分な剛性を有して製造される。したがって、被測定物Sの投影像を取得中に、X線源2、載置部3および検出器4を安定に支持することが可能となる。また、フレーム8は除振機構81により支持されており、外部で発生した振動がフレーム8にそのまま伝達することを防いでいる。 The frame 8 supports the X-ray source 2, the placement unit 3, and the detector 4. The frame 8 is manufactured with sufficient rigidity. Therefore, it is possible to stably support the X-ray source 2, the placement unit 3, and the detector 4 while acquiring the projection image of the measurement object S. Further, the frame 8 is supported by a vibration isolation mechanism 81 to prevent vibration generated outside from being transmitted to the frame 8 as it is.
 制御装置5は、マイクロプロセッサやその周辺回路等を有しており、不図示の記憶媒体(たとえばフラッシュメモリ等)に予め記憶されている制御プログラムを読み込んで実行することにより、X線装置100の各部を制御する。制御装置5は、X線制御部51と、移動制御部52と、画像生成部53と、画像再構成部54と、ワークメモリ55とを備える。X線制御部51はX線源2の動作を制御し、移動制御部52はマニピュレータ部36の移動動作を制御する。画像生成部53は検出器4から出力された電気信号に基づいて被測定物SのX線投影画像データを生成し、画像再構成部54はマニピュレータ部36を制御しながらそれぞれの投影方向の異なる被測定物Sの投影画像データに基づいて、公知の画像再構成処理を施して再構成画像を生成する。画像再構成処理により、被測定物Sの内部構造(断面構造)である3次元データが生成される。この場合、画像再構成処理としては、逆投影法、フィルタ補正逆投影法、逐次近似法等がある。ワークメモリ55は、たとえば揮発性記憶媒体によって構成され、画像生成部53により生成されたX線投影画像データを一時的に格納する。 The control device 5 includes a microprocessor, peripheral circuits, and the like. The control device 5 reads and executes a control program stored in advance in a storage medium (not shown) (for example, a flash memory), thereby executing the control of the X-ray device 100. Control each part. The control device 5 includes an X-ray control unit 51, a movement control unit 52, an image generation unit 53, an image reconstruction unit 54, and a work memory 55. The X-ray control unit 51 controls the operation of the X-ray source 2, and the movement control unit 52 controls the movement operation of the manipulator unit 36. The image generation unit 53 generates X-ray projection image data of the object S to be measured based on the electrical signal output from the detector 4, and the image reconstruction unit 54 controls the manipulator unit 36 and has different projection directions. Based on the projection image data of the measurement object S, a known image reconstruction process is performed to generate a reconstructed image. By the image reconstruction process, three-dimensional data that is the internal structure (cross-sectional structure) of the DUT S is generated. In this case, the image reconstruction process includes a back projection method, a filtered back projection method, a successive approximation method, and the like. The work memory 55 is configured by, for example, a volatile storage medium, and temporarily stores the X-ray projection image data generated by the image generation unit 53.
 以下、画像生成部53が行う被測定物Sの投影画像データの生成原理について詳細に説明する。
 図3に、本実施の形態における画像生成部53が被測定物Sの投影画像データを生成するために用いるデータの取得方法を模式的に示す。図3(a)は、載置台30に被測定物Sが載置された状態にてX線源2からX線を放射させ、検出器4にて取得(検出)されたX線に基づいて、検出データである第1データD1(図3(b)参照)が生成される場合を示す。図3(c)は、載置台30に被測定物Sが載置されない状態にてX線源2からX線を放射させ、検出器4にて検出されたX線に基づいて、検出データとして第2データD2(図3(d)参照)が生成される場合を示す。
Hereinafter, the generation principle of the projection image data of the measurement object S performed by the image generation unit 53 will be described in detail.
FIG. 3 schematically shows a data acquisition method used by the image generation unit 53 in the present embodiment to generate projection image data of the object S to be measured. FIG. 3A shows an X-ray emitted from the X-ray source 2 in a state where the object S to be measured is mounted on the mounting table 30 and based on the X-rays acquired (detected) by the detector 4. The case where the 1st data D1 (refer FIG.3 (b)) which is detection data is produced | generated is shown. FIG. 3C shows detection data based on the X-rays detected by the detector 4 by emitting X-rays from the X-ray source 2 in a state where the measurement object S is not placed on the mounting table 30. The case where the 2nd data D2 (refer FIG.3 (d)) is produced | generated is shown.
 図3(e)は、載置台30が少なくともX線源2と検出器4との間に存在しない、すなわち載置台30を取り除いた状態にて、X線源2からのX線を検出器4により検出したときのX線装置100のX線源2と検出器4との位置関係を示す。なお、X線源2と検出器4との間を結ぶ実線は、X線源2から発生したX線のうち、検出器4で検出されるX線の外郭を示す。そして、図3(e)の状態で、検出器4により検出された検出データを図3(f)に示す。このときの検出データを第3データD3とする。第3データD3は、X線源2から放射されるX線の出力、すなわち加速電圧と電流量との組み合わせを異ならせた状態ごとに生成され、生成時のX線の出力と関連付けて後述する内部記憶部531(図3参照)に記憶される。それぞれX線の出力が異なるときに得られた複数の第3データD3は、たとえば工場出荷時等の所定のタイミングにて生成され、以後、同一の第3データD3を使用し続けても良いし、検出器4の特性の経年変化等を考慮して、所定の期間ごとに第3データD3を生成して更新可能としても良い。なお、第3データD3は、検出器4にて検出されたX線に基づく実測値であるものに限定されない。第3データD3は、X線源2から放射されるX線が放射角度毎に強度の差がある場合、その強度の差に基づき、検出器4から出力された検出データの信号にも分布を有する。また、X線装置全体を囲う筐体や筐体内に配置された各部材からの反射X線や散乱X線なども到達する場合もあるため、その影響を受けて画像データの信号にX線の検出強度の分布が現れる。しかしながら、X線源2から放射されるX線が放射角度に応じた強度分布を有していない場合もある。そのような場合、第3データD3を任意の定数として設定しても良い。なお、図3(f)に示した第3データD3は、X線の放射角度によらず、一定のX線強度が得られたときのデータとして示している。 FIG. 3E shows that the mounting table 30 does not exist at least between the X-ray source 2 and the detector 4, that is, the X-ray from the X-ray source 2 is detected by the detector 4 with the mounting table 30 removed. 2 shows the positional relationship between the X-ray source 2 and the detector 4 of the X-ray apparatus 100 when detected by. A solid line connecting the X-ray source 2 and the detector 4 indicates an outline of the X-ray detected by the detector 4 among the X-rays generated from the X-ray source 2. The detection data detected by the detector 4 in the state of FIG. 3 (e) is shown in FIG. 3 (f). The detection data at this time is referred to as third data D3. The third data D3 is generated for each state in which the X-ray output emitted from the X-ray source 2, that is, the combination of the acceleration voltage and the current amount is different, and will be described later in association with the X-ray output at the time of generation. It is stored in the internal storage unit 531 (see FIG. 3). The plurality of third data D3 obtained when the X-ray outputs are different from each other is generated at a predetermined timing, for example, at the time of factory shipment, and thereafter, the same third data D3 may be continuously used. The third data D3 may be generated and updated every predetermined period in consideration of changes in the characteristics of the detector 4 over time. Note that the third data D3 is not limited to the measured value based on the X-ray detected by the detector 4. When the X-ray emitted from the X-ray source 2 has a difference in intensity for each radiation angle, the third data D3 is also distributed in the detection data signal output from the detector 4 based on the difference in intensity. Have. In addition, reflected X-rays and scattered X-rays from the casing surrounding the entire X-ray apparatus and each member arranged in the casing may reach the image data. A distribution of detected intensity appears. However, the X-rays emitted from the X-ray source 2 may not have an intensity distribution according to the radiation angle. In such a case, the third data D3 may be set as an arbitrary constant. The third data D3 shown in FIG. 3 (f) is shown as data when a constant X-ray intensity is obtained regardless of the X-ray emission angle.
 第1データD1と第2データD2とは同一の条件にて生成される。すなわち、第1データD1が生成されるときの載置台30の検出移動位置および検出回転位置と、第2データD2が生成されるときの載置台30の検出移動位置および検出回転位置とは同一である。さらに、第1データD1を生成する際にX線源2から放射するX線の出力(たとえば、フィラメント21からターゲット22間の加速電圧)と、第2データD2を生成する際にX線源2から放射するX線の出力とは同一である。なお、以下の説明においては、載置台30の検出移動位置および検出回転位置を総称する場合には、相対位置と呼ぶ。 The first data D1 and the second data D2 are generated under the same conditions. That is, the detection movement position and the detection rotation position of the mounting table 30 when the first data D1 is generated are the same as the detection movement position and the detection rotation position of the mounting table 30 when the second data D2 are generated. is there. Furthermore, when generating the first data D1, the X-ray output radiated from the X-ray source 2 (for example, the acceleration voltage between the filament 21 and the target 22) and the X-ray source 2 when generating the second data D2 are generated. The output of X-rays radiated from is the same. In the following description, the detection movement position and the detection rotation position of the mounting table 30 are collectively referred to as a relative position.
 図3(b)に第1データD1を模式的に示す。第1データD1は、被測定物を透過したX線量の分布と、載置台30を透過したX線量の分布と、載置台30を含む載置部3により散乱反射したX線量の分布と、X線が載置部3や被測定物S中を伝搬せずに直接検出器4に到達したX線量の分布との組み合わせで構成される。なお、図3(b)では、被測定物を透過したX線が検出器4に到達する領域に該当する領域D101と、載置台30を透過したX線が検出器4に到達する領域に該当する領域D102と、載置台30を含む載置部3により散乱反射したX線が到達する領域に該当する領域D103と、X線源2から検出器4へ到達するまでに載置部3や被測定物Sを介さずに直接X線が検出器4に到達する領域に該当する領域D104とを示す。領域D101は、X線源2から放射され、被測定物Sを透過したX線の強度に応じた被測定物Sの内部構造に関する情報が含まれる画像データ領域である。領域D102は、X線源2から放射され、載置台30を透過したX線の強度に応じた載置台30の構造に関する情報が含まれる画像データ領域である。領域D103は、X線源2から放射され、載置台30によって散乱や反射した強度に関する情報が含まれる。なお、図3においては、図示の都合上、領域D103にドットを付して示す。領域D104は、検出器4の特性や筐体1の内壁等によって散乱や反射したX線の強度に関する情報である。
 なお、ここでの説明では、X線の散乱反射については、載置台30の上側のみ図示しているが、本発明は、このような散乱反射分布が得られる載置部3だけに限定されるものではない。特に、通常、図3(a)の位置関係の際には、載置台30の下部に位置するマニピュレータ部36の投影像が検出器4の検出面に表れるのが通常である。したがって、マニピュレータ部36の散乱反射の影響も散乱反射量の大きさに応じて考慮すべきか否かを決定し、影響が大きい場合はマニピュレータ部36による散乱反射X線の分布を考慮してもよい。同様に、被測定物S自体の散乱反射の影響をその散乱反射量の大きさにより考慮してもよい。これらの散乱反射の影響を含めて領域D103を決めても良い。なお、本明細書においては、説明を簡略化するため、マニピュレータ部36の散乱反射や被測定物S自体の散乱反射の影響は議論していない。
FIG. 3B schematically shows the first data D1. The first data D1 includes the distribution of the X-ray dose transmitted through the object to be measured, the distribution of the X-ray dose transmitted through the mounting table 30, the distribution of the X-ray dose scattered and reflected by the mounting unit 3 including the mounting table 30, and the X The line is composed of a combination with the distribution of the X-ray dose that has directly reached the detector 4 without propagating through the placement unit 3 or the object S to be measured. 3B, the region D101 corresponding to the region where X-rays transmitted through the object to be measured reach the detector 4 and the region where X-rays transmitted through the mounting table 30 reach the detector 4. Area D102, a region D103 corresponding to an area where X-rays scattered and reflected by the mounting unit 3 including the mounting table 30 reach, and the mounting unit 3 and the target by the time the X-ray source 2 reaches the detector 4. A region D104 corresponding to a region where X-rays directly reach the detector 4 without passing through the measurement object S is shown. A region D101 is an image data region that includes information on the internal structure of the measurement object S according to the intensity of the X-rays emitted from the X-ray source 2 and transmitted through the measurement object S. The region D102 is an image data region that includes information on the structure of the mounting table 30 corresponding to the intensity of X-rays emitted from the X-ray source 2 and transmitted through the mounting table 30. The region D103 includes information related to the intensity emitted from the X-ray source 2 and scattered or reflected by the mounting table 30. In FIG. 3, for the sake of illustration, the region D103 is shown with dots. A region D104 is information regarding the characteristics of the detector 4 and the intensity of X-rays scattered or reflected by the inner wall of the housing 1 or the like.
In the description here, the X-ray scattering reflection is shown only on the upper side of the mounting table 30, but the present invention is limited to only the mounting portion 3 from which such a scattering reflection distribution is obtained. It is not a thing. In particular, in the case of the positional relationship shown in FIG. 3A, the projected image of the manipulator unit 36 positioned below the mounting table 30 usually appears on the detection surface of the detector 4. Therefore, it is determined whether or not the influence of the scattered reflection of the manipulator unit 36 should be taken into consideration according to the magnitude of the scattered reflection amount. If the influence is large, the distribution of the scattered reflected X-rays by the manipulator unit 36 may be taken into consideration. . Similarly, you may consider the influence of the scattering reflection of the to-be-measured object S itself by the magnitude | size of the scattering reflection amount. The region D103 may be determined including the influence of these scattered reflections. In this specification, in order to simplify the description, the influence of the scattering reflection of the manipulator unit 36 and the scattering reflection of the object S itself is not discussed.
 図4に上記の第1データD1、第2データD2および第3データD3のそれぞれについて、各画素ごとの画素値を模式的に示す。図4においては、第1データD1は複数の画素Ds101~116を含み、第2データD2は複数の画素Ds201~216を含み、第3データD3は複数の画素Ds301~316を含む場合を模式的に示す。なお、図4においては、発明の理解を容易にすることを目的として、第1データD1や第2データD2における画素値に、領域D101、領域D102または領域D103を重畳して示す。また、図4においては、第1データD1、第2データD2および第3データD3のそれぞれの一部の領域を示す。図4に示す画素値は、個々の画素Ds101~116、201~216、301~316の画素値を示すものに限られず、所定領域に含まれる複数の画素から出力された画素値を加算した合計値を示すものや、所定領域の複数の画素からの画素値の平均値を示すものについても本発明の一態様に含まれる。 FIG. 4 schematically shows pixel values for each pixel for each of the first data D1, the second data D2, and the third data D3. In FIG. 4, the first data D1 includes a plurality of pixels Ds101 to 116, the second data D2 includes a plurality of pixels Ds201 to 216, and the third data D3 schematically includes a plurality of pixels Ds301 to 316. Shown in In FIG. 4, for the purpose of facilitating understanding of the invention, the region D101, the region D102, or the region D103 is shown superimposed on the pixel value in the first data D1 or the second data D2. FIG. 4 shows a partial area of each of the first data D1, the second data D2, and the third data D3. The pixel values shown in FIG. 4 are not limited to those indicating the pixel values of the individual pixels Ds101 to 116, 201 to 216, and 301 to 316, but are the sum of pixel values output from a plurality of pixels included in a predetermined area. What shows a value and what shows the average value of the pixel value from the some pixel of a predetermined area are also contained in 1 aspect of this invention.
