WO2016006085A1 - X-ray device and structure manufacturing method - Google Patents

X-ray device and structure manufacturing method Download PDF

Info

Publication number
WO2016006085A1
WO2016006085A1 PCT/JP2014/068463 JP2014068463W WO2016006085A1 WO 2016006085 A1 WO2016006085 A1 WO 2016006085A1 JP 2014068463 W JP2014068463 W JP 2014068463W WO 2016006085 A1 WO2016006085 A1 WO 2016006085A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
measured
unit
ray apparatus
ray source
Prior art date
Application number
PCT/JP2014/068463
Other languages
French (fr)
Japanese (ja)
Inventor
直史 坂口
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2014/068463 priority Critical patent/WO2016006085A1/en
Publication of WO2016006085A1 publication Critical patent/WO2016006085A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • the present invention relates to an X-ray apparatus and a method for manufacturing a structure.
  • Patent Document 1 an X-ray apparatus that detects transmitted X-rays that have passed through a measurement object and acquires information about a substance that constitutes the measurement object based on the detection result.
  • an X-ray apparatus includes an X-ray source that emits X-rays, a detection unit that detects the X-rays emitted from the X-ray source and passed through the object to be measured, An X-ray source control unit that controls the output of the X-rays emitted from the X-ray source based on the configuration information of the object to be measured.
  • the X-ray source includes an electron beam generator that generates the electron beam, and the electron beam from the electron beam generator reaches the electron beam generator.
  • the X-ray source control unit is applied between the electron beam generation unit and the target to accelerate the electron beam, and It is preferable to control at least one of the amount of current to the electron beam generator.
  • the X-ray source further includes a voltage application unit for applying the acceleration voltage, and the X-ray source control unit includes: It is preferable to control the voltage application unit.
  • a mass detection unit that detects the mass of the object to be measured and shape information of the object to be measured are acquired.
  • the configuration of the measurement object It is preferable to further include a configuration information acquisition unit that acquires information.
  • the configuration information acquisition unit acquires the mass of the measurement object detected by the mass detection unit and the shape information acquisition unit. It is preferable that the ratio of the X-rays absorbed by the object to be measured is calculated based on the volume of the object to be calculated calculated based on the shape information thus obtained and obtained as the configuration information.
  • the X-ray source control unit is configured to receive the X-ray based on the shape information acquired by the shape information acquisition unit.
  • the X-ray radiated from the X-ray source is calculated based on the passing distance and the rate of absorption of the X-ray calculated by the configuration information acquisition unit. Is preferably controlled.
  • the X-ray source control unit calculates a plurality of the passage distances at a plurality of locations of the object to be measured, and the plurality of passages.
  • the configuration information acquisition unit is configured to control the measurement object based on a mass and a volume of the measurement object. It is preferable to estimate a material and calculate a rate at which the X-ray corresponding to the material is absorbed.
  • a rotation drive unit that rotates the X-ray source and the detection unit relative to the object to be measured is provided.
  • the imaging apparatus includes an imaging device that captures an appearance of the object to be measured and outputs an image signal. The unit preferably obtains the shape information using the image signal output from the imaging device.
  • the configuration information is preferably configured by design information.
  • the X-ray source with respect to the object to be measured and the moving part that moves the detection part relatively are provided.
  • a structure manufacturing method creates design information related to the shape of a structure, creates the structure based on the design information, and sets the shape of the created structure.
  • the shape information is obtained by measurement using the X-ray apparatus according to claim 1, and the obtained shape information is compared with the design information.
  • the structure manufacturing method according to the thirteenth aspect it is preferable that the structure is re-processed based on a comparison result between the shape information and the design information. .
  • the reworking of the structure is performed again based on the design information.
  • the operation setting by the user can be reduced by automating the output setting of the X-ray source.
  • the figure which shows the structure of the X-ray apparatus by embodiment of this invention The figure which shows the structure of the X-ray source by embodiment typically The figure explaining the acquisition method of the shape information of a measured object
  • the figure which illustrates the relationship between the X-ray intensity, the energy of the electron beam, and the acceleration voltage Flow chart for explaining the operation in the X-ray emission condition setting process The figure explaining the structure of the structure manufacturing system by embodiment Flowchart explaining processing of structure manufacturing system
  • the figure explaining the mass detection of the to-be-measured object by a modification The figure which shows the structure of the X-ray apparatus by a modification.
  • the X-ray apparatus irradiates the object to be measured with X-rays and detects transmitted X-rays transmitted through the object to be measured, thereby acquiring non-destructive internal information (for example, internal structure) of the object to be measured.
  • non-destructive internal information for example, internal structure
  • the X-ray apparatus is called an industrial X-ray CT inspection apparatus for inspecting an industrial part.
  • the present embodiment is for specifically describing the purpose of the invention, and does not limit the present invention unless otherwise specified.
  • FIG. 1 is a diagram showing an example of the configuration of an X-ray apparatus 100 according to the present embodiment.
  • the X-ray apparatus 100 includes a housing 1, an X-ray source 2, a placement unit 3, a detector 4, a control device 5, a display monitor 6, and a frame 8.
  • the housing 1 is disposed on a floor surface of a factory or the like so as to be substantially parallel (horizontal) to the XZ plane, and inside the X-ray source 2, the placement unit 3, the detector 4, and the frame 8. And is housed.
  • the housing 1 contains lead as a material in order to prevent X-rays from leaking to the outside.
  • the X-ray source 2 is an X-ray that spreads in a conical shape along the optical axis Zr parallel to the Z-axis with the emission point Q shown in FIG. (A so-called cone beam) is emitted.
  • the exit point Q corresponds to the focal spot of the X-ray source 2. That is, the optical axis Zr connects the exit point Q, which is the focus spot of the X-ray source 2, and the center of the imaging region of the detector 4 described later.
  • the X-ray source 2 is not limited to one that emits X-rays in a conical shape, but one that emits fan-shaped X-rays (so-called fan beams) or linear X-rays (so-called pencil beams) is also one aspect of the present invention. Included in embodiments.
  • the X-ray source 2 emits at least one of, for example, an ultra soft X-ray of about 50 eV, a soft X-ray of about 0.1 to 2 keV, an X-ray of about 2 to 20 keV, and a hard X-ray of about 20 to 100 keV Can do. The details of the X-ray source 2 will be described later.
  • the mounting unit 3 includes a mounting table 30 on which the object to be measured S is mounted, a mass detector 31 provided on the mounting table 30, a rotation driving unit 32, a Y-axis moving unit 33, an X-axis moving unit 34, and And a manipulator unit 36 including a Z-axis moving unit 35, and is provided closer to the Z-axis + side than the X-ray generation unit 2.
  • the mounting table 30 is rotatably provided by the rotation drive unit 32, and moves together when the rotation axis Yr by the rotation drive unit 32 moves in the X-axis, Y-axis, and Z-axis directions.
  • the mass detector 31 is configured by, for example, a load cell, detects the mass of the measurement object S placed on the mounting table 30, and outputs the detected mass to the control device 5.
  • the rotation drive unit 32 is constituted by, for example, an electric motor or the like, and is parallel to the Y axis and passes through the center of the mounting table 30 by a rotational force generated by an electric motor controlled and driven by the control device 5 described later.
  • the mounting table 30 is rotated with the axis to be rotated as the rotation axis Yr.
  • the Y-axis moving unit 33, the X-axis moving unit 34, and the Z-axis moving unit 35 are controlled by the control device 5 so that the measured object S is positioned within the irradiation range of the X-rays emitted from the X-ray source 2.
  • the mounting table 30 is moved in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively. Further, the Z-axis drive unit 35 is controlled by the control device 5 so that the distance from the X-ray source 2 to the object S to be measured is a distance at which the object S in the captured image has a desired magnification. The mounting table 30 is moved in the Z-axis direction.
  • the detector 4 is provided on the Z axis + side from the X-ray source 2 and the mounting table 30. That is, the mounting table 30 is provided between the X-ray source 2 and the detector 4 in the Z-axis direction.
  • the detector 4 has an incident surface 41 parallel to the XY plane, and X-rays including transmitted X-rays emitted from the X-ray source 2 and transmitted through the measurement object S placed on the mounting table 30 are incident. Incident on the surface 41.
  • the detector 4 includes a scintillator portion containing a known scintillation substance, a photomultiplier tube, a light receiving portion, and the like.
  • the detector 4 converts X-ray energy incident on the incident surface 41 of the scintillator portion into visible light, ultraviolet light, or the like.
  • the light energy is converted into light energy, amplified by a photomultiplier tube, the amplified light energy is converted into electric energy by the light receiving unit, and is output to the control device 5 as an electric signal.
  • the detector 4 may convert incident X-ray energy into electric energy without converting it into light energy, and output the electric energy as an electric signal.
  • the detector 4 has a structure in which a scintillator section, a photomultiplier tube, and a light receiving section are each divided into a plurality of pixels, and these pixels are two-dimensionally arranged.
  • the detector 4 may have a structure in which the scintillator portion is formed directly on the light receiving portion (photoelectric conversion portion) without providing a photomultiplier tube.
  • the frame 8 supports the X-ray source 2, the placement unit 3, and the detector 4.
  • the frame 8 is manufactured with sufficient rigidity. Therefore, it is possible to stably support the X-ray source 2, the placement unit 3, and the detector 4 while acquiring the projection image of the measurement object S. Further, the frame 8 is supported by a vibration isolation mechanism 81 to prevent vibration generated outside from being transmitted to the frame 8 as it is.
  • the control device 5 includes a microprocessor, peripheral circuits, and the like.
  • the control device 5 reads and executes a control program stored in advance in a storage medium (not shown) (for example, a flash memory), thereby executing the control of the X-ray device 100. Control each part.
  • the control device 5 includes an X-ray control unit 51, a movement control unit 52, an image generation unit 53, an image reconstruction unit 54, and a configuration information acquisition unit 55.
  • the X-ray control unit 51 controls the operation of the X-ray source 2
  • the movement control unit 52 controls the movement operation of the manipulator unit 36.
  • the image generation unit 53 generates X-ray projection image data of the object S to be measured based on the electrical signal output from the detector 4, and the image reconstruction unit 54 controls the manipulator unit 36 and has different projection directions. Based on the projection image data of the measurement object S, a known image reconstruction process is performed to generate a reconstructed image. By the image reconstruction process, three-dimensional data that is the internal structure (cross-sectional structure) of the DUT S is generated. In this case, the image reconstruction process includes a back projection method, a filtered back projection method, a successive approximation method, and the like.
  • the configuration information acquisition unit 55 acquires the configuration information of the measurement object S.
  • the configuration information information that can specify the three-dimensional shape and internal structure of the object S to be measured, that is, the amount of X-rays that are radiated from the X-ray source 2 by the object to be measured is a ratio (absorption to the unit propagation length). Information necessary for calculation with the coefficient) and the approximate dimensions of the object S to be measured.
  • the X-ray control unit 51 described above outputs the X-rays emitted from the X-ray source 2 within the range of electric power specific to the apparatus, based on the configuration information of the measurement object S acquired by the configuration information acquisition unit 55. Control.
  • the display monitor 6 is constituted by a liquid crystal monitor, for example, and displays an image corresponding to the three-dimensional data of the internal structure (cross-sectional structure) of the object S to be measured generated by the image reconstruction process.
  • FIG. 2 is a diagram schematically showing the configuration of the X-ray source 2.
  • the X-ray source 2 includes a Wehnelt power source 20, a filament 21, a target 22, a Wehnelt electrode 23, an electro-optic member 25, and a high voltage application unit 26.
  • the filament 21, the electron optical member 25, and the target 22 are arranged in this order along the electron beam emission direction.
  • the Wehnelt power supply 20 applies a negative bias voltage to the Wehnelt electrode 23 with respect to the filament 21.
  • the filament 21 includes, for example, tungsten and has a conical shape sharpened toward the target 22.
  • a filament heating power supply circuit 211 is provided at both ends of the filament 21. The filament heating power supply circuit 211 heats the filament 21 by passing a current through the filament 21. The filament 21 is heated by being energized by the filament heating power supply circuit 211 in a state where a negative charge is applied by the Wehnelt electrode 23, and an electron beam (thermoelectron) is directed toward the target 22 from the sharpened tip. And release. That is, the filament 21 functions as an electron beam generator for generating an electron beam.
  • the electron beam emitted from the filament 21 is converged by the electric field generated by the negative bias voltage applied to the Wehnelt electrode 23.
  • the target 22 includes, for example, tungsten, and generates X-rays by collision of an electron beam emitted from the filament 21 or a change in the progress of the electron beam.
  • 1 and 2 show an example in which the X-ray generator 2 according to the present embodiment is configured by a reflective X-ray generator, but it is configured by a transmissive X-ray generator. Cases are also included in one embodiment of the present invention.
  • Electron optical member 25 is arranged between filament 21 and target 22.
  • the electron optical member 25 is constituted by a deflection coil or the like for focusing an electron beam.
  • the electron optical member 25 focuses the electron beam from the filament 21 using the action of a magnetic field, and collides the electron beam with a partial region (X-ray focal point) of the target 22.
  • the high voltage application unit 26 is electrically connected to the filament 21 and the target 22, and applies a negative voltage to the filament 21 with respect to the target 22.
  • the high voltage application unit 26 is controlled by the X-ray control unit 51 of the control device 5 and applies a predetermined high DC voltage between the filament 21 and the target 22.
  • the filament 21 functions as a cathode that emits an electron beam as described above when a high voltage is applied by the high voltage application unit 26.
  • the filament 21 is caused to function as a cathode while being directly heated.
  • the present invention is not limited to this example, and may have a heater for heating the cathode separately in addition to the cathode.
  • an electron beam may be emitted by forming a strong electric field around the cathode without heating the cathode.
  • the electron beam emitted from the filament 21 toward the target 22 is focused by the Wehnelt electrode 23, accelerated by the high voltage applied by the high voltage application unit 26, and travels toward the target 22.
  • the potential difference between the filament 21 and the target 22 acts as an acceleration voltage for accelerating the electron beam.
  • the electron beam is focused by the electron optical member 25, and the electron beam collides with the target 22 disposed at the convergence position (focal spot) of the electron beam to generate X-rays from the target 22.
  • the X-ray apparatus 100 projects the measurement object S in accordance with the specification of the shape and material of the measurement object S before irradiating the measurement object S with X-rays and starting measurement.
  • X-ray emission condition setting processing for automatically setting X-ray output suitable for acquisition of image data is performed.
  • the configuration information acquisition unit 55 calculates the density of the measurement object S using the mass of the measurement object S placed on the mounting table 30 and the volume of the measurement object S.
  • a configuration information acquisition process is performed for estimating the material of the object to be measured S based on the calculated density and estimating or acquiring the dimension information of the object to be measured S, in particular, the dimension information in the direction matching the X-ray propagation direction.
  • the X-ray control unit 51 determines at least one of the acceleration voltage applied by the high voltage application unit 26 of the X-ray source 2 between the filament 21 and the target 22 and the amount of current to the filament 21 according to the result of the configuration information acquisition process. X-ray output setting processing to be set is performed.
  • the configuration information acquisition process by the configuration information acquisition unit 55 and the X-ray output setting process by the X-ray control unit 51 will be described separately. The following process is started when the user places the object to be measured S on the mounting table 30 and operates an operation member (not shown) to instruct the start of the X-ray emission condition setting process.
  • the configuration information acquisition unit 55 uses the mass of the measurement object S detected by the mass detector 31 when the measurement object S is placed on the mounting table 30 in the configuration information acquisition process.
  • the configuration information acquisition unit 55 uses projection image data of the measurement object S obtained by irradiating the measurement object S with X-rays from the X-ray source 2, that is, shape information representing the shape of the measurement object S.
  • the volume of the measurement object S is calculated.
  • the shape information is obtained by emitting X-rays from the X-ray source 2 every time the measured object S rotates by a predetermined angle while rotating the measured object S around the rotation axis Yr by the rotation driving unit 32. It is calculated from a plurality of projection image data for each rotation of a predetermined angle generated by the image generation unit 53.
  • FIG. 3A a case where the shape information of the measurement object S having a rectangular parallelepiped shape is acquired is taken as an example.
  • FIG. 3B shows the positional relationship between the object to be measured S, the X-ray source 2 and the detector 4 as viewed from the Y axis + side (ie, from above) at the start of rotation
  • FIG. 3 shows the positional relationship between the measurement object S, the X-ray source 2 and the detector 4 as viewed from the Y axis + side (that is, from above) after being rotated 90 degrees from the state 3 (b).
  • FIG. 3B and FIG. 3C show the positional relationship in the XZ plane.
  • 3D schematically shows the projection image data I1 acquired in the state of FIG.
  • FIG. 3B, and FIG. 3E schematically shows the projection image data I2 acquired in the state of FIG. Indicate.
  • the configuration information acquisition unit 55 uses the projection image data I1 shown in FIG. 3D, that is, shape information to perform edge detection and the like on the projection image data I1 to thereby detect the length H and the length of the object S to be measured. D is calculated.
  • the configuration information acquisition unit 55 uses the projection image data I2 shown in FIG. 3E, that is, the shape information, the configuration information acquisition unit 55 calculates the length W of the measurement object S by performing edge detection or the like on the projection image data I2. To do.
  • the configuration information acquisition unit 55 calculates the volume of the measurement object S using the calculated lengths H, W, and D.
  • the predetermined angle may be the same regardless of the external shape of the object S to be measured, or may be variable according to the external shape of the object S to be measured, for example, when the object S has a complicated external shape. May be set to a small value, and may be set to a large value in the case of a simple external shape.
  • the total rotation angle of the measurement object S for obtaining the shape information can be calculated as a dimension of the measurement object S corresponding to the maximum transmission distance when X-rays described later pass through the measurement object S. Thus, it can be determined as appropriate according to the structure of the object S to be measured, and the total rotation angle may be 180 degrees at the maximum.
  • the configuration information acquisition unit 55 calculates the volume of the object S to be measured using the reconstructed image generated by the image reconstruction unit 54 instead of the projection image data. It is.
  • the configuration information acquisition unit 55 calculates the density of the measurement object S using the mass of the measurement object S detected by the mass detector 31 and the volume of the measurement object S calculated as described above. Based on the calculated density, the material of the object S to be measured is estimated. When the material of the device under test S is estimated, the configuration information acquisition unit 55 calculates the absorption coefficient of the device under test S. The relationship between the density of the object to be measured S and the material and the relationship between the density of the object to be measured S and the absorption coefficient are stored in advance in a predetermined storage area (not shown) in the form of a table or the like. The configuration information acquisition unit 55 estimates the material of the device under test S by referring to the table based on the calculated density of the device under test S. Then, the configuration information acquisition unit 55 calculates the absorption coefficient of the device under test S with reference to the table based on the estimated material of the device under test S.
  • FIG. 4 shows an example of the above table.
  • FIG. 4A is an example of a table showing the relationship between the density of the object to be measured S, the material, and the absorption coefficient.
  • density d1 for example, 1.0 ⁇ d1 ⁇ 2.0 [g / cm 3 ]
  • density d2 for example, 2.0 ⁇ d2 ⁇ 2.5 [g / cm 3 ]
  • density d3 for example, 2.5 ⁇ d3 ⁇ 5 [g / cm 3 ]
  • mineral and density d4 (for example, 2.0 ⁇ d4 ⁇ 5 [g / cm 3].
  • the configuration information acquisition unit 55 estimates the material of the measured object S as resin, and the calculated density of the measured object S is in the range of d2.
  • the material of the object to be measured S is estimated to be glass, and when the calculated density of the object to be measured S is in the range of d3, the material of the object to be measured S is estimated to be mineral and the calculated object to be measured is calculated.
  • the density of S is in the range of d4
  • the material of the object to be measured S is estimated as a light metal
  • the calculated density of the object to be measured S is in the range of d5
  • the material of the object to be measured S is estimated as a heavy metal.
  • the configuration information acquisition unit 55 refers to the estimated material of the measured object S and refers to the table of FIG. 4A to select the absorption coefficient, thereby obtaining the absorption coefficient of the measured object S.
  • the configuration information acquisition unit 55 calculates the absorption coefficient without estimating the material from the calculated density of the measured object S, instead of obtaining the absorption coefficient by estimating the material from the calculated density of the measured object S. What is determined is also included in one embodiment of the present invention. In this case, as shown in FIG. 4B, the configuration information acquisition unit 55 can obtain the absorption coefficient from the calculated density of the measurement object S using a table in which the density and the absorption coefficient are associated with each other. 4A, instead of associating a rough material with a density as shown in FIG. 4A, the density range may be finely classified, and the material may be associated with a compound name or a metal element name. When it is known in advance that S is not manufactured from a plurality of types of materials, the material can be estimated more accurately.
  • the design information of the object to be measured S for example, information that can specify the three-dimensional shape of the object S to be measured, such as three-dimensional CAD (horizontal width, vertical width, depth, apex position, etc.), information such as material, mass distribution, etc.
  • the configuration information acquisition unit 55 uses this design information as configuration information.
  • the configuration information acquisition unit 55 can calculate the absorption coefficient of the object to be measured S with reference to the table shown in FIG. 4 based on the material information included in the design information. If the design information does not include a part of the information necessary for calculating the absorption coefficient of the measurement object S, the above method may be used to compensate for the missing information. it can.
  • the configuration information acquisition unit 55 identifies the mass detected by the mass detector 31 and the three-dimensional shape included in the design information. What is necessary is just to calculate a density using the volume of the to-be-measured object S calculated using information, and to calculate an absorption coefficient with reference to the table shown in FIG.
