JPH06265488A - Nondestructive inspection unit - Google Patents
Nondestructive inspection unitInfo
- Publication number
- JPH06265488A JPH06265488A JP5076363A JP7636393A JPH06265488A JP H06265488 A JPH06265488 A JP H06265488A JP 5076363 A JP5076363 A JP 5076363A JP 7636393 A JP7636393 A JP 7636393A JP H06265488 A JPH06265488 A JP H06265488A
- Authority
- JP
- Japan
- Prior art keywords
- contrast
- inspected
- optimum
- electromagnetic wave
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、物質を透過する性質を
もつ電磁波を使用した非破壊検査装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nondestructive inspection apparatus using an electromagnetic wave having a property of transmitting a substance.
【0002】[0002]
【従来の技術】非破壊検査装置で被検査物内部の微小欠
陥をテレビ画像として見る場合、X線を代表とする電磁
波の物質透過特性は被検査物の構成元素、厚さ、欠陥の
大きさ、波長によって異なり、千差万別の被検査物に対
する最適検査条件をいかに設定するかが課題であった。
ここで、代表的電磁波として、X線について、説明す
る。初めに、連続X線発生管の特性について簡単に説明
する。波長帯域で概ね0.04Å(オングストローム)
〜2.0ÅのX線を用いた非破壊検査装置を例にする
と、照射するX線強度を決定する条件はX線管に印加す
る電圧と電流で決まる。図4は印加電圧とX線強度およ
び波長との関係を示す図である。このように電圧を高く
するとX線強度が高まるとともにX線波長範囲が短波長
側に伸びる。また、電圧を低くするとX線強度は全体に
低下し、X線発生波長範囲が長波長側に移行する。一
方、電流を変化させた場合(図示せず)は発生するX線
波長範囲は変わらずX線強度が変化する。すなをち、電
流を多くすると強度は高くなり、少なくすると低くな
る。ところで、物質には元素ごとにX線の波長に応じた
その吸収度(質量吸収係数)がある。図2はX線の波長
と吸収度すなわち質量吸収係数の関係を示すもので、同
図のように、一般的には、波長が長い程、吸収度が大き
くなる傾向にあるが、この途中で吸収の度合が大きく低
下する点がある。これを吸収端という。長波長なら吸収
度が大きくコントラストはよいが、透過するX線強度が
小さくなり、被検査物の厚さによっては十分な透過X線
強度が得られない。然しながら吸収端に落ち込む手前の
波長aに照射X線の最大強度をもつような条件が設定で
きればコントラストの点でも、波長が短いため透過能力
の点でも良い結果を得ることが期待できる。すなわち、
コントラストと透過X線強度が両立する。ところが、被
検査物が単一元素・単層構造ならば従来の経験的設定方
法でも吸収端を考慮し、X線強度を設定し、検査するこ
とも可能であるが被検査物が複数の異なる元素の化合物
や混合物であったり、そのような組成をもつ層が何層も
重なったものであれば吸収端を含む総合吸収係数の推定
が容易でなくなり、最適検査条件を見落さないように注
意する必要がある。そこで、従来の非破壊検査装置は、
被検査物内の微小欠陥を視認するために、画面を見なが
ら経験的に、あるいは試行錯誤で、最適なコントラスト
を得るようにX線発生管の電圧・電流を調整していた。2. Description of the Related Art When a microdefect inside an object to be inspected is viewed as a television image by a nondestructive inspection apparatus, the material transmission characteristics of electromagnetic waves represented by X-rays are the constituent elements of the object to be inspected, the thickness, and the size of the defect. The problem was how to set the optimum inspection conditions for inspected objects that differed depending on the wavelength.