 図4(a)に示すように、第1データD1の各画素Ds101~116のうち、X線が被測定物Sや載置台30を透過せず、また載置台30による散乱や反射の影響を受けていない画素Ds101~104、108、112~116では、画素値を「100」として示す。画素Ds107、111は、X線が載置台30を透過または載置台30により散乱や反射することにより、検出器4へ入射する際には強度が弱められるので、画素値を「80」として示す。画素Ds105、109は、X線が被測定物Sを透過することにより、検出器4へ入射する際には強度が弱められるので、画素値を「70」として示す。画素Ds106、110は、X線は被測定物Sを透過してその強度が弱められるとともに、載置台30等による散乱や反射の影響を受けて検出器4に入射するので、画素値を「71」として示す。すなわち、画素Ds105、109と比べて、載置台30等による散乱や反射の影響の分だけ画素値が増える。 As shown in FIG. 4A, among the pixels Ds101 to 116 of the first data D1, the X-rays do not pass through the object to be measured S or the mounting table 30, and the influence of scattering and reflection by the mounting table 30 is also affected. In the pixels Ds 101 to 104, 108, and 112 to 116 that have not been received, the pixel value is indicated as “100”. The pixels Ds 107 and 111 have a pixel value of “80” because X-rays are transmitted through the mounting table 30 or scattered or reflected by the mounting table 30 so that the intensity is reduced when entering the detector 4. The pixels Ds 105 and 109 have a pixel value of “70” because the intensity is weakened when the X-rays pass through the object S to be measured and enter the detector 4. In the pixels Ds 106 and 110, the intensity of X-rays transmitted through the measurement object S is weakened, and the X-rays are incident on the detector 4 due to the influence of scattering and reflection by the mounting table 30 and the like. ". That is, as compared with the pixels Ds 105 and 109, the pixel value is increased by the influence of scattering and reflection by the mounting table 30 and the like.
 図4(b)に示すように、第2データD2の各画素Ds201~216のうち、X線が載置台30を透過せず、また載置台30等による散乱や反射の影響を受けていない画素Ds201~205、208、209、212~216では、図4(a)と同様に、画素値を「100」として示す。画素Ds207、211は、X線が載置台30を透過または載置台30により散乱や反射することにより、検出器4へ入射する際には強度が弱められるので、図4(a)と同様に、画素値を「80」として示す。画素Ds206、210は、X線は載置台30を透過しないが載置台30による散乱や反射の影響を受けて検出器4に入射するので、画素値を「101」として示す。すなわち、画素Ds205、209と比べて、載置台30による散乱や反射の影響の分だけ画素値が増える。
 図4(c)に示すように、第3データD3の各画素Ds301~316は、X線が被測定物Sや載置台30を透過せず、また載置台30による散乱や反射の影響を受けないので、画素値を「100」として示す。
As shown in FIG. 4B, among the pixels Ds201 to 216 of the second data D2, the X-rays are not transmitted through the mounting table 30 and are not affected by scattering or reflection by the mounting table 30 or the like. In Ds 201 to 205, 208, 209, and 212 to 216, the pixel value is indicated as “100” as in FIG. 4A. Since the pixels Ds 207 and 211 are weakened in intensity when entering the detector 4 due to the X-ray being transmitted through the mounting table 30 or scattered or reflected by the mounting table 30, as in FIG. The pixel value is shown as “80”. The pixels Ds 206 and 210 do not transmit X-rays through the mounting table 30 but enter the detector 4 due to the influence of scattering and reflection by the mounting table 30, so the pixel value is indicated as “101”. That is, as compared with the pixels Ds205 and 209, the pixel value is increased by the influence of scattering and reflection by the mounting table 30.
As shown in FIG. 4C, the pixels Ds301 to 316 of the third data D3 are not affected by the X-rays being transmitted through the object to be measured S or the mounting table 30, and by scattering or reflection by the mounting table 30. Therefore, the pixel value is indicated as “100”.
 画像生成部53は、上記の第1データD1と第2データD2と第3データD3とを用いて、次のように被測定物Sの投影画像データD200を生成する。
 図5は、画像生成部53が備える機能ブロック図であり、図6は画像生成部53による処理により生成されるデータの画素値を模式的に示す図である。
 図5に示すように、画像生成部53は、内部記憶部531と、減算処理部532と、投影画像データ生成部533とを備える。内部記憶部531は、不揮発性記憶媒体により構成され、上述した第3データD3を記憶する。減算処理部532は、第1データD1から第2データD2を減算して、中間データD150(図6参照)を生成する。
The image generation unit 53 generates the projection image data D200 of the measurement object S as follows using the first data D1, the second data D2, and the third data D3.
FIG. 5 is a functional block diagram included in the image generation unit 53, and FIG. 6 is a diagram schematically illustrating pixel values of data generated by processing by the image generation unit 53.
As illustrated in FIG. 5, the image generation unit 53 includes an internal storage unit 531, a subtraction processing unit 532, and a projection image data generation unit 533. The internal storage unit 531 is configured by a nonvolatile storage medium, and stores the above-described third data D3. The subtraction processing unit 532 subtracts the second data D2 from the first data D1 to generate intermediate data D150 (see FIG. 6).
 図6(a)に中間データD150の生成を模式的に示す。第1データD1から第2データD2が減算されることにより、画素Ds151~166からなる中間データD150が生成される。すなわち、第1データD1の各画素Ds101~116の画素値から、それぞれ対応する第2データD2の各画素Ds201~216の画素値が減算される。したがって、中間データD150においては、画素Ds151~154、157、158、161~166の画素値が「0」、画素Ds155、156、159、160の画素値は「-30」となる。 FIG. 6A schematically shows generation of the intermediate data D150. By subtracting the second data D2 from the first data D1, intermediate data D150 including the pixels Ds151 to 166 is generated. That is, the pixel values of the respective pixels Ds201 to 216 of the corresponding second data D2 are subtracted from the pixel values of the respective pixels Ds101 to 116 of the first data D1. Accordingly, in the intermediate data D150, the pixel values of the pixels Ds151 to 154, 157, 158, 161 to 166 are “0”, and the pixel values of the pixels Ds155, 156, 159, and 160 are “−30”.
 図5の投影画像データ生成部533は、内部記憶部531に記憶された複数の第3データD3から、第1データD1および第2データD2が生成されたときのX線の出力と同一出力のX線を用いて生成された第3データD3を読み出す。投影画像データ生成部533は、内部記憶部531から読み出した第3データD3と、減算処理部532により生成された中間データD150とを加算して、投影画像データD200を生成する。 The projection image data generation unit 533 in FIG. 5 has the same output as the X-ray output when the first data D1 and the second data D2 are generated from the plurality of third data D3 stored in the internal storage unit 531. The third data D3 generated using the X-ray is read out. The projection image data generation unit 533 adds the third data D3 read from the internal storage unit 531 and the intermediate data D150 generated by the subtraction processing unit 532 to generate projection image data D200.
 図6(b)に投影画像データD200の生成を模式的に示す。中間データD150と第3データD3とが加算されることにより、画素Ds201~216からなる投影画像データD200が生成される。すなわち、中間データD150の各画素Ds151~166の画素値に、それぞれ対応する第3データD3の各画素Ds301~316の画素値が加算される。したがって、投影画像データD200においては、画素Ds201~204、207、208、211~216の画素値が「100」、画素Ds205、206、209、210の画素値は「70」となる。この結果、投影画像データD200では、第1データD1と第2データD2とに共通して含まれる載置台透過に基づくデータD102と、散乱反射に基づくデータD103とが第1データD1から除去される。すなわち、投影画像データD200は、被測定物Sを透過したX線の強度に応じた情報である被測定物透過データD101に相当する。 FIG. 6B schematically shows the generation of the projection image data D200. By adding the intermediate data D150 and the third data D3, the projection image data D200 including the pixels Ds201 to 216 is generated. That is, the pixel values of the respective pixels Ds301 to 316 of the corresponding third data D3 are added to the pixel values of the respective pixels Ds151 to 166 of the intermediate data D150. Therefore, in the projection image data D200, the pixel values of the pixels Ds201 to 204, 207, 208, and 211 to 216 are “100”, and the pixel values of the pixels Ds205, 206, 209, and 210 are “70”. As a result, in the projection image data D200, the data D102 based on mounting table transmission and the data D103 based on scattered reflection, which are included in common with the first data D1 and the second data D2, are removed from the first data D1. . In other words, the projection image data D200 corresponds to the measured object transmission data D101 which is information corresponding to the intensity of the X-ray transmitted through the measured object S.
 以下、被測定物Sの内部構造の計測処理のためにX線装置100が行う動作について説明する。
 ユーザが操作部材(不図示)を操作して、所望する撮影倍率、撮影位置を設定すると、制御装置5の移動制御部52は、マニピュレータ部36のY軸移動部33、X軸移動部34およびZ軸移動部35を制御して、設定された撮影倍率、撮影位置に応じた目標位置となるように、X方向、Y方向、Z方向へ載置台30を移動させる。
Hereinafter, an operation performed by the X-ray apparatus 100 for the measurement process of the internal structure of the measurement object S will be described.
When the user operates an operation member (not shown) to set a desired shooting magnification and shooting position, the movement control unit 52 of the control device 5 includes the Y-axis moving unit 33, the X-axis moving unit 34, and the manipulator unit 36. The Z-axis moving unit 35 is controlled to move the mounting table 30 in the X direction, the Y direction, and the Z direction so that the target position corresponding to the set shooting magnification and shooting position is obtained.
 載置台30が目標位置に移動して、載置台30上に被測定物Sが載置されると、制御装置5のX線制御部51は、X線源2から放射されるX線の出力をユーザによる設定操作に応じたX線の出力となるように設定する。すなわち、X線制御部51は、フィラメント21とターゲット22との間に高電圧印加部26が加える加速電圧の電圧値と、フィラメント加熱用電源回路211がフィラメント21に流す電流量とを設定し、X線源2からX線を放射させる。制御装置5の移動制御部52は、回転駆動部32を駆動させることにより、載置台30および載置台30に載置された被測定物Sを回転軸Yrにて回転させる。 When the mounting table 30 moves to the target position and the workpiece S is mounted on the mounting table 30, the X-ray control unit 51 of the control device 5 outputs an X-ray emitted from the X-ray source 2. Is set to be an X-ray output according to the setting operation by the user. That is, the X-ray control unit 51 sets the voltage value of the acceleration voltage applied by the high voltage application unit 26 between the filament 21 and the target 22 and the amount of current that the filament heating power supply circuit 211 passes through the filament 21. X-rays are emitted from the X-ray source 2. The movement control unit 52 of the control device 5 drives the rotation driving unit 32 to rotate the mounting table 30 and the measurement object S mounted on the mounting table 30 about the rotation axis Yr.
 載置台30および被測定物Sが回転軸Yrにて所定角度の回転をするごとに、検出器4はX線源2から放射され入射面41に入射したX線を検出し、検出データとして出力することによって第1データD1を生成する。すなわち、検出器4は、所定角度の回転に応じた、複数の第1データD1を生成する。生成された複数の第1データD1はそれぞれの生成時の所定角度、すなわち回転位置検出器321により検出された検出回転位置と関連付けてワークメモリ55に一時的に格納される。 Each time the mounting table 30 and the object to be measured S rotate by a predetermined angle on the rotation axis Yr, the detector 4 detects X-rays emitted from the X-ray source 2 and incident on the incident surface 41 and outputs them as detection data. Thus, the first data D1 is generated. That is, the detector 4 generates a plurality of first data D1 corresponding to the rotation of a predetermined angle. The plurality of generated first data D1 is temporarily stored in the work memory 55 in association with a predetermined angle at the time of generation, that is, a detected rotational position detected by the rotational position detector 321.
 上記のようにして第1データD1が生成された後、被測定物Sを載置台30から取り除いた状態で第2データD2の生成処理が行われる。この場合、X線制御部51は、フィラメント21とターゲット22との間に高電圧印加部26が加える加速電圧の電圧値と、フィラメント加熱用電源回路211がフィラメント21に流す電流量とを、第1データD1を生成する際に設定した加速電圧の電圧値および電流量と同一に設定し、X線源2からX線を放射させる。移動制御部52は、載置台30を第1データD1を生成したときと同じ位置を維持した状態で、回転駆動部32を駆動させて載置台30を回転軸Yrにて回転させる。 After the first data D1 is generated as described above, the generation process of the second data D2 is performed in a state where the measurement object S is removed from the mounting table 30. In this case, the X-ray control unit 51 determines the voltage value of the acceleration voltage applied by the high voltage application unit 26 between the filament 21 and the target 22 and the amount of current that the filament heating power supply circuit 211 passes through the filament 21. X-rays are emitted from the X-ray source 2 by setting the same value as the voltage value and current amount of the acceleration voltage set when generating one data D1. The movement control unit 52 drives the rotation driving unit 32 to rotate the mounting table 30 about the rotation axis Yr while maintaining the same position as when the mounting table 30 generated the first data D1.
 載置台30が回転軸Yrを軸として、第1データD1の生成時と同一の所定角度にて回転をするごとに、検出器4は、入射面41に入射したX線を検出し、電気信号である検出データとして出力することによって第2データD2を生成する。すなわち、検出器4は、所定角度の回転に応じた複数の第2データD2を生成し、それぞれの生成時の所定角度である検出回転位置と関連付けてワークメモリ55に一時的に格納する。
 なお、上述の説明においては、第1データD1を生成した後に第2データD2を生成するものとしたが、第2データD2を生成した後に第1データD1を生成するものについても本発明の一態様に含まれる。
Each time the mounting table 30 rotates about the rotation axis Yr at the same predetermined angle as when the first data D1 is generated, the detector 4 detects the X-rays incident on the incident surface 41 and generates an electrical signal. The second data D2 is generated by outputting the detected data. That is, the detector 4 generates a plurality of second data D2 corresponding to the rotation at a predetermined angle, and temporarily stores it in the work memory 55 in association with the detected rotation position that is the predetermined angle at the time of generation.
In the above description, the second data D2 is generated after the first data D1 is generated. However, the first data D1 is generated after the second data D2 is generated. Included in embodiments.
 上述したように、画像生成部53は、第1データD1と第2データD2と第3データD3とを用いて被測定物Sの投影画像データD200を生成する。この場合、画像生成部53は、第1データD1と関連付けられた所定角度と同一の所定角度と関連付けされた第2データD2を選択する。すなわち、画像生成部53は、載置台30による散乱や反射の影響が実質的に同一と見なすことができる第1データD1と第2データD2とを用いて中間データD150を生成する。画像生成部53は、生成した中間データD150と内部記憶部533から読み出した第3データD3とを用いて、載置台30によるX線の散乱や反射の影響を低減させた被測定物Sの投影画像データD200を生成する。複数の第1データD1のそれぞれに対して上記の処理を施すことにより複数の被測定物Sの投影画像データD200が生成されると、制御装置5の画像再構成部54は、被測定物Sの複数の投影画像データD200を用いて公知の画像再構成処理を行って、被測定物Sの内部構造(断面構造)である3次元データを生成する。この場合、画像再構成処理としては、逆投影法、フィルタ補正逆投影法、逐次近似法等がある。生成された被測定物Sの内部構造の3次元データは、表示モニタ6に表示される。 As described above, the image generation unit 53 generates the projection image data D200 of the measurement object S using the first data D1, the second data D2, and the third data D3. In this case, the image generation unit 53 selects the second data D2 associated with the same predetermined angle as the predetermined angle associated with the first data D1. That is, the image generation unit 53 generates the intermediate data D150 using the first data D1 and the second data D2 that can be regarded as having substantially the same influence of scattering and reflection by the mounting table 30. The image generation unit 53 uses the generated intermediate data D150 and the third data D3 read from the internal storage unit 533 to project the measurement object S with reduced influence of X-ray scattering and reflection by the mounting table 30. Image data D200 is generated. When the projection image data D200 of the plurality of objects to be measured S is generated by performing the above processing on each of the plurality of first data D1, the image reconstruction unit 54 of the control device 5 causes the object to be measured S to be measured. A known image reconstruction process is performed using the plurality of projection image data D200 to generate three-dimensional data that is the internal structure (cross-sectional structure) of the object S to be measured. In this case, the image reconstruction process includes a back projection method, a filtered back projection method, a successive approximation method, and the like. The generated three-dimensional data of the internal structure of the measured object S is displayed on the display monitor 6.