  • the X-ray control unit 51 uses the shape information acquired during the above-described configuration information acquisition process to calculate a transmission distance that passes through the measurement object S when the X-rays enter the detector 4.
  • the transmission intensity of the radiated X-ray is calculated using the transmission distance and the absorption coefficient calculated by the configuration information acquisition unit 55.
  • the X-ray control unit 51 sets the acceleration voltage so that the calculated X-ray transmission intensity can be obtained. Details will be described below.
  • the X-ray control unit 51 acquires the dimensions of each part of the measurement object S using the shape information, that is, the projection image data for each predetermined angle acquired in the configuration information acquisition process.
  • the longest length of the object to be measured S that is, the maximum transmission distance (hereinafter referred to as the maximum transmission distance) among the transmission distances when X-rays emitted from the X-ray source 2 pass through the object to be measured S. )
  • the X-ray control unit 51 extracts the maximum length as the maximum transmission distance among the lengths of the edges in the X direction detected from each of the plurality of projection image data generated for each predetermined angle.
  • the object to be measured S has a rectangular parallelepiped shape as illustrated in FIG.
  • I is the X-ray intensity incident on the detector 4
  • I 0 is the X-ray intensity before entering the object to be measured S (initial X-ray intensity)
  • L is the maximum transmission distance.
  • the X-ray control unit 51 can generate a reconstructed image representing the intensity at which the X-ray intensity I determined by the above equation (1) can be received by the detector 4, that is, the internal structure (cross-sectional structure) of the object S to be measured.
  • the initial X-ray intensity I 0 is calculated so as to exceed the minimum X-ray intensity th I required for the above. That is, the X-ray control unit 51 uses the absorption coefficient ⁇ and the maximum transmission distance L of the measurement object S calculated by the configuration information acquisition unit 55, and the initial X-ray intensity I 0 that satisfies the following equation (2). Is calculated. I 0 e ⁇ L > th I (2)
  • the X-ray intensity th I is calculated in advance through experiments or the like and set as a predetermined value.
  • the X-ray control unit 51 calculates the minimum value among the X-ray intensities I 0 satisfying the above formula (2), that is, the minimum transmission intensity I 0 min, and the intensity of the X-rays when emitted from the X-ray source 2 is
  • the acceleration voltage is set so that the minimum transmission intensity is 10 min . It is known that the X-ray intensity and the electron beam energy, that is, the acceleration voltage have a relationship as shown in FIG. 5, for example.
  • FIG. 5 shows a case where it is assumed that the X-ray intensity I 0 satisfying the equation (2) calculated by the X-ray control unit 51 is included in the region R I0 surrounded by the broken line.
  • the X-ray control unit 51 determines, as the minimum transmission intensity I 0 min , the characteristic X-ray intensity that is minimum among the X-ray intensity I 0 included in the region R I0 .
  • the voltage for obtaining the minimum transmission intensity I 0 min is 150 [kV], so the X-ray controller 51 sets this voltage as the acceleration voltage.
  • Data indicating the relationship between the X-ray intensity and the acceleration voltage is stored in a predetermined storage area in advance in a table format, for example, and the X-ray control unit 51 sets an acceleration voltage necessary for obtaining the calculated minimum transmission intensity I 0 min. calculate.
  • the X-ray control unit 51 calculates the acceleration voltage as described above, the X-ray control unit 51 calculates a current value corresponding to the acceleration voltage within the range of power inherent to the apparatus, and sets it as the amount of current to the filament heating power supply circuit 211. .
  • the X-ray emission condition setting process by the X-ray apparatus 100 will be described with reference to the flowchart of FIG.
  • Each process shown in the flowchart of FIG. 6 is performed by executing a program in the control device 5.
  • This program is stored in a memory (not shown), and is activated by the control device 5 when the measurement object S is placed on the mounting table 30 and the start of the X-ray emission condition setting process is instructed by the user. Executed.
  • step S0 it is determined whether or not the design information of the device under test S exists. If design information exists, an affirmative determination is made in step S0 and the process proceeds to step S5 described later. If design information does not exist, a negative determination is made in step S0 and the process proceeds to step S1.
  • step S1 based on the output from the mass detector 31, the mass of the object S to be measured is acquired, and the process proceeds to step S2.
  • step S2 the object to be measured S is rotated about the rotation axis Yr by rotating the rotation drive unit 32, and X-rays are emitted from the X-ray source 2 at every predetermined angle. The shape information is acquired by generating data, and the process proceeds to step S3.
  • step S3 the volume of the measurement object S is calculated using the shape information, and the process proceeds to step S4.
  • Step S1 and Steps S2 and S3 may be reversed, that is, after calculating the volume of the object S, the mass of the object S may be acquired. Or you may perform step S1 and step S2 and S3 simultaneously, ie, acquisition of the mass of to-be-measured object S, and calculation of the shape information containing volume information simultaneously.
  • step S4 the density of the measurement object S is calculated using the mass and volume of the measurement object S, and the process proceeds to step S5.
  • step S5 the material of the object to be measured S is estimated based on the calculated density, and the process proceeds to step S6.
  • step S6 the absorption coefficient of the measured object S is calculated based on the estimated material of the measured object S, and the process proceeds to step S7.
  • step S7 the maximum transmission distance of the object to be measured S is acquired using the shape information, and the process proceeds to step S8.
  • step S8 the minimum transmission intensity I 0 of X-rays is calculated based on the absorption coefficient of the measurement object S calculated in step S6 and the maximum transmission distance calculated in step S7, and the calculated minimum transmission intensity of X-rays is calculated.
  • the acceleration voltage is calculated from I 0 min and the process is terminated.
  • the movement control unit 52 of the control device 5 controls the X-axis moving unit 33, the Y-axis moving unit 34, and the Z-axis moving unit 35, and moves the mounting table 30 to the X-ray source 2. Then, the object S is moved relative to the detector 4 to position the measured object S at a desired photographing position or magnification. Then, the movement control unit 52 controls the rotation driving unit 32 to rotate the mounting table 30 that supports the DUT S about the rotation center axis Yr. While rotating the mounting table 30, the X-ray control unit 51 of the control device 5 controls the X-ray source 2 to irradiate the measurement object S with X-rays.
  • the detector 4 detects the transmitted X-rays that the mounting table 30 has transmitted through the measurement object S at every predetermined rotation angle, and outputs the detected X-rays to the control device 5 as an electric signal.
  • the image generation unit 53 of the control device 5 generates projection image data of the object to be measured S for each projection direction based on the electrical signal acquired for each rotation angle of the mounting table 30. That is, the image generation unit 53 generates projection image data of the measurement object S from a plurality of different directions.
  • the image reconstruction unit 54 of the control device 5 performs a known image reconstruction process using a plurality of projection image data of the object S to be measured, and three-dimensional data that is an internal structure (cross-sectional structure) of the object S to be measured. Is generated. In this case, the image reconstruction process includes a back projection method, a filtered back projection method, a successive approximation method, and the like.
  • the generated three-dimensional data of the internal structure of the measured object S is displayed on the display monitor 6.
  • the structure manufacturing system creates a molded product such as an electronic component including, for example, an automobile door portion, an engine portion, a gear portion, and a circuit board.
  • FIG. 7 is a block diagram showing an example of the configuration of the structure manufacturing system 400 according to the present embodiment.
  • the structure manufacturing system 400 includes the X-ray apparatus 100 described in the embodiment, a design apparatus 410, a molding apparatus 420, a control system 430, and a repair apparatus 440.
  • the design device 410 is a device used by a user when creating design information related to the shape of a structure, and performs a design process for creating and storing design information.
  • the design information is information indicating the coordinates of each position of the structure.
  • the design information is output to the molding apparatus 420 and a control system 430 described later.
  • the molding apparatus 420 performs a molding process for creating and molding a structure using the design information created by the design apparatus 410.
  • the molding apparatus 420 includes an apparatus that performs at least one of laminating, casting, forging, and cutting represented by 3D printer technology.
  • the X-ray apparatus 100 performs a measurement process for measuring the shape of the structure molded by the molding apparatus 420.
  • the X-ray apparatus 100 outputs information (hereinafter referred to as shape information) indicating the coordinates of the structure, which is a measurement result of the structure, to the control system 430.
  • the control system 430 includes a coordinate storage unit 431 and an inspection unit 432.
  • the coordinate storage unit 431 stores design information created by the design apparatus 410 described above.
  • the inspection unit 432 determines whether the structure molded by the molding device 420 is molded according to the design information created by the design device 410. In other words, the inspection unit 432 determines whether or not the molded structure is a good product. In this case, the inspection unit 432 reads the design information stored in the coordinate storage unit 431 and performs an inspection process for comparing the design information with the shape information input from the X-ray apparatus 100. The inspection unit 432 compares, for example, the coordinates indicated by the design information with the coordinates indicated by the corresponding shape information as the inspection processing, and if the coordinates of the design information and the coordinates of the shape information match as a result of the inspection processing. It is determined that the product is a non-defective product molded according to the design information.
  • the inspection unit 432 determines whether or not the coordinate difference is within a predetermined range, and if it is within the predetermined range, it can be restored. Judged as a defective product.
  • the inspection unit 432 outputs repair information indicating the defective portion and the repair amount to the repair device 440.
  • the defective part is the coordinate of the shape information that does not match the coordinate of the design information
  • the repair amount is the difference between the coordinate of the design information and the coordinate of the shape information in the defective part.
  • the repair device 440 performs a repair process for reworking a defective portion of the structure based on the input repair information. The repair device 440 performs again the same process as the molding process performed by the molding apparatus 420 in the repair process.
  • step S11 the design device 410 is used when the structure is designed by the user.
  • the design apparatus 410 creates and stores design information related to the shape of the structure by the design process, and the process proceeds to step S12.
  • the present invention is not limited to only the design information created by the design apparatus 410, and when design information already exists, the design information is acquired by inputting the design information and is included in one aspect of the present invention. It is.
  • step S12 the forming apparatus 420 creates and forms a structure based on the design information by the forming process, and proceeds to step S13.
  • step S13 the X-ray apparatus 100 performs a measurement process, measures the shape of the structure, outputs shape information, and proceeds to step S14.
  • step S14 the inspection unit 432 performs an inspection process for comparing the design information created by the design apparatus 410 with the shape information measured and output by the X-ray apparatus 100, and the process proceeds to step S15.
  • step S15 based on the result of the inspection process, the inspection unit 432 determines whether the structure formed by the forming apparatus 420 is a non-defective product. If the structure is a non-defective product, that is, if the coordinates of the design information coincide with the coordinates of the shape information, an affirmative determination is made in step S15 and the process ends.
  • step S15 If the structure is not a non-defective product, that is, if the coordinates of the design information do not match the coordinates of the shape information, or if coordinates that are not in the design information are detected, a negative determination is made in step S15 and the process proceeds to step S16.
  • step S16 the inspection unit 432 determines whether or not the defective portion of the structure can be repaired. If the defective part is not repairable, that is, if the difference between the coordinates of the design information and the coordinates of the shape information in the defective part exceeds the predetermined range, a negative determination is made in step S16 and the process ends. If the defective part can be repaired, that is, if the difference between the coordinates of the design information and the shape information in the defective part is within a predetermined range, an affirmative determination is made in step S16 and the process proceeds to step S17. In this case, the inspection unit 432 outputs repair information to the repair device 440.
  • step S17 the repair device 440 performs a repair process on the structure based on the input repair information, and returns to step S3. As described above, the repair device 440 performs again the same processing as the molding processing performed by the molding device 420 in the repair processing.
  • the X-ray control unit 51 of the control device 5 controls the output of X-rays radiated from the X-ray source 2 based on the configuration information of the device under test S. Therefore, it is not necessary for the user to set the X-ray output empirically depending on the appearance of the object S to be measured, for example, gloss or texture, and the optimum X-ray output is possible even for a user with little experience. Since the trial and error are not repeated to set the value, the operability is improved. Furthermore, since the X-ray output can be automatically set, the time required for measuring the object S to be measured is shortened, contributing to efficiency.
  • the X-ray control unit 51 controls at least one of an acceleration voltage applied between the filament 21 and the target 22 to accelerate the electron beam and an amount of current to the filament 21.
  • the X-ray control unit 51 controls the high voltage application unit 26 to apply the acceleration voltage between the filament 21 and the target 22. Therefore, it is possible to obtain an X-ray output necessary for acquiring an image of the internal structure of the device under test S within a range of power inherent to the apparatus.
  • the configuration information acquisition unit 55 acquires the shape information of the measurement object S acquired using the mass of the measurement object S detected by the mass detector 31 and the projection image data generated by the image generation unit 53. Based on the above, the configuration information of the object S to be measured, that is, the absorption coefficient representing the ratio of X-rays absorbed by the object S to be measured is calculated. Therefore, it is possible to obtain an output necessary for the X-ray radiated from the X-ray source 2 to pass through the device under test S with various shapes.
  • the X-ray control unit 51 calculates a transmission distance when the X-rays pass through the measurement object S based on the shape information, and is emitted from the X-ray source 2 based on the transmission distance and the absorption coefficient. Controls X-ray output. Specifically, the X-ray control unit 51 sets an acceleration voltage at which the minimum X-ray transmission intensity is equal to or greater than a predetermined value based on the maximum passing distance of the DUT. Therefore, even if the length of the measurement object S in the Z-axis direction changes due to the rotation of the measurement object S relative to the X-ray source 2 and the detector 4, the X-ray source 2 An output necessary for the emitted X-rays to pass through the object to be measured S can be obtained.
  • the configuration information acquisition unit 55 estimates the material of the device under test S based on the mass and volume of the device under test S, and calculates an absorption coefficient corresponding to the estimated material.
  • the rate at which the X-rays are absorbed by the structure is different when the material is different even at the same transmission distance. Therefore, by controlling the X-ray output in consideration of the material of the object S to be measured, High-quality reconstructed images can be acquired.
  • the object to be measured S rotates relative to the X-ray source 2 and the detector 4 by the rotation driving unit 32, the object is radiated from the X-ray source and transmitted through the object to be measured S every rotation of a predetermined angle. Then, based on the X-rays detected by the detector 4, the image generation unit 53 generates projection image data that is shape information of the object S to be measured. Therefore, even when design information (for example, CAD data) of the device under test S cannot be obtained, an X-ray output suitable for generating a reconstructed image can be obtained based on the shape of the device under test S. it can.
  • design information for example, CAD data
  • the X-ray apparatus 100 of the structure manufacturing system 400 performs a measurement process for acquiring shape information of the structure created by the molding apparatus 420 based on the design process of the design apparatus 410, and performs an inspection unit of the control system 430.
  • Reference numeral 432 performs an inspection process for comparing the shape information acquired in the measurement process with the design information created in the design process. Therefore, it is possible to determine whether or not a structure is a non-defective product created according to design information by inspecting the defect of the structure and information inside the structure by nondestructive inspection. Contribute to.
  • the repair device 440 performs the repair process for performing the molding process again on the structure based on the comparison result of the inspection process. Therefore, when the defective portion of the structure can be repaired, the same processing as the molding process can be performed again on the structure, which contributes to the manufacture of a high-quality structure close to design information.
  • a plurality of mass detectors 31 may be provided on the mounting table 30 to detect the mass of each partial region of the measurement object S.
  • FIG. 9 shows an example in which four mass detectors 311, 312, 313, and 314 are provided, and configuration information acquisition processing in this case will be described.
  • the mass detector 311 detects the mass of the measurement object S that is applied to the region 301 in the mounting table 30.
  • the mass detector 312 detects the mass of the measurement object S applied to the region 302 in the mounting table 30.
  • the mass detector 313 detects the mass of the measurement object S applied to the region 303 in the mounting table 30.
  • the mass detector 314 detects the mass of the measurement object S applied to the region 304 in the mounting table 30. That is, as shown in FIG. 9B, the mass distribution of the measurement object S placed on the placement table 30 can be estimated.
  • the configuration information acquisition unit 55 has a bias in the density, material, and the like of the measurement object S based on the mass distribution of the measurement object S estimated from the outputs from the mass detectors 311 to 314.
  • the bias can be estimated. For example, when the mass detected by the mass detector 311 is larger than those of the other mass detectors 312 to 314, the partial region Sp indicated by diagonal lines in the object S to be measured shown in FIG. It can be estimated that the material is different in density compared to the other partial regions of the measurement object S. In this case, as described in the case of the embodiment, the configuration information acquisition unit 55 cannot transmit X-rays through the partial region Sp with the acceleration voltage calculated based on the average average density of the object S to be measured. there is a possibility.
  • the configuration information acquisition unit 55 has an average mass (that is, a mass detector 311) of the entire measurement object S so that X-rays can be transmitted even in such a partial region Sp where the mass is biased.
  • the mass detected by the mass detector 311 may be regarded as the total mass of the object to be measured S and used for calculating the absorption coefficient.
  • the configuration information acquisition unit 55 calculates the absorption coefficient based on the overall average mass of the device under test S according to the ratio of the mass of the partial region Sp to the overall average mass of the device under test S. May be corrected.
  • the measurement object S may be measured by emitting X-rays with the acceleration voltage calculated by the X-ray control unit 51 based on the corrected absorption coefficient, or the entire average of the measurement object S may be measured. Measurement is performed by emitting X-rays with an acceleration voltage calculated using an absorption coefficient based on a typical mass, and X-rays are emitted with an acceleration voltage calculated based on the corrected absorption coefficient. May be. Further, the shape information immediately above the region 301 of the object to be measured S is calculated from a plurality of projection image data, and the partial dimension information of the object to be measured S immediately above the region 301 and the mass detector 311 detect the shape information.
  • an estimated amount of X-ray absorption in the region 301 (a product of an absorption coefficient obtained from the material of the measurement object S estimated to be directly above the region 301 and the estimated X-ray propagation distance) is obtained. .
  • the respective regions 302, 303, and 304 are obtained.
  • the estimated absorption amount of X-rays immediately above is obtained. By accumulating these absorption amounts along the direction in which X-rays propagate, the predicted total absorption amount may be obtained, and the acceleration voltage and current amount during X-ray measurement may be obtained.
  • the configuration information acquisition process instead of acquiring the shape information of the object S to be measured using the projection image data or the reconstructed image, the configuration information is acquired using the imaging device. It is included in one aspect.
  • the X-ray apparatus 100 includes an imaging apparatus 500 including an imaging element configured by a CMOS, a CCD, or the like.
  • the imaging device 500 is provided on the ceiling portion (Y-axis + side inner wall surface) of the housing 1 and is mounted on the mounting table 30 from the Y-axis direction substantially orthogonal to the X-ray projection direction (Z-axis).
  • An image signal generated by imaging the outer shape of the measured object S is output to the control device 5.
  • the configuration information acquisition unit 55 performs a known edge detection process or the like on the input image signal, and extracts the contour of the measurement object S on the image signal.
  • the configuration information acquisition unit 55 calculates the volume of the measurement object S using the extracted outline of the measurement object S. Thereafter, similarly to the embodiment, the configuration information acquisition unit 55 calculates the density of the measurement object using the calculated volume and the mass of the measurement object S detected by the mass detector 31, and estimates the material. And the absorption coefficient is calculated.
  • the imaging apparatus 500 can shoot a wide range so that the entire measured object S can be imaged regardless of the position of the measured object S that is changed by the Y-axis moving unit 33 and the X-axis moving unit 34. It is preferable that it is a thing.
  • the imaging device 500 may be provided so as to be able to move in synchronization with the movement of the Y-axis moving unit 33 and the X-axis moving unit 34. Therefore, when the imaging apparatus 500 images the measurement object S from the Y-axis direction, the length of the measurement object S along the Z-axis direction that is the X-ray propagation direction can be accurately detected.
  • the shape information is not limited to that obtained by the imaging apparatus 500.
  • measurement is performed using a projector that projects an optical image of the object S to be measured on a screen, a contact or scanning laser probe using a touch probe, or a shape measuring device that is an optical non-contact three-dimensional measuring device.
  • Information obtained by measuring the object S is also included in one embodiment of the present invention.
  • the mounting table 30 on which the measurement object S is mounted is moved in the X-axis, Y-axis, and Z-axis directions by the Y-axis moving unit 33, the X-axis moving unit 34, and the Z-axis moving unit 35. It is not limited to things.
  • the mounting table 30 does not move in the X-axis, Y-axis, and Z-axis directions, and the X-ray source 2 and the detector 4 are moved in the X-axis, Y-axis, and Z-axis directions, so that What relatively moves the radiation source 2 and the detector 4 is also included in one aspect of the present invention.
  • the emission end (Z axis + side) of the X-ray source 2 is controlled so as not to be saturated by changing the spectral distribution of the X-rays incident on the measurement object S using a filter or the like. It is included in one aspect.
  • the material and thickness of the filter should be selectable so as to change the X-ray spectrum so that the maximum X-ray dose and the minimum X-ray dose reaching the detector 4 are within the dynamic range of the detector 4. Is preferred.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

