JPS60253197A - X-ray diagnosis equipment - Google Patents

X-ray diagnosis equipment

Info

Publication number
JPS60253197A
JPS60253197A JP59107420A JP10742084A JPS60253197A JP S60253197 A JPS60253197 A JP S60253197A JP 59107420 A JP59107420 A JP 59107420A JP 10742084 A JP10742084 A JP 10742084A JP S60253197 A JPS60253197 A JP S60253197A
Authority
JP
Japan
Prior art keywords
image
ray
contrast medium
contrast
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59107420A
Other languages
Japanese (ja)
Other versions
JPH0531871B2 (en
Inventor
Masao Suda
須田 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59107420A priority Critical patent/JPS60253197A/en
Publication of JPS60253197A publication Critical patent/JPS60253197A/en
Publication of JPH0531871B2 publication Critical patent/JPH0531871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/507Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Hematology (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To enable photographing of a contrast image at an appropriate timing by quantitatively detecting an arriving state of a contrast medium to the location of an objective to be photographed by an ultrasonic wave. CONSTITUTION:A contrast medium injection device 20 is operated by a command signal from a system controller 16 and the predetermined quantity of a contrast medium is injected into a blood vessel of a body 6 under inspection. This contrast medium is, of course, sensitive to X-ray and also at the same time produces echoes by an ultrasonic wave beam. After the echo image is monitored and besides the density is calculated by an ultrasonic blood flow measuring device 24 hased on these echoes, the flow-in state of the contrast medium to the interested location is detected by comparing that result with the predetermined threshold value and thus the detected signal is put out to the system controller 16. Thereby, X-ray exposure after the injection of the contrast medium can be commenced.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、XImにより血管を撮影するX1診断装置に
係わり、特に造影剤注入前後の血管を撮影するタイミン
グを検出する機能を有づるX線診断装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an X1 diagnostic device that images blood vessels using XIm, and particularly to X-ray diagnostics having a function of detecting the timing of photographing blood vessels before and after injection of a contrast medium. Regarding equipment.

[発明の技術的費用] 一般に、X線診断装置には、X11aフイルム上に直接
X線画像を形成する方法と、X′1lA−光変換器とし
てのイメージインテンシファイアにテレビカメラ、テレ
ビモニタを組合せたX線テレビ装芦を使って間接的にX
線画像を形成する方法とがある。
[Technical cost of the invention] In general, an X-ray diagnostic device requires a method of directly forming an X-ray image on an X11a film, an image intensifier as an X'11A-light converter, a television camera, and a television monitor. Indirect X using the combined X-ray television equipment
There is a method of forming a line image.

またxsiim影法には、撮影部位に手を加えずにその
まま撮影する方法と、造影剤を使って撥影部位を強調す
る方法とがある。
Furthermore, the xsiim imaging method includes a method in which the imaged region is directly imaged without any modification, and a method in which a contrast agent is used to emphasize the image-repelled region.

環近では、造営撮影とくに血管!Ii!影の場合、X線
テレビ装置を使用し、また撮影したX線画像情報を演算
処理して造影部位のみを抽出するいわゆるディジタルラ
ジオグラフィ法が行われている。
Near the area, take pictures of the construction, especially the blood vessels! Ii! In the case of shadows, a so-called digital radiography method is used that uses an X-ray television device and performs arithmetic processing on captured X-ray image information to extract only the contrasted region.