 図7のフローチャートを参照しながら、X線装置100による被測定物Sの内部構造の計測処理について説明する。図7のフローチャートに示す各処理は、制御装置5でプログラムを実行して行われる。このプログラムは、メモリ(不図示)に格納されており、ユーザにより被測定物Sが載置台30に載置され被測定物Sの内部構造の計測の開始が指示されると、制御装置5により起動され、実行される。
 ステップS1では、移動制御部52は、載置台30をX方向、Y方向、Z方向に移動させることにより、載置台30および被測定物Sを目標位置に移動させてステップS2へ進む。ステップS2では、X線制御部51は、X線源2から放射されるX線の出力を設定し、移動制御部52は、載置台30を回転軸Yrにて回転させてステップS3へ進む。
With reference to the flowchart of FIG. 7, measurement processing of the internal structure of the measurement object S by the X-ray apparatus 100 will be described. Each process shown in the flowchart of FIG. 7 is performed by executing a program in the control device 5. This program is stored in a memory (not shown), and when the user places the workpiece S on the mounting table 30 and gives an instruction to start measuring the internal structure of the workpiece S, the control device 5 Get up and running.
In step S1, the movement control unit 52 moves the mounting table 30 in the X direction, the Y direction, and the Z direction, thereby moving the mounting table 30 and the object to be measured S to the target position, and proceeds to step S2. In step S2, the X-ray control unit 51 sets the output of X-rays emitted from the X-ray source 2, and the movement control unit 52 rotates the mounting table 30 about the rotation axis Yr and proceeds to step S3.
 ステップS3では、画像生成部53は、載置台30が所定角度の回転を行うごとにX線源2から放射されるX線を検出器4によって検出し、その検出データを用いて、複数の第1データD1を生成して、画像生成部53のワークメモリ55に格納させ、ステップS4へ進む。このとき、ワークメモリ55はX線源2の出力値と相対位置情報も格納する。ステップS4においては、所定角度ごとの第1データD1の生成が終了したか否かを判定する。全ての第1データD1の生成が終了した場合にはステップS4が肯定判定されてステップS5へ進む。全ての第1データD1が生成されていない場合には、ステップS4が否定判定されてステップS3へ戻る。 In step S3, the image generating unit 53 detects X-rays emitted from the X-ray source 2 every time the mounting table 30 rotates by a predetermined angle, and uses the detection data to detect a plurality of first rays. One data D1 is generated and stored in the work memory 55 of the image generation unit 53, and the process proceeds to step S4. At this time, the work memory 55 also stores the output value of the X-ray source 2 and relative position information. In step S4, it is determined whether or not the generation of the first data D1 for each predetermined angle has been completed. When the generation of all the first data D1 is completed, an affirmative determination is made in step S4 and the process proceeds to step S5. If all the first data D1 has not been generated, a negative determination is made in step S4 and the process returns to step S3.
 ステップS5では、X線制御部51は、X線源2から放射されるX線の出力をステップS2と同一の出力に設定し、移動制御部52は、被測定物Sが取り除かれた状態における載置台30を回転軸Yrにて回転させてステップS6へ進む。ステップS6では、画像生成部53は、載置台30が所定角度の回転を行うごとにX線源2から放射されるX線を検出器4によって検出し、その検出データを用いて、複数の第2データD2を生成してステップS7へ進む。ステップS7においては、所定角度ごとの第2データD2の生成が終了したか否かを判定する。全ての第2データD2の生成が終了した場合にはステップS7が肯定判定されてステップS8へ進む。全ての第2データD2が生成されていない場合には、ステップS7が否定判定されてステップS6へ戻る。
 なお、第2データD2の生成後に第1データD1を生成する場合には、上記のステップS5~S7を実行した後、ステップS1~S4を行えば良い。
In step S5, the X-ray control unit 51 sets the output of the X-rays emitted from the X-ray source 2 to the same output as in step S2, and the movement control unit 52 is in a state where the object to be measured S is removed. The mounting table 30 is rotated about the rotation axis Yr, and the process proceeds to step S6. In step S6, the image generating unit 53 detects X-rays radiated from the X-ray source 2 every time the mounting table 30 rotates by a predetermined angle, and uses the detection data to detect a plurality of first rays. Two data D2 is generated and the process proceeds to step S7. In step S7, it is determined whether or not the generation of the second data D2 for each predetermined angle has been completed. When the generation of all the second data D2 is completed, an affirmative determination is made in step S7 and the process proceeds to step S8. If all the second data D2 has not been generated, a negative determination is made in step S7 and the process returns to step S6.
When the first data D1 is generated after the second data D2 is generated, the above steps S5 to S7 are executed, and then the steps S1 to S4 are performed.
 ステップS8においては、画像生成部53は、第1データD1から第2データDを減算して中間データD150を生成し、中間データD150に第3データD3を加算することにより、所定角度ごとの複数の被測定物Sの投影画像データD200を生成してステップS9へ進む。なお、ステップS8の投影画像データD200の生成を、第2データD2を全ての所定角度で取得した後に行う必要は無い。たとえば、各々の所定角度で第2データD2を取得したら、ただちにワークメモリ55に格納された同じ所定角度の第1データD1を読み込み、当該所定角度の投影画像データを生成し、ワークメモリ55に格納した後に、次の所定角度の第2データD2を取得するようにしても良い。その場合は、ステップS6の後に、ステップS8を実行し、その後ステップS7を実行すれば良い。 In step S8, the image generation unit 53 generates the intermediate data D150 by subtracting the second data D from the first data D1, and adds the third data D3 to the intermediate data D150, thereby obtaining a plurality of data for each predetermined angle. The projection image data D200 of the object to be measured S is generated, and the process proceeds to step S9. Note that it is not necessary to generate the projection image data D200 in step S8 after acquiring the second data D2 at all predetermined angles. For example, as soon as the second data D2 is acquired at each predetermined angle, the first data D1 having the same predetermined angle stored in the work memory 55 is read, and projection image data of the predetermined angle is generated and stored in the work memory 55. After that, the second data D2 of the next predetermined angle may be acquired. In that case, step S8 may be executed after step S6, and then step S7 may be executed.
 ステップS9においては、所定角度ごとの被測定物Sの投影画像データD200が全て生成されたか否かを判定する。被測定物Sの投影画像データD200が全て生成された場合には、ステップS9が肯定判定されてステップS10へ進む。生成されていない被測定物Sの投影画像データD200が存在する場合には、ステップS9が否定判定されてステップS8へ戻る。ステップS10では、画像再構成部54は、生成された複数の被測定物Sの投影画像データD200に対して画像再構成処理を施すことにより、被測定物Sの3次元データを生成して処理を終了する。 In step S9, it is determined whether or not all the projection image data D200 of the measurement object S for each predetermined angle has been generated. When all the projection image data D200 of the object S to be measured are generated, an affirmative determination is made in step S9 and the process proceeds to step S10. If there is projection image data D200 of the measurement object S that has not been generated, a negative determination is made in step S9, and the process returns to step S8. In step S10, the image reconstruction unit 54 generates and processes three-dimensional data of the measurement object S by performing image reconstruction processing on the generated projection image data D200 of the plurality of measurement objects S. Exit.
 上述した第1の実施の形態によるX線装置によれば、次の作用効果が得られる。
(1)画像生成部53は、X線源2と検出器4との間に位置する載置台30に被測定物Sが載置されたときに検出器4から出力された第1データD1と、X線源2と検出器4との間に位置する載置台30に被測定物Sが載置されないときに検出器4によって出力された第2データD2とに基づいて被測定物Sの投影画像データD200を生成する。したがって、載置台30によって散乱や反射したX線の影響を低減させた被測定物Sの投影画像データD200を生成できるので、正確な被測定物Sの内部構造に関するデータを取得して、計測精度を向上させることができる。
According to the X-ray apparatus according to the first embodiment described above, the following operational effects can be obtained.
(1) The image generation unit 53 includes the first data D1 output from the detector 4 when the measurement object S is placed on the placement table 30 located between the X-ray source 2 and the detector 4. The projection of the measurement object S based on the second data D2 output by the detector 4 when the measurement object S is not placed on the mounting table 30 positioned between the X-ray source 2 and the detector 4. Image data D200 is generated. Therefore, since the projection image data D200 of the measurement object S in which the influence of the X-rays scattered or reflected by the mounting table 30 is reduced can be generated, accurate data on the internal structure of the measurement object S is acquired, and the measurement accuracy is obtained. Can be improved.
(2)検出器4によって第1データD1が出力されるときのX線源2および検出器4に対する載置台30の相対位置(すなわち、検出移動位置および検出回転位置)と、検出器4によって第2データD2が出力されるときのX線源2および検出器4に対する載置台30の相対位置とが同一である。すなわち、画像生成部53は、第1データD1と、検出器4によって第1データD1が出力されるときの相対位置と同一の相対位置と関連付けてワークメモリ55に格納された第2データD2とに基づいて被測定物Sの投影画像データD200を生成する。したがって、第1データD1および第2データS2を載置台30の相対位置を同一の条件とした状態にて取得するので、載置台30によって散乱や反射したX線の影響を高精度で低減させて、被測定物Sの計測精度の向上に寄与する。 (2) The relative position (that is, the detection movement position and the detection rotation position) of the mounting table 30 with respect to the X-ray source 2 and the detector 4 when the first data D1 is output by the detector 4, and the detector 4 The relative position of the mounting table 30 with respect to the X-ray source 2 and the detector 4 when the two data D2 is output is the same. That is, the image generating unit 53 associates the first data D1 with the second data D2 stored in the work memory 55 in association with the same relative position as the relative position when the first data D1 is output by the detector 4. Based on the above, the projection image data D200 of the measurement object S is generated. Therefore, since the first data D1 and the second data S2 are acquired in a state where the relative position of the mounting table 30 is set to the same condition, the influence of X-rays scattered or reflected by the mounting table 30 can be reduced with high accuracy. This contributes to the improvement of the measurement accuracy of the measurement object S.
(3)検出器4によって第1データD1が出力されるときにX線源2から放射されるX線の出力と、検出器4によって第2データD2が出力されるときにX線源2から放射されるX線の出力とは同一である。したがって、第1データD1および第2データS2をX線の出力を同一とした条件にて取得するので、X線の出力に応じて異なる載置台30によって散乱や反射したX線の影響を高精度で低減させて、被測定物Sの計測精度の向上に寄与する。 (3) The X-ray output emitted from the X-ray source 2 when the first data D1 is output by the detector 4 and the X-ray source 2 when the second data D2 is output by the detector 4 The output of the emitted X-ray is the same. Therefore, since the first data D1 and the second data S2 are acquired under the condition that the X-ray output is the same, the influence of the X-rays scattered and reflected by the mounting table 30 depending on the X-ray output is highly accurate. This contributes to improving the measurement accuracy of the object S to be measured.
 上記の第1の実施の形態によるX線装置100を以下のように変形できる。
(第1変形例)
 複数の相対位置および複数のX線出力において生成された複数の第2データD2を予め記憶させておいても良い。この場合、画像生成部53の内部記憶部531には、第2データD2と相対位置とX線の出力とが関連付けされて記憶される。画像生成部53は、第1データD1を生成する際に載置台30の相対位置をY位置検出器331、X位置検出器341、Z位置検出器351、回転位置検出器321から取得して、第1データD1と相対位置とX線制御部51により設定されたX線の出力(加速電圧および電流量)とを関連付けてワークメモリ55に一時的に格納する。画像生成部53は、第1データD1と関連付けされた相対位置およびX線の出力と同一の相対位置およびX線の出力と関連付けされた第2データD2を内部記憶部531から読み出す。以後、画像生成部53は、上記の説明と同様にして、第1データD1から読み出した第2データD2を減算して中間データD150を生成し、中間データD150から第3データD3を減算して被測定物Sの投影画像データD200を生成する。
The X-ray apparatus 100 according to the first embodiment can be modified as follows.
(First modification)
A plurality of second data D2 generated at a plurality of relative positions and a plurality of X-ray outputs may be stored in advance. In this case, the second data D2, the relative position, and the X-ray output are stored in the internal storage unit 531 of the image generation unit 53 in association with each other. The image generation unit 53 acquires the relative position of the mounting table 30 from the Y position detector 331, the X position detector 341, the Z position detector 351, and the rotational position detector 321 when generating the first data D1. The first data D1, the relative position, and the X-ray output (acceleration voltage and current amount) set by the X-ray control unit 51 are associated with each other and temporarily stored in the work memory 55. The image generation unit 53 reads out from the internal storage unit 531 the second data D2 associated with the same relative position and X-ray output as the relative position and X-ray output associated with the first data D1. Thereafter, the image generation unit 53 generates the intermediate data D150 by subtracting the second data D2 read from the first data D1, and subtracts the third data D3 from the intermediate data D150 in the same manner as described above. Projection image data D200 of the device under test S is generated.
 図8のフローチャートに第1変形例におけるX線装置100が行う被測定物Sの内部構造の計測処理を示す。図8のフローチャートに示す各処理は、図7のフローチャートと同様に、制御装置5でプログラムを実行して行われる。
 ステップS11(載置台を目標位置へ移動)からステップS14(第1データの生成終了判定)までの各処理は、図7のステップS1(載置台を目標位置へ移動)からステップS4(第1データの生成終了判定)までの各処理と同様である。
The flowchart of FIG. 8 shows the measurement process of the internal structure of the measurement object S performed by the X-ray apparatus 100 according to the first modification. Each process shown in the flowchart of FIG. 8 is performed by executing a program in the control device 5 as in the flowchart of FIG.
Each processing from step S11 (moving the mounting table to the target position) to step S14 (judgment of generation completion of the first data) is performed from step S1 (moving the mounting table to the target position) to step S4 (first data) in FIG. This is the same as the processing up to the generation end determination).
 ステップS15では、第1データD1が生成された時点における相対位置およびX線の出力と同一の相対位置およびX線の出力に関連付けされた第2データD2を内部記憶部531から読み出してステップS16へ進む。ステップS16(被測定物の投影画像データ生成)からステップS18(3次元データ生成)までの各処理は、図7のステップ8(被測定物の投影画像データ生成)からステップS10(3次元データ生成)までの各処理と同様である。なお、ステップS17において否定判定された場合には、処理はステップS15へ戻る。 In step S15, the second data D2 associated with the same relative position and X-ray output as the relative position and X-ray output at the time when the first data D1 is generated is read from the internal storage unit 531 and the process proceeds to step S16. move on. Each processing from step S16 (projection image data generation of the object to be measured) to step S18 (three-dimensional data generation) is performed from step 8 (projection image data generation of the object to be measured) to step S10 (three-dimensional data generation). ). If a negative determination is made in step S17, the process returns to step S15.