Here, X-rays will be described as a typical electromagnetic wave. First, the characteristics of the continuous X-ray generating tube will be briefly described. Approximately 0.04Å (angstrom) in the wavelength band
Taking a non-destructive inspection device using X-rays of up to 2.0 Å as an example, the conditions for determining the intensity of X-rays to be irradiated are determined by the voltage and current applied to the X-ray tube. FIG. 4 is a diagram showing the relationship between the applied voltage and the X-ray intensity and wavelength. When the voltage is increased as described above, the X-ray intensity increases and the X-ray wavelength range extends to the short wavelength side. Further, when the voltage is lowered, the X-ray intensity is lowered as a whole, and the X-ray generation wavelength range shifts to the long wavelength side. On the other hand, when the current is changed (not shown), the generated X-ray wavelength range does not change and the X-ray intensity changes. That is, increasing the current increases the strength, and decreasing the current decreases the strength. By the way, each substance has its degree of absorption (mass absorption coefficient) according to the wavelength of X-rays. FIG. 2 shows the relationship between the wavelength of X-rays and the degree of absorption, that is, the mass absorption coefficient. As shown in FIG. 2, generally, the longer the wavelength, the higher the absorption. There is a point that the degree of absorption is greatly reduced. This is called the absorption edge. If the wavelength is long, the degree of absorption is large and the contrast is good, but the transmitted X-ray intensity becomes small, and sufficient transmitted X-ray intensity cannot be obtained depending on the thickness of the inspection object. However, if conditions can be set such that the maximum intensity of the irradiated X-rays is set to the wavelength a before falling to the absorption edge, good results can be expected in terms of contrast as well as in terms of transmission ability because the wavelength is short. That is,
Both contrast and transmitted X-ray intensity are compatible. However, if the object to be inspected has a single-element / single-layer structure, it is possible to take the absorption edge into consideration and set the X-ray intensity to inspect even with the conventional empirical setting method, but the object to be inspected is different. If it is a compound or mixture of elements, or if layers with such composition are stacked, it will be difficult to estimate the total absorption coefficient including the absorption edge, and do not overlook the optimum inspection conditions. You need to be careful. Therefore, the conventional nondestructive inspection device
In order to visually recognize minute defects in the object to be inspected, the voltage and current of the X-ray generating tube have been adjusted empirically while looking at the screen or by trial and error so as to obtain the optimum contrast.
【0003】[0003]
【発明が解決しようとする課題】このように従来は、画
面を見ながら、経験的に最適検査条件を捜していたがこ
れでは複雑な形状、組成をもつ被検査物に対しては条件
設定に時間もかかるし、また、吸収端のような特異点を
見逃すという欠点があった。本発明はこれらの欠点を解
決するため、複雑な被検査物においても、良好なコント
ラストと極力小さい透過減衰度の両方の条件を満たす点
を最適検査条件として得られるようにすることを目的と
する。As described above, conventionally, the optimum inspection condition was empirically sought while looking at the screen. However, it is necessary to set the condition for the inspection object having a complicated shape and composition. It has a drawback that it takes time and misses a singular point such as an absorption edge. SUMMARY OF THE INVENTION In order to solve these drawbacks, the present invention has an object to obtain a point that satisfies both conditions of good contrast and transmission attenuation as small as possible as an optimum inspection condition even in a complicated object to be inspected. .
【0004】[0004]
【課題を解決するための手段】本発明はこのような課題
を解決するために、被検査物及びその予想される内部欠
陥をモデル化し、積層数、厚さ、組成を入力し、欠陥の
ある部分とない部分を透過した電磁波強度の差、つまり
コントラストを算出し、さらに被検査物の厚さ方向の透
過減衰度を算出して、コントラストはできるだけ大きい
値、減衰度はできるだけ小さい値となるよう検索し、最
適検査条件を定めようにしたものである。すなわち、本
発明は被検査物に関する情報(例えば、被検査物の構
造、組成及び各元素に関する原子番号、原子量及び各波
長での質量吸収係数等のデータ)入力及び記憶手段と、
コントラスト演算手段と、電磁波発生管で発生し得る電
磁波スペクトルのシミュレーション手段と、該シミュレ
ーション手段によるシミュレーション結果より被検査物
の透過強度を演算する透過強度演算手段と、該透過強度
演算手段の演算結果と前記コントラスト演算手段の演算
結果より最適検査条件を検索する条件検索手段により構
成される。In order to solve such a problem, the present invention models an object to be inspected and its expected internal defects, inputs the number of layers, the thickness and the composition, and detects defects. Calculate the difference in the intensity of electromagnetic waves transmitted through the part and the part that does not exist, that is, the contrast, and further calculate the transmission attenuation in the thickness direction of the inspection object so that the contrast is as large as possible and the attenuation is as small as possible. The search is performed to determine the optimum inspection conditions. That is, the present invention is a device for inputting and storing information about an object to be inspected (for example, structure, composition and atomic number of each element, data such as atomic weight and mass absorption coefficient at each wavelength).
A contrast calculation means, a simulation means for an electromagnetic wave spectrum that can be generated in the electromagnetic wave generation tube, a transmission intensity calculation means for calculating the transmission intensity of the object to be inspected from the simulation result by the simulation means, and a calculation result of the transmission intensity calculation means. It is composed of condition search means for searching the optimum inspection condition from the calculation result of the contrast calculation means.