この方法は、まず造影剤を注入する前の状態を撮影して
得られたX線像(マスク像)の映像信号を時系列でディ
ジタル変換して、−両面分の情報を記録装置に記録する
。つぎに造影剤を注入しlζ状態を撮影して得られたX
線画像(コン]−ラスト像)の一画面分の映像信号を時
系列でディジタル変換ダる。そして減算装置において、
記録IA置に記録されたマスク像情報から造影像情報を
時系列にしたがって減算(勺ブトラクション)する。す
ると、撮影条例が同一であれば、造影剤の影響を受けて
いない部位にむけるマスク像信号とコントラスト像信号
とは等しいから減痒すると零となり、一方造影剤が注入
された部位におけるマスク像信号と]ントラスト像13
号とは造影剤によるX線吸収のため差が生じ、この差の
ディジタル信号を時系列的にす0グ変換してテレビモニ
タ上に再合成すると、造影部位だけが映像出力されるこ
ととなる。
In this method, first, the video signal of the X-ray image (mask image) obtained by photographing the state before the contrast agent is injected is digitally converted in time series, and the information for both sides is recorded in a recording device. . Next, a contrast agent was injected and the lζ state was photographed to obtain the
The video signal for one screen of the line image (last image) is digitally converted in time series. And in the subtraction device,
Contrast image information is subtracted in chronological order from the mask image information recorded in the recording IA position (subtraction). Then, if the imaging regulations are the same, the mask image signal and the contrast image signal for the area unaffected by the contrast agent are equal, so they become zero when the itch is reduced, while the mask image signal for the area where the contrast agent was injected becomes zero. ] Ntrust statue 13
A difference occurs due to the absorption of X-rays by the contrast agent, and when the digital signal of this difference is converted in time series and recombined on a TV monitor, only the contrast area will be output as an image. .

したがって、この方法は診断しようとする部位の造影像
のみを抽出することがでさるため、診断に有用な7′i
法である。
Therefore, since this method can extract only the contrast image of the region to be diagnosed,
It is the law.

(背景技術の問題点] しかしながら、前述のコントラスト像を得るために、従
来はXS*透視により行なっていた。即ち、造影削節t
t m、心臓などの撮影目的部位に造影剤が到達する状
況を、低XI曝射による被検体透過像を1.1.111
!1m管を介してモニタに映出し、これを観察すること
によって把握していた。しかし透視による観察方法では
、撮影目的部位への造影剤、到達後、コントラスト像の
指定のタイミングは、術者がモニタによって31!i彰
剤の流入状況を観察し、適切になったと判断した時に何
らかのスイッチを操作して、X線の曝射及び晧彰系を動
作さゼていた。従って術者の技mに大きく係わってしま
い、術者によってそのタイミングの選定にバラク4が出
てしまうという欠点がある。また、血管のある1点につ
いて造影剤11度を観察した場合、徐々に濃度が上昇し
、ピークに達するとまた除ノZに下降するため、m度の
ビークポイン1〜時の:】ン]〜ラスト像を適確にとら
えることは、前述の透視像観察による手段では極めて困
難である。よって、効果の高い画像間り”ブトラクショ
ンは困難であった。
(Problems in the Background Art) However, in order to obtain the above-mentioned contrast image, conventionally it was performed using XS* fluoroscopy.
1.1.111 1.1.111 The situation in which the contrast medium reaches the imaging target area such as the heart, and the transmission image of the subject with low XI exposure.
! It was displayed on a monitor via a 1m tube, and the image was observed by observing the image. However, in the observation method using fluoroscopy, the timing of specifying the contrast image after the contrast agent reaches the imaging target area is determined by the operator on the monitor. They observed the inflow of the i-stimulant, and when they judged it to be appropriate, operated some kind of switch to activate the X-ray exposure and X-ray system. Therefore, it is greatly affected by the skill m of the caster, and there is a drawback that the selection of the timing may vary depending on the caster. In addition, when observing a contrast agent of 11 degrees at one point with a blood vessel, the concentration gradually increases and once it reaches the peak, it drops again to the zero Z, so the peak point of m degrees is 1 to 1:]n]~ It is extremely difficult to accurately capture the last image using the above-mentioned perspective image observation method. Therefore, it has been difficult to achieve highly effective "bleeding" between images.

また、目的部位に造影剤が到達覆る以前からX線を曝射
しておく必要があるため、被検体の被爆が大きくならざ
るを得なかった。
Furthermore, since it is necessary to irradiate X-rays before the contrast agent reaches and covers the target area, the subject is inevitably exposed to more radiation.

し発明の目的] 本発明は上記事情に鑑み成されたもので、撮影目的部位
への造影剤の到達状況を超音波により定量的に検出する
ことにより、適確なタイミングで」lントラスト像撮影
を可能としたX線診断装置を提供4ることを目的とする
OBJECT OF THE INVENTION] The present invention has been made in view of the above-mentioned circumstances, and it enables contrast imaging to be performed at an appropriate timing by quantitatively detecting the state of arrival of a contrast agent to the imaging target area using ultrasound. The purpose of the present invention is to provide an X-ray diagnostic device that enables the following.