In the present invention, an X-ray device is provided with: an X-ray source that emits X-rays as a result of an electron beam reaching a target; a detection unit that detects X-rays which have been emitted from the X-ray source and have passed through a measurement object; and an X-ray source control unit that controls the output of X-rays emitted from the X-ray source on the basis of the configuration information on the measurement object.

Description

X線装置および構造物の製造方法X-ray apparatus and structure manufacturing method
 本発明は、X線装置および構造物の製造方法に関する。 The present invention relates to an X-ray apparatus and a method for manufacturing a structure.
 従来から、測定物を透過した透過X線を検出し、検出結果に基づいて、測定物を構成する物質に関する情報を取得するX線装置が知られている(たとえば特許文献1)。 2. Description of the Related Art Conventionally, an X-ray apparatus that detects transmitted X-rays that have passed through a measurement object and acquires information about a substance that constitutes the measurement object based on the detection result is known (for example, Patent Document 1).
日本国特開2013-217775号公報Japanese Unexamined Patent Publication No. 2013-217775
 しかしながら、測定物を計測するために最適なX線の出力を設定するためには、測定物の外観等に基づいてユーザが経験的にX線の出力を設定する必要があり、操作性が低いという問題がある。 However, in order to set the optimum X-ray output for measuring the measurement object, the user needs to empirically set the X-ray output based on the appearance of the measurement object and the operability is low. There is a problem.
 本発明の第1の態様によると、X線装置は、X線を放射するX線源と、前記X線源から放射され、被測定物を通過した前記X線を検出する検出部と、前記被測定物の構成情報に基づいて、前記X線源から放射される前記X線の出力を制御するX線源制御部とを備える。
 本発明の第2の態様によると、第1の態様のX線装置において、前記X線源は、前記電子線を発生させる電子線発生部と、前記電子線発生部からの前記電子線が到達することによりX線を発生するターゲットとを有し、前記X線源制御部は、前記電子線発生部と前記ターゲットとの間に印加して前記電子線を加速させるための加速電圧と、前記電子線発生部への電流量との少なくとも一方を制御することが好ましい。
 本発明の第3の態様によると、第2の態様のX線装置において、前記X線源は、前記加速電圧を印加するための電圧印加部をさらに有し、前記X線源制御部は、前記電圧印加部を制御することが好ましい。
 本発明の第4の態様によると、第1乃至3の何れか一つの態様のX線装置において、前記被測定物の質量を検出する質量検出部と、前記被測定物の形状情報を取得する形状情報取得部と、前記質量検出部によって検出された前記被測定物の質量と、前記形状情報取得部によって取得された前記被測定物の形状情報とに基づいて、前記被測定物の前記構成情報を取得する構成情報取得部とをさらに備えることが好ましい。
 本発明の第5の態様によると、第4の態様のX線装置において、前記構成情報取得部は、前記質量検出部によって検出された前記被測定物の質量と、前記形状情報取得部によって取得された前記形状情報に基づいて算出した前記被測定物の体積とに基づいて、前記被測定物によって前記X線が吸収される割合を算出し、前記構成情報として取得することが好ましい。
 本発明の第6の態様によると、第5の態様のX線装置において、前記X線源制御部は、前記形状情報取得部によって取得された前記形状情報に基づいて、前記X線が前記被測定物を通過する際の通過距離を算出し、前記通過距離と前記構成情報取得部によって算出された前記X線が吸収される割合とに基づいて、前記X線源から放射される前記X線の出力を制御することが好ましい。
 本発明の第7の態様によると、第6の態様のX線装置において、前記X線源制御部は、前記被測定物の複数の箇所における複数の前記通過距離を算出し、前記複数の通過距離のうちの最大通過距離に基づいて前記X線の最低透過強度が所定値以上となる前記加速電圧を設定することが好ましい。
 本発明の第8の態様によると、第5乃至7の何れか一つの態様のX線装置において、前記構成情報取得部は、前記被測定物の質量と体積とに基づいて前記被測定物の材料を推定し、前記材料に対応する前記X線が吸収される割合を算出することが好ましい。
 本発明の第9の態様によると、第4乃至8の何れか一つの態様のX線装置において、前記被測定物に対して前記X線源および前記検出部を相対回転させる回転駆動部を備え、前記回転駆動部によって前記被測定物が相対回転を行う際に、所定の相対回転角度ごとに前記X線源により放射され前記被測定物を透過して前記検出部によって検出された前記X線の検出情報に基づいて、前記形状情報取得部は前記被測定物の前記形状情報を取得することが好ましい。
 本発明の第10の態様によると、第4乃至8の何れか一つの態様のX線装置において、前記被測定物の外観を撮影して画像信号を出力する撮像装置を備え、前記形状情報取得部は、前記撮像装置から出力された前記画像信号を用いて前記形状情報を取得することが好ましい。
 本発明の第11の態様によると、第1乃至3の何れか一つの態様のX線装置において、前記構成情報は設計情報によって構成されることが好ましい。
 本発明の第12の態様によると、第1乃至11の何れか一つの態様のX線装置において、前記被測定物に対する前記X線源および前記検出部を相対的に移動させる移動部を備え、前記被測定物に対する前記X線源および前記検出部の位置が異なる状態で、前記検出部より検出された複数の投影データに基づいて、前記被測定物の内部構造情報を生成する再構成部を備えることが好ましい。
 本発明の第13の態様によると、構造物の製造方法は、構造物の形状に関する設計情報を作成し、前記設計情報に基づいて前記構造物を作成し、作成された前記構造物の形状を、請求項1乃至12に記載のX線装置を用いて計測して形状情報を取得し、前記取得された前記形状情報と前記設計情報とを比較する。
 本発明の第14の態様によると、第13の態様の構造物の製造方法において、前記形状情報と前記設計情報との比較結果に基づいて実行され、前記構造物の再加工を行うことが好ましい。
 本発明の第15の態様によると、第14の態様の構造物の製造方法において、前記構造物の再加工は、前記設計情報に基づいて前記構造物の作成を再度行うことが好ましい。
According to the first aspect of the present invention, an X-ray apparatus includes an X-ray source that emits X-rays, a detection unit that detects the X-rays emitted from the X-ray source and passed through the object to be measured, An X-ray source control unit that controls the output of the X-rays emitted from the X-ray source based on the configuration information of the object to be measured.
According to a second aspect of the present invention, in the X-ray apparatus according to the first aspect, the X-ray source includes an electron beam generator that generates the electron beam, and the electron beam from the electron beam generator reaches the electron beam generator. A target for generating X-rays, and the X-ray source control unit is applied between the electron beam generation unit and the target to accelerate the electron beam, and It is preferable to control at least one of the amount of current to the electron beam generator.
According to a third aspect of the present invention, in the X-ray apparatus of the second aspect, the X-ray source further includes a voltage application unit for applying the acceleration voltage, and the X-ray source control unit includes: It is preferable to control the voltage application unit.
According to a fourth aspect of the present invention, in the X-ray apparatus according to any one of the first to third aspects, a mass detection unit that detects the mass of the object to be measured and shape information of the object to be measured are acquired. Based on the shape information acquisition unit, the mass of the measurement object detected by the mass detection unit, and the shape information of the measurement object acquired by the shape information acquisition unit, the configuration of the measurement object It is preferable to further include a configuration information acquisition unit that acquires information.
According to a fifth aspect of the present invention, in the X-ray apparatus according to the fourth aspect, the configuration information acquisition unit acquires the mass of the measurement object detected by the mass detection unit and the shape information acquisition unit. It is preferable that the ratio of the X-rays absorbed by the object to be measured is calculated based on the volume of the object to be calculated calculated based on the shape information thus obtained and obtained as the configuration information.
According to a sixth aspect of the present invention, in the X-ray apparatus according to the fifth aspect, the X-ray source control unit is configured to receive the X-ray based on the shape information acquired by the shape information acquisition unit. The X-ray radiated from the X-ray source is calculated based on the passing distance and the rate of absorption of the X-ray calculated by the configuration information acquisition unit. Is preferably controlled.
According to a seventh aspect of the present invention, in the X-ray apparatus according to the sixth aspect, the X-ray source control unit calculates a plurality of the passage distances at a plurality of locations of the object to be measured, and the plurality of passages. It is preferable to set the acceleration voltage at which the minimum transmission intensity of the X-ray is equal to or greater than a predetermined value based on the maximum passing distance among the distances.
According to an eighth aspect of the present invention, in the X-ray apparatus according to any one of the fifth to seventh aspects, the configuration information acquisition unit is configured to control the measurement object based on a mass and a volume of the measurement object. It is preferable to estimate a material and calculate a rate at which the X-ray corresponding to the material is absorbed.
According to a ninth aspect of the present invention, in the X-ray apparatus according to any one of the fourth to eighth aspects, a rotation drive unit that rotates the X-ray source and the detection unit relative to the object to be measured is provided. When the object to be measured is relatively rotated by the rotation driving unit, the X-rays radiated from the X-ray source and transmitted through the object to be measured and detected by the detecting unit at every predetermined relative rotation angle. Preferably, the shape information acquisition unit acquires the shape information of the object to be measured based on the detected information.
According to a tenth aspect of the present invention, in the X-ray apparatus according to any one of the fourth to eighth aspects, the imaging apparatus includes an imaging device that captures an appearance of the object to be measured and outputs an image signal. The unit preferably obtains the shape information using the image signal output from the imaging device.
According to an eleventh aspect of the present invention, in the X-ray apparatus according to any one of the first to third aspects, the configuration information is preferably configured by design information.
According to a twelfth aspect of the present invention, in the X-ray apparatus according to any one of the first to eleventh aspects, the X-ray source with respect to the object to be measured and the moving part that moves the detection part relatively are provided. A reconfiguration unit that generates internal structure information of the object to be measured based on a plurality of projection data detected by the detection unit in a state where the positions of the X-ray source and the detection unit are different with respect to the object to be measured; It is preferable to provide.
According to a thirteenth aspect of the present invention, a structure manufacturing method creates design information related to the shape of a structure, creates the structure based on the design information, and sets the shape of the created structure. The shape information is obtained by measurement using the X-ray apparatus according to claim 1, and the obtained shape information is compared with the design information.
According to a fourteenth aspect of the present invention, in the structure manufacturing method according to the thirteenth aspect, it is preferable that the structure is re-processed based on a comparison result between the shape information and the design information. .
According to the fifteenth aspect of the present invention, in the structure manufacturing method according to the fourteenth aspect, it is preferable that the reworking of the structure is performed again based on the design information.
 本発明によれば、X線源の出力設定を自動化してユーザによる操作負荷を低減できる。 According to the present invention, the operation setting by the user can be reduced by automating the output setting of the X-ray source.
本発明の実施の形態によるX線装置の構成を示す図The figure which shows the structure of the X-ray apparatus by embodiment of this invention 実施の形態によるX線源の構成を模式的に示す図The figure which shows the structure of the X-ray source by embodiment typically 被測定物の形状情報の取得方法を説明する図The figure explaining the acquisition method of the shape information of a measured object 被測定物の材料を推定し、吸収係数を算出するためのテーブルを例示する図The figure which illustrates the table for estimating the material of the object to be measured and calculating the absorption coefficient X線強度と電子線のエネルギーと加速電圧との関係を例示する図The figure which illustrates the relationship between the X-ray intensity, the energy of the electron beam, and the acceleration voltage X線放射条件設定処理における動作を説明するフローチャートFlow chart for explaining the operation in the X-ray emission condition setting process 実施の形態による構造物製造システムの構成を説明する図The figure explaining the structure of the structure manufacturing system by embodiment 構造物製造システムの処理を説明するフローチャートFlowchart explaining processing of structure manufacturing system 変形例による被測定物の質量検出を説明する図The figure explaining the mass detection of the to-be-measured object by a modification 変形例によるX線装置の構成を示す図The figure which shows the structure of the X-ray apparatus by a modification.
 図面を参照しながら、本発明の一実施の形態によるX線装置について説明する。X線装置は、被測定物にX線を照射して、被測定物を透過した透過X線を検出することにより、被測定物の内部情報(たとえば内部構造)等を非破壊で取得する。被測定物が、たとえば機械部品や電子部品等の産業用部品が対象である場合には、X線装置は産業用部品を検査する産業用X線CT検査装置と呼ばれる。
 また、本実施の形態は、発明の趣旨の理解のために具体的に説明するためのものであり、特に指定の無い限り、本発明を限定するものではない。
An X-ray apparatus according to an embodiment of the present invention will be described with reference to the drawings. The X-ray apparatus irradiates the object to be measured with X-rays and detects transmitted X-rays transmitted through the object to be measured, thereby acquiring non-destructive internal information (for example, internal structure) of the object to be measured. When an object to be measured is an industrial part such as a mechanical part or an electronic part, the X-ray apparatus is called an industrial X-ray CT inspection apparatus for inspecting an industrial part.
Further, the present embodiment is for specifically describing the purpose of the invention, and does not limit the present invention unless otherwise specified.
 図1は本実施の形態によるX線装置100の構成の一例を示す図である。なお、説明の都合上、X軸、Y軸、Z軸からなる座標系を図示の通りに設定する。
 X線装置100は、筐体1、X線源2、載置部3、検出器4、制御装置5、表示モニタ6およびフレーム8を備えている。筐体1は、工場等の床面上にXZ平面と実質的に平行(水平)となるように配置され、内部にX線源2と、載置部3と、検出器4と、フレーム8とが収容される。筐体1はX線が外部に漏洩しないようにするために、材料として鉛を含む。
FIG. 1 is a diagram showing an example of the configuration of an X-ray apparatus 100 according to the present embodiment. For convenience of explanation, a coordinate system consisting of an X axis, a Y axis, and a Z axis is set as shown.
The X-ray apparatus 100 includes a housing 1, an X-ray source 2, a placement unit 3, a detector 4, a control device 5, a display monitor 6, and a frame 8. The housing 1 is disposed on a floor surface of a factory or the like so as to be substantially parallel (horizontal) to the XZ plane, and inside the X-ray source 2, the placement unit 3, the detector 4, and the frame 8. And is housed. The housing 1 contains lead as a material in order to prevent X-rays from leaking to the outside.
 X線源2は、制御装置5による制御に応じて、図1に示す出射点Qを頂点としてZ軸に平行な光軸Zrに沿って、Z軸+方向へ向けて円錐状に広がるX線(いわゆるコーンビーム)を放射する。出射点QはX線源2のフォーカルスポットに相当する。すなわち、光軸Zrは、X線源2のフォーカススポットである出射点Qと、後述する検出器4の撮像領域の中心とを結ぶ。なお、X線源2は円錐状にX線を放射するものに代えて、扇状のX線(いわゆるファンビーム)や線状のX線(いわゆるペンシルビーム)を放射するものについても本発明の一態様に含まれる。X線源2は、たとえば約50eVの超軟X線、約0.1~2keVの軟X線、約2~20keVのX線および約20~100keVの硬X線の少なくとも1つを放射することができる。なお、X線源2の詳細については説明を後述する。 The X-ray source 2 is an X-ray that spreads in a conical shape along the optical axis Zr parallel to the Z-axis with the emission point Q shown in FIG. (A so-called cone beam) is emitted. The exit point Q corresponds to the focal spot of the X-ray source 2. That is, the optical axis Zr connects the exit point Q, which is the focus spot of the X-ray source 2, and the center of the imaging region of the detector 4 described later. It should be noted that the X-ray source 2 is not limited to one that emits X-rays in a conical shape, but one that emits fan-shaped X-rays (so-called fan beams) or linear X-rays (so-called pencil beams) is also one aspect of the present invention. Included in embodiments. The X-ray source 2 emits at least one of, for example, an ultra soft X-ray of about 50 eV, a soft X-ray of about 0.1 to 2 keV, an X-ray of about 2 to 20 keV, and a hard X-ray of about 20 to 100 keV Can do. The details of the X-ray source 2 will be described later.
 載置部3は、被測定物Sが載置される載置台30と、載置台30に設けられた質量検出器31と、回転駆動部32、Y軸移動部33、X軸移動部34およびZ軸移動部35からなるマニピュレータ部36とを備え、X線発生部2よりもZ軸+側に設けられている。載置台30は、回転駆動部32により回転可能に設けられ、回転駆動部32による回転軸YrがX軸、Y軸、Z軸方向に移動する際に、ともに移動する。質量検出器31は、たとえばロードセル等によって構成され、載置台30に載置された被測定物Sの質量を検出して、検出した質量を制御装置5へ出力する。 The mounting unit 3 includes a mounting table 30 on which the object to be measured S is mounted, a mass detector 31 provided on the mounting table 30, a rotation driving unit 32, a Y-axis moving unit 33, an X-axis moving unit 34, and And a manipulator unit 36 including a Z-axis moving unit 35, and is provided closer to the Z-axis + side than the X-ray generation unit 2. The mounting table 30 is rotatably provided by the rotation drive unit 32, and moves together when the rotation axis Yr by the rotation drive unit 32 moves in the X-axis, Y-axis, and Z-axis directions. The mass detector 31 is configured by, for example, a load cell, detects the mass of the measurement object S placed on the mounting table 30, and outputs the detected mass to the control device 5.
 回転駆動部32は、たとえば電動モータ等によって構成され、後述する制御装置5により制御されて駆動した電動モータが発生する回転力によって、Y軸に平行であり、かつ、載置台30の中心を通過する軸を回転軸Yrとして載置台30を回転させる。Y軸移動部33、X軸移動部34およびZ軸移動部35は、制御装置5により制御されて、X線源2から射出されたX線の照射範囲内に被測定物Sが位置するように、載置台30をX軸方向、Y軸方向およびZ軸方向にそれぞれ移動させる。さらに、Z軸駆動部35は、制御装置5により制御されて、X線源2から被測定物Sまでの距離が、撮影される画像における被測定物Sが所望の拡大率となる距離に載置台30をZ軸方向に移動させる。 The rotation drive unit 32 is constituted by, for example, an electric motor or the like, and is parallel to the Y axis and passes through the center of the mounting table 30 by a rotational force generated by an electric motor controlled and driven by the control device 5 described later. The mounting table 30 is rotated with the axis to be rotated as the rotation axis Yr. The Y-axis moving unit 33, the X-axis moving unit 34, and the Z-axis moving unit 35 are controlled by the control device 5 so that the measured object S is positioned within the irradiation range of the X-rays emitted from the X-ray source 2. Then, the mounting table 30 is moved in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively. Further, the Z-axis drive unit 35 is controlled by the control device 5 so that the distance from the X-ray source 2 to the object S to be measured is a distance at which the object S in the captured image has a desired magnification. The mounting table 30 is moved in the Z-axis direction.