 以上で説明した第1変形例によれば、第2データD2を複数の相対位置およびX線の出力と関連付けて内部記憶部531に予め記憶しておくことにより、被測定装置Sの測定するごとに第2データD2の生成を行う必要がなくなるので、作業効率の向上に寄与する。さらに、形状や材料が異なる種々の被測定物に対しても新たに第2データD2の生成処理を行うことなく被測定物の投影画像データを生成できるので、利便性を向上させることができる。このように、第2データD2を被測定物SのX線透過像データの補正データとして用いることによって正確なX線の吸収量を取得できる。なお、補正データは、必ずしも被測定物のX線透過像データを取得した検出器4からの画像データに限られず、載置台30や、後述する被測定物Sを安定して載置させるための治具がX線源2からのX線が到達する位置に配置されることに起因して生じる透過像データへの影響を低減させる補正データであれば良い。 According to the first modification described above, the second data D2 is stored in advance in the internal storage unit 531 in association with a plurality of relative positions and X-ray outputs, so that the device under test S measures each time. In addition, since it is not necessary to generate the second data D2, it contributes to improvement of work efficiency. Furthermore, the projection image data of the object to be measured can be generated without newly generating the second data D2 for various objects to be measured having different shapes and materials, so that convenience can be improved. In this way, by using the second data D2 as correction data for the X-ray transmission image data of the object S to be measured, an accurate X-ray absorption amount can be acquired. The correction data is not necessarily limited to the image data from the detector 4 that has acquired the X-ray transmission image data of the object to be measured, and is used for stably mounting the mounting table 30 and the object S to be described later. Any correction data may be used as long as the jig reduces the influence on the transmission image data caused by the X-ray from the X-ray source 2 reaching the position.
(第2変形例)
 載置台30上に被測定物Sを安定して載置させるための治具を配置した状態で第2データD2を生成するものについても本発明の一態様に含まれる。すなわち、第2データD2として、載置台30による影響に加えて、治具の形状や材料によって生じるX線の散乱や反射の影響を含めることができる。したがって、画像生成部53による処理により第1データD1から治具によるX線の散乱や反射の影響についても低減させることが可能となるので、治具を製造する際における形状や材料の選定の自由度を向上させることができる。また、この治具をカーボンなどの原子量が小さい構造材料で構成することが好ましい。それにより、治具によるX線の散乱や反射の量も小さくできる。さらに、本願発明を併用することにより、X線の散乱や反射によるX線透過像やX線CT像への影響を極力低減することができる。
(Second modification)
A configuration in which the second data D2 is generated in a state where a jig for stably placing the measurement object S on the mounting table 30 is disposed is also included in one aspect of the present invention. That is, as the second data D2, in addition to the influence of the mounting table 30, the influence of X-ray scattering and reflection caused by the shape and material of the jig can be included. Therefore, it is possible to reduce the influence of X-ray scattering and reflection by the jig from the first data D1 by the processing by the image generation unit 53, so that the shape and material can be freely selected when manufacturing the jig. The degree can be improved. The jig is preferably made of a structural material having a small atomic weight such as carbon. Thereby, the amount of X-ray scattering and reflection by the jig can also be reduced. Furthermore, by using the present invention in combination, the influence on the X-ray transmission image and X-ray CT image due to the scattering and reflection of X-rays can be reduced as much as possible.
(第3変形例)
 載置台30が円板状であれば、所定角度のうちの少なくとも1つに対応する第2データD2を生成すれば良い。載置台30の形状によっては、所定角度ごとに生成された第1データD1の個数よりも、第2データD2の個数を少なくしても良い。すなわち、第2データD2を第1データD1の生成時の所定角度よりも大きな角度ごとに生成しても良い。また、載置台30やマニピュレータ部36などが回転軸Yrに対して任意の回転角度でほぼ理想的な回転対称であれば、ある一方向の角度による第2データD2だけ生成すれば良い。
(Third Modification)
If the mounting table 30 is disk-shaped, the second data D2 corresponding to at least one of the predetermined angles may be generated. Depending on the shape of the mounting table 30, the number of second data D2 may be smaller than the number of first data D1 generated for each predetermined angle. That is, the second data D2 may be generated for each angle larger than a predetermined angle when the first data D1 is generated. Further, if the mounting table 30, the manipulator unit 36, and the like are almost ideal rotationally symmetric at an arbitrary rotation angle with respect to the rotation axis Yr, only the second data D2 with an angle in a certain direction may be generated.
(第4変形例)
 画像再構成部54が画像生成部53によって生成された投影画像データD200を用いて被測定物Sの内部構造である3次元データを生成するものに限定されず、画像生成部53によって生成された中間データD150を用いて3次元データを生成するものも本発明の一態様に含まれる。
 さらに、画像再構成部54が、X線の吸収量の比に応じて、すなわち以下の式(1)の関係に基づいて被測定物Sの3次元データを生成するものについても本発明の一態様に含まれる。
 I=I-μt …(1)
 この場合、画像生成部53の投影画像データ生成部533は、生成した投影画像データD200を第3データD3で除算して、第2投影画像データD300を生成する。図9に第2投影画像データD300の生成を模式的に示す。投影画像データD200が第3データD3によって除算されることにより、画素Ds301~316からなる第2投影画像データD300が生成される。すなわち、投影画像データD200の各画素Ds201~216の画素値が、それぞれ対応する第3データD3の各画素Ds301~316の画素値によって除算される。したがって、第2投影画像データD200においては、画素Ds301~304、307、308、311~316の値が「1」、画素Ds305、306、309、310の値は「0.7」となり、被測定物SをX線の吸収量の比によって表すことができる。画像再構成部54は、この第2投影画像データD300に基づいて、被測定物Sの3次元データを生成することができる。
(Fourth modification)
The image reconstruction unit 54 is not limited to the one that generates the three-dimensional data that is the internal structure of the DUT using the projection image data D200 generated by the image generation unit 53, and is generated by the image generation unit 53. What generates three-dimensional data using the intermediate data D150 is also included in one aspect of the present invention.
Further, the image reconstructing unit 54 generates three-dimensional data of the object S to be measured according to the ratio of X-ray absorption, that is, based on the relationship of the following formula (1). Included in embodiments.
I = I 0 e −μt (1)
In this case, the projection image data generation unit 533 of the image generation unit 53 divides the generated projection image data D200 by the third data D3 to generate second projection image data D300. FIG. 9 schematically shows the generation of the second projection image data D300. By dividing the projection image data D200 by the third data D3, second projection image data D300 including the pixels Ds301 to 316 is generated. That is, the pixel value of each pixel Ds201 to 216 of the projection image data D200 is divided by the pixel value of each pixel Ds301 to 316 of the corresponding third data D3. Accordingly, in the second projection image data D200, the values of the pixels Ds301 to 304, 307, 308, 311 to 316 are “1”, and the values of the pixels Ds305, 306, 309, and 310 are “0.7”. The object S can be represented by the ratio of X-ray absorption. The image reconstruction unit 54 can generate three-dimensional data of the object S to be measured based on the second projection image data D300.
-第2の実施の形態-
 図面を参照して、本発明によるX線装置の第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、載置台による散乱・反射による影響をシミュレーションした結果を用いて被測定物の投影画像データを生成する点で、第1の実施の形態と異なる。
 第2の実施の形態におけるX線装置100においては、画像生成部53の内部記憶部531には、X線源2と検出器4との間に被測定物Sが載置されていない状態で載置台30が位置している場合に検出器4から出力されることが推定されるデータ、すなわち推定データをシミュレーションにより算出したシミュレーションデータが予め記憶される。
-Second Embodiment-
A second embodiment of the X-ray apparatus according to the present invention will be described with reference to the drawings. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the first embodiment. This embodiment is different from the first embodiment in that the projection image data of the object to be measured is generated using the result of simulating the influence of scattering / reflection by the mounting table.
In the X-ray apparatus 100 according to the second embodiment, the measurement object S is not placed between the X-ray source 2 and the detector 4 in the internal storage unit 531 of the image generation unit 53. Data estimated to be output from the detector 4 when the mounting table 30 is located, that is, simulation data obtained by calculating the estimated data by simulation is stored in advance.
 以下、第2の実施の形態において、画像生成部53が行う被測定物Sの投影画像データの生成原理について詳細に説明する。
 図10に、第2の実施の形態における画像生成部53が被測定物Sの投影画像データを生成するために用いるデータの取得方法を模式的に示す。図10(a)は第1データD1を生成する場合を示し、第1の実施の形態の説明の際に用いた図3(a)と同一である。図10(b)に示す第1データD1についても図3(b)と同一である。図10(c)は、第1の実施の形態の説明に用いた図3(c)と同一である。図10(d)に示す第3データD3についても図3(d)と同一である。図10(e)は、載置台30に被測定物Sが載置されない状態でX線源2から放射されたX線が検出器4によって検出されると推定される推定データをシミュレーションによりシミュレーションデータD4(図10(f)参照)として算出するときの、X線源2および検出器4に対する載置台30の仮想的な相対位置を模式的に示す。すなわち、図10(e)はこのような状態を想定して図10(f)のシミュレーションデータD4を算出することを示している。
Hereinafter, in the second embodiment, the generation principle of the projection image data of the measurement object S performed by the image generation unit 53 will be described in detail.
FIG. 10 schematically shows a data acquisition method used by the image generation unit 53 in the second embodiment to generate the projection image data of the object S to be measured. FIG. 10A shows a case where the first data D1 is generated, which is the same as FIG. 3A used in the description of the first embodiment. The first data D1 shown in FIG. 10B is also the same as that shown in FIG. FIG. 10C is the same as FIG. 3C used for the description of the first embodiment. The third data D3 shown in FIG. 10 (d) is the same as FIG. 3 (d). FIG. 10 (e) shows simulation data obtained by simulating estimated data estimated by the detector 4 to detect X-rays radiated from the X-ray source 2 when the measurement object S is not placed on the mounting table 30. A virtual relative position of the mounting table 30 with respect to the X-ray source 2 and the detector 4 when calculating as D4 (see FIG. 10F) is schematically shown. That is, FIG. 10E shows that the simulation data D4 of FIG. 10F is calculated assuming such a state.
 図10(b)に模式的に示す第1データD1は、図3(b)を用いて説明した場合と同様に、被測定物透過データD101と、載置台透過に基づくデータD102と、散乱反射に基づくデータD103と、バックグラウンドに基づくデータD104とを含む。図10(d)に模式的に示す第3データD3は、図3(d)を用いて説明した場合と同様に、バックグラウンドに基づくデータD104を含む。図10(f)に模式的に示すシミュレーションデータD4は、載置台透過に基づくデータD102に相当するシミュレーション結果である載置台透過シミュレーションデータD102’と、散乱反射に基づくデータD103に相当するシミュレーション結果である散乱反射シミュレーションデータD103’とを含む。 The first data D1 schematically shown in FIG. 10B includes the measured object transmission data D101, the data D102 based on the mounting table transmission, and the scattered reflection, as in the case described with reference to FIG. Based data D103 and background-based data D104. The third data D3 schematically shown in FIG. 10 (d) includes data D104 based on the background, as in the case described with reference to FIG. 3 (d). The simulation data D4 schematically shown in FIG. 10 (f) is a mounting table transmission simulation data D102 ′, which is a simulation result corresponding to the data D102 based on the mounting table transmission, and a simulation result corresponding to the data D103 based on the scattered reflection. And some scattered reflection simulation data D103 ′.
 なお、本実施の形態においても、第1の実施の形態の場合と同様に、第3データD3は、X線源2から放射されるX線の出力、すなわち加速電圧と電流量との組み合わせを異ならせた状態ごとに生成され、生成時のX線の出力と関連付けて内部記憶部531に記憶される。複数の第3データD3は、たとえば工場出荷時等の所定のタイミングにて生成され、以後、同一の第3データD3を使用し続けても良いし、検出器4の特性の経年変化等を考慮して、所定の期間ごとに第3データD3を生成して更新可能としても良い。 In the present embodiment as well, as in the case of the first embodiment, the third data D3 is the X-ray output emitted from the X-ray source 2, that is, the combination of the acceleration voltage and the amount of current. It is generated for each different state and stored in the internal storage unit 531 in association with the output of the X-ray at the time of generation. The plurality of third data D3 is generated at a predetermined timing, for example, at the time of shipment from the factory, and thereafter, the same third data D3 may be continuously used, or the change of the characteristics of the detector 4 over time is considered. Then, the third data D3 may be generated and updated every predetermined period.
 シミュレーションデータD4は、載置台30の立体形状を特定可能な構造情報や材料などの情報が含まれる3次元CAD等の設計情報を用いて生成される。シミュレーションデータD4の載置台透過シミュレーションデータD102’は載置台30の設計情報としての構造および材料と、X線源2から各放射方向毎のX線強度情報とに基づいて、載置台30の透過像を算出することにより生成される。シミュレーションデータD4の散乱反射シミュレーションデータD103’は、載置台30の構造情報および材料と、載置台30に入射するX線の入射方向およびその強度とに基づいて、X線が載置台30の立体形状と材料の影響を受けてどのような分布にて検出器4に入射するかをシミュレートした結果を示すデータである。複数の相対位置と複数のX線出力にてシミュレートすることにより生成された複数のシミュレーションデータD4は、それぞれ相対位置とX線出力とに関連付けされて内部記憶部531に記憶される。 The simulation data D4 is generated using design information such as three-dimensional CAD that includes information such as structure information and materials that can specify the three-dimensional shape of the mounting table 30. The mounting table transmission simulation data D102 ′ of the simulation data D4 is based on the structure and material as design information of the mounting table 30 and the X-ray intensity information for each radiation direction from the X-ray source 2, and the transmission image of the mounting table 30. Is generated by calculating. The scattering / reflection simulation data D103 ′ of the simulation data D4 is based on the structure information and material of the mounting table 30, the incident direction and the intensity of the X-rays incident on the mounting table 30, and the three-dimensional shape of the mounting table 30. This is data showing the result of simulating the distribution of light incident on the detector 4 under the influence of the material. A plurality of simulation data D4 generated by simulating with a plurality of relative positions and a plurality of X-ray outputs are stored in the internal storage unit 531 in association with the relative positions and the X-ray outputs, respectively.
 図11に示す投影画像データD200の生成処理の模式図を参照しながら、第2の実施の形態による画像生成部53による処理について説明する。なお、図11においても、図4、図6と同様に、各データに含まれる画素と画素値とを併せて表記する。シミュレーションデータD4は画素Ds401~Ds416により生成される。画素Ds401~405、408、409、412~416の画素値は「0」、載置台透過シミュレーションデータD102’に相当する画素Ds403、411の画素値は「-20」、散乱反射シミュレーションデータD103’に相当する画素Ds405、410の画素値は「1」である。 The processing by the image generation unit 53 according to the second embodiment will be described with reference to the schematic diagram of the generation processing of the projection image data D200 shown in FIG. In FIG. 11, as in FIGS. 4 and 6, the pixels and pixel values included in each data are also described. Simulation data D4 is generated by the pixels Ds401 to Ds416. The pixel values of the pixels Ds401 to 405, 408, 409, 412 to 416 are “0”, the pixel values of the pixels Ds403 and 411 corresponding to the mounting table transmission simulation data D102 ′ are “−20”, and the scattered reflection simulation data D103 ′. The pixel values of the corresponding pixels Ds405 and 410 are “1”.
 画像生成部53は、上記の第1データD1と、第3データD3と、載置台30の設計情報から生成されたシミュレーションデータD4とを用いて、被測定物Sの投影画像データD200を生成する。この場合、図11(a)に示すように、画像生成部53の減算処理部532は、第3データD3とシミュレーションデータD4とを加算して生成したデータを第1データD1から減算する。シミュレーションデータD4は、載置台透過シミュレーションデータD102’と散乱反射シミュレーションデータD103’とからなる。すなわち、第3データD3とシミュレーションデータD4とが加算されることによって生成されたデータは、バックグランドに基づくデータD104と載置台透過シミュレーションデータD102’と散乱反射シミュレーションデータD103’とを含み、第1の実施の形態における第2データD2に相当する情報を有するデータとなる。 The image generation unit 53 generates the projection image data D200 of the object to be measured S using the first data D1, the third data D3, and the simulation data D4 generated from the design information of the mounting table 30. . In this case, as shown in FIG. 11A, the subtraction processing unit 532 of the image generation unit 53 subtracts data generated by adding the third data D3 and the simulation data D4 from the first data D1. The simulation data D4 includes mounting table transmission simulation data D102 'and scattered reflection simulation data D103'. That is, the data generated by adding the third data D3 and the simulation data D4 includes the background-based data D104, the mounting table transmission simulation data D102 ′, and the scattered reflection simulation data D103 ′. In this embodiment, the data has information corresponding to the second data D2.