[発明のw要1 上記目的を建成するために、本発明に於ては、被検体に
おりるllil日影部位の関心領域におGJる血管に造
影剤が到達する時期を検出してxi診診断ll形影行な
うxii断装置において、前記関心領域を含む部位に超
音波ビームを到達伝播させその反射波を検出する超高波
プ1]−ブと、この超音波プローブによる反射波情報を
入力し造影剤が前記部位に到達したことを判別する血流
測定手段と、この血流測定手段の出力によりxIiil
l射を制御11Iする制御手段とを具備したことを特徴
とするものである。
[Summary of the Invention 1] In order to achieve the above object, the present invention detects the time when a contrast agent reaches the blood vessel in the GJ in the region of interest in the shadowed region of the subject. In an xiii cutting device that performs diagnosis and diagnosis, an ultrahigh wave probe (1) for transmitting an ultrasonic beam to a site including the region of interest and detecting the reflected wave and information on the reflected wave by this ultrasonic probe are input. A blood flow measuring means for determining whether the contrast agent has reached the site, and an output of the blood flow measuring means
The present invention is characterized in that it includes a control means for controlling 11I the radiation.

し発明の実施例] この発明の一実施例について図面を参照しながら説明す
る。
Embodiment of the Invention] An embodiment of the invention will be described with reference to the drawings.

第1図にこの発明の一実施例を示す。同図において、1
で示すのは、X線管19よりの被検体透過X線が入射さ
れ、このX線像を光学像に変換するイージインテンシフ
ァイア(1,1)であり、2および3で示すのは、この
1.11ぐ変換された光学像よりの光を一旦平行光線に
変換し、その後撮影管たとえばヒジ:】ンを@像管の光
導電面に結像させるための光学レンズ系、所謂タンデム
レンズ系である。また、4で示寸のは搬像体側のレンズ
3の前方に配貿して、平行光線量を調節4る自動光学絞
り(オートアイリス)であり、5で示すのは前記光学レ
ンズ3の後方にある焦点にぞの光導電面が位置Jるよう
に配胃された撮像管たとえばヒジコン型撮像管である。
FIG. 1 shows an embodiment of the present invention. In the same figure, 1
2 and 3 are easy intensifiers (1, 1) that receive the X-rays transmitted through the subject from the X-ray tube 19 and convert the X-ray image into an optical image. An optical lens system, a so-called tandem lens, is used to convert the light from this converted optical image into parallel light beams, and then to form an image of a photographic tube, such as an elbow, on the photoconductive surface of the photographic tube. It is a system. Also, the size indicated by 4 is an automatic optical iris (auto iris) placed in front of the lens 3 on the image carrier side to adjust the amount of parallel light 4, and the size shown by 5 is behind the optical lens 3. This image pickup tube is arranged such that its photoconductive surface is located at a certain focal point, such as a hijicon type image pickup tube.

6で示づのは被検体であり、7で示づのは撮像管5をI
Il]IIIするルビカメラコントローラであり、映像
(g号aと同期信号すとが分縮して出力される。8ぐ示
づのは、A/D変換器であり、前記テレビカメラコン1
〜1コーラ7よりのアナログの映像信号を所定のタイミ
ングでデジタルビデオ信号Cに変換する。
6 is the object to be examined, and 7 is the image pickup tube 5.
Il] III is a ruby camera controller, which decompresses and outputs the video (g-a and synchronization signal).
~1 The analog video signal from Cola 7 is converted into a digital video signal C at a predetermined timing.