 検出器4は、X線源2および載置台30よりもZ軸+側に設けられている。すなわち、載置台30は、Z軸方向において、X線源2と検出器4との間に設けられる。検出器4は、XY平面に平行な入射面41を有し、X線源2から放射され、載置台30上に載置された被測定物Sを透過した透過X線を含むX線が入射面41に入射する。検出器4は、公知のシンチレーション物質を含むシンチレータ部と、光電子増倍管と、受光部等とによって構成され、シンチレータ部の入射面41に入射したX線のエネルギーを可視光や紫外光等の光エネルギーに変換して光電子増倍管で増幅し、当該増幅された光エネルギーを上記の受光部で電気エネルギーに変換し、電気信号として制御装置5へ出力する。なお、検出器4は、入射するX線のエネルギーを光エネルギーに変換することなく電気エネルギーに変換し、電気信号として出力してもよい。検出器4は、シンチレータ部と光電子増倍管と受光部とがそれぞれ複数の画素として分割された構造を有しており、それらの画素は2次元的に配列されている。これにより、X線源2から放射され、被測定物Sを通過したX線の強度分布を一括で取得できる。なお、検出器4として、光電子増倍管を設けずに、シンチレータ部が受光部(光電変換部)の上に直接形成された構造であってもよい。 The detector 4 is provided on the Z axis + side from the X-ray source 2 and the mounting table 30. That is, the mounting table 30 is provided between the X-ray source 2 and the detector 4 in the Z-axis direction. The detector 4 has an incident surface 41 parallel to the XY plane, and X-rays including transmitted X-rays emitted from the X-ray source 2 and transmitted through the measurement object S placed on the mounting table 30 are incident. Incident on the surface 41. The detector 4 includes a scintillator portion containing a known scintillation substance, a photomultiplier tube, a light receiving portion, and the like. The detector 4 converts X-ray energy incident on the incident surface 41 of the scintillator portion into visible light, ultraviolet light, or the like. The light energy is converted into light energy, amplified by a photomultiplier tube, the amplified light energy is converted into electric energy by the light receiving unit, and is output to the control device 5 as an electric signal. The detector 4 may convert incident X-ray energy into electric energy without converting it into light energy, and output the electric energy as an electric signal. The detector 4 has a structure in which a scintillator section, a photomultiplier tube, and a light receiving section are each divided into a plurality of pixels, and these pixels are two-dimensionally arranged. Thereby, the intensity distribution of the X-rays radiated from the X-ray source 2 and passed through the object to be measured S can be acquired at once. The detector 4 may have a structure in which the scintillator portion is formed directly on the light receiving portion (photoelectric conversion portion) without providing a photomultiplier tube.
 フレーム8は、X線源2と載置部3と検出器4とを支持する。このフレーム8は、十分な剛性を有して製造される。したがって、被測定物Sの投影像を取得中に、X線源2、載置部3および検出器4を安定に支持することが可能となる。また、フレーム8は除振機構81により支持されており、外部で発生した振動がフレーム8にそのまま伝達することを防いでいる。 The frame 8 supports the X-ray source 2, the placement unit 3, and the detector 4. The frame 8 is manufactured with sufficient rigidity. Therefore, it is possible to stably support the X-ray source 2, the placement unit 3, and the detector 4 while acquiring the projection image of the measurement object S. Further, the frame 8 is supported by a vibration isolation mechanism 81 to prevent vibration generated outside from being transmitted to the frame 8 as it is.
 制御装置5は、マイクロプロセッサやその周辺回路等を有しており、不図示の記憶媒体(たとえばフラッシュメモリ等)に予め記憶されている制御プログラムを読み込んで実行することにより、X線装置100の各部を制御する。制御装置5は、X線制御部51と、移動制御部52と、画像生成部53と、画像再構成部54と、構成情報取得部55とを備える。X線制御部51はX線源2の動作を制御し、移動制御部52はマニピュレータ部36の移動動作を制御する。画像生成部53は検出器4から出力された電気信号に基づいて被測定物SのX線投影画像データを生成し、画像再構成部54はマニピュレータ部36を制御しながらそれぞれの投影方向の異なる被測定物Sの投影画像データに基づいて、公知の画像再構成処理を施して再構成画像を生成する。画像再構成処理により、被測定物Sの内部構造(断面構造)である3次元データが生成される。この場合、画像再構成処理としては、逆投影法、フィルタ補正逆投影法、逐次近似法等がある。 The control device 5 includes a microprocessor, peripheral circuits, and the like. The control device 5 reads and executes a control program stored in advance in a storage medium (not shown) (for example, a flash memory), thereby executing the control of the X-ray device 100. Control each part. The control device 5 includes an X-ray control unit 51, a movement control unit 52, an image generation unit 53, an image reconstruction unit 54, and a configuration information acquisition unit 55. The X-ray control unit 51 controls the operation of the X-ray source 2, and the movement control unit 52 controls the movement operation of the manipulator unit 36. The image generation unit 53 generates X-ray projection image data of the object S to be measured based on the electrical signal output from the detector 4, and the image reconstruction unit 54 controls the manipulator unit 36 and has different projection directions. Based on the projection image data of the measurement object S, a known image reconstruction process is performed to generate a reconstructed image. By the image reconstruction process, three-dimensional data that is the internal structure (cross-sectional structure) of the DUT S is generated. In this case, the image reconstruction process includes a back projection method, a filtered back projection method, a successive approximation method, and the like.
 構成情報取得部55は被測定物Sの構成情報を取得する。構成情報としては、被測定物Sの立体形状や内部構造を特定可能な情報、すなわち被測定物によってX線源2から放射されるX線が吸収される量を単位伝播長さに対する割合(吸収係数)で算出するために必要な情報と被測定物Sの概略寸法とが含まれる。上述したX線制御部51は、構成情報取得部55により取得された被測定物Sの構成情報に基づいて、装置に固有の電力の範囲内でX線源2から放射するX線の出力を制御する。なお、X線制御部51および構成情報取得部55の処理の詳細については説明を後述する。表示モニタ6は、たとえば液晶モニタ等によって構成され、画像再構成処理により生成された被測定物Sの内部構造(断面構造)の3次元データに対応する画像を表示する。 The configuration information acquisition unit 55 acquires the configuration information of the measurement object S. As the configuration information, information that can specify the three-dimensional shape and internal structure of the object S to be measured, that is, the amount of X-rays that are radiated from the X-ray source 2 by the object to be measured is a ratio (absorption to the unit propagation length). Information necessary for calculation with the coefficient) and the approximate dimensions of the object S to be measured. The X-ray control unit 51 described above outputs the X-rays emitted from the X-ray source 2 within the range of electric power specific to the apparatus, based on the configuration information of the measurement object S acquired by the configuration information acquisition unit 55. Control. Details of the processes of the X-ray control unit 51 and the configuration information acquisition unit 55 will be described later. The display monitor 6 is constituted by a liquid crystal monitor, for example, and displays an image corresponding to the three-dimensional data of the internal structure (cross-sectional structure) of the object S to be measured generated by the image reconstruction process.
 図2を参照しながら、X線源2と制御装置5のX線制御部51との詳細について説明する。図2は、X線源2の構成を模式的に示す図である。X線源2は、ウェネルト電源20と、フィラメント21と、ターゲット22と、ウェネルト電極23と、電子光学部材25と、高電圧印加部26とを備える。X線源2においては、電子線の放出方向に沿って、フィラメント21、電子光学部材25、ターゲット22の順序で配置される。 Details of the X-ray source 2 and the X-ray control unit 51 of the control device 5 will be described with reference to FIG. FIG. 2 is a diagram schematically showing the configuration of the X-ray source 2. The X-ray source 2 includes a Wehnelt power source 20, a filament 21, a target 22, a Wehnelt electrode 23, an electro-optic member 25, and a high voltage application unit 26. In the X-ray source 2, the filament 21, the electron optical member 25, and the target 22 are arranged in this order along the electron beam emission direction.
 ウェネルト電源20は、ウェネルト電極23に、フィラメント21に対して負のバイアス電圧を印加する。フィラメント21は、たとえばタングステンを含み、ターゲット22へ向けて先鋭化された円錐形状を有している。フィラメント21の両端には、フィラメント加熱用電源回路211が設けられている。フィラメント加熱用電源回路211は、フィラメント21に電流を流すことにより、フィラメント21を加熱する。フィラメント21は、ウェネルト電極23により負の電荷が印加された状態で、フィラメント加熱用電源回路211により通電されることによって加熱され、先鋭化された先端から電子線(熱電子)をターゲット22に向けて放出する。すなわち、フィラメント21は、電子線を発生させるための電子線発生部として機能する。 The Wehnelt power supply 20 applies a negative bias voltage to the Wehnelt electrode 23 with respect to the filament 21. The filament 21 includes, for example, tungsten and has a conical shape sharpened toward the target 22. A filament heating power supply circuit 211 is provided at both ends of the filament 21. The filament heating power supply circuit 211 heats the filament 21 by passing a current through the filament 21. The filament 21 is heated by being energized by the filament heating power supply circuit 211 in a state where a negative charge is applied by the Wehnelt electrode 23, and an electron beam (thermoelectron) is directed toward the target 22 from the sharpened tip. And release. That is, the filament 21 functions as an electron beam generator for generating an electron beam.
 ウェネルト電極23に印加された負のバイアス電圧により生じる電界によって、フィラメント21から放出された電子線は収束する。ターゲット22は、たとえばタングステンを含み、フィラメント21から放出された電子線の衝突または電子線の進行の変化によりX線を発生する。なお、図1、図2においては、本実施の形態によるX線発生部2が反射型X線発生部により構成される場合を例として示しているが、透過型X線発生部により構成される場合についても本発明の一態様に含まれる。 The electron beam emitted from the filament 21 is converged by the electric field generated by the negative bias voltage applied to the Wehnelt electrode 23. The target 22 includes, for example, tungsten, and generates X-rays by collision of an electron beam emitted from the filament 21 or a change in the progress of the electron beam. 1 and 2 show an example in which the X-ray generator 2 according to the present embodiment is configured by a reflective X-ray generator, but it is configured by a transmissive X-ray generator. Cases are also included in one embodiment of the present invention.
 電子光学部材25はフィラメント21とターゲット22との間に配置される。電子光学部材25は、電子線を集束するための偏向コイル等によって構成される。電子光学部材25は、磁界の作用を利用してフィラメント21からの電子線を集束させて、ターゲット22の一部の領域(X線焦点)に電子線を衝突させる。高電圧印加部26は、フィラメント21とターゲット22とに電気的に接続され、ターゲット22に対してフィラメント21に負の電圧を印加する。高電圧印加部26は、制御装置5のX線制御部51により制御され、フィラメント21とターゲット22との間に所定の直流の高電圧を加える。 Electron optical member 25 is arranged between filament 21 and target 22. The electron optical member 25 is constituted by a deflection coil or the like for focusing an electron beam. The electron optical member 25 focuses the electron beam from the filament 21 using the action of a magnetic field, and collides the electron beam with a partial region (X-ray focal point) of the target 22. The high voltage application unit 26 is electrically connected to the filament 21 and the target 22, and applies a negative voltage to the filament 21 with respect to the target 22. The high voltage application unit 26 is controlled by the X-ray control unit 51 of the control device 5 and applies a predetermined high DC voltage between the filament 21 and the target 22.
 フィラメント21は、高電圧印加部26により高電圧が印加されると、上述したように電子線を放出するカソードとして機能する。本実施の形態では、一例として、フィラメント21を直接加熱しながらカソードとして機能させる。本発明はこの例に限定されず、カソードの他に別途カソードを加熱するヒータを有するものであっても良い。また、カソードを加熱することなく、カソードの周囲に強い電界を形成させることにより電子線を放出させるものであっても良い。フィラメント21からターゲット22に向けて放出された電子線はウェネルト電極23により絞られ、高電圧印加部26により印加された高電圧により加速されターゲット22へ向かう。すなわち、フィラメント21とターゲット22との間の電位差が、電子線を加速させるための加速電圧として作用する。電子線が電子光学部材25により集束され、電子線の収束位置(フォーカルスポット)に配置されたターゲット22に電子線が衝突してターゲット22からX線が発生する。 The filament 21 functions as a cathode that emits an electron beam as described above when a high voltage is applied by the high voltage application unit 26. In the present embodiment, as an example, the filament 21 is caused to function as a cathode while being directly heated. The present invention is not limited to this example, and may have a heater for heating the cathode separately in addition to the cathode. Further, an electron beam may be emitted by forming a strong electric field around the cathode without heating the cathode. The electron beam emitted from the filament 21 toward the target 22 is focused by the Wehnelt electrode 23, accelerated by the high voltage applied by the high voltage application unit 26, and travels toward the target 22. That is, the potential difference between the filament 21 and the target 22 acts as an acceleration voltage for accelerating the electron beam. The electron beam is focused by the electron optical member 25, and the electron beam collides with the target 22 disposed at the convergence position (focal spot) of the electron beam to generate X-rays from the target 22.
 本実施の形態のX線装置100は、被測定物SにX線を照射して計測を開始する前に、被測定物Sの形状や材料等の特定に応じて、被測定物Sの投影画像データの取得に適したX線の出力を自動的に設定するX線放射条件設定処理を行う。X線放射条件設定処理では、構成情報取得部55は、載置台30に載置された被測定物Sの質量と、被測定物Sの体積とを用いて被測定物Sの密度を算出し、算出した密度に基づいて被測定物Sの材料を推定し、かつ被測定物Sの寸法、特にX線伝播方向に一致する方向の寸法情報を推定または取得する構成情報取得処理を行う。X線制御部51は、構成情報取得処理の結果に従って、X線源2の高電圧印加部26がフィラメント21とターゲット22との間に印加する加速電圧およびフィラメント21への電流量の少なくとも一方を設定するX線出力設定処理を行う。以下、構成情報取得部55による構成情報取得処理と、X線制御部51によるX線出力設定処理とに分けて説明を行う。なお、以下の処理は、ユーザにより被測定物Sが載置台30に載置され、不図示の操作部材等を操作してX線放射条件設定処理の開始を指示することにより開始される。 The X-ray apparatus 100 according to the present embodiment projects the measurement object S in accordance with the specification of the shape and material of the measurement object S before irradiating the measurement object S with X-rays and starting measurement. X-ray emission condition setting processing for automatically setting X-ray output suitable for acquisition of image data is performed. In the X-ray emission condition setting process, the configuration information acquisition unit 55 calculates the density of the measurement object S using the mass of the measurement object S placed on the mounting table 30 and the volume of the measurement object S. A configuration information acquisition process is performed for estimating the material of the object to be measured S based on the calculated density and estimating or acquiring the dimension information of the object to be measured S, in particular, the dimension information in the direction matching the X-ray propagation direction. The X-ray control unit 51 determines at least one of the acceleration voltage applied by the high voltage application unit 26 of the X-ray source 2 between the filament 21 and the target 22 and the amount of current to the filament 21 according to the result of the configuration information acquisition process. X-ray output setting processing to be set is performed. Hereinafter, the configuration information acquisition process by the configuration information acquisition unit 55 and the X-ray output setting process by the X-ray control unit 51 will be described separately. The following process is started when the user places the object to be measured S on the mounting table 30 and operates an operation member (not shown) to instruct the start of the X-ray emission condition setting process.
-構成情報取得処理-
 構成情報取得部55は、被測定物Sが載置台30に載置されることにより質量検出器31によって検出された被測定物Sの質量を構成情報取得処理にて使用する。
 構成情報取得部55は、X線源2からX線を被測定物Sに照射して得られた被測定物Sの投影画像データ、すなわち被測定物Sの形状を表す形状情報を用いて、被測定物Sの体積を算出する。この場合、形状情報は、回転駆動部32によって被測定物Sを回転軸Yrの回りに回転させながら、被測定物Sが所定角度だけ回転するごとにX線源2からX線を放射させ、画像生成部53によって生成される所定角度の回転ごとの複数の投影画像データから算出される。
-Configuration information acquisition process-
The configuration information acquisition unit 55 uses the mass of the measurement object S detected by the mass detector 31 when the measurement object S is placed on the mounting table 30 in the configuration information acquisition process.
The configuration information acquisition unit 55 uses projection image data of the measurement object S obtained by irradiating the measurement object S with X-rays from the X-ray source 2, that is, shape information representing the shape of the measurement object S. The volume of the measurement object S is calculated. In this case, the shape information is obtained by emitting X-rays from the X-ray source 2 every time the measured object S rotates by a predetermined angle while rotating the measured object S around the rotation axis Yr by the rotation driving unit 32. It is calculated from a plurality of projection image data for each rotation of a predetermined angle generated by the image generation unit 53.
 たとえば図3(a)に示すように直方体形状を有している被測定物Sの形状情報を取得する場合を例に挙げる。図3(b)は回転開始時におけるY軸+側(すなわち上方から)見た状態の被測定物SとX線源2および検出器4との位置関係を示し、図3(c)は図3(b)の状態から90度回転した後におけるY軸+側(すなわち上方から)見た状態の被測定物SとX線源2および検出器4との位置関係を示す。図3(b)および図3(c)には、XZ平面における位置関係が示されている。図3(d)は図3(b)の状態で取得された投影画像データI1を模式的に示し、図3(e)は図3(c)の状態で取得された投影画像データI2を模式的に示す。図3(d)に示す投影画像データI1、すなわち形状情報を用いて、構成情報取得部55は、投影画像データI1に対してエッジ検出等を行うことにより被測定物Sの長さHおよび長さDを算出する。図3(e)に示す投影画像データI2、すなわち形状情報を用いて、構成情報取得部55は、投影画像データI2に対してエッジ検出等を行うことにより被測定物Sの長さWを算出する。構成情報取得部55は、算出した長さH、WおよびDを用いて、被測定物Sの体積を算出する。なお、上記においては、簡便な説明を目的として、代表的な2つの投影画像データを代表として示して被測定物Sの体積と概略寸法とを算出するものとした。所定角度を小さく設定して生成される投影画像データの個数を増やし、検出するエッジ、すなわち被測定物Sの外観形状の個数を増やすことにより被測定物Sの体積をより精度よく算出できる。 For example, as shown in FIG. 3A, a case where the shape information of the measurement object S having a rectangular parallelepiped shape is acquired is taken as an example. FIG. 3B shows the positional relationship between the object to be measured S, the X-ray source 2 and the detector 4 as viewed from the Y axis + side (ie, from above) at the start of rotation, and FIG. 3 shows the positional relationship between the measurement object S, the X-ray source 2 and the detector 4 as viewed from the Y axis + side (that is, from above) after being rotated 90 degrees from the state 3 (b). FIG. 3B and FIG. 3C show the positional relationship in the XZ plane. 3D schematically shows the projection image data I1 acquired in the state of FIG. 3B, and FIG. 3E schematically shows the projection image data I2 acquired in the state of FIG. Indicate. Using the projection image data I1 shown in FIG. 3D, that is, shape information, the configuration information acquisition unit 55 performs edge detection and the like on the projection image data I1 to thereby detect the length H and the length of the object S to be measured. D is calculated. Using the projection image data I2 shown in FIG. 3E, that is, the shape information, the configuration information acquisition unit 55 calculates the length W of the measurement object S by performing edge detection or the like on the projection image data I2. To do. The configuration information acquisition unit 55 calculates the volume of the measurement object S using the calculated lengths H, W, and D. In the above description, for the purpose of simple explanation, two representative projection image data are shown as representatives, and the volume and approximate dimensions of the measurement object S are calculated. By increasing the number of projection image data generated by setting the predetermined angle small and increasing the number of detected edges, that is, the number of external shapes of the measurement object S, the volume of the measurement object S can be calculated more accurately.