【0005】[0005]
【作用】被検査物情報入力手段から被検査物の構造・組
成が入力されるとこの情報をもとに情報記憶手段から質
量吸収係数等のデータをコントラスト演算手段に取込み
波長毎のコントラストを演算し、シミュレーション演算
手段では、本装置の電磁波発生管で発生し得る電磁波ス
ペクトル波形データを求め、また透過強度演算手段では
減衰度を算出して、これらの結果を基に、条件検索手段
ではコントラストと減衰度から最適検査条件を検索し、
この条件データ(例えば、印加電圧、電流)で電磁波を
発生させ、被検査物に照射する。When the structure / composition of the object to be inspected is input from the object information input means, the data such as the mass absorption coefficient is taken into the contrast calculating means from the information storage means based on this information, and the contrast for each wavelength is calculated. Then, the simulation calculation means calculates the electromagnetic wave spectrum waveform data that can be generated in the electromagnetic wave generation tube of the present apparatus, and the transmission intensity calculation means calculates the attenuation degree. Search the optimum inspection condition from the attenuation,
An electromagnetic wave is generated by this condition data (for example, applied voltage and current), and the inspection object is irradiated with the electromagnetic wave.
【0006】[0006]
【実施例】以下本発明の実施例について、連続X線発生
管を用いた非破壊検査装置を例に説明する。図1は本発
明の全体構成の一例を示すブロック図である。同図にお
いて1は被検査物の構造や組成等の入力部で、例えば、
被検査物の情報は図5に示すように各層の厚さと積層数
を入力する。各層の組成についてはそれぞれの層の各元
素の原子番号、分子量で入力していく。また、各層の密
度も入力する。2はこれらのデータの入力装置で例えば
キーボードである。なお、原子量、質量吸収係数をプロ
グラムのデータとして保存しておけば、原子番号さえ入
力すればこれらのデータは自動的に選択されるため、新
たに入力する必要はない。3はコントラスト演算部で各
層の組成固有の質量吸収係数、密度、厚さから被検査物
(積層状態)の波長対コントラスト特性を演算する。4
は各元素の原子番号、原子量及び各波長での質量吸収係
数のデータ格納部、6は本装置で発生し得る電磁波スペ
クトルのシミュレーション演算部、7は被検査物の透過
強度演算部、8はコントラスト演算部3で算出されたコ
ントラストと透過強度演算部7で算出されたX線の透過
強度から最適検査条件を設定する条件検索部、5は3か
ら8の演算結果を表示するための専用もしくは兼用の表
示部、9は条件検索部8で決定された条件をデータとし
て転送するためのインタフェース、10は前記最適検査
条件に基づきX線を制御するX線発生制御部、11はX
線等の電磁波の漏洩を防ぐためのキャビン、12はX線
発生装置、13は被検査物、14は直撮またはイメージ
インテンシファイアー管等を用いたテレビカメラ撮像装
置、15は撮像装置からの映像を表示するテレビモニタ
等の表示装置である。以上が装置全体の構成で、次に本
発明の特有の動作を主要部ブロック図により説明する。
図3は本発明の主要部の詳細を示すブロック図で、初め
に同図各部の説明をする。入力部1において、16は被
検査物の積層数、及び各層の厚さに関するデータ入力
部、17は各積層の組成・密度に関するデータ入力部、
18は内部の微小欠陥が存在すると推定される部位(何
層目に欠陥があるか)及び欠陥部の推定サイズデータ入
力部、19は当該欠陥の組成、密度に関するデータ入力
部である。これら各ブロックは夫々のデータを一時格納
するものである。透過強度演算部7のなかに示されたブ
ロックは動作フローチャートで、20は透過強度演算を
手動モードまたは自動モードで実行するかの区別であ
り、手動の場合は21のフローへ、自動の場合は25の
フローへ移行する。22は手動の場合の条件、たとえば
電圧値の設定入力、23は指定された条件によって欠陥
のある部分とない部分の透過減衰度を算出する。24は
手動設定終了かどうかの判定機能である。表示部5はこ
れら一連の動作状況を表示する。26は自動の場合の条
件、たとえば電圧値を自動的に所定の幅で更新していく
設定機能である。27は指定された条件によって欠陥の
ある部分とない部分の透過減衰度を算出する。図6はコ
ントラストデータの表示例で、縦軸はコントラスト、横
軸は波長である。図7は透過減衰度の表示例である。以
下この動作について説明する。被検査物の情報は図5に
示すようにモデル化して入力する。図5は3層の場合の
一例を示したものであり、各層の厚さL1、L2、L3と
積層数3を入力する。各層の組成についてはたとえば第