9で示づのは、デジタルブ[)1?ツザであり、所定の
デジタルビデオ信号を加算づる加n処理部9△と、加算
処理部9Aより出力される加算マスク像と加算コントラ
スト像〈被検体内の所定部位に造影剤が到達した竣のX
線像)についての加専デジタルヒテ′A(FiQからバ
イアス成分を除去するバイアス補1丁処理部9Bと、バ
イアス補止処理部9Bより出ツノされるバイアス補正猾
の加算マスク像」ン]−ラスト像についての加算デジタ
ルビデオ信号を対数変換する対数変換処理部9Cと、対
数変換処理後の加算マスク像と加算コントラスト像との
減算を行なうサブトラクト処理部9Dと、サブトラクト
処理部9Dより出力されるサブトラクト像等につきウィ
ンドウ処理等をするその他の画像処理部9Fとを有する
。10で示すのは、デ4ジタルプロセッ1ノ9で処理さ
れた各種のデジタルビデオ(8号を格納するデジタルフ
レームメモリである。11で示Jのは、前記デジタルプ
ロセッサ9より出力されるデジタルビデオ信号をアナロ
グのビデオ信号に変換するD/A変換器である。12で
示すのは、D/へ変換器11より出力されるビデオ信号
を所定の装置に入力するためにこれを切り換えるビデA
出力切換器である。13で承りのは、外部アナログメモ
リたとえばビデAディスクレコーダ、ビデオデーブレ]
−ダ、マルヂフ4−マットカメラ等であり、14で示づ
のはデレビモ二夕である。15で示すのは外部デジタル
メtりたとえばマグネチック7−ブ、ノ[1ツビーI゛
イスク等である。16で示すのは、X線診11Ji装置
の全システムをfi制御するシステムコン1−〇−ラで
あり、特に、デジタルプロセッサ9の処理とX線暉射と
のタイミングを制御する。17ぐ小すのはX線暉射を!
、II 011するX線コントローラであり、18ぐ示
づのはX線管に印加づる高電圧を発(1−するためのX
S*八電圧電圧発生装置り、19ぐ示ηのはX線をII
 11づるX線管である。20で承りのは被検体6の血
管内に血管造影剤を注入づるための造影剤汀人装置であ
る。21で示づのは、X線の@射条付を設定するスイッ
チを有(るコン1−ロール1ンソールである。
9 indicates digital block [)1? The addition processing unit 9Δ adds a predetermined digital video signal, and the addition mask image and addition contrast image output from the addition processing unit 9A (completed when the contrast medium has reached a predetermined site within the subject). X of
(line image), the special digital image 'A' (the addition mask image of the bias correction unit 9B which removes the bias component from the FiQ and the bias correction unit output from the bias correction processing unit 9B)]- A logarithmic conversion processing unit 9C that logarithmically converts the added digital video signal for the last image, a subtract processing unit 9D that performs subtraction between the added mask image and the added contrast image after the logarithmic conversion processing, and the subtract processing unit 9D outputs It also has another image processing unit 9F that performs window processing etc. on subtract images etc. What is shown at 10 is a digital frame memory that stores various digital videos processed by the digital 4 digital processor 1 no. 11 is a D/A converter that converts the digital video signal output from the digital processor 9 into an analog video signal. 12 is a D/A converter that converts the digital video signal output from the digital processor 9 into an analog video signal. A video signal that is switched to input the video signal to a predetermined device.
It is an output switch. 13 accepts external analog memory such as video A disk recorder, video recorder]
14 is a digital camera. Reference numeral 15 indicates an external digital device such as a magnetic disk, a knob, or the like. Reference numeral 16 denotes a system controller 1-0- which fi-controls the entire system of the X-ray diagnosis 11Ji apparatus, and in particular controls the timing of the processing of the digital processor 9 and X-ray radiation. 17th minute is X-ray radiation!
, II 011, and the one shown in Figure 18 is the
S * 8 voltage generator, 19 η indicates X-ray II
It is an X-ray tube. 20 is a contrast agent device for injecting an angiographic contrast agent into the blood vessels of the subject 6. Reference numeral 21 indicates a console with a switch for setting the X-ray beam.

一方、22は超音波診断装置を示し、超音波ビ−ム23
を作動させる。超音波血流測定44f!124は超音波
診断装置22と組合わして断層像を表示しながら、断層
像上の血管造影剤の変化を51nづる。
On the other hand, 22 indicates an ultrasonic diagnostic device, and an ultrasonic beam 23
Activate. Ultrasonic blood flow measurement 44f! 124 displays a tomographic image in combination with the ultrasonic diagnostic device 22, and records changes in the angiographic agent on the tomographic image 51n.