 なお、上記の所定角度は、被測定物Sの外観形状に拘わらず同一であっても良いし、被測定物Sの外観形状に応じて可変、たとえば被測定物Sが複雑な外観形状の場合には小さい値に設定され、単純な外観形状の場合には大きな値に設定されても良い。また、形状情報を取得するための被測定物Sの総回転角度は、後述するX線が被測定物Sを透過する際の最大透過距離に相当する被測定物Sの寸法が算出可能となるように、被測定物Sの構造に応じて適宜決定することができ、最大で180度の総回転角度とすれば良い。また、投影画像データに代えて、画像再構成部54により生成された再構成画像を用いて、構成情報取得部55は被測定物Sの体積を算出するものについても本発明の一態様に含まれる。 The predetermined angle may be the same regardless of the external shape of the object S to be measured, or may be variable according to the external shape of the object S to be measured, for example, when the object S has a complicated external shape. May be set to a small value, and may be set to a large value in the case of a simple external shape. Further, the total rotation angle of the measurement object S for obtaining the shape information can be calculated as a dimension of the measurement object S corresponding to the maximum transmission distance when X-rays described later pass through the measurement object S. Thus, it can be determined as appropriate according to the structure of the object S to be measured, and the total rotation angle may be 180 degrees at the maximum. In addition, the configuration information acquisition unit 55 calculates the volume of the object S to be measured using the reconstructed image generated by the image reconstruction unit 54 instead of the projection image data. It is.
 構成情報取得部55は、質量検出器31により検出された被測定物Sの質量と、上記のようにして算出した被測定物Sの体積とを用いて、被測定物Sの密度を算出し、算出した密度に基づいて、被測定物Sの材料を推定する。被測定物Sの材料を推定すると、構成情報取得部55は、被測定物Sの吸収係数を算出する。被測定物Sの密度と材料との関係、被測定物Sの密度と吸収係数との関係は、予めテーブル等の形式によって所定の記憶領域(不図示)に格納されている。構成情報取得部55は、算出した被測定物Sの密度に基づいて、テーブルを参照することにより、被測定物Sの材料を推定する。そして、構成情報取得部55は、推定した被測定物Sの材料に基づいて、テーブルを参照して被測定物Sの吸収係数を算出する。 The configuration information acquisition unit 55 calculates the density of the measurement object S using the mass of the measurement object S detected by the mass detector 31 and the volume of the measurement object S calculated as described above. Based on the calculated density, the material of the object S to be measured is estimated. When the material of the device under test S is estimated, the configuration information acquisition unit 55 calculates the absorption coefficient of the device under test S. The relationship between the density of the object to be measured S and the material and the relationship between the density of the object to be measured S and the absorption coefficient are stored in advance in a predetermined storage area (not shown) in the form of a table or the like. The configuration information acquisition unit 55 estimates the material of the device under test S by referring to the table based on the calculated density of the device under test S. Then, the configuration information acquisition unit 55 calculates the absorption coefficient of the device under test S with reference to the table based on the estimated material of the device under test S.
 図4に上記のテーブルの一例を示す。図4(a)は被測定物Sの密度と材料と吸収係数との関係を示すテーブルの一例である。図4(a)に示すように、本実施の形態においては、密度d1(たとえば1.0≦d1<2.0[g/cm])と樹脂、密度d2(たとえば2.0≦d2<2.5[g/cm])とガラス、密度d3(たとえば2.5≦d3<5[g/cm])と鉱物、密度d4(たとえば2.0≦d4<5[g/cm])と軽金属、密度d5(たとえばd5≧5[g/cm])と重金属がそれぞれ関連付けされている。図4(a)に示すように、本実施の形態においては、樹脂と吸収係数μ1、ガラスと吸収係数μ2、鉱物と吸収係数μ3、軽金属と吸収係数μ4、重金属と吸収係数μ5がそれぞれ関連付けされている。 FIG. 4 shows an example of the above table. FIG. 4A is an example of a table showing the relationship between the density of the object to be measured S, the material, and the absorption coefficient. As shown in FIG. 4A, in the present embodiment, density d1 (for example, 1.0 ≦ d1 <2.0 [g / cm 3 ]) and resin, density d2 (for example, 2.0 ≦ d2 < 2.5 [g / cm 3 ]) and glass, density d3 (for example, 2.5 ≦ d3 <5 [g / cm 3 ]) and mineral, and density d4 (for example, 2.0 ≦ d4 <5 [g / cm 3]. ]) And light metal, density d5 (for example, d5 ≧ 5 [g / cm 3 ]) and heavy metal are associated with each other. As shown in FIG. 4A, in this embodiment, resin and absorption coefficient μ1, glass and absorption coefficient μ2, mineral and absorption coefficient μ3, light metal and absorption coefficient μ4, and heavy metal and absorption coefficient μ5 are associated with each other. ing.
 構成情報取得部55は、算出された被測定物Sの密度がd1の範囲の場合には被測定物Sの材料を樹脂と推定し、算出された被測定物Sの密度がd2の範囲の場合には被測定物Sの材料をガラスと推定し、算出された被測定物Sの密度がd3の範囲の場合には被測定物Sの材料を鉱物と推定し、算出された被測定物Sの密度がd4の範囲の場合には被測定物Sの材料を軽金属と推定し、算出された被測定物Sの密度がd5の範囲の場合には被測定物Sの材料を重金属と推定する。構成情報取得部55は、推定した被測定物Sの材料に基づいて、図4(a)のテーブルを参照して、吸収係数を選択することにより、被測定物Sの吸収係数を得る。 When the calculated density of the measured object S is in the range of d1, the configuration information acquisition unit 55 estimates the material of the measured object S as resin, and the calculated density of the measured object S is in the range of d2. In this case, the material of the object to be measured S is estimated to be glass, and when the calculated density of the object to be measured S is in the range of d3, the material of the object to be measured S is estimated to be mineral and the calculated object to be measured is calculated. When the density of S is in the range of d4, the material of the object to be measured S is estimated as a light metal, and when the calculated density of the object to be measured S is in the range of d5, the material of the object to be measured S is estimated as a heavy metal. To do. The configuration information acquisition unit 55 refers to the estimated material of the measured object S and refers to the table of FIG. 4A to select the absorption coefficient, thereby obtaining the absorption coefficient of the measured object S.
 なお、構成情報取得部55は、算出した被測定物Sの密度から材料を推定して吸収係数を得るものに代えて、算出した被測定物Sの密度から材料を推定することなく吸収係数を決定するものについても本発明の一態様に含まれる。この場合、図4(b)に示すように、密度と吸収係数とが関連付けられたテーブルを用いて、構成情報取得部55は算出した被測定物Sの密度から吸収係数を得ることができる。また、図4(a)に示すように密度に対して概略の材料を関連付けるものに代えて、密度の範囲を細かく分類し、材料を化合物名や金属元素名と関連付けても良く、被測定物Sが複数種類の材料から製造されたものではないことが予め分かっている場合等には、より正確に材料を推定することができる。 The configuration information acquisition unit 55 calculates the absorption coefficient without estimating the material from the calculated density of the measured object S, instead of obtaining the absorption coefficient by estimating the material from the calculated density of the measured object S. What is determined is also included in one embodiment of the present invention. In this case, as shown in FIG. 4B, the configuration information acquisition unit 55 can obtain the absorption coefficient from the calculated density of the measurement object S using a table in which the density and the absorption coefficient are associated with each other. 4A, instead of associating a rough material with a density as shown in FIG. 4A, the density range may be finely classified, and the material may be associated with a compound name or a metal element name. When it is known in advance that S is not manufactured from a plurality of types of materials, the material can be estimated more accurately.
 被測定物Sの設計情報、たとえば3次元CAD等の被測定物Sの立体形状を特定可能な情報(横幅、縦幅、奥行き、頂点の位置等)、材料、質量の分布等の情報が得られる場合には、構成情報取得部55はこの設計情報を構成情報として用いる。この場合、構成情報取得部55は、設計情報に含まれる材料の情報に基づいて、図4に示すテーブルを参照して被測定物Sの吸収係数を算出することができる。なお、設計情報の中に被測定物Sの吸収係数を算出するために必要となる情報の一部が含まれていない場合には、上記の方法を用いて不足している情報を補うことができる。たとえば、被測定物Sの材料と質量とに関する情報が含まれていない場合には、構成情報取得部55は、質量検出器31によって検出された質量と、設計情報に含まれる立体形状を特定する情報を用いて算出した被測定物Sの体積とを用いて密度を算出し、図4に示すテーブルを参照して吸収係数を算出すれば良い。 The design information of the object to be measured S, for example, information that can specify the three-dimensional shape of the object S to be measured, such as three-dimensional CAD (horizontal width, vertical width, depth, apex position, etc.), information such as material, mass distribution, etc. In the case of being configured, the configuration information acquisition unit 55 uses this design information as configuration information. In this case, the configuration information acquisition unit 55 can calculate the absorption coefficient of the object to be measured S with reference to the table shown in FIG. 4 based on the material information included in the design information. If the design information does not include a part of the information necessary for calculating the absorption coefficient of the measurement object S, the above method may be used to compensate for the missing information. it can. For example, when the information regarding the material and mass of the measurement object S is not included, the configuration information acquisition unit 55 identifies the mass detected by the mass detector 31 and the three-dimensional shape included in the design information. What is necessary is just to calculate a density using the volume of the to-be-measured object S calculated using information, and to calculate an absorption coefficient with reference to the table shown in FIG.
-X線出力設定処理-
 X線制御部51は、上記の構成情報取得処理の際に取得された形状情報を用いて、X線が検出器4に入射する際に被測定物Sを透過する透過距離を算出し、算出した透過距離と構成情報取得部55により算出された吸収係数とを用いて、放射するX線の透過強度を算出する。X線制御部51は、算出したX線の透過強度が得られるように加速電圧を設定する。以下、詳細に説明する。
-X-ray output setting process-
The X-ray control unit 51 uses the shape information acquired during the above-described configuration information acquisition process to calculate a transmission distance that passes through the measurement object S when the X-rays enter the detector 4. The transmission intensity of the radiated X-ray is calculated using the transmission distance and the absorption coefficient calculated by the configuration information acquisition unit 55. The X-ray control unit 51 sets the acceleration voltage so that the calculated X-ray transmission intensity can be obtained. Details will be described below.
 X線制御部51は、形状情報、すなわち構成情報取得処理にて取得された所定角度ごとの投影画像データを用いて、被測定物Sの各部の寸法を取得する。また、特に被測定物Sにおける最長の長さ、すなわちX線源2から放射されたX線が被測定物Sを透過する際の透過距離のうち最大の透過距離(以下、最大透過距離と呼ぶ)を取得する。X線制御部51は、所定角度ごとに生成された複数の投影画像データのそれぞれから検出されたX方向のエッジの長さのうち最大の長さを最大透過距離として抽出する。または、たとえば、図3(a)に示すように被測定物Sが直方体形状を有している場合には、X線制御部51は、構成情報取得部55によって算出された長さWとDとを用いて、被測定物SのXZ平面に平行な面上の対角線の長さ(=(D+W1/2)を最大透過距離として算出しても良い。 The X-ray control unit 51 acquires the dimensions of each part of the measurement object S using the shape information, that is, the projection image data for each predetermined angle acquired in the configuration information acquisition process. In particular, the longest length of the object to be measured S, that is, the maximum transmission distance (hereinafter referred to as the maximum transmission distance) among the transmission distances when X-rays emitted from the X-ray source 2 pass through the object to be measured S. ) To get. The X-ray control unit 51 extracts the maximum length as the maximum transmission distance among the lengths of the edges in the X direction detected from each of the plurality of projection image data generated for each predetermined angle. Alternatively, for example, when the object to be measured S has a rectangular parallelepiped shape as illustrated in FIG. 3A, the X-ray control unit 51 calculates the lengths W and D calculated by the configuration information acquisition unit 55. And the length of the diagonal line (= (D 2 + W 2 ) 1/2 ) on the plane parallel to the XZ plane of the object to be measured S may be calculated as the maximum transmission distance.
 X線制御部51は、構成情報取得部55によって算出された密度あるいは材料に基づいて求めた被測定物Sの吸収係数と、上記の最大透過距離とを用いて、X線が被測定物Sを透過して検出器4に入射するために必要となるX線の強度を算出する。すなわち、X線制御部51は、以下の式(1)に示す公知の関係式を用いてX線の強度を算出する。
 I=I-μL …(1)
 なお、Iは検出器4に入射するX線強度、Iは被測定物Sに入射する前のX線強度(初期X線強度)、Lは最大透過距離である。
The X-ray control unit 51 uses the absorption coefficient of the measurement object S obtained based on the density or material calculated by the configuration information acquisition unit 55 and the above-described maximum transmission distance, and X-rays are measured. X-ray intensity required to pass through and enter the detector 4 is calculated. That is, the X-ray control unit 51 calculates the X-ray intensity using a known relational expression shown in the following expression (1).
I = I 0 e −μL (1)
Here, I is the X-ray intensity incident on the detector 4, I 0 is the X-ray intensity before entering the object to be measured S (initial X-ray intensity), and L is the maximum transmission distance.
 X線制御部51は、上記の式(1)にて決まるX線強度Iが検出器4によって受光可能な強度、すなわち被測定物Sの内部構造(断面構造)を表す再構成画像が生成可能となるために必要となる最低のX線強度thを超えるように初期X線強度Iを算出する。すなわち、X線制御部51は、構成情報取得部55により算出された被測定物Sの吸収係数μと最大透過距離Lとを用いて、以下の式(2)を満たす初期X線強度Iを算出する。
 I-μL>th…(2)
 なお、X線強度thは予め実験等によって算出され、所定値として設定されている。
The X-ray control unit 51 can generate a reconstructed image representing the intensity at which the X-ray intensity I determined by the above equation (1) can be received by the detector 4, that is, the internal structure (cross-sectional structure) of the object S to be measured. The initial X-ray intensity I 0 is calculated so as to exceed the minimum X-ray intensity th I required for the above. That is, the X-ray control unit 51 uses the absorption coefficient μ and the maximum transmission distance L of the measurement object S calculated by the configuration information acquisition unit 55, and the initial X-ray intensity I 0 that satisfies the following equation (2). Is calculated.
I 0 e −μL > th I (2)
The X-ray intensity th I is calculated in advance through experiments or the like and set as a predetermined value.
 X線制御部51は、上記の式(2)を満たすX線強度Iのうち最小値、すなわち最低透過強度I0minを算出し、X線源2から放射される際のX線の強度が最低透過強度I0minとなるように加速電圧を設定する。X線強度と電子線のエネルギーすなわち加速電圧とは、たとえば図5に示すような関係を有することが知られている。図5においては、X線制御部51によって算出された式(2)を満たすX線強度Iが破線で囲む領域RI0に含まれると仮定した場合を示す。X線制御部51は、領域RI0に含まれるX線強度Iのうち、特性X線の強度が最小となるものを最低透過強度I0minとして決定する。図5に示す例の場合には、最低透過強度I0minを得るための電圧が150[kV]であるので、X線制御部51はこの電圧を加速電圧として設定する。X線強度と加速電圧との関係を示すデータをたとえばテーブル形式等によって予め所定の記憶領域に記憶され、X線制御部51は、算出した最低透過強度I0minを得るために必要な加速電圧を算出する。X線制御部51は、上述のようにして加速電圧を算出すると、装置固有の電力の範囲内で加速電圧に応じた電流値を算出し、フィラメント加熱用電源回路211への電流量として設定する。 The X-ray control unit 51 calculates the minimum value among the X-ray intensities I 0 satisfying the above formula (2), that is, the minimum transmission intensity I 0 min, and the intensity of the X-rays when emitted from the X-ray source 2 is The acceleration voltage is set so that the minimum transmission intensity is 10 min . It is known that the X-ray intensity and the electron beam energy, that is, the acceleration voltage have a relationship as shown in FIG. 5, for example. FIG. 5 shows a case where it is assumed that the X-ray intensity I 0 satisfying the equation (2) calculated by the X-ray control unit 51 is included in the region R I0 surrounded by the broken line. The X-ray control unit 51 determines, as the minimum transmission intensity I 0 min , the characteristic X-ray intensity that is minimum among the X-ray intensity I 0 included in the region R I0 . In the example shown in FIG. 5, the voltage for obtaining the minimum transmission intensity I 0 min is 150 [kV], so the X-ray controller 51 sets this voltage as the acceleration voltage. Data indicating the relationship between the X-ray intensity and the acceleration voltage is stored in a predetermined storage area in advance in a table format, for example, and the X-ray control unit 51 sets an acceleration voltage necessary for obtaining the calculated minimum transmission intensity I 0 min. calculate. When the X-ray control unit 51 calculates the acceleration voltage as described above, the X-ray control unit 51 calculates a current value corresponding to the acceleration voltage within the range of power inherent to the apparatus, and sets it as the amount of current to the filament heating power supply circuit 211. .
 図6のフローチャートを参照しながら、X線装置100によるX線放射条件設定処理について説明する。図6のフローチャートに示す各処理は、制御装置5でプログラムを実行して行われる。このプログラムは、メモリ(不図示)に格納されており、ユーザにより被測定物Sが載置台30に載置されX線放射条件設定処理の開始が指示されると、制御装置5により起動され、実行される。 The X-ray emission condition setting process by the X-ray apparatus 100 will be described with reference to the flowchart of FIG. Each process shown in the flowchart of FIG. 6 is performed by executing a program in the control device 5. This program is stored in a memory (not shown), and is activated by the control device 5 when the measurement object S is placed on the mounting table 30 and the start of the X-ray emission condition setting process is instructed by the user. Executed.