1層がAl2O3という物質であれば各元素の原子番号、
分子量で入力装置2から入力していく。また各層の密度
ρ1、ρ2、ρ3を入力し、これらのデータは入力部1の
16、17に格納される。欠陥については、存在すると
予想される積層番号、サイズを与え、組成については前
記と同様に原子番号、分子量、推定密度を入力する。こ
れらのデータは入力部1の18、19に格納される。コ
ントラスト演算部3ではこれらのデータを基に次のよう
にコントラストを求める。例えば被検査物が図5に示す
ような構成である場合、コントラスト演算部3では、次
の(1)、(2)式により波長に対するコントラストC
を算出する。 I1=Ioexp{−(μ1・ρ1・L1+μ2・ρ2・L2+μ3・ρ3・L3)} I2=Ioexp{−(μ1・ρ1・L1+μ2・ρ2・L2+μ3・ρ3(L3−△x) +μ・ρ・△x)}…(1) I1:無欠陥部の透過X線強度 I2:欠陥部の透過X線強度 Io:照射X線強度 ρ:欠陥部の密度 ρ1、ρ2、ρ3:各層の密度 μ1、μ2、μ3:各層の質量吸収係数 μ:欠陥部の質量吸収係数 L1、L2、L3:各層の厚さ C=I2/I1=exp{(μ3・ρ3−μ・ρ)△x}…(2) C:コントラスト 波長に対する被検査物の各元素の質量吸収係数はすでに
データ格納部4に保存されているがこれらのデータはい
ずれも単一元素に対するものであり、上記一例としての
Al2O3という物質の場合は質量吸収係数に加成性があ
ることから次の(3)式のようにして求める。 μAL×MAL/MALO+μO×MO/MALO…(3) ここで、 μAL:Alの特定波長での質量吸収係数 MAL:Alの分子量 MALO:Al2O3の分子量 μO:Oの特定波長での質量吸収係数 MO:Oの分子量 これを各波長毎に演算することにより図6に示すような
波長対コントラスト(欠陥部分を通過したものと、無欠
陥部分を通過したX線相対強度のコントラスト)のデー
タが得られる。またこのデータには、当然前述の吸収端
情報も含まれる。図6のコントラスト演算部3での演算
結果は同図に示すような形で表示部5に表示される。シ
ミュレーション演算部6は相対強度のX線スペクトル波
形条件、すなわち、X線発生管への印加電圧を様々に変
化させた場合のX線相対強度のスペクトルを演算する機
能を持つ。このX線相対強度スぺクトルは図4に示すよ
うに波長対相対強度で示される。次に透過強度演算部7
の動作を説明する。 前記コントラストデータの波長と
このX線相対強度スぺクトルを対応させることにより、
最大コントラストとなる波長においてX線相対強度が最
大となるスペクトルを発生させる電圧値を読取ることが
できる。例えば、図6に示すようなコントラスト特性を
有しているような被検査物質の場合、波長aよりやや長
波長側に前述の吸収端があるため、波長aを用いるのが
よいことがわかる。印加電圧を変えたときの相対強度の
周波数スぺクトラムを見ると波長aに最大強度を持つス
ペクトラムを発生する印加電圧Aが最適印加電圧である
ことが判る。すなわち、コントラストが最大となる条件
(電圧)を設定しても減衰度が大きいと画像として見え
るだけの十分な輝度が得られないことが通常であるから
である。この実施例では電圧設定方法として手動モード
と自動モードがあり、手動モードでは表示部5に表示さ
れたコントラストデータ(図6に示す)とX線スペクト
ル波形(図4に示す)から操作者の判断で適切と思われ
る条件(電圧)を設定する。透過減衰度演算部23では
その電圧で発生するスペクトル中、最大強度をとる波長
について、厚さ方向での透過減衰度を算出する。図7は
この演算結果を示す。自動モードの場合には、操作者が
条件(電圧)を設定するかわりに当該演算部7で自動的
に設定するものである。この場合、演算結果は条件検索
部8に送られる。条件検索部8ではコントラスト演算部
3と透過強度演算部7のデータよりコントラストはでき
るだけ大きく、減衰度はできるだけ小さくという二つの
条件を満たす波長を検索する。この動作を図8のフロー
チャートに示す。ここでは、初めにできる限り短い波長
で、大きなコントラストが得られる波長aを求め(図6
参照)、次に波長aをピークに持つ、電圧Aを求める
(図4参照)。次に、被検査物の厚さに対応した欠陥部
分と無欠陥部分の減衰度を求め、電圧Aで透過したX線
強度が十分か否か(すなわち、減衰しすぎていないか)
の判定を行う。判定の結果、減衰しすぎる場合には波長
aより短い波長(すなわち、X線強度を上げる方向)に
波長a’を設定し、前述の通り、透過減衰度が適当にな
るまで検索する。このようにして、手動または自動どち
らの場合でも得られた条件(電圧)値はインタフェース
9を介してX線発生制御部10に設定され被検査物を照
射する。なお、X線発生制御部10以降の構成は周知の
X線発生撮像装置であるため詳細な説明は省略する。以
上、実施例の説明では表示部5を複数設けたが一つで共
用しても良いし、分割表示しても良い。EXAMPLES Examples of the present invention will be described below by taking a nondestructive inspection apparatus using a continuous X-ray generation tube as an example. FIG. 1 is a block diagram showing an example of the overall configuration of the present invention. In the figure, reference numeral 1 is an input unit for the structure and composition of the object to be inspected.