たとえば、第2図はその一例を示したもので、31はい
わゆるセクタ電子操作によって得られた扇状の断層像で
あり、32(よ血管を示している。
For example, FIG. 2 shows an example, in which 31 is a fan-shaped tomographic image obtained by so-called sector electronic manipulation, and 32 (indicates a blood vessel).

断層像はいわゆるリニア電子走査により得てもよい。The tomographic image may be obtained by so-called linear electronic scanning.

超音波ビームの内の一木33をセレクトし、血管(11
132の交点をPI 、P2とづる。このPl。
Select one tree 33 in the ultrasound beam, and select the blood vessel (11
The intersection of 132 is written as PI and P2. This Pl.

P2の位置は目的とづる。X線像への血液流入口である
The position of P2 is determined by the purpose. This is the blood inlet into the X-ray image.

次に、上記一実施例装置の作用について、図面を参照し
ながら説明する。
Next, the operation of the device of the above embodiment will be explained with reference to the drawings.

まず、コントロールコンソール21により、術占はX線
@銅条イ’r(KV、IuA、を等)を設定すると、シ
ステムIIント[l−ラ16では該条骨に設定づるため
の信号をX線コントローラ17へ出力する。X線コント
ローラ17では前記条flに基づく信号をXJ1!+1
^電バ発生装置18に出力し、X線管に所望どづる出力
が印加される。これによって曝射されるX線は造影剤を
注入されていない被写体6を透過し、1.11に入射し
て増倍された光出力として取出され、オー]−アイリス
4を備えた光学レンズ系2.3へ入射する。そして次段
の撮像管5によって、入力された光学像を映像信号に変
換の模、テレビカメラコン1−〇−ラ7から映像信号a
を出力づる。この映像(8号はへ710変換器(3によ
ってデジタル化され、デジタルブl−11?ツリ9に入
力づる。このデジタルプロセッサ9では、入力された信
号を加棹処理部9Aにて数フレーム分加算し、バイアス
成分をバイアス補正処理部9Bにて除去され、そして対
数変換の後、マスク像としてフレームメモリ10に記憶
させる。
First, when the control console 21 is used to set the X-ray @copper bone (KV, IuA, etc.), the system Output to line controller 17. The X-ray controller 17 outputs the signal based on the above article fl as XJ1! +1
The output is output to the voltage generating device 18, and the desired output is applied to the X-ray tube. The X-rays thus emitted pass through the object 6 into which no contrast agent has been injected, enter the 1.11, and are extracted as a multiplied optical output, which is transmitted through an optical lens system equipped with an iris 4. 2.3. Then, the image pickup tube 5 in the next stage converts the input optical image into a video signal, and the video signal a from the television camera controller 1-○-ra 7
Outputs. This video (No. 8 is digitized by a 710 converter (3) and input to a digital blueprinter 9. In this digital processor 9, the input signal is processed into a processing unit 9A for several frames. The bias component is removed by the bias correction processing unit 9B, and after logarithmic transformation, the mask image is stored in the frame memory 10.

その俊、システムコントローラ16の指令信号により、
造影剤注入装M20が動作し、被検体6の血管内に造影
剤が所定拳汀入される。
In response to the command signal from the system controller 16,
The contrast medium injection device M20 operates, and a predetermined amount of contrast medium is injected into the blood vessel of the subject 6.

その後1時間、たとえば数秒が粁過してから、X線管1
9によりX線を@射する。この1時間を超音波血流測定
装置24で検知づるのが本発明の特徴である。
After the next hour, say a few seconds, the X-ray tube 1
9 emits X-rays. The feature of the present invention is that this one hour period is detected by the ultrasonic blood flow measuring device 24.