 ステップS0では、被測定物Sの設計情報が存在するか否かを判定する。設計情報が存在する場合には、ステップS0が肯定判定されて後述するステップS5へ進む。設計情報が存在しない場合には、ステップS0が否定判定されてステップS1へ進む。ステップS1では、質量検出器31からの出力に基づいて、被測定物Sの質量を取得してステップS2へ進む。ステップS2においては、回転駆動部32を回転駆動させることにより被測定物Sを回転軸Yrの回りに回転させ、所定角度ごとにX線源2からX線を放射させ、所定角度ごとの投影画像データを生成させることにより形状情報を取得してステップS3へ進む。ステップS3においては、形状情報を用いて被測定物Sの体積を算出してステップS4へ進む。なお、ステップS1と、ステップS2およびS3との順序が逆、すなわち被測定物Sの体積を算出した後、被測定物Sの質量を取得しても良い。あるいは、ステップS1と、ステップS2およびS3とを同時、すなわち被測定物Sの質量の取得と体積情報を含む形状情報の算出とを同時に行っても良い。 In step S0, it is determined whether or not the design information of the device under test S exists. If design information exists, an affirmative determination is made in step S0 and the process proceeds to step S5 described later. If design information does not exist, a negative determination is made in step S0 and the process proceeds to step S1. In step S1, based on the output from the mass detector 31, the mass of the object S to be measured is acquired, and the process proceeds to step S2. In step S2, the object to be measured S is rotated about the rotation axis Yr by rotating the rotation drive unit 32, and X-rays are emitted from the X-ray source 2 at every predetermined angle. The shape information is acquired by generating data, and the process proceeds to step S3. In step S3, the volume of the measurement object S is calculated using the shape information, and the process proceeds to step S4. Note that the order of Step S1 and Steps S2 and S3 may be reversed, that is, after calculating the volume of the object S, the mass of the object S may be acquired. Or you may perform step S1 and step S2 and S3 simultaneously, ie, acquisition of the mass of to-be-measured object S, and calculation of the shape information containing volume information simultaneously.
 ステップS4では、被測定物Sの質量と体積とを用いて被測定物Sの密度を算出してステップS5へ進む。ステップS5では、算出した密度に基づいて被測定物Sの材料を推定してステップS6へ進む。なお、上述したように算出した被測定物Sの密度から直接被測定物Sの吸収係数を算出する場合には、ステップS5を省略してステップS6へ進む。ステップS6では、推定した被測定物Sの材料に基づいて、被測定物Sの吸収係数を算出してステップS7へ進む。ステップS7では、形状情報を用いて、被測定物Sの最大透過距離を取得してステップS8へ進む。ステップS8では、ステップS6で算出した被測定物Sの吸収係数と、ステップS7で算出した最大透過距離とに基づいてX線の最低透過強度Iを算出し、算出したX線の最低透過強度I0minから加速電圧を算出して処理を終了する。 In step S4, the density of the measurement object S is calculated using the mass and volume of the measurement object S, and the process proceeds to step S5. In step S5, the material of the object to be measured S is estimated based on the calculated density, and the process proceeds to step S6. In addition, when calculating the absorption coefficient of the to-be-measured object S directly from the density of the to-be-measured object S calculated as mentioned above, step S5 is skipped and it progresses to step S6. In step S6, the absorption coefficient of the measured object S is calculated based on the estimated material of the measured object S, and the process proceeds to step S7. In step S7, the maximum transmission distance of the object to be measured S is acquired using the shape information, and the process proceeds to step S8. In step S8, the minimum transmission intensity I 0 of X-rays is calculated based on the absorption coefficient of the measurement object S calculated in step S6 and the maximum transmission distance calculated in step S7, and the calculated minimum transmission intensity of X-rays is calculated. The acceleration voltage is calculated from I 0 min and the process is terminated.
 上述のようにしてX線源2から放射するX線の加速電圧が設定されると、被測定物Sの計測が行われる。本実施の形態においては、制御装置5の移動制御部52は、X軸移動部33と、Y軸移動部34と、Z軸移動部35とを制御して、載置台30をX線源2および検出器4に対して相対移動させて、所望の撮影位置や倍率にて被測定物Sを位置させる。そして、移動制御部52は、回転駆動部32を制御して、被測定物Sを支持した載置台30を回転中心軸Yrを中心として回転させる。載置台30を回転させながら、制御装置5のX線制御部51はX線源2を制御して、被測定物SにX線を照射させる。 When the acceleration voltage of X-rays radiated from the X-ray source 2 is set as described above, the measurement object S is measured. In the present embodiment, the movement control unit 52 of the control device 5 controls the X-axis moving unit 33, the Y-axis moving unit 34, and the Z-axis moving unit 35, and moves the mounting table 30 to the X-ray source 2. Then, the object S is moved relative to the detector 4 to position the measured object S at a desired photographing position or magnification. Then, the movement control unit 52 controls the rotation driving unit 32 to rotate the mounting table 30 that supports the DUT S about the rotation center axis Yr. While rotating the mounting table 30, the X-ray control unit 51 of the control device 5 controls the X-ray source 2 to irradiate the measurement object S with X-rays.
 検出器4は、載置台30が所定の回転角度ごとに被測定物Sを透過した透過X線を検出し、電気信号として制御装置5へ出力する。制御装置5の画像生成部53は、載置台30の各回転角度ごとに取得された電気信号に基づいて、それぞれの投影方向毎の被測定物Sの投影画像データを生成する。すなわち、画像生成部53は、複数の異なる方向からの被測定物Sの投影画像データを生成する。制御装置5の画像再構成部54は、被測定物Sの複数の投影画像データを用いて公知の画像再構成処理を行って、被測定物Sの内部構造(断面構造)である3次元データを生成する。この場合、画像再構成処理としては、逆投影法、フィルタ補正逆投影法、逐次近似法等がある。生成された被測定物Sの内部構造の3次元データは、表示モニタ6に表示される。 The detector 4 detects the transmitted X-rays that the mounting table 30 has transmitted through the measurement object S at every predetermined rotation angle, and outputs the detected X-rays to the control device 5 as an electric signal. The image generation unit 53 of the control device 5 generates projection image data of the object to be measured S for each projection direction based on the electrical signal acquired for each rotation angle of the mounting table 30. That is, the image generation unit 53 generates projection image data of the measurement object S from a plurality of different directions. The image reconstruction unit 54 of the control device 5 performs a known image reconstruction process using a plurality of projection image data of the object S to be measured, and three-dimensional data that is an internal structure (cross-sectional structure) of the object S to be measured. Is generated. In this case, the image reconstruction process includes a back projection method, a filtered back projection method, a successive approximation method, and the like. The generated three-dimensional data of the internal structure of the measured object S is displayed on the display monitor 6.
 上述した本発明の実施の形態によるX線装置100を含む構造物製造システムの実施の形態について説明する。構造物製造システムは、たとえば自動車のドア部分、エンジン部分、ギア部分および回路基板を備える電子部品等の成型品を作成する。 Embodiments of the structure manufacturing system including the X-ray apparatus 100 according to the above-described embodiment of the present invention will be described. The structure manufacturing system creates a molded product such as an electronic component including, for example, an automobile door portion, an engine portion, a gear portion, and a circuit board.
 図7は本実施の形態による構造物製造システム400の構成の一例を示すブロック図である。構造物製造システム400は、実施の形態にて説明したX線装置100と、設計装置410と、成形装置420と、制御システム430と、リペア装置440とを備える。 FIG. 7 is a block diagram showing an example of the configuration of the structure manufacturing system 400 according to the present embodiment. The structure manufacturing system 400 includes the X-ray apparatus 100 described in the embodiment, a design apparatus 410, a molding apparatus 420, a control system 430, and a repair apparatus 440.
 設計装置410は、構造物の形状に関する設計情報を作成する際にユーザが用いる装置であって、設計情報を作成して記憶する設計処理を行う。設計情報は、構造物の各位置の座標を示す情報である。設計情報は成形装置420および後述する制御システム430に出力される。成形装置420は設計装置410により作成された設計情報を用いて構造物を作成、成形する成形処理を行う。この場合、成形装置420は、3Dプリンター技術で代表される積層加工、鋳造加工、鍛造加工および切削加工のうち少なくとも1つを行うものについても本発明の一態様に含まれる。 The design device 410 is a device used by a user when creating design information related to the shape of a structure, and performs a design process for creating and storing design information. The design information is information indicating the coordinates of each position of the structure. The design information is output to the molding apparatus 420 and a control system 430 described later. The molding apparatus 420 performs a molding process for creating and molding a structure using the design information created by the design apparatus 410. In this case, the molding apparatus 420 includes an apparatus that performs at least one of laminating, casting, forging, and cutting represented by 3D printer technology.
 X線装置100は、成形装置420により成形された構造物の形状を測定する測定処理を行う。X線装置100は、構造物を測定した測定結果である構造物の座標を示す情報(以後、形状情報と呼ぶ)を制御システム430に出力する。制御システム430は、座標記憶部431と、検査部432とを備える。座標記憶部431は、上述した設計装置410により作成された設計情報を記憶する。 The X-ray apparatus 100 performs a measurement process for measuring the shape of the structure molded by the molding apparatus 420. The X-ray apparatus 100 outputs information (hereinafter referred to as shape information) indicating the coordinates of the structure, which is a measurement result of the structure, to the control system 430. The control system 430 includes a coordinate storage unit 431 and an inspection unit 432. The coordinate storage unit 431 stores design information created by the design apparatus 410 described above.
 検査部432は、成形装置420により成形された構造物が設計装置410により作成された設計情報に従って成形されたか否かを判定する。換言すると、検査部432は、成形された構造物が良品か否かを判定する。この場合、検査部432は、座標記憶部431に記憶された設計情報を読み出して、設計情報とX線装置100から入力した形状情報とを比較する検査処理を行う。検査部432は、検査処理としてたとえば設計情報が示す座標と対応する形状情報が示す座標とを比較し、検査処理の結果、設計情報の座標と形状情報の座標とが一致している場合には設計情報に従って成形された良品であると判定する。設計情報の座標と対応する形状情報の座標とが一致していない場合には、検査部432は、座標の差分が所定範囲内であるか否かを判定し、所定範囲内であれば修復可能な不良品と判定する。 The inspection unit 432 determines whether the structure molded by the molding device 420 is molded according to the design information created by the design device 410. In other words, the inspection unit 432 determines whether or not the molded structure is a good product. In this case, the inspection unit 432 reads the design information stored in the coordinate storage unit 431 and performs an inspection process for comparing the design information with the shape information input from the X-ray apparatus 100. The inspection unit 432 compares, for example, the coordinates indicated by the design information with the coordinates indicated by the corresponding shape information as the inspection processing, and if the coordinates of the design information and the coordinates of the shape information match as a result of the inspection processing. It is determined that the product is a non-defective product molded according to the design information. If the coordinates of the design information do not match the coordinates of the corresponding shape information, the inspection unit 432 determines whether or not the coordinate difference is within a predetermined range, and if it is within the predetermined range, it can be restored. Judged as a defective product.
 修復可能な不良品と判定した場合には、検査部432は、不良部位と修復量とを示すリペア情報をリペア装置440へ出力する。不良部位は設計情報の座標と一致していない形状情報の座標であり、修復量は不良部位における設計情報の座標と形状情報の座標との差分である。リペア装置440は、入力したリペア情報に基づいて、構造物の不良部位を再加工するリペア処理を行う。リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。 If it is determined that the defective product can be repaired, the inspection unit 432 outputs repair information indicating the defective portion and the repair amount to the repair device 440. The defective part is the coordinate of the shape information that does not match the coordinate of the design information, and the repair amount is the difference between the coordinate of the design information and the coordinate of the shape information in the defective part. The repair device 440 performs a repair process for reworking a defective portion of the structure based on the input repair information. The repair device 440 performs again the same process as the molding process performed by the molding apparatus 420 in the repair process.
 図8に示すフローチャートを参照しながら、構造物製造システム400が行う処理について説明する。
 ステップS11では、設計装置410はユーザによって構造物の設計を行う際に用いられ、設計処理により構造物の形状に関する設計情報を作成し記憶してステップS12へ進む。なお、設計装置410で作成された設計情報のみに限定されず、既に設計情報がある場合には、その設計情報を入力することで、設計情報を取得するものについても本発明の一態様に含まれる。ステップS12では、成形装置420は成形処理により、設計情報に基づいて構造物を作成、成形してステップS13へ進む。ステップS13においては、X線装置100は測定処理を行って、構造物の形状を計測し、形状情報を出力してステップS14へ進む。
The process performed by the structure manufacturing system 400 will be described with reference to the flowchart shown in FIG.
In step S11, the design device 410 is used when the structure is designed by the user. The design apparatus 410 creates and stores design information related to the shape of the structure by the design process, and the process proceeds to step S12. Note that the present invention is not limited to only the design information created by the design apparatus 410, and when design information already exists, the design information is acquired by inputting the design information and is included in one aspect of the present invention. It is. In step S12, the forming apparatus 420 creates and forms a structure based on the design information by the forming process, and proceeds to step S13. In step S13, the X-ray apparatus 100 performs a measurement process, measures the shape of the structure, outputs shape information, and proceeds to step S14.
 ステップS14では、検査部432は、設計装置410により作成された設計情報とX線装置100により測定され、出力された形状情報とを比較する検査処理を行って、ステップS15へ進む。ステップS15では、検査処理の結果に基づいて、検査部432は成形装置420により成形された構造物が良品か否かを判定する。構造物が良品である場合、すなわち設計情報の座標と形状情報の座標とが一致する場合には、ステップS15が肯定判定されて処理を終了する。構造物が良品ではない場合、すなわち設計情報の座標と形状情報の座標とが一致しない場合や設計情報には無い座標が検出された場合には、ステップS15が否定判定されてステップS16へ進む。 In step S14, the inspection unit 432 performs an inspection process for comparing the design information created by the design apparatus 410 with the shape information measured and output by the X-ray apparatus 100, and the process proceeds to step S15. In step S15, based on the result of the inspection process, the inspection unit 432 determines whether the structure formed by the forming apparatus 420 is a non-defective product. If the structure is a non-defective product, that is, if the coordinates of the design information coincide with the coordinates of the shape information, an affirmative determination is made in step S15 and the process ends. If the structure is not a non-defective product, that is, if the coordinates of the design information do not match the coordinates of the shape information, or if coordinates that are not in the design information are detected, a negative determination is made in step S15 and the process proceeds to step S16.
 ステップS16では、検査部432は構造物の不良部位が修復可能か否かを判定する。不良部位が修復可能ではない場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲を超えている場合には、ステップS16が否定判定されて処理を終了する。不良部位が修復可能な場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲内の場合には、ステップS16が肯定判定されてステップS17へ進む。この場合、検査部432はリペア装置440にリペア情報を出力する。ステップS17においては、リペア装置440は、入力したリペア情報に基づいて、構造物に対してリペア処理を行ってステップS3へ戻る。なお、上述したように、リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。 In step S16, the inspection unit 432 determines whether or not the defective portion of the structure can be repaired. If the defective part is not repairable, that is, if the difference between the coordinates of the design information and the coordinates of the shape information in the defective part exceeds the predetermined range, a negative determination is made in step S16 and the process ends. If the defective part can be repaired, that is, if the difference between the coordinates of the design information and the shape information in the defective part is within a predetermined range, an affirmative determination is made in step S16 and the process proceeds to step S17. In this case, the inspection unit 432 outputs repair information to the repair device 440. In step S17, the repair device 440 performs a repair process on the structure based on the input repair information, and returns to step S3. As described above, the repair device 440 performs again the same processing as the molding processing performed by the molding device 420 in the repair processing.
 上述した実施の形態によるX線装置によれば、次の作用効果が得られる。
(1)X線装置100は、制御装置5のX線制御部51は、被測定物Sの構成情報に基づいて、X線源2から放射されるX線の出力を制御する。したがって、ユーザが被測定物Sの外観、たとえば光沢や質感等を頼りに経験的にX線の出力を設定する必要が無く、経験の少ないユーザの場合であっても、最適なX線の出力を設定するために試行錯誤を繰り返すことがなくなるので、操作性が向上する。さらに、X線の出力を自動的に設定できるため、被測定物Sの計測のために要する時間を短縮し効率化に寄与する。
According to the X-ray apparatus according to the above-described embodiment, the following operational effects can be obtained.
(1) In the X-ray apparatus 100, the X-ray control unit 51 of the control device 5 controls the output of X-rays radiated from the X-ray source 2 based on the configuration information of the device under test S. Therefore, it is not necessary for the user to set the X-ray output empirically depending on the appearance of the object S to be measured, for example, gloss or texture, and the optimum X-ray output is possible even for a user with little experience. Since the trial and error are not repeated to set the value, the operability is improved. Furthermore, since the X-ray output can be automatically set, the time required for measuring the object S to be measured is shortened, contributing to efficiency.