As the information of the object to be inspected, the thickness of each layer and the number of layers are input as shown in FIG. For the composition of each layer, enter the atomic number and molecular weight of each element of each layer. Also, enter the density of each layer. An input device 2 for these data is a keyboard, for example. If the atomic weight and mass absorption coefficient are saved as program data, these data are automatically selected as long as the atomic number is entered, and there is no need to newly enter them. A contrast calculator 3 calculates the wavelength-contrast characteristic of the object to be inspected (laminated state) from the mass absorption coefficient, density and thickness peculiar to the composition of each layer. Four
Is a data storage unit of the atomic number of each element, atomic weight and mass absorption coefficient at each wavelength, 6 is a simulation calculation unit of the electromagnetic spectrum that can be generated by this device, 7 is a transmission intensity calculation unit of the inspection object, and 8 is a contrast. A condition search unit for setting the optimum inspection condition from the contrast calculated by the calculation unit 3 and the transmission intensity of the X-ray calculated by the transmission intensity calculation unit 5, and 5 is a dedicated or combined use for displaying the calculation results 3 to 8. Display unit 9, an interface for transferring the conditions determined by the condition search unit 8 as data, 10 an X-ray generation control unit for controlling X-rays based on the optimum inspection conditions, and 11 an X-ray generation control unit.
A cabin for preventing leakage of electromagnetic waves such as rays, 12 is an X-ray generator, 13 is an object to be inspected, 14 is a TV camera imaging device using direct image capturing or an image intensifier tube, and 15 is an imaging device. It is a display device such as a television monitor for displaying an image. The above is the configuration of the entire apparatus. Next, the operation peculiar to the present invention will be described with reference to a block diagram of main parts.
FIG. 3 is a block diagram showing details of main parts of the present invention. First, each part of the figure will be described. In the input unit 1, 16 is a data input unit regarding the number of layers of the object to be inspected and the thickness of each layer, 17 is a data input unit regarding the composition and density of each layer,
Reference numeral 18 is a portion (the number of layers in which the defect is present) in which it is presumed that micro defects are present, and an estimated size data input portion of the defect portion, and 19 is a data input portion regarding the composition and density of the defect. Each of these blocks temporarily stores respective data. The block shown in the transmission intensity calculation unit 7 is an operation flowchart, and 20 is a distinction whether the transmission intensity calculation is executed in the manual mode or the automatic mode. In the manual case, the flow proceeds to 21. In the automatic case, 25 is entered. Reference numeral 22 is a condition for manual operation, for example, setting input of a voltage value, and 23 is to calculate the transmission attenuation of the defective portion and the defective portion according to the designated condition. Reference numeral 24 is a function for determining whether or not the manual setting is completed. The display unit 5 displays these series of operating conditions. Reference numeral 26 is a setting function for automatically updating the condition, for example, the voltage value in a predetermined width. 27 calculates the transmission attenuation of the defective portion and the non-defective portion according to the designated conditions. FIG. 6 is a display example of contrast data, in which the vertical axis represents contrast and the horizontal axis represents wavelength. FIG. 7 is a display example of the transmission attenuation degree. This operation will be described below. Information on the object to be inspected is modeled and input as shown in FIG. FIG. 5 shows an example of the case of three layers, and the thicknesses L 1 , L 2 and L 3 of each layer and the number of laminated layers 3 are input. Regarding the composition of each layer, for example, if the first layer is a substance of Al 2 O 3 , the atomic number of each element,
The molecular weight is input from the input device 2. Further, the densities ρ 1 , ρ 2 , ρ 3 of each layer are input, and these data are stored in 16 and 17 of the input unit 1. For the defect, the stacking number and size expected to exist are given, and for the composition, the atomic number, the molecular weight, and the estimated density are input as described above. These data are stored in 18 and 19 of the input unit 1. The contrast calculator 3 obtains the contrast as follows based on these data. For example, when the object to be inspected has a configuration as shown in FIG. 5, the contrast calculation unit 3 calculates the contrast C with respect to the wavelength by the following equations (1) and (2).