すなわら、超音波ビームと血管像との交点、Pl、P2
間の濃度変化、言い換えると造影剤の部間による変化度
を検出するものである。この造影剤はX線に対して感知
するのはもちろんであるが、超音波ビームに対してもエ
コーを生ずる。この超音波照射方式としてはたとえばセ
クタスキャン方式を用い、被検体の目的部位に照射する
。この際、超音波プローブ23はX線照射領域内に入ら
ない様装置する必要がある。たとえば、被検体の横腹付
近に配置すれば良い。超音波は比重の異なる物質にあた
るとエコーを生ずることが知られているため、血液(全
面比重が1.052〜1.062)と造影剤(8I!類
により異なるが1.328〜1゜420)との111.
重差により、超音波エコーを得ることができる。このエ
コーをもとに超音波血流測定11F24によって、エコ
ー像をモニタすると共に濃度計算の侵、予め設定された
所定の國値と比較プることにより、関心部位への造影剤
の流入状態を検出し、システムコントローラ16にその
検出信号を出力する。これによって、前述した′[時間
が得られ、造影剤注入後のX線曝射が開始される。
That is, the intersection of the ultrasound beam and the blood vessel image, Pl, P2
This is to detect the change in concentration between areas, in other words, the degree of change in contrast agent between areas. This contrast agent is sensitive not only to X-rays, but also to echoes to ultrasound beams. As this ultrasonic irradiation method, for example, a sector scan method is used to irradiate a target region of the subject. At this time, it is necessary to arrange the ultrasonic probe 23 so that it does not enter the X-ray irradiation area. For example, it may be placed near the flank of the subject. It is known that ultrasonic waves produce echoes when they hit substances with different specific gravity. ) with 111.
Ultrasonic echoes can be obtained by the weight difference. Based on this echo, the ultrasound blood flow measurement 11F24 monitors the echo image, calculates the concentration, and compares it with a predetermined national value to determine the inflow state of the contrast agent into the region of interest. and outputs the detection signal to the system controller 16. As a result, the above-mentioned time is obtained, and X-ray exposure after contrast medium injection is started.

すると、被検体6の透過xsi+は1.11、光学レン
ズ系2.3及びオートアイリス4.撮像管5゜テレビカ
メラコントローラ7及びA/D変換器8を介して、デジ
タルプロセッサ9ヘコントラスト像として撮り込まれる
。このコントラスト像はまず、バイアス補正処理部9B
にてバイアス成分を除去され、サブトラクト処理部9D
に入力される。
Then, the transmission xsi+ of the subject 6 is 1.11, the optical lens system 2.3 and the auto iris 4. The image is taken through the image pickup tube 5, television camera controller 7, and A/D converter 8 as a contrast image to the digital processor 9. This contrast image is first processed by the bias correction processing section 9B.
The bias component is removed in the subtract processing section 9D.
is input.

そして、フレームメモリ10に2憶しCおいたマスク像
との間でサブトラクトを実施することにより、背景像を
除去した血管造影像のみを得ることができる。この血管
造影像は診断目的に応じて画像処理部9Eにてウィンド
ウ処理等が行なわれた後、D/A変換器11にてアナロ
グ信号に変換され、システムコントローラ16の制御に
よるビデオ出力切換器12にて、ビデオディスク13或
いはテレビモニタ14のどちらか一方へ出力される。
Then, by performing subtraction with the mask image stored in the frame memory 10, it is possible to obtain only the angiographic image from which the background image has been removed. This angiographic image is subjected to window processing etc. in the image processing unit 9E according to the purpose of diagnosis, and then converted into an analog signal by the D/A converter 11. Then, it is output to either the video disc 13 or the television monitor 14.

尚、デジタルプロセッサ9の出力は、外部デジタルメモ
リ15へ記憶させることも可能である。
Note that the output of the digital processor 9 can also be stored in the external digital memory 15.