 上述したように、載置台透過シミュレーションデータD102’は、載置台透過に基づくデータD102に相当するシミュレーション結果であり、散乱反射シミュレーションデータD103’は、散乱反射に基づくデータD103に相当するシミュレーション結果である。載置台透過シミュレーションデータD102’および散乱反射シミュレーションデータD103’は、どちらも検出器4に到達するX線の強度分布をシミュレートしたものである。そこで、載置台透過に基づくデータD102と載置台透過シミュレーションデータD102’とは互いに実質的に同一なデータと見なすことが可能であり、散乱反射に基づくデータD103と散乱反射シミュレーションデータD103’とは互いに実質的に同一なデータと見なすことが可能であるので、互いに減算可能なデータである。 As described above, the mounting table transmission simulation data D102 ′ is a simulation result corresponding to the data D102 based on the mounting table transmission, and the scattered reflection simulation data D103 ′ is a simulation result corresponding to the data D103 based on the scattering reflection. . Both the mounting table transmission simulation data D102 'and the scattered reflection simulation data D103' simulate the intensity distribution of X-rays reaching the detector 4. Therefore, the data D102 based on the mounting table transmission and the mounting table transmission simulation data D102 ′ can be regarded as substantially the same data, and the data D103 based on the scattering reflection and the scattering reflection simulation data D103 ′ are Since they can be regarded as substantially the same data, they can be subtracted from each other.
 減算処理部532は、第1データD1から、第3データD3とシミュレーションデータD4とを加算したデータを減算する。上述したように、第3データD3とシミュレーションデータD4とを加算したデータは第1の実施の形態における第2データD2に相当する情報を有するデータなので、減算処理部532は上記の減算を行うことにより中間データD150を生成する。投影画像データ生成部533は、第1の実施の形態の場合と同様に、中間データD150に第3データD3を加算して投影画像データD200を生成する。これにより、図11(b)に模式的に示すように、第1データD1から載置台透過像データD102と、散乱反射データD103とが第1データD1から除去され、投影画像データD200は、被測定物Sを透過したX線の強度に応じた情報である被測定物透過像データD101に相当するものとなる。 The subtraction processing unit 532 subtracts data obtained by adding the third data D3 and the simulation data D4 from the first data D1. As described above, since the data obtained by adding the third data D3 and the simulation data D4 has data corresponding to the second data D2 in the first embodiment, the subtraction processing unit 532 performs the above subtraction. To generate intermediate data D150. As in the case of the first embodiment, the projection image data generation unit 533 generates the projection image data D200 by adding the third data D3 to the intermediate data D150. Thereby, as schematically shown in FIG. 11B, the mounting table transmission image data D102 and the scattered reflection data D103 are removed from the first data D1 from the first data D1, and the projected image data D200 is This corresponds to the measured object transmission image data D101 which is information corresponding to the intensity of the X-ray transmitted through the measured object S.
 以下、被測定物Sの内部構造の計測処理のためにX線装置100が行う動作について説明する。
 第1の実施の形態の場合と同様に、制御装置5の移動制御部52は、ユーザにより設定された撮影倍率、撮影位置に応じた目標位置となるように、X方向、Y方向、Z方向へ載置台30を移動させる。X線制御部51はX線源2から放射されるX線の出力を第1の実施の形態の場合と同様にして設定し、移動制御部52は、回転駆動部32を駆動させることにより、載置台30および載置台30に載置された被測定物Sを回転軸Yrにて回転させる。
Hereinafter, an operation performed by the X-ray apparatus 100 for the measurement process of the internal structure of the measurement object S will be described.
As in the case of the first embodiment, the movement control unit 52 of the control device 5 sets the X direction, the Y direction, and the Z direction so that the target position corresponding to the shooting magnification and the shooting position set by the user is obtained. The mounting table 30 is moved. The X-ray control unit 51 sets the output of X-rays emitted from the X-ray source 2 in the same manner as in the first embodiment, and the movement control unit 52 drives the rotation driving unit 32 to The mounting table 30 and the object to be measured S mounted on the mounting table 30 are rotated about the rotation axis Yr.
 載置台30および被測定物Sが回転軸Yrにて所定角度の回転をするごとに、検出器4は第1データD1を生成し、設定されたX線の出力と相対位置(すなわち検出移動位置と検出回転位置)とに関連付けしてワークメモリ55に一時的に格納する。上記のようにして第1データD1が生成されると、画像生成部53は、第1データD1の生成時におけるX線の出力と同一の出力と関連付けされた第3データD3およびシミュレーションデータD4とを記憶部56から読み出す。なお、第1データD1の生成に先だって、X線源2から放射されるX線の出力が設定された時点で第3データD3とシミュレーションデータD4とを内部記憶部531から読み出すものについても本発明の一態様に含まれる。 Each time the mounting table 30 and the object to be measured S rotate by a predetermined angle on the rotation axis Yr, the detector 4 generates the first data D1, and outputs the set X-ray output and the relative position (that is, the detected movement position). And the detected rotational position) are temporarily stored in the work memory 55. When the first data D1 is generated as described above, the image generation unit 53 includes the third data D3 and the simulation data D4 associated with the same output as the X-ray output when the first data D1 is generated. Are read from the storage unit 56. Prior to the generation of the first data D1, the present invention also applies to reading out the third data D3 and the simulation data D4 from the internal storage unit 531 when the output of the X-rays emitted from the X-ray source 2 is set. It is included in one aspect.
 上述したように、画像生成部53は、第1データD1と第3データD3とシミュレーションデータD4とを用いて被測定物Sの投影画像データD200を生成する。この場合、画像生成部53は、読み出された複数のシミュレーションデータD4の中から、第1データD1と関連付けられた相対位置と同一の相対位置と関連付けされたシミュレーションデータD4を選択する。すなわち、画像生成部53は、載置台30による散乱や反射の影響が実質的に同一と見なすことができる第1データD1とシミュレーションデータD4とを用いる。画像生成部53は、X線の伝播方向に対する強度分布を示す第3データD3と、シミュレーションデータD4とを加算して、第1の実施の形態にて説明した第2データD2に相当する情報を有するデータを生成する。画像生成部53は、この生成したデータを第1データD1から減算して中間データD150を生成し、この中間データD150に第3データD3を加算することによって、相対位置ごとの複数の被測定物Sの投影画像データD200を生成する。複数の被測定物Sの投影画像データD200が生成されると、画像再構成部54は画像再構成処理により被測定物Sの内部構造(断面構造)である3次元データを生成する。第3データとシミュレーションデータD4とが予め内部記憶部531に記憶されていることにより、形状や材料が異なる種々の被測定物に対しても新たに第3データとシミュレーションデータD4との生成処理を行うことなく被測定物の投影画像データを生成できるので、利便性を向上させることができる。
 なお、被測定物Sの投影像を構成するX線の伝播経路中に載置台30内部を透過するX線が存在しないことが予め分かっている場合には、シミュレーションデータD4として散乱反射シミュレーションデータD103’を用いても良い。たとえば、被測定物Sの相対位置が、被測定物Sの載置面とX線の光軸とが一致するような状態である。この場合は、被測定物Sと載置台30との両方を通過するX線が存在しないため、散乱反射シミュレーションデータD103’をそのままシミュレーションデータD4として使用できる。なお、本明細書において、X線の光軸とは検出器4のX線検出範囲の中心とX線源2のフォーカルポイントとを結ぶ線に一致する軸である。
As described above, the image generation unit 53 generates the projection image data D200 of the measurement object S using the first data D1, the third data D3, and the simulation data D4. In this case, the image generation unit 53 selects simulation data D4 associated with the same relative position as the relative position associated with the first data D1 from among the plurality of read simulation data D4. That is, the image generation unit 53 uses the first data D1 and the simulation data D4 that can be regarded as having substantially the same influence of scattering and reflection by the mounting table 30. The image generation unit 53 adds the third data D3 indicating the intensity distribution in the X-ray propagation direction and the simulation data D4 to obtain information corresponding to the second data D2 described in the first embodiment. The data which has is generated. The image generation unit 53 subtracts the generated data from the first data D1 to generate intermediate data D150, and adds the third data D3 to the intermediate data D150, whereby a plurality of measured objects for each relative position are obtained. S projection image data D200 is generated. When the projection image data D200 of the plurality of objects to be measured S is generated, the image reconstruction unit 54 generates three-dimensional data that is the internal structure (cross-sectional structure) of the object to be measured S by image reconstruction processing. Since the third data and the simulation data D4 are stored in the internal storage unit 531 in advance, a new generation process of the third data and the simulation data D4 is also performed for various objects to be measured having different shapes and materials. Since the projection image data of the object to be measured can be generated without performing it, the convenience can be improved.
If it is known in advance that there is no X-ray transmitted through the mounting table 30 in the X-ray propagation path constituting the projection image of the measurement object S, the scattered reflection simulation data D103 is used as the simulation data D4. 'May be used. For example, the relative position of the object S to be measured is such that the placement surface of the object S to be measured matches the optical axis of the X-ray. In this case, since there is no X-ray that passes through both the measurement object S and the mounting table 30, the scattered reflection simulation data D103 ′ can be used as it is as the simulation data D4. In this specification, the X-ray optical axis is an axis that coincides with a line connecting the center of the X-ray detection range of the detector 4 and the focal point of the X-ray source 2.
 図12のフローチャートを参照しながら、X線装置100による被測定物Sの内部構造の計測処理について説明する。図12のフローチャートに示す各処理は、制御装置5でプログラムを実行して行われる。このプログラムは、メモリ(不図示)に格納されており、ユーザにより被測定物Sが載置台30に載置され被測定物Sの内部構造の計測の開始が指示されると、制御装置5により起動され、実行される。
 ステップS21(載置台を目標位置へ移動)からステップS24(第1データ生成終了判定)までの各処理は、第1の実施の形態にて説明した図7のステップS1(載置台を目標位置へ移動)からステップS4(第1データ生成終了判定)までの各処理と同様である。
The measurement process of the internal structure of the measurement object S by the X-ray apparatus 100 will be described with reference to the flowchart of FIG. Each process shown in the flowchart of FIG. 12 is performed by executing a program in the control device 5. This program is stored in a memory (not shown), and when the user places the workpiece S on the mounting table 30 and gives an instruction to start measuring the internal structure of the workpiece S, the control device 5 Get up and running.
Each processing from step S21 (moving the mounting table to the target position) to step S24 (first data generation end determination) is performed in step S1 (moving the mounting table to the target position) of FIG. 7 described in the first embodiment. This is the same as each process from (movement) to step S4 (first data generation end determination).
 ステップS25では、画像生成部53は、第1データD1を生成する際にステップS22にて設定されたX線の出力と同一の出力と関連付けて記憶された第3データD3とシミュレーションデータD4とを読み出してステップS26へ進む。なお、X線の出力が設定された時点で第3データD3とシミュレーションデータD4を読み出す場合には、ステップS25の処理をステップS22にて行うことができる。ステップS26においては、画像生成部53は、第1データD1と、第3データD3と、第1データD1と関連付けされた所定角度と同一の所定角度が関連付けされたシミュレーションデータD4とを用いて、被測定物Sの投影画像データD200を生成してステップS27へ進む。ステップS27(投影画像データの生成終了判定)からステップS28(3次元データ生成)までの各処理は、図7のステップS9(投影画像データ生成終了判定)からステップS10(3次元データ生成)までの各処理と同様である。なお、ステップS27において否定判定がされた場合には、処理はステップS26に戻る。 In step S25, the image generation unit 53 uses the third data D3 and the simulation data D4 stored in association with the same output as the X-ray output set in step S22 when generating the first data D1. Read and proceed to step S26. When the third data D3 and the simulation data D4 are read when the X-ray output is set, the process of step S25 can be performed in step S22. In step S26, the image generation unit 53 uses the first data D1, the third data D3, and the simulation data D4 associated with the same predetermined angle as the predetermined angle associated with the first data D1. The projection image data D200 of the object to be measured S is generated, and the process proceeds to step S27. Each processing from step S27 (projection image data generation end determination) to step S28 (three-dimensional data generation) is performed from step S9 (projection image data generation end determination) to step S10 (three-dimensional data generation) in FIG. This is the same as each process. If a negative determination is made in step S27, the process returns to step S26.
 以上で説明した第2の実施の形態によるX線装置によれば、第1の実施の形態による得られる(1)~(3)の作用効果に加えて、以下の作用効果が得られる。
 画像生成部53は、第1データD1と、X線源2と検出器4との間に載置台30がないときに検出器4によって出力された第3データD3と、X線源2と検出器4との間に被測定物Sが載置されていない載置台30が位置している場合に検出器4が出力する載置台30に関する検出データをシミュレーションで算出したシミュレーションデータD4とに基づいて被測定物Sの投影画像データD200を生成する。したがって、予め第3データD3とシミュレーションデータD4とを生成して記憶させておくことにより、被測定物Sの計測の度に載置台30によって散乱や反射したX線の影響を示すデータを取得する必要がなくなり、作業工程の効率化に寄与する。
According to the X-ray apparatus according to the second embodiment described above, in addition to the functions and effects (1) to (3) obtained by the first embodiment, the following functions and effects can be obtained.
The image generation unit 53 detects the first data D1, the third data D3 output by the detector 4 when there is no mounting table 30 between the X-ray source 2 and the detector 4, the X-ray source 2 and the detection. Based on simulation data D4 calculated by simulation of detection data relating to the mounting table 30 output by the detector 4 when the mounting table 30 on which the object to be measured S is not mounted is positioned between the device 4 and the device 4. Projection image data D200 of the device under test S is generated. Therefore, by generating and storing the third data D3 and the simulation data D4 in advance, data indicating the influence of X-rays scattered or reflected by the mounting table 30 is obtained each time the measurement object S is measured. It is no longer necessary and contributes to the efficiency of the work process.
-第3の実施の形態-
 図面を参照して、本発明の実施の形態による構造物製造システムを説明する。本実施の形態の構造物製造システムは、たとえば自動車のドア部分、エンジン部分、ギア部分および回路基板を備える電子部品等の成型品を作成する。
-Third embodiment-
A structure manufacturing system according to an embodiment of the present invention will be described with reference to the drawings. The structure manufacturing system of the present embodiment creates a molded product such as an electronic component including, for example, an automobile door portion, an engine portion, a gear portion, and a circuit board.
 図13は本実施の形態による構造物製造システム400の構成の一例を示すブロック図である。構造物製造システム400は、第1~第2の各実施の形態または第1~第3変形例にて説明したX線装置100と、設計装置410と、成形装置420と、制御システム430と、リペア装置440とを備える。 FIG. 13 is a block diagram showing an example of the configuration of the structure manufacturing system 400 according to the present embodiment. The structure manufacturing system 400 includes an X-ray apparatus 100, a design apparatus 410, a molding apparatus 420, a control system 430, which are described in the first to second embodiments or the first to third modifications. A repair device 440.