To calculate. I 1 = I o exp {-(μ 1 · ρ 1 · L 1 + μ 2 · ρ 2 · L 2 + μ 3 · ρ 3 · L 3 )} I 2 = I o exp {-(μ 1 · ρ 1 · L 1 + μ 2 · ρ 2 · L 2 + μ 3 · ρ 3 (L 3 −Δx) + μ · ρ · Δx)} (1) I 1 : Transmission X-ray intensity of defect-free portion I 2 : Defect portion Transmitted X-ray intensity I o : Irradiated X-ray intensity ρ: Density of defect part ρ 1 , ρ 2 , ρ 3 : Density of each layer μ 1 , μ 2 , μ 3 : Mass absorption coefficient of each layer μ: Mass of defect part Absorption coefficient L 1 , L 2 , L 3 : Thickness of each layer C = I 2 / I 1 = exp {(μ 3 · ρ 3 −μ · ρ) Δx} (2) C: Contrast Inspected against wavelength The mass absorption coefficient of each element of the object is already stored in the data storage unit 4, but all of these data are for a single element. In the case of the substance Al 2 O 3 as the above example, the mass absorption coefficient is Because of the additivity of It is obtained by the formula (3). μAL × MAL / MALO + μO × MO / MALO (3) where μAL: mass absorption coefficient of Al at a specific wavelength MAL: molecular weight of Al MALO: molecular weight of Al 2 O 3 mass absorption of μO: O at a specific wavelength Coefficient MO: molecular weight of O By calculating this for each wavelength, the data of wavelength vs. contrast (contrast of the X-ray relative intensity passing through the defect portion and the X-ray relative intensity passing through the non-defect portion) as shown in FIG. can get. Also, this data naturally includes the above-mentioned absorption edge information. The calculation result of the contrast calculation unit 3 of FIG. 6 is displayed on the display unit 5 in the form as shown in FIG. The simulation calculator 6 has a function of calculating the X-ray spectrum waveform condition of the relative intensity, that is, the spectrum of the X-ray relative intensity when the voltage applied to the X-ray generating tube is variously changed. This X-ray relative intensity spectrum is represented by relative intensity with respect to wavelength as shown in FIG. Next, the transmission intensity calculator 7
The operation of will be described. By associating the wavelength of the contrast data with this X-ray relative intensity spectrum,
It is possible to read the voltage value that produces the spectrum in which the relative intensity of X-rays is maximum at the wavelength where the maximum contrast is obtained. For example, in the case of a substance to be inspected having a contrast characteristic as shown in FIG. 6, it is understood that the wavelength a is preferably used because the absorption edge described above is located on the slightly longer wavelength side than the wavelength a. From the frequency spectrum of relative intensities when the applied voltage is changed, it can be seen that the applied voltage A that produces the spectrum having the maximum intensity at the wavelength a is the optimum applied voltage. That is, even if the condition (voltage) that maximizes the contrast is set, if the attenuation is large, it is usually not possible to obtain sufficient brightness for an image. In this embodiment, there are a manual mode and an automatic mode as a voltage setting method. In the manual mode, the operator judges from the contrast data (shown in FIG. 6) and the X-ray spectrum waveform (shown in FIG. 4) displayed on the display unit 5. Set the condition (voltage) that seems to be appropriate. The transmission attenuation calculator 23 calculates the transmission attenuation in the thickness direction for the wavelength having the maximum intensity in the spectrum generated by the voltage. FIG. 7 shows the result of this calculation. In the case of the automatic mode, the operator automatically sets the condition (voltage) instead of setting the condition (voltage). In this case, the calculation result is sent to the condition search unit 8. The condition search unit 8 searches for wavelengths that satisfy the two conditions of the contrast being as large as possible and the attenuation being as small as possible, based on the data of the contrast calculating unit 3 and the transmission intensity calculating unit 7. This operation is shown in the flowchart of FIG. Here, first, the wavelength a that gives a large contrast is obtained at the shortest possible wavelength (see FIG. 6).