(2)X線制御部51は、フィラメント21とターゲット22との間に印加して電子線を加速させるための加速電圧と、フィラメント21への電流量との少なくとも一方を制御する。特に、X線制御部51は、高電圧印加部26を制御して加速電圧をフィラメント21とターゲット22との間に印加する。したがって、装置固有の電力の範囲内で被測定物Sの内部構造の画像を取得するために必要となるX線の出力を得ることができる。 (2) The X-ray control unit 51 controls at least one of an acceleration voltage applied between the filament 21 and the target 22 to accelerate the electron beam and an amount of current to the filament 21. In particular, the X-ray control unit 51 controls the high voltage application unit 26 to apply the acceleration voltage between the filament 21 and the target 22. Therefore, it is possible to obtain an X-ray output necessary for acquiring an image of the internal structure of the device under test S within a range of power inherent to the apparatus.
(3)構成情報取得部55は、質量検出器31によって検出された被測定物Sの質量と、画像生成部53によって生成された投影画像データを用いて取得された被測定物Sの形状情報とに基づいて、被測定物Sの構成情報、すなわち被測定物SによってX線が吸収される割合を表す吸収係数を算出する。したがって、種々の形状の被測定物Sについて、X線源2から放射されたX線が被測定物Sを透過するために必要となる出力を得ることができる。 (3) The configuration information acquisition unit 55 acquires the shape information of the measurement object S acquired using the mass of the measurement object S detected by the mass detector 31 and the projection image data generated by the image generation unit 53. Based on the above, the configuration information of the object S to be measured, that is, the absorption coefficient representing the ratio of X-rays absorbed by the object S to be measured is calculated. Therefore, it is possible to obtain an output necessary for the X-ray radiated from the X-ray source 2 to pass through the device under test S with various shapes.
(4)X線制御部51は、形状情報に基づいて、X線が被測定物Sを透過する際の透過距離を算出し、透過距離と吸収係数に基づいてX線源2から放射されるX線の出力を制御する。具体的には、X線制御部51は、被測定物Sの最大通過距離に基づいてX線の最低透過強度が所定値以上となる加速電圧を設定する。したがって、被測定物SがX線源2および検出器4に対して相対的に回転することにより被測定物SのZ軸方向の長さが変化する場合であっても、X線源2から放射されたX線が被測定物Sを透過するために必要となる出力を得ることができる。 (4) The X-ray control unit 51 calculates a transmission distance when the X-rays pass through the measurement object S based on the shape information, and is emitted from the X-ray source 2 based on the transmission distance and the absorption coefficient. Controls X-ray output. Specifically, the X-ray control unit 51 sets an acceleration voltage at which the minimum X-ray transmission intensity is equal to or greater than a predetermined value based on the maximum passing distance of the DUT. Therefore, even if the length of the measurement object S in the Z-axis direction changes due to the rotation of the measurement object S relative to the X-ray source 2 and the detector 4, the X-ray source 2 An output necessary for the emitted X-rays to pass through the object to be measured S can be obtained.
(5)構成情報取得部55は、被測定物Sの質量と体積とに基づいて被測定物Sの材料を推定し、推定した材料に対応する吸収係数を算出する。X線が構造物に吸収される割合は、同一の透過距離であっても材料が異なる場合には異なるので、被測定物Sの材料を考慮に入れてX線の出力を制御することにより、高画質の再構成画像を取得できる。 (5) The configuration information acquisition unit 55 estimates the material of the device under test S based on the mass and volume of the device under test S, and calculates an absorption coefficient corresponding to the estimated material. The rate at which the X-rays are absorbed by the structure is different when the material is different even at the same transmission distance. Therefore, by controlling the X-ray output in consideration of the material of the object S to be measured, High-quality reconstructed images can be acquired.
(6)回転駆動部32によって、被測定物SがX線源2および検出器4に対して相対回転を行う際に、所定角度の回転ごとにX線源により放射され被測定物Sを透過して検出器4によって検出されたX線に基づいて、画像生成部53は被測定物Sの形状情報である投影画像データを生成する。したがって、被測定物Sの設計情報(たとえばCADデータ等)が入手できない場合であっても、被測定物Sの形状に基づいて、再構成画像の生成に適したX線の出力を得ることができる。 (6) When the object to be measured S rotates relative to the X-ray source 2 and the detector 4 by the rotation driving unit 32, the object is radiated from the X-ray source and transmitted through the object to be measured S every rotation of a predetermined angle. Then, based on the X-rays detected by the detector 4, the image generation unit 53 generates projection image data that is shape information of the object S to be measured. Therefore, even when design information (for example, CAD data) of the device under test S cannot be obtained, an X-ray output suitable for generating a reconstructed image can be obtained based on the shape of the device under test S. it can.
(7)構造物製造システム400のX線装置100は、設計装置410の設計処理に基づいて成形装置420により作成された構造物の形状情報を取得する測定処理を行い、制御システム430の検査部432は、測定処理にて取得された形状情報と設計処理にて作成された設計情報とを比較する検査処理を行う。したがって、構造物の欠陥の検査や構造物の内部の情報を非破壊検査によって取得し、構造物が設計情報の通りに作成された良品であるか否かを判定できるので、構造物の品質管理に寄与する。 (7) The X-ray apparatus 100 of the structure manufacturing system 400 performs a measurement process for acquiring shape information of the structure created by the molding apparatus 420 based on the design process of the design apparatus 410, and performs an inspection unit of the control system 430. Reference numeral 432 performs an inspection process for comparing the shape information acquired in the measurement process with the design information created in the design process. Therefore, it is possible to determine whether or not a structure is a non-defective product created according to design information by inspecting the defect of the structure and information inside the structure by nondestructive inspection. Contribute to.
(8)リペア装置440は、検査処理の比較結果に基づいて、構造物に対して成形処理を再度行うリペア処理を行うようにした。したがって、構造物の不良部分が修復可能な場合には、再度成形処理と同様の処理を構造物に対して施すことができるので、設計情報に近い高品質の構造物の製造に寄与する。 (8) The repair device 440 performs the repair process for performing the molding process again on the structure based on the comparison result of the inspection process. Therefore, when the defective portion of the structure can be repaired, the same processing as the molding process can be performed again on the structure, which contributes to the manufacture of a high-quality structure close to design information.
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(1)複数の質量検出器31を載置台30に設け、被測定物Sの部分領域ごとの質量を検出しても良い。図9に4個の質量検出器311、312、313、314を設けた場合を一例として示し、この場合の構成情報取得処理について説明する。図9(a)に示すように、質量検出器311は、載置台30のうち領域301に加わる被測定物Sの質量を検出する。質量検出器312は、載置台30のうち領域302に加わる被測定物Sの質量を検出する。質量検出器313は、載置台30のうち領域303に加わる被測定物Sの質量を検出する。質量検出器314は、載置台30のうち領域304に加わる被測定物Sの質量を検出する。すなわち、図9(b)に示すように載置台30に載置された被測定物Sの質量分布を推定することができる。
The following modifications are also within the scope of the present invention, and one or a plurality of modifications can be combined with the above-described embodiment.
(1) A plurality of mass detectors 31 may be provided on the mounting table 30 to detect the mass of each partial region of the measurement object S. FIG. 9 shows an example in which four mass detectors 311, 312, 313, and 314 are provided, and configuration information acquisition processing in this case will be described. As shown in FIG. 9A, the mass detector 311 detects the mass of the measurement object S that is applied to the region 301 in the mounting table 30. The mass detector 312 detects the mass of the measurement object S applied to the region 302 in the mounting table 30. The mass detector 313 detects the mass of the measurement object S applied to the region 303 in the mounting table 30. The mass detector 314 detects the mass of the measurement object S applied to the region 304 in the mounting table 30. That is, as shown in FIG. 9B, the mass distribution of the measurement object S placed on the placement table 30 can be estimated.
 構成情報取得部55(図1参照)は、質量検出器311~314からの出力により推定された被測定物Sの質量分布に基づいて、被測定物Sの密度、材料等に偏りがある場合には、その偏りを推定できる。たとえば質量検出器311によって検出された質量が他の質量検出器312~314と比較して大きい場合には、図9(b)に示す被測定物Sのうち斜線で示す部分領域Spは、被測定物Sの他の部分領域と比較して密度が高い、材料が異なると推定できる。この場合、構成情報取得部55が、実施の形態の場合にて説明したように、被測定物Sの全体の平均的な密度に基づいて算出した加速電圧ではX線が部分領域Spを透過できない可能性がある。構成情報取得部55は、このような質量に偏りが存在する部分領域SpであってもX線が透過可能となるように、被測定物Sの全体の平均的な質量(すなわち質量検出器311~314にてそれぞれ検出される質量の総和)に代えて、質量検出器311にて検出された質量を被測定物Sの全体の質量と見なして吸収係数の算出に用いても良い。または、構成情報取得部55は、被測定物Sの全体の平均的な質量に対する部分領域Spの質量の割合に応じて、被測定物Sの全体の平均的な質量に基づいて算出した吸収係数に補正を施しても良い。この場合、補正後の吸収係数に基づいてX線制御部51によって算出された加速電圧によってX線を放射させて被測定物Sの計測を行っても良いし、被測定物Sの全体の平均的な質量に基づく吸収係数を用いて算出された加速電圧によりX線を放射させて計測を行うとともに、補正後の吸収係数に基づいて算出された加速電圧によりX線を放射させて計測を行っても良い。また、被測定物Sの領域301の直上の形状情報を複数の投影画像データから算出し、その領域301の直上における被測定物Sの部分的な寸法情報と、質量検出器311で検出された質量から領域301におけるX線の推定された吸収量(領域301の直上部分にあると推定される被測定物Sの材質から求めた吸収係数とX線の伝播想定距離との積)とを求める。同様に、その他の領域302、303、304の直上における被測定物Sの部分的な寸法情報と、質量検出器312、313、314で求めた質量情報とから、それぞれの領域302、303、304の直上におけるX線の推定された吸収量を求める。これらの吸収量をX線が伝播する方向に沿って積算することで、予測される総吸収量を求めて、X線測定時の加速電圧や電流量を求めても良い。 The configuration information acquisition unit 55 (see FIG. 1) has a bias in the density, material, and the like of the measurement object S based on the mass distribution of the measurement object S estimated from the outputs from the mass detectors 311 to 314. The bias can be estimated. For example, when the mass detected by the mass detector 311 is larger than those of the other mass detectors 312 to 314, the partial region Sp indicated by diagonal lines in the object S to be measured shown in FIG. It can be estimated that the material is different in density compared to the other partial regions of the measurement object S. In this case, as described in the case of the embodiment, the configuration information acquisition unit 55 cannot transmit X-rays through the partial region Sp with the acceleration voltage calculated based on the average average density of the object S to be measured. there is a possibility. The configuration information acquisition unit 55 has an average mass (that is, a mass detector 311) of the entire measurement object S so that X-rays can be transmitted even in such a partial region Sp where the mass is biased. Instead of the sum of the masses detected at ˜314, the mass detected by the mass detector 311 may be regarded as the total mass of the object to be measured S and used for calculating the absorption coefficient. Alternatively, the configuration information acquisition unit 55 calculates the absorption coefficient based on the overall average mass of the device under test S according to the ratio of the mass of the partial region Sp to the overall average mass of the device under test S. May be corrected. In this case, the measurement object S may be measured by emitting X-rays with the acceleration voltage calculated by the X-ray control unit 51 based on the corrected absorption coefficient, or the entire average of the measurement object S may be measured. Measurement is performed by emitting X-rays with an acceleration voltage calculated using an absorption coefficient based on a typical mass, and X-rays are emitted with an acceleration voltage calculated based on the corrected absorption coefficient. May be. Further, the shape information immediately above the region 301 of the object to be measured S is calculated from a plurality of projection image data, and the partial dimension information of the object to be measured S immediately above the region 301 and the mass detector 311 detect the shape information. From the mass, an estimated amount of X-ray absorption in the region 301 (a product of an absorption coefficient obtained from the material of the measurement object S estimated to be directly above the region 301 and the estimated X-ray propagation distance) is obtained. . Similarly, from the partial dimension information of the measurement object S immediately above the other regions 302, 303, and 304 and the mass information obtained by the mass detectors 312, 313, and 314, the respective regions 302, 303, and 304 are obtained. The estimated absorption amount of X-rays immediately above is obtained. By accumulating these absorption amounts along the direction in which X-rays propagate, the predicted total absorption amount may be obtained, and the acceleration voltage and current amount during X-ray measurement may be obtained.
(2)構成情報取得処理の際に、投影画像データまたは再構成画像を用いて被測定物Sの形状情報を取得するものに代えて、撮像装置を用いて形状情報を取得するものも本発明の一態様に含まれる。図10に示すように、X線装置100は、CMOSやCCD等により構成される撮像素子を備える撮像装置500を有する。撮像装置500は、筐体1の天井部分(Y軸+側の内壁面)に設けられ、X線の投影方向(Z軸)と実質的に直交するY軸方向から、載置台30に載置された被測定物Sの外形を撮像して生成した画像信号を制御装置5へ出力する。構成情報取得部55は、入力した画像信号に対して、公知のエッジ検出処理等を施して、画像信号上の被測定物Sの輪郭を抽出する。構成情報取得部55は、抽出した被測定物Sの輪郭を用いて被測定物Sの体積を算出する。以後、実施の形態と同様にして、構成情報取得部55は、算出した体積と質量検出器31により検出された被測定物Sの質量を用いて被測定物の密度を算出し、材料の推定および吸収係数の算出を行う。なお、撮像装置500は、Y軸移動部33とX軸移動部34とによって変化する被測定物Sの位置によらず、被測定物Sの全体が撮像可能となるように広い範囲が撮影可能なものであることが好ましい。または、Y軸移動部33とX軸移動部34との移動に同期して移動可能となるように撮像装置500を設けても良い。したがって、撮像装置500がY軸方向から被測定物Sを撮像することにより、X線の伝播方向であるZ軸方向に沿った被測定物Sの長さを精度よく検出できる。 (2) In the configuration information acquisition process, instead of acquiring the shape information of the object S to be measured using the projection image data or the reconstructed image, the configuration information is acquired using the imaging device. It is included in one aspect. As shown in FIG. 10, the X-ray apparatus 100 includes an imaging apparatus 500 including an imaging element configured by a CMOS, a CCD, or the like. The imaging device 500 is provided on the ceiling portion (Y-axis + side inner wall surface) of the housing 1 and is mounted on the mounting table 30 from the Y-axis direction substantially orthogonal to the X-ray projection direction (Z-axis). An image signal generated by imaging the outer shape of the measured object S is output to the control device 5. The configuration information acquisition unit 55 performs a known edge detection process or the like on the input image signal, and extracts the contour of the measurement object S on the image signal. The configuration information acquisition unit 55 calculates the volume of the measurement object S using the extracted outline of the measurement object S. Thereafter, similarly to the embodiment, the configuration information acquisition unit 55 calculates the density of the measurement object using the calculated volume and the mass of the measurement object S detected by the mass detector 31, and estimates the material. And the absorption coefficient is calculated. The imaging apparatus 500 can shoot a wide range so that the entire measured object S can be imaged regardless of the position of the measured object S that is changed by the Y-axis moving unit 33 and the X-axis moving unit 34. It is preferable that it is a thing. Alternatively, the imaging device 500 may be provided so as to be able to move in synchronization with the movement of the Y-axis moving unit 33 and the X-axis moving unit 34. Therefore, when the imaging apparatus 500 images the measurement object S from the Y-axis direction, the length of the measurement object S along the Z-axis direction that is the X-ray propagation direction can be accurately detected.
 形状情報が、撮像装置500により得られるものに限定されない。たとえば、被測定物Sの光学像をスクリーンに投影する投影機や、タッチプローブを用いる接触式もしくは走査レーザプローブや光学式の非接触式の三次元測定装置である形状測定装置を用いて被測定物Sを測定して得られた情報のものについても本発明の一態様に含まれる。 The shape information is not limited to that obtained by the imaging apparatus 500. For example, measurement is performed using a projector that projects an optical image of the object S to be measured on a screen, a contact or scanning laser probe using a touch probe, or a shape measuring device that is an optical non-contact three-dimensional measuring device. Information obtained by measuring the object S is also included in one embodiment of the present invention.
(3)被測定物Sが載置される載置台30がY軸移動部33と、X軸移動部34と、Z軸移動部35とによってX軸、Y軸およびZ軸方向に移動されるものに限定されない。載置台30はX軸、Y軸およびZ軸方向に移動せず、X線源2および検出器4をX軸、Y軸およびZ軸方向に移動させることにより、被測定物Sに対してX線源2および検出器4を相対移動させるものについても本発明の一態様に含まれる。
(4)X線源2の高電圧印加部26によって印加される加速電圧やフィラメント加熱用電源回路211への電流量を制御するものに代えて、X線源2の出射端(Z軸+側)にフィルタ等を用いて、被測定物Sに入射するX線のスペクトル分布を変更することで、検出器4で検出されたX線の検出出力が飽和しないように制御するものについても本発明の一態様に含まれる。特に、検出器4に到達した最大X線量と最小X線量とが検出器4のダイナミックレンジ内に収まるように、X線のスペクトルを変更するようにフィルタの材質と厚さとが選択可能とすることが好ましい。
(3) The mounting table 30 on which the measurement object S is mounted is moved in the X-axis, Y-axis, and Z-axis directions by the Y-axis moving unit 33, the X-axis moving unit 34, and the Z-axis moving unit 35. It is not limited to things. The mounting table 30 does not move in the X-axis, Y-axis, and Z-axis directions, and the X-ray source 2 and the detector 4 are moved in the X-axis, Y-axis, and Z-axis directions, so that What relatively moves the radiation source 2 and the detector 4 is also included in one aspect of the present invention.
(4) Instead of controlling the acceleration voltage applied by the high voltage application unit 26 of the X-ray source 2 and the amount of current to the filament heating power supply circuit 211, the emission end (Z axis + side) of the X-ray source 2 In the present invention, the X-ray detection output detected by the detector 4 is controlled so as not to be saturated by changing the spectral distribution of the X-rays incident on the measurement object S using a filter or the like. It is included in one aspect. In particular, the material and thickness of the filter should be selectable so as to change the X-ray spectrum so that the maximum X-ray dose and the minimum X-ray dose reaching the detector 4 are within the dynamic range of the detector 4. Is preferred.
 本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 As long as the characteristics of the present invention are not impaired, the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .
2…X線源、3…載置部、4…検出器、5…制御装置、
21…フィラメント、22…ターゲット、26…高電圧印加部、
30…載置台、31…質量検出器、32…回転駆動部、
33…Y軸移動部、34…X軸移動部、35…Z軸移動部、36…マニピュレータ部、
51…X線制御部、52…移動制御部、53…画像生成部、
54…画像再構成部、55…構成情報取得部、
211…フィラメント加熱用電源回路、
100…X線装置、400…構造物製造システム、
410…設計装置、420…成形装置、430…制御システム、
432…検査部、440…リペア装置、500…撮像装置
 