 設計装置410は、構造物の形状に関する設計情報を作成する際にユーザが用いる装置であって、設計情報を作成して記憶する設計処理を行う。設計情報は、構造物の各位置の座標を示す情報である。設計情報は成形装置420および後述する制御システム430に出力される。成形装置420は設計装置410により作成された設計情報を用いて構造物を作成、成形する成形処理を行う。この場合、成形装置420は、3Dプリンター技術で代表される積層加工、鋳造加工、鍛造加工および切削加工のうち少なくとも1つを行うものについても本発明の一態様に含まれる。 The design device 410 is a device used by a user when creating design information related to the shape of a structure, and performs a design process for creating and storing design information. The design information is information indicating the coordinates of each position of the structure. The design information is output to the molding apparatus 420 and a control system 430 described later. The molding apparatus 420 performs a molding process for creating and molding a structure using the design information created by the design apparatus 410. In this case, the molding apparatus 420 includes an apparatus that performs at least one of laminating, casting, forging, and cutting represented by 3D printer technology.
 X線装置100は、成形装置420により成形された構造物の形状を測定する測定処理を行う。X線装置100は、構造物を測定した測定結果である構造物の座標を示す情報(以後、形状情報と呼ぶ)を制御システム430に出力する。制御システム430は、座標記憶部431と、検査部432とを備える。座標記憶部431は、上述した設計装置410により作成された設計情報を記憶する。 The X-ray apparatus 100 performs a measurement process for measuring the shape of the structure molded by the molding apparatus 420. The X-ray apparatus 100 outputs information (hereinafter referred to as shape information) indicating the coordinates of the structure, which is a measurement result of the structure, to the control system 430. The control system 430 includes a coordinate storage unit 431 and an inspection unit 432. The coordinate storage unit 431 stores design information created by the design apparatus 410 described above.
 検査部432は、成形装置420により成形された構造物が設計装置410により作成された設計情報に従って成形されたか否かを判定する。換言すると、検査部432は、成形された構造物が良品か否かを判定する。この場合、検査部432は、座標記憶部431に記憶された設計情報を読み出して、設計情報とX線装置100から入力した形状情報とを比較する検査処理を行う。検査部432は、検査処理としてたとえば設計情報が示す座標と対応する形状情報が示す座標とを比較し、検査処理の結果、設計情報の座標と形状情報の座標とが一致している場合には設計情報に従って成形された良品であると判定する。設計情報の座標と対応する形状情報の座標とが一致していない場合には、検査部432は、座標の差分が所定範囲内であるか否かを判定し、所定範囲内であれば修復可能な不良品と判定する。 The inspection unit 432 determines whether the structure molded by the molding device 420 is molded according to the design information created by the design device 410. In other words, the inspection unit 432 determines whether or not the molded structure is a good product. In this case, the inspection unit 432 reads the design information stored in the coordinate storage unit 431 and performs an inspection process for comparing the design information with the shape information input from the X-ray apparatus 100. The inspection unit 432 compares, for example, the coordinates indicated by the design information with the coordinates indicated by the corresponding shape information as the inspection processing, and if the coordinates of the design information and the coordinates of the shape information match as a result of the inspection processing. It is determined that the product is a non-defective product molded according to the design information. If the coordinates of the design information do not match the coordinates of the corresponding shape information, the inspection unit 432 determines whether or not the coordinate difference is within a predetermined range, and if it is within the predetermined range, it can be restored. Judged as a defective product.
 修復可能な不良品と判定した場合には、検査部432は、不良部位と修復量とを示すリペア情報をリペア装置440へ出力する。不良部位は設計情報の座標と一致していない形状情報の座標であり、修復量は不良部位における設計情報の座標と形状情報の座標との差分である。リペア装置440は、入力したリペア情報に基づいて、構造物の不良部位を再加工するリペア処理を行う。リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。 If it is determined that the defective product can be repaired, the inspection unit 432 outputs repair information indicating the defective portion and the repair amount to the repair device 440. The defective part is the coordinate of the shape information that does not match the coordinate of the design information, and the repair amount is the difference between the coordinate of the design information and the coordinate of the shape information in the defective part. The repair device 440 performs a repair process for reworking a defective portion of the structure based on the input repair information. The repair device 440 performs again the same process as the molding process performed by the molding apparatus 420 in the repair process.
 図14に示すフローチャートを参照しながら、構造物製造システム400が行う処理について説明する。
 ステップS31では、設計装置410はユーザによって構造物の設計を行う際に用いられ、設計処理により構造物の形状に関する設計情報を作成し記憶してステップS32へ進む。なお、設計装置410で作成された設計情報のみに限定されず、既に設計情報がある場合には、その設計情報を入力することで、設計情報を取得するものについても本発明の一態様に含まれる。ステップS32では、成形装置420は成形処理により、設計情報に基づいて構造物を作成、成形してステップS33へ進む。ステップS33においては、X線装置100は測定処理を行って、構造物の形状を計測し、形状情報を出力してステップS34へ進む。
Processing performed by the structure manufacturing system 400 will be described with reference to the flowchart shown in FIG.
In step S31, the design device 410 is used when the structure is designed by the user. The design apparatus 410 creates and stores design information related to the shape of the structure by the design process, and the process proceeds to step S32. Note that the present invention is not limited to only the design information created by the design apparatus 410, and when design information already exists, the design information is acquired by inputting the design information and is included in one aspect of the present invention. It is. In step S32, the forming apparatus 420 creates and forms a structure based on the design information by the forming process, and proceeds to step S33. In step S33, the X-ray apparatus 100 performs measurement processing, measures the shape of the structure, outputs shape information, and proceeds to step S34.
 ステップS34では、検査部432は、設計装置410により作成された設計情報とX線装置100により測定され、出力された形状情報とを比較する検査処理を行って、ステップS35へ進む。ステップS35では、検査処理の結果に基づいて、検査部432は成形装置420により成形された構造物が良品か否かを判定する。構造物が良品である場合、すなわち設計情報の座標と形状情報の座標とが一致する場合には、ステップS35が肯定判定されて処理を終了する。構造物が良品ではない場合、すなわち設計情報の座標と形状情報の座標とが一致しない場合や設計情報には無い座標が検出された場合には、ステップS35が否定判定されてステップS36へ進む。 In step S34, the inspection unit 432 performs an inspection process for comparing the design information created by the design apparatus 410 with the shape information measured and output by the X-ray apparatus 100, and the process proceeds to step S35. In step S35, based on the result of the inspection process, the inspection unit 432 determines whether or not the structure formed by the forming apparatus 420 is a non-defective product. If the structure is a non-defective product, that is, if the coordinates of the design information coincide with the coordinates of the shape information, an affirmative determination is made in step S35 and the process ends. If the structure is not a non-defective product, that is, if the coordinates of the design information do not match the coordinates of the shape information, or if coordinates that are not in the design information are detected, a negative determination is made in step S35 and the process proceeds to step S36.
 ステップS36では、検査部432は構造物の不良部位が修復可能か否かを判定する。不良部位が修復可能ではない場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲を超えている場合には、ステップS36が否定判定されて処理を終了する。不良部位が修復可能な場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲内の場合には、ステップS36が肯定判定されてステップS37へ進む。この場合、検査部432はリペア装置440にリペア情報を出力する。ステップS37においては、リペア装置440は、入力したリペア情報に基づいて、構造物に対してリペア処理を行ってステップS33へ戻る。なお、上述したように、リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。 In step S36, the inspection unit 432 determines whether or not the defective portion of the structure can be repaired. If the defective part is not repairable, that is, if the difference between the coordinates of the design information and the shape information in the defective part exceeds the predetermined range, a negative determination is made in step S36 and the process ends. If the defective part can be repaired, that is, if the difference between the coordinates of the design information and the shape information in the defective part is within a predetermined range, an affirmative determination is made in step S36 and the process proceeds to step S37. In this case, the inspection unit 432 outputs repair information to the repair device 440. In step S37, the repair device 440 performs a repair process on the structure based on the input repair information, and returns to step S33. As described above, the repair device 440 performs again the same processing as the molding processing performed by the molding device 420 in the repair processing.
 上述した第4の実施の形態による構造物製造システムによれば、以下の作用効果が得られる。
(1)構造物製造システム400のX線装置100は、設計装置410の設計処理に基づいて成形装置420により作成された構造物の形状情報を取得する測定処理を行い、制御システム430の検査部432は、測定処理にて取得された形状情報と設計処理にて作成された設計情報とを比較する検査処理を行う。したがって、構造物の欠陥の検査や構造物の内部の情報を非破壊検査によって取得し、構造物が設計情報の通りに作成された良品であるか否かを判定できるので、構造物の品質管理に寄与する。
According to the structure manufacturing system of the fourth embodiment described above, the following functions and effects can be obtained.
(1) The X-ray apparatus 100 of the structure manufacturing system 400 performs a measurement process for acquiring shape information of the structure created by the molding apparatus 420 based on the design process of the design apparatus 410, and performs an inspection unit of the control system 430. Reference numeral 432 performs an inspection process for comparing the shape information acquired in the measurement process with the design information created in the design process. Therefore, it is possible to determine whether or not a structure is a non-defective product created according to design information by inspecting the defect of the structure and information inside the structure by nondestructive inspection. Contribute to.
(2)リペア装置440は、検査処理の比較結果に基づいて、構造物に対して成形処理を再度行うリペア処理を行うようにした。したがって、構造物の不良部分が修復可能な場合には、再度成形処理と同様の処理を構造物に対して施すことができるので、設計情報に近い高品質の構造物の製造に寄与する。 (2) The repair device 440 performs the repair process for performing the molding process again on the structure based on the comparison result of the inspection process. Therefore, when the defective portion of the structure can be repaired, the same processing as the molding process can be performed again on the structure, which contributes to the manufacture of a high-quality structure close to design information.
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
 被測定物Sが載置される載置台30がY軸移動部33と、X軸移動部34と、Z軸移動部35とによってX軸、Y軸およびZ軸方向に移動されるものに限定されない。載置台30はX軸、Y軸およびZ軸方向に移動せず、X線源2および検出器4をX軸、Y軸およびZ軸方向に移動させることにより、被測定物Sに対してX線源2および検出器4を相対移動させるものについても本発明の一態様に含まれる。また、載置台30が回転軸Yrにて回転するものに代えて、載置台30は回転せず、X線源2と検出器4とが回転軸Yrにて回転するものについても本発明の一態様に含まれる。
 また、被測定物Sに放射線を放射する線源と、線源から放射された放射線を検出して、検出データを出力する検出器と、線源と検出器との間に配置され、被測定物Sを載置する載置部材と、検出器によって検出された放射線に基づいて、被測定物Sの投影像データを生成する生成部とを備え、生成部は、検出器から取得された被測定物Sの透過像データに対して載置部材が放射線に曝されることにより生じる透過像データの検出誤差成分を低減するように補正する補正部を有する装置についても本発明の一態様に含まれる。
 また、第2の実施の形態では、第2データD2として、シミュレーションにより算出されたシミュレーションデータを用いたが、シミュレーションデータの代わりに、今までの経験則に基づいて載置台30等の透過像によるX線強度分布をユーザや装置製造者が推定して第2データとして用いても構わない。
The following modifications are also within the scope of the present invention, and one or a plurality of modifications can be combined with the above-described embodiment.
The mounting table 30 on which the object to be measured S is mounted is limited to one that is moved in the X-axis, Y-axis, and Z-axis directions by the Y-axis moving unit 33, the X-axis moving unit 34, and the Z-axis moving unit 35. Not. The mounting table 30 does not move in the X-axis, Y-axis, and Z-axis directions, and the X-ray source 2 and the detector 4 are moved in the X-axis, Y-axis, and Z-axis directions, so that What relatively moves the radiation source 2 and the detector 4 is also included in one aspect of the present invention. Further, instead of the table 30 rotating about the rotation axis Yr, the table 30 does not rotate, and the X-ray source 2 and the detector 4 rotate about the rotation axis Yr. Included in embodiments.
Further, a radiation source that radiates radiation to the object S to be measured, a detector that detects radiation radiated from the radiation source, and outputs detection data; and a radiation source disposed between the radiation source and the detector. A mounting member that mounts the object S; and a generation unit that generates projection image data of the object S to be measured based on the radiation detected by the detector. The generation unit includes the object acquired from the detector. An apparatus having a correction unit that corrects the transmission image data of the measurement object S so as to reduce the detection error component of the transmission image data generated when the mounting member is exposed to radiation is also included in one aspect of the present invention. It is.
In the second embodiment, the simulation data calculated by the simulation is used as the second data D2. However, instead of the simulation data, the second data D2 is based on a transmission image of the mounting table 30 or the like based on the empirical rule so far. The X-ray intensity distribution may be estimated by the user or device manufacturer and used as the second data.
 本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 As long as the characteristics of the present invention are not impaired, the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .
2…X線源、3…載置部、4…検出器、
5…制御装置、30…載置台、32…回転駆動部、
33…Y軸移動部、34…X軸移動部、35…Z軸移動部、
36…マニピュレータ部、51…X線制御部、52…移動制御部、
53…画像生成部、54…画像再構成部、55…ワークメモリ、
100…X線装置、331…Y位置検出器、
341…X位置検出器、351…Z位置検出器、321…回転位置検出器、
400…構造物製造システム、410…設計装置、420…成形装置、
430…制御システム、432…検査部、440…リペア装置、
531…内部記憶部、532…減算処理部、533…投影画像データ生成部
2 ... X-ray source, 3 ... mounting part, 4 ... detector,
5 ... Control device, 30 ... Mounting table, 32 ... Rotation drive part,
33 ... Y-axis moving unit, 34 ... X-axis moving unit, 35 ... Z-axis moving unit,
36 ... Manipulator part, 51 ... X-ray control part, 52 ... Movement control part,
53 ... Image generation unit, 54 ... Image reconstruction unit, 55 ... Work memory,
100 ... X-ray apparatus, 331 ... Y position detector,
341 ... X position detector, 351 ... Z position detector, 321 ... Rotation position detector,
400 ... structure manufacturing system, 410 ... design device, 420 ... molding device,
430 ... Control system, 432 ... Inspection section, 440 ... Repair device,
531: Internal storage unit, 532: Subtraction processing unit, 533: Projection image data generation unit