Next, the voltage A having the peak of the wavelength a is obtained (see FIG. 4). Next, the degree of attenuation of the defective portion and the non-defect portion corresponding to the thickness of the object to be inspected is obtained, and whether the intensity of the X-ray transmitted at the voltage A is sufficient (that is, is not excessively attenuated).
Is determined. If the result of determination is that attenuation is excessive, wavelength a'is set to a wavelength shorter than wavelength a (that is, in the direction of increasing the X-ray intensity), and as described above, search is performed until the transmission attenuation becomes appropriate. In this way, the condition (voltage) value obtained in either manual or automatic is set in the X-ray generation controller 10 via the interface 9 to irradiate the object to be inspected. The configuration after the X-ray generation control unit 10 is a well-known X-ray generation image pickup device, and thus detailed description thereof will be omitted. Although a plurality of display units 5 are provided in the above description of the embodiment, one display unit 5 may be shared or divided display may be performed.
【0007】[0007]
【発明の効果】被検査物が複数の異なる元素の化合物や
混合物であったり、そのような組成をもつ層が何層も重
なったものである場合、総合吸収係数の推定が容易でな
くなり、最適検査条件を見落さないように注意する必要
がある。このため、従来は、画面を見ながら、経験的に
最適検査条件を捜していたがこれでは複雑な形状、組成
をもつ被検査物に対しては条件設定に時間もかかるし、
また、吸収端のような特異点を見逃すことがあった。し
かし、本発明によれば複雑な形状・組成をもつ、被検査
物に対しても最適なコントラストが容易に得られる非破
壊検査装置が実現でき、検査効率を著しく向上すること
ができる。EFFECT OF THE INVENTION When the object to be inspected is a compound or mixture of a plurality of different elements, or when layers having such a composition are stacked, it becomes difficult to estimate the total absorption coefficient, which is optimum. Care must be taken not to overlook the inspection conditions. Therefore, conventionally, while looking at the screen, we empirically searched for the optimum inspection conditions, but this takes time to set the conditions for the inspection object having a complicated shape and composition.
Moreover, a singular point such as an absorption edge may be missed. However, according to the present invention, it is possible to realize a non-destructive inspection apparatus having a complicated shape / composition and easily obtaining an optimum contrast even for an object to be inspected, and it is possible to significantly improve the inspection efficiency.
【図1】本発明の一実施例の全体構成ブロック図。FIG. 1 is an overall configuration block diagram of an embodiment of the present invention.
【図2】質量吸収特性の一例を示す図。FIG. 2 is a diagram showing an example of mass absorption characteristics.
【図3】本発明の一実施例を示す詳細ブロック図。FIG. 3 is a detailed block diagram showing an embodiment of the present invention.
【図4】相対強度特性の一例を示す図。FIG. 4 is a diagram showing an example of relative intensity characteristics.
【図5】モデル化した被検査物の一例を示す図。FIG. 5 is a diagram showing an example of a modeled inspection object.
【図6】コントラスト−波長特性の一例を示す図。FIG. 6 is a diagram showing an example of contrast-wavelength characteristics.
【図7】透過強度と厚さの関係を示す図。FIG. 7 is a diagram showing a relationship between transmission intensity and thickness.
【図8】条件検索部の動作フローチャート。FIG. 8 is an operation flowchart of a condition search unit.
1 被検査物の構造・組成入力部 3 コントラスト演算部 6 X線スペクトル波形シミュレーション部 7 透過強度演算部 8 条件検索部 10 X線発生制御部 12 X線発生装置 13 被検査物 1 Structure / Composition Input Section of Inspected Object 3 Contrast Operation Section 6 X-Ray Spectral Waveform Simulation Section 7 Transmission Intensity Operation Section 8 Condition Search Section 10 X-Ray Generation Control Section 12 X-Ray Generator 13 Inspected Object
Claims (3)
さ方向の透過減衰度を算出し、コントラストはできるだ
け大きい値、減衰度はできるだけ小さい値となる条件を
検索し、最適検査条件を定めることを特徴とする非破壊
検査装置1. The characteristics of the substance to be inspected are input, the transmission attenuation in the thickness direction of the inspected substance is calculated, and the conditions under which the contrast is as large as possible and the attenuation is as small as possible are searched, and the optimum inspection is carried out. Nondestructive inspection device characterized by defining conditions
分とない部分を透過した電磁波強度差を算出し、被検査
物の厚さ方向の透過減衰度を算出し、コントラストはで
きるだけ大きい値、減衰度はできるだけ小さい値となる
条件を検索し、最適検査条件を定めることを特徴とする
非破壊検査装置2. The characteristics of the substance to be inspected are inputted, the difference in the intensity of electromagnetic waves transmitted through a portion with and without defects is calculated, the transmission attenuation in the thickness direction of the object to be inspected is calculated, and the contrast is as large as possible. A non-destructive inspection device characterized by searching for conditions where the value and attenuation are as small as possible and determining the optimum inspection conditions.