2 ... X-ray source, 3 ... mounting part, 4 ... detector, 5 ... control device,
21 ... Filament, 22 ... Target, 26 ... High voltage application part,
30 ... Placing table, 31 ... Mass detector, 32 ... Rotation drive unit,
33 ... Y-axis moving part, 34 ... X-axis moving part, 35 ... Z-axis moving part, 36 ... Manipulator part,
51 ... X-ray control unit, 52 ... Movement control unit, 53 ... Image generation unit,
54 ... Image reconstruction unit, 55 ... Configuration information acquisition unit,
211 ... Power supply circuit for heating filament,
100 ... X-ray apparatus, 400 ... Structure manufacturing system,
410 ... design device, 420 ... molding device, 430 ... control system,
432 ... Inspection unit, 440 ... Repair device, 500 ... Imaging device

Claims (15)

  1.  X線を放射するX線源と、
     前記X線源から放射され、被測定物を通過した前記X線を検出する検出部と、
     前記被測定物の構成情報に基づいて、前記X線源から放射される前記X線の出力を制御するX線源制御部とを備えるX線装置。
    An X-ray source emitting X-rays;
    A detector that detects the X-rays emitted from the X-ray source and passed through the object to be measured;
    An X-ray apparatus comprising: an X-ray source control unit that controls an output of the X-ray emitted from the X-ray source based on configuration information of the object to be measured.
  2.  請求項1に記載のX線装置において、
     前記X線源は、前記電子線を発生させる電子線発生部と、前記電子線発生部からの前記電子線が到達することによりX線を発生するターゲットとを有し、
     前記X線源制御部は、前記電子線発生部と前記ターゲットとの間に印加して前記電子線を加速させるための加速電圧と、前記電子線発生部への電流量との少なくとも一方を制御するX線装置。
    The X-ray apparatus according to claim 1,
    The X-ray source has an electron beam generating unit that generates the electron beam, and a target that generates X-rays when the electron beam from the electron beam generating unit reaches,
    The X-ray source control unit controls at least one of an acceleration voltage applied between the electron beam generation unit and the target to accelerate the electron beam and a current amount to the electron beam generation unit. X-ray equipment.
  3.  請求項2に記載のX線装置において、
     前記X線源は、前記加速電圧を印加するための電圧印加部をさらに有し、
     前記X線源制御部は、前記電圧印加部を制御するX線装置。
    The X-ray apparatus according to claim 2,
    The X-ray source further includes a voltage application unit for applying the acceleration voltage,
    The X-ray source control unit is an X-ray apparatus that controls the voltage application unit.
  4.  請求項1乃至3の何れか一項に記載のX線装置において、
     前記被測定物の質量を検出する質量検出部と、
     前記被測定物の形状情報を取得する形状情報取得部と、
     前記質量検出部によって検出された前記被測定物の質量と、前記形状情報取得部によって取得された前記被測定物の形状情報とに基づいて、前記被測定物の前記構成情報を取得する構成情報取得部とをさらに備えるX線装置。
    The X-ray apparatus according to any one of claims 1 to 3,
    A mass detector for detecting the mass of the object to be measured;
    A shape information acquisition unit for acquiring shape information of the object to be measured;
    Configuration information for acquiring the configuration information of the measurement object based on the mass of the measurement object detected by the mass detection unit and the shape information of the measurement object acquired by the shape information acquisition unit An X-ray apparatus further comprising an acquisition unit.
  5.  請求項4に記載のX線装置において、
     前記構成情報取得部は、前記質量検出部によって検出された前記被測定物の質量と、前記形状情報取得部によって取得された前記形状情報に基づいて算出した前記被測定物の体積とに基づいて、前記被測定物によって前記X線が吸収される割合を算出し、前記構成情報として取得するX線装置。
    The X-ray apparatus according to claim 4,
    The configuration information acquisition unit is based on the mass of the measurement object detected by the mass detection unit and the volume of the measurement object calculated based on the shape information acquired by the shape information acquisition unit. An X-ray apparatus that calculates a ratio at which the X-ray is absorbed by the object to be measured, and obtains the configuration information.
  6.  請求項5に記載のX線装置において、
     前記X線源制御部は、前記形状情報取得部によって取得された前記形状情報に基づいて、前記X線が前記被測定物を通過する際の通過距離を算出し、前記通過距離と前記構成情報取得部によって算出された前記X線が吸収される割合とに基づいて、前記X線源から放射される前記X線の出力を制御するX線装置。
    The X-ray apparatus according to claim 5,
    The X-ray source control unit calculates a passing distance when the X-ray passes through the object to be measured based on the shape information acquired by the shape information acquiring unit, and the passing distance and the configuration information An X-ray apparatus that controls the output of the X-rays radiated from the X-ray source based on the ratio of the X-rays calculated by the acquisition unit.
  7.  請求項6に記載のX線装置において、
     前記X線源制御部は、前記被測定物の複数の箇所における複数の前記通過距離を算出し、前記複数の通過距離のうちの最大通過距離に基づいて前記X線の最低透過強度が所定値以上となる前記加速電圧を設定するX線装置。
    The X-ray apparatus according to claim 6,
    The X-ray source control unit calculates a plurality of the passing distances at a plurality of locations of the object to be measured, and a minimum transmission intensity of the X-ray is a predetermined value based on a maximum passing distance among the plurality of passing distances. An X-ray apparatus for setting the acceleration voltage as described above.
  8.  請求項5乃至7の何れか一項に記載のX線装置において、
     前記構成情報取得部は、前記被測定物の質量と体積とに基づいて前記被測定物の材料を推定し、前記材料に対応する前記X線が吸収される割合を算出するX線装置。
    The X-ray apparatus according to any one of claims 5 to 7,
    The configuration information acquisition unit is an X-ray apparatus that estimates a material of the object to be measured based on a mass and a volume of the object to be measured, and calculates a ratio at which the X-ray corresponding to the material is absorbed.
  9.  請求項4乃至8の何れか一項に記載のX線装置において、
     前記被測定物に対して前記X線源および前記検出部を相対回転させる回転駆動部を備え、
     前記回転駆動部によって前記被測定物が相対回転を行う際に、所定の相対回転角度ごとに前記X線源により放射され前記被測定物を透過して前記検出部によって検出された前記X線の検出情報に基づいて、前記形状情報取得部は前記被測定物の前記形状情報を取得するX線装置。
    The X-ray apparatus according to any one of claims 4 to 8,
    A rotation drive unit for rotating the X-ray source and the detection unit relative to the object to be measured;
    When the object to be measured undergoes relative rotation by the rotation driving unit, the X-rays emitted by the X-ray source and transmitted through the object to be measured and detected by the detecting unit at every predetermined relative rotation angle. The shape information acquisition unit is an X-ray apparatus that acquires the shape information of the object to be measured based on detection information.
  10.  請求項4乃至8の何れか一項に記載のX線装置において、
     前記被測定物の外観を撮影して画像信号を出力する撮像装置を備え、
     前記形状情報取得部は、前記撮像装置から出力された前記画像信号を用いて前記形状情報を取得するX線装置。
    The X-ray apparatus according to any one of claims 4 to 8,
    An imaging device that captures an appearance of the object to be measured and outputs an image signal;
    The shape information acquisition unit is an X-ray apparatus that acquires the shape information using the image signal output from the imaging device.
  11.  請求項1乃至3の何れか一項に記載のX線装置において、
     前記構成情報は設計情報によって構成されるX線装置。
    The X-ray apparatus according to any one of claims 1 to 3,
    The configuration information is an X-ray apparatus configured by design information.
  12.  請求項1乃至11の何れか一項に記載のX線装置において、
     前記被測定物に対する前記X線源および前記検出部を相対的に移動させる移動部を備え、
     前記被測定物に対する前記X線源および前記検出部の位置が異なる状態で、前記検出部より検出された複数の投影データに基づいて、前記被測定物の内部構造情報を生成する再構成部を備えるX線装置。
    The X-ray apparatus according to any one of claims 1 to 11,
    A moving unit that moves the X-ray source and the detection unit relative to the object to be measured;
    A reconfiguration unit that generates internal structure information of the object to be measured based on a plurality of projection data detected by the detection unit in a state where the positions of the X-ray source and the detection unit are different with respect to the object to be measured; An X-ray apparatus provided.
  13.  構造物の形状に関する設計情報を作成し、
     前記設計情報に基づいて前記構造物を作成し、
     作成された前記構造物の形状を、請求項1乃至12に記載のX線装置を用いて計測して形状情報を取得し、
     前記取得された前記形状情報と前記設計情報とを比較する構造物の製造方法。
    Create design information about the shape of the structure,
    Create the structure based on the design information,
    The shape of the created structure is measured using the X-ray apparatus according to claim 1 to obtain shape information,
    A structure manufacturing method for comparing the acquired shape information and the design information.
  14.  請求項13に記載の構造物の製造方法において、
     前記形状情報と前記設計情報との比較結果に基づいて実行され、前記構造物の再加工を行う構造物の製造方法。
    In the manufacturing method of the structure according to claim 13,
    A method of manufacturing a structure, which is executed based on a comparison result between the shape information and the design information, and reworks the structure.
  15.  請求項14に記載の構造物の製造方法において、
     前記構造物の再加工は、前記設計情報に基づいて前記構造物の作成を再度行う構造物の製造方法。
     
    In the manufacturing method of the structure according to claim 14,
    The reworking of the structure is a structure manufacturing method in which the structure is created again based on the design information.
PCT/JP2014/068463 2014-07-10 2014-07-10 X-ray device and structure manufacturing method WO2016006085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068463 WO2016006085A1 (en) 2014-07-10 2014-07-10 X-ray device and structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068463 WO2016006085A1 (en) 2014-07-10 2014-07-10 X-ray device and structure manufacturing method

Publications (1)

Publication Number Publication Date
WO2016006085A1 true WO2016006085A1 (en) 2016-01-14

Family

ID=55063758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068463 WO2016006085A1 (en) 2014-07-10 2014-07-10 X-ray device and structure manufacturing method

Country Status (1)

Country Link
WO (1) WO2016006085A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200256A (en) * 2017-05-29 2018-12-20 株式会社高速道路総合技術研究所 Inspection method and performance determination method of laminated rubber support containing metal plug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265488A (en) * 1993-03-10 1994-09-22 Hitachi Denshi Ltd Nondestructive inspection unit
JPH07260665A (en) * 1994-03-17 1995-10-13 Hitachi Ltd Non-ferrous metal separator
US20050123089A1 (en) * 2003-12-09 2005-06-09 Man Bruno D. Method and apparatus for reduction of artifacts in computed tomography images
WO2012057283A1 (en) * 2010-10-27 2012-05-03 株式会社ニコン Shape measuring device, shape measuring method, structure manufacturing method, and program
JP2013113798A (en) * 2011-11-30 2013-06-10 Nikon Corp X-ray apparatus, x-ray irradiation method, and method for manufacturing structure
JP2013217775A (en) * 2012-04-09 2013-10-24 Nikon Corp X-ray apparatus and method, and method for manufacturing structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265488A (en) * 1993-03-10 1994-09-22 Hitachi Denshi Ltd Nondestructive inspection unit
JPH07260665A (en) * 1994-03-17 1995-10-13 Hitachi Ltd Non-ferrous metal separator
US20050123089A1 (en) * 2003-12-09 2005-06-09 Man Bruno D. Method and apparatus for reduction of artifacts in computed tomography images
WO2012057283A1 (en) * 2010-10-27 2012-05-03 株式会社ニコン Shape measuring device, shape measuring method, structure manufacturing method, and program
JP2013113798A (en) * 2011-11-30 2013-06-10 Nikon Corp X-ray apparatus, x-ray irradiation method, and method for manufacturing structure
JP2013217775A (en) * 2012-04-09 2013-10-24 Nikon Corp X-ray apparatus and method, and method for manufacturing structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200256A (en) * 2017-05-29 2018-12-20 株式会社高速道路総合技術研究所 Inspection method and performance determination method of laminated rubber support containing metal plug

Similar Documents

Publication Publication Date Title
CN103975232B (en) The manufacture method of device, x-ray irradiation method and structure
JP6631624B2 (en) X-ray inspection apparatus, X-ray inspection method and structure manufacturing method
JP4881677B2 (en) Charged particle beam scanning method and charged particle beam apparatus
CN104854963B (en) X-ray device and method for manufacturing structure
JP2003121132A (en) Length measuring method for sample and saccning microscope
WO2013051594A1 (en) X-ray device, x-ray irradiation method, and manufacturing method for structure
JP6705507B2 (en) Charged particle beam device, electron beam generator, X-ray source, X-ray device, and structure manufacturing method
US20160079031A1 (en) Method of Constructing 3D Image, Image Processor, and Electron Microscope
WO2016021030A1 (en) X-ray apparatus and structure production method
WO2021201211A1 (en) Inspection device
WO2017141345A1 (en) X-ray device, x-ray measurement method, and structure manufacturing method
WO2016006085A1 (en) X-ray device and structure manufacturing method
JP2008210702A (en) Charged particle beam device and applied voltage control method
JP6954848B2 (en) Scanning electron microscope and measurement method
TWI674039B (en) X-ray generating device, X-ray device, and manufacturing method of structure
WO2019163960A1 (en) X-ray measuring method, x-ray device, and method for manufacturing structure
TWI768027B (en) Inspection apparatus, inspection method, and manufacturing method of inspection object
WO2016056107A1 (en) Projection data generator, measuring device, and structure manufacturing method
JP2019174276A (en) Method for manufacturing x-ray device and structure
JP6726788B2 (en) Charged particle device, structure manufacturing method, and structure manufacturing system
WO2020004175A1 (en) X-ray device, x-ray image generation method, and production method for structure
JP2020201212A (en) Method for generating image, holding tool, x-ray device, image generator, and method for manufacturing structure
JP2019057415A (en) Charged particle beam device, x-ray device, and manufacturing method of structure
WO2019193624A1 (en) Electron microscope
JP2021028575A (en) X ray apparatus and method for manufacturing structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14897408

Country of ref document: EP

Kind code of ref document: A1