Claims (20)

  1.  被測定物に放射線を放射する線源と、
     前記線源から放射された前記放射線を検出して、検出データを出力する検出器と、
     前記線源と前記検出器との間に配置され、前記被測定物を載置する載置部材と、
     前記検出器によって検出された前記放射線に基づいて、前記被測定物の投影データを生成する生成部とを備え、
     前記生成部は、前記線源と前記検出器との間に位置する前記載置部材に前記被測定物が載置されたときに前記検出器によって前記検出データとして出力された第1データと、前記線源と前記検出器との間に位置する前記載置部材に前記被測定物が載置されないときに前記検出器によって前記検出データとして出力された第2データとに基づいて前記被測定物の投影データを生成するか、または、前記第1データと、前記線源と前記検出器との間に前記被測定物が載置されていない前記載置部材が位置している場合に前記検出器から出力されると推定される推定データとに基づいて前記被測定物の投影データを生成する投影データ生成装置。
    A radiation source that emits radiation to the object to be measured;
    A detector that detects the radiation emitted from the radiation source and outputs detection data;
    A mounting member disposed between the radiation source and the detector and mounting the object to be measured;
    A generator that generates projection data of the object to be measured based on the radiation detected by the detector;
    The generation unit, the first data output as the detection data by the detector when the object to be measured is placed on the mounting member located between the radiation source and the detector, The device under test based on the second data output as the detection data by the detector when the device under test is not placed on the mounting member located between the radiation source and the detector. The projection data is generated, or the detection is performed when the mounting member is placed between the first data and the radiation source and the detector. A projection data generation device that generates projection data of the object to be measured based on estimated data that is estimated to be output from a measuring device.
  2.  請求項1に記載の投影データ生成装置において、
     前記生成部は、前記測定物の投影データを生成する際に、さらに、前記線源と前記検出器との間に前記載置部材がないときに前記検出器によって前記検出データとして出力された第3データを用いる投影データ生成装置。
    The projection data generation device according to claim 1,
    When the generation unit generates projection data of the measurement object, the generation unit outputs the detection data as the detection data by the detector when there is no placement member between the radiation source and the detector. Projection data generation apparatus using 3 data.
  3.  請求項2に記載の投影データ生成装置において、
     前記載置部材を前記線源と前記検出器とに対して相対移動する移動部をさらに備える投影データ生成装置。
    The projection data generation device according to claim 2,
    A projection data generating apparatus, further comprising a moving unit that moves the mounting member relative to the radiation source and the detector.
  4.  請求項3に記載の投影データ生成装置において、
     前記検出器によって前記第1データが出力されるときの前記線源および前記検出器に対する前記載置部材の相対位置と、前記検出器によって前記第2データが出力されるときの前記線源および前記検出器に対する前記載置部材の相対位置とが同一である投影データ生成装置。
    In the projection data generation device according to claim 3,
    The relative position of the mounting member with respect to the radiation source and the detector when the first data is output by the detector, and the radiation source and the radiation source when the second data is output by the detector. A projection data generating device in which the relative position of the mounting member with respect to the detector is the same.
  5.  請求項4に記載の投影データ生成装置において、
     所定の前記相対位置ごとに出力された複数の前記第2データを、前記相対位置と関連付けて記憶する記憶部と、
     前記線源および前記検出器に対する前記載置部材の前記相対位置を検出する位置検出部と、をさらに備え、
     前記生成部は、前記第1データと、前記検出器によって前記第1データが出力されるときに前記位置検出部によって検出された前記相対位置と同一の前記相対位置と関連付けて記憶された前記第2データとに基づいて前記被測定物の投影データを生成する投影データ生成装置。
    The projection data generation device according to claim 4,
    A storage unit that stores a plurality of the second data output for each of the predetermined relative positions in association with the relative positions;
    A position detection unit that detects the relative position of the mounting member with respect to the radiation source and the detector;
    The generating unit stores the first data in association with the relative position that is the same as the relative position detected by the position detecting unit when the first data is output by the detector. A projection data generation device that generates projection data of the object to be measured based on two data.
  6.  請求項4または5に記載の投影データ生成装置において、
     前記検出器によって前記第1データが出力されるときに前記線源から放射される前記放射線の出力と、前記検出器によって前記第2データが出力されるときに前記線源から放射される前記放射線の出力とは同一である投影データ生成装置。
    In the projection data generation device according to claim 4 or 5,
    The radiation emitted from the radiation source when the first data is output by the detector and the radiation emitted from the radiation source when the second data is output by the detector. Projection data generation device that is the same as the output.
  7.  請求項4乃至6の何れか一項に記載の投影データ生成装置において、
     前記被測定物とは異なる被測定物が前記載置部材に載置されたときに前記検出器によって出力された前記検出データと、前記第2データとに基づいて前記異なる被測定物の投影データを生成する投影データ生成装置。
    In the projection data generation device according to any one of claims 4 to 6,
    Projection data of the different object to be measured based on the detection data output by the detector when the object to be measured different from the object to be measured is placed on the mounting member, and the second data. Projection data generation device for generating
  8.  請求項3に記載の投影データ生成装置において、
     前記検出器によって前記第1データが出力されるときの前記線源および前記検出器に対する前記載置部材の相対位置と、前記推定データを推定する際の前記線源および前記検出器に対する前記載置部材の相対位置とが同一である投影データ生成装置。
    In the projection data generation device according to claim 3,
    The relative position of the mounting member with respect to the radiation source and the detector when the first data is output by the detector, and the mounting position with respect to the radiation source and the detector when estimating the estimated data. A projection data generation device having the same relative position of members.
  9.  請求項8に記載の投影データ生成装置において、
     所定の前記相対位置ごとに推定された複数の前記推定データを、前記相対位置と関連付けて記憶する記憶部と、
     前記線源および前記検出器に対する前記載置部材の前記相対位置を検出する位置検出部と、をさらに備え、
     前記生成部は、前記第1データと、前記第3データと、前記検出器によって前記第1データが出力されるときに前記位置検出部によって検出された前記相対位置と同一の前記相対位置と関連付けて記憶された前記推定データとに基づいて前記被測定物の投影データを生成する投影データ生成装置。
    The projection data generation apparatus according to claim 8, wherein
    A storage unit that stores a plurality of the estimated data estimated for each of the predetermined relative positions in association with the relative position;
    A position detection unit that detects the relative position of the mounting member with respect to the radiation source and the detector;
    The generation unit associates the first data, the third data, and the relative position that is the same as the relative position detected by the position detection unit when the first data is output by the detector. A projection data generation device that generates projection data of the object to be measured based on the estimated data stored in the above.
  10.  請求項8または9に記載の投影データ生成装置において、
     前記検出器によって前記第1データが出力されるときに前記線源から放射される前記放射線の出力と、前記検出器によって前記第3データが出力されるときに前記線源から放射される前記放射線の出力とは同一である投影データ生成装置。
    In the projection data generation device according to claim 8 or 9,
    The radiation emitted from the radiation source when the first data is output by the detector and the radiation emitted from the radiation source when the third data is output by the detector. Projection data generation device that is the same as the output.
  11.  請求項8乃至10の何れか一項に記載の投影データ生成装置において、
     前記被測定物とは異なる被測定物が前記載置部材に載置されたときに前記検出器によって出力された前記検出データと、前記第3データと、前記推定データとに基づいて前記異なる被測定物の投影データを生成する投影データ生成装置。
    In the projection data generation device according to any one of claims 8 to 10,
    Based on the detection data, the third data, and the estimated data output by the detector when an object to be measured different from the object to be measured is placed on the mounting member. A projection data generation device that generates projection data of a measurement object.
  12.  請求項8乃至11の何れか一項に記載の投影データ生成装置において、
     前記推定データは前記載置部材の構造情報と材料とを用いて生成されたデータである投影データ生成装置。
    In the projection data generation device according to any one of claims 8 to 11,
    The projection data generation apparatus, wherein the estimation data is data generated using the structure information and material of the mounting member.
  13.  請求項4乃至12の何れか一項に記載の投影データ生成装置において、
     前記相対位置は、前記放射線に対する前記載置部材の相対的な方向を含む投影データ生成装置。
    In the projection data generation device according to any one of claims 4 to 12,
    The relative position is a projection data generation device including a relative direction of the mounting member with respect to the radiation.
  14.  請求項1乃至13の何れか一項に記載の投影データ生成装置において、
     前記載置部材は、前記被測定物を安定して載置させる治具を含む投影データ生成装置。
    In the projection data generation device according to any one of claims 1 to 13,
    The mounting member is a projection data generation device including a jig for stably mounting the object to be measured.
  15.  請求項1乃至14の何れか一項に記載の投影データ生成装置において、
     前記生成部は、前記第2データおよび前記推定データの何れか一方を用いて、前記第1データにおける前記載置部材によって散乱したX線の散乱成分を低減させた前記被測定物の投影データを生成する投影データ生成装置。
    In the projection data generation device according to any one of claims 1 to 14,
    The generation unit uses the one of the second data and the estimation data to generate projection data of the object to be measured in which the scattered component of the X-rays scattered by the mounting member in the first data is reduced. Projection data generation device to generate.
  16.  請求項1乃至14の何れか一項に記載の投影データ生成装置において、
     前記推定データは、前記検出器が出力する前記載置部材に関する検出データをシミュレーションで算出したシミュレーションデータである投影データ生成装置。
    In the projection data generation device according to any one of claims 1 to 14,
    The projection data generation device, wherein the estimation data is simulation data in which detection data related to the mounting member output by the detector is calculated by simulation.
  17.  請求項1乃至16の何れか一項に記載の投影データ生成装置と、
     前記被測定物に対する前記線源および前記検出器の相対位置が異なる状態で、前記検出器により取得され、前記生成部により生成された複数の前記被測定物の投影データに基づいて、前記被測定物の内部構造情報を生成する再構成部とを備える計測装置。
    The projection data generation device according to any one of claims 1 to 16,
    Based on projection data of a plurality of the measurement objects acquired by the detector and generated by the generation unit in a state where the relative positions of the radiation source and the detector with respect to the measurement object are different. A measuring device comprising: a reconstruction unit that generates internal structure information of an object.
  18.  構造物の形状に関する設計情報を作成し、
     前記設計情報に基づいて前記構造物を作成し、
     作成された前記構造物の形状を、請求項17に記載の計測装置を用いて計測して形状情報を取得し、
     前記取得された前記形状情報と前記設計情報とを比較する構造物の製造方法。
    Create design information about the shape of the structure,
    Create the structure based on the design information,
    The shape of the created structure is measured using the measuring device according to claim 17 to obtain shape information,
    A structure manufacturing method for comparing the acquired shape information and the design information.
  19.  請求項18に記載の構造物の製造方法において、
     前記形状情報と前記設計情報との比較結果に基づいて実行され、前記構造物の再加工を行う構造物の製造方法。
    In the manufacturing method of the structure according to claim 18,
    A method of manufacturing a structure, which is executed based on a comparison result between the shape information and the design information, and reworks the structure.
  20.  請求項19に記載の構造物の製造方法において、
     前記構造物の再加工は、前記設計情報に基づいて前記構造物の作成を再度行う構造物の製造方法。
     