し、被検査物内部の欠陥、形状を観察する非破壊検査装
置において、被検査物質の特性を入力する手段と、前記
検査装置で発生し得る電磁波の波長帯域に対応して欠陥
のある部分とない部分の透過電磁波強度コントラストを
演算する手段と、前記検査装置で発生し得る電磁波の波
長対相対強度のスペクトルをシミュレーションする手段
と、前記電磁波を発生する電磁波スペクトルを決定する
条件データを設定する手段と、被検査試料の厚さ方向の
透過減衰特性を演算する手段と、前記コントラストのデ
ータと前記透過減衰特性のデータからコントラストと減
衰度の最適値が両立する波長を検索し最適検査条件とす
る手段より構成される非破壊検査装置3. A non-destructive inspection apparatus for observing defects and shapes inside an object to be inspected by using an electromagnetic wave having a property of transmitting a substance, means for inputting characteristics of the object to be inspected, and the inspection device. Means for calculating a transmitted electromagnetic wave intensity contrast between a defective portion and a non-defective portion corresponding to a possible electromagnetic wave wavelength band, a means for simulating a spectrum of a wavelength versus relative intensity of an electromagnetic wave that can be generated by the inspection device, A means for setting condition data for determining an electromagnetic wave spectrum for generating an electromagnetic wave, a means for calculating a transmission attenuation characteristic in the thickness direction of a sample to be inspected, a contrast and an attenuation degree from the contrast data and the transmission attenuation characteristic data. Non-destructive inspection device consisting of means for searching wavelengths that satisfy both optimum values of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5076363A JPH06265488A (en) | 1993-03-10 | 1993-03-10 | Nondestructive inspection unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5076363A JPH06265488A (en) | 1993-03-10 | 1993-03-10 | Nondestructive inspection unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06265488A true JPH06265488A (en) | 1994-09-22 |
Family
ID=13603277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5076363A Pending JPH06265488A (en) | 1993-03-10 | 1993-03-10 | Nondestructive inspection unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06265488A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016006085A1 (en) * | 2014-07-10 | 2016-01-14 | 株式会社ニコン | X-ray device and structure manufacturing method |
-
1993
- 1993-03-10 JP JP5076363A patent/JPH06265488A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016006085A1 (en) * | 2014-07-10 | 2016-01-14 | 株式会社ニコン | X-ray device and structure manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4415980A (en) | Automated radiographic inspection system | |
JPH02287244A (en) | Material tester | |
JP5203946B2 (en) | Method and apparatus for automatic exposure control | |
EP1455651B1 (en) | Automatic exposure method and automatic exposure system | |
JP2008268076A (en) | Non-destructive discrimination method, and device | |
JPS60253197A (en) | X-ray diagnosis equipment | |
CN107167522A (en) | Crack tester | |
JPH06265488A (en) | Nondestructive inspection unit | |
KR100704245B1 (en) | Radiographic apparatus and radiation detection signal processing method | |
US5923724A (en) | Medical x-ray diagnostic installation and method for operating same | |
US8121372B2 (en) | Method for reducing image noise in the context of capturing an image using two different radiation spectra | |
US7508914B2 (en) | Radiology device | |
US20050031088A1 (en) | Radiographic apparatus and radiation detection signal processing method | |
JP4226211B2 (en) | X-ray inspection apparatus and recording medium | |
JPH10512962A (en) | Method and apparatus for evaluating changes in intensity of multispectral radiation and correcting errors | |
JP3320463B2 (en) | X-ray inspection apparatus and X-ray inspection method | |
JP4427204B2 (en) | Method and system for determining performance of radiation image information generating apparatus | |
JP4124339B2 (en) | Measurement result display method, X-ray apparatus, and computer program | |
Drevon | Measurement methods and devices applied to A380 nacelle double degree-of-freedom acoustic liner development | |
JPH01265145A (en) | X-ray inspection device | |
US4349738A (en) | Method of measuring the content of given element in a sample by means of X-ray radiation | |
Bigler et al. | Quantitative mapping of atomic species by X-ray absorption spectroscopy and contact microradiography | |
JPH08103440A (en) | Photographing control method for x-ray ct system | |
JPH06265486A (en) | X-ray line sensor radioscopic unit | |
Weaver | NDT in aerospace |