     
     
    In the manufacturing method of the structure according to claim 19,
    The reworking of the structure is a structure manufacturing method in which the structure is created again based on the design information.


PCT/JP2014/077086 2014-10-09 2014-10-09 Projection data generator, measuring device, and structure manufacturing method WO2016056107A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077086 WO2016056107A1 (en) 2014-10-09 2014-10-09 Projection data generator, measuring device, and structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077086 WO2016056107A1 (en) 2014-10-09 2014-10-09 Projection data generator, measuring device, and structure manufacturing method

Publications (1)

Publication Number Publication Date
WO2016056107A1 true WO2016056107A1 (en) 2016-04-14

Family

ID=55652763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077086 WO2016056107A1 (en) 2014-10-09 2014-10-09 Projection data generator, measuring device, and structure manufacturing method

Country Status (1)

Country Link
WO (1) WO2016056107A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372249A (en) * 1989-08-14 1991-03-27 Fujitsu Ltd X-ray soldering inspecting device
JP2004020442A (en) * 2002-06-18 2004-01-22 Toshiba It & Control Systems Corp X-ray fluoroscopic inspection system
JP2006126149A (en) * 2004-11-01 2006-05-18 Toshiba Corp Observation apparatus and observation method for inside of high-pressure vessel
JP2006126119A (en) * 2004-11-01 2006-05-18 Toshiba Corp Solid reaction measuring method and measuring equipment
JP2006201103A (en) * 2005-01-24 2006-08-03 Toshiba Corp Apparatus for observing state in high-pressure vessel, its observation method, high-pressure solid reactor, high-pressure vessel inspection apparatus, its inspection method, and high-pressure reactor
JP2007078557A (en) * 2005-09-15 2007-03-29 Shimadzu Corp X-ray inspection device
JP2010057572A (en) * 2008-09-02 2010-03-18 Shimadzu Corp X-ray ct apparatus
JP2014134386A (en) * 2013-01-08 2014-07-24 Nikon Corp Inspection method, inspection system, program, and structure manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372249A (en) * 1989-08-14 1991-03-27 Fujitsu Ltd X-ray soldering inspecting device
JP2004020442A (en) * 2002-06-18 2004-01-22 Toshiba It & Control Systems Corp X-ray fluoroscopic inspection system
JP2006126149A (en) * 2004-11-01 2006-05-18 Toshiba Corp Observation apparatus and observation method for inside of high-pressure vessel
JP2006126119A (en) * 2004-11-01 2006-05-18 Toshiba Corp Solid reaction measuring method and measuring equipment
JP2006201103A (en) * 2005-01-24 2006-08-03 Toshiba Corp Apparatus for observing state in high-pressure vessel, its observation method, high-pressure solid reactor, high-pressure vessel inspection apparatus, its inspection method, and high-pressure reactor
JP2007078557A (en) * 2005-09-15 2007-03-29 Shimadzu Corp X-ray inspection device
JP2010057572A (en) * 2008-09-02 2010-03-18 Shimadzu Corp X-ray ct apparatus
JP2014134386A (en) * 2013-01-08 2014-07-24 Nikon Corp Inspection method, inspection system, program, and structure manufacturing method

Similar Documents

Publication Publication Date Title
JP6631624B2 (en) X-ray inspection apparatus, X-ray inspection method and structure manufacturing method
JP6455516B2 (en) X-ray apparatus and structure manufacturing method
JP5967108B2 (en) X-ray apparatus, method, structure manufacturing method, program, and recording medium recording the program
US20200284735A1 (en) Image reconstruction method for x-ray measuring device, structure manufacturing method, image reconstruction program for x-ray measuring device, and x-ray measuring device
JP2013217797A (en) Device, determination method and manufacturing method of structure
WO2016139756A1 (en) Measurement processing device, x-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
JP6693533B2 (en) X-ray device, X-ray measuring method, and structure manufacturing method
JP2015075336A (en) Reconstruction image generation device, shape measurement device, structure manufacturing system, reconstruction image generation method and reconstruction image generation program
WO2016056107A1 (en) Projection data generator, measuring device, and structure manufacturing method
JP6418233B2 (en) X-ray generator, X-ray apparatus, and structure manufacturing method
KR102267658B1 (en) Inspection apparatus, inspection method and manufacturing method of inspection object
WO2016006085A1 (en) X-ray device and structure manufacturing method
WO2016021031A1 (en) X-ray apparatus and structure production method
WO2019163960A1 (en) X-ray measuring method, x-ray device, and method for manufacturing structure
WO2020004175A1 (en) X-ray device, x-ray image generation method, and production method for structure
WO2016002034A1 (en) X-ray device, image forming method, structure manufacturing method, and structure manufacturing system
JP2019174276A (en) Method for manufacturing x-ray device and structure
JP2013113798A (en) X-ray apparatus, x-ray irradiation method, and method for manufacturing structure
JP2021028575A (en) X ray apparatus and method for manufacturing structure
WO2015145548A1 (en) X-ray device, x-ray measurement device and structure production method
JP2015169521A (en) Projection data generation device, reconfiguration image generation device, projection data generation method, reconfiguration image generation method, projection data generation program and reconfiguration image generation program
JP2016223831A (en) X-ray device and structure manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14903814

Country of ref document: EP

Kind code of ref document: A1