以上の実施例によれば、血管造影剤が撮影目的部位に到
達して初めてX線を曝射するので、従来の如く透視によ
り観察する手段に比較して、被検体のX線被曝線量を格
段に低減させることが可能となる。また、上述した実施
例の如<OFにおいては、フレームメモリにX線画像を
多数枚ファイルする必要があるが、本発明の実施例によ
ればタイミング良く画像をファイルすることを可能とす
るため、メモリの使用効率が向上し、メモリされた画像
のアクセス時皿も格段に短縮し得るものである。さらに
、造影剤の到達状況を自動検出しているので、X線のシ
ネフィルム撮影など正確に行なうことができる。
According to the above-described embodiment, X-rays are emitted only after the angiographic agent reaches the imaging target area, so the X-ray exposure dose to the subject is significantly reduced compared to conventional observation methods using fluoroscopy. It is possible to reduce the Further, in the case of OF as in the above embodiment, it is necessary to file a large number of X-ray images in the frame memory, but according to the embodiment of the present invention, images can be filed in a timely manner. Memory usage efficiency is improved, and the time required to access stored images can be significantly shortened. Furthermore, since the arrival status of the contrast medium is automatically detected, X-ray cine film photography can be performed accurately.

尚、本発明は上記実施例に限定されるものではない。例
えば超音波照射方式としてはセクタスキャン方式に限ら
ず、リニアスキVン方式のものでも実施できる。しかし
、この場合は、超音波プローブが多少大型化するため、
撮影部位によってはXJI!照射領域内に入る可能性が
高くなるため、セクタスキャン方式に比べて若干劣る。
Note that the present invention is not limited to the above embodiments. For example, the ultrasonic irradiation method is not limited to the sector scan method, but can also be implemented using a linear skin V scan method. However, in this case, the ultrasound probe becomes somewhat larger, so
Depending on the area to be photographed, it may be XJI! This method is slightly inferior to the sector scan method because there is a higher possibility of entering the irradiation area.

[発明の効果] 本発明によれば、撮影目的部位への造影剤の到達状況を
適確に把握でき、且つ自動的にX線の曝射を制御するた
め、無駄な@躬を除去し得るという極めて優れた効果を
有する。
[Effects of the Invention] According to the present invention, it is possible to accurately grasp the state of arrival of the contrast medium to the imaging target site, and to automatically control X-ray exposure, thereby eliminating unnecessary @problems. This has an extremely excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は超音波断
層像を示す図である。 16・・・システムコントローラ、 17・・・X線コン1〜ローラ、 18・・・X線高電圧発生装置、 22・・・超音波診断装置、 23・・・超音波プローブ、 24・・・超音波血流測定装置 代罪人弁理士 則 近 憲 佑(ほか1名)第1図 第2図
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing an ultrasonic tomographic image. 16... System controller, 17... X-ray controller 1 to roller, 18... X-ray high voltage generator, 22... Ultrasonic diagnostic device, 23... Ultrasonic probe, 24... Ultrasonic Blood Flow Measuring Device Patent Attorney Nori Chika (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 被検体における撮影目的部位の関心領域における血管に
造影剤が到達する時期を検出してX線診Iis影を行な
うX線診断装置において、前記関心領域を含む部位に超
音波ビームを到達伝播させ、その反射波を検出する超音
波プローブと、この超音波プローブによる反射波情報を
入ツノし造影剤が前記部位に到達したことを判別する血
流測定手段と、この血流測定手段の出力によりxm@剣
を制御する制御手段とを具備したことを特徴とするX線
診断装置。
In an X-ray diagnostic apparatus that detects when a contrast medium reaches a blood vessel in a region of interest in a region to be imaged in a subject and performs X-ray diagnosis IIS imaging, an ultrasound beam reaches and propagates to a region including the region of interest; an ultrasonic probe that detects the reflected waves, a blood flow measuring means that receives information about the reflected waves from the ultrasonic probe and determines that the contrast agent has reached the site, and an xm An X-ray diagnostic device characterized by comprising a control means for controlling the @sword.
JP59107420A 1984-05-29 1984-05-29 X-ray diagnosis equipment Granted JPS60253197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59107420A JPS60253197A (en) 1984-05-29 1984-05-29 X-ray diagnosis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59107420A JPS60253197A (en) 1984-05-29 1984-05-29 X-ray diagnosis equipment

Publications (2)

Publication Number Publication Date
JPS60253197A true JPS60253197A (en) 1985-12-13
JPH0531871B2 JPH0531871B2 (en) 1993-05-13

Family

ID=14458692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59107420A Granted JPS60253197A (en) 1984-05-29 1984-05-29 X-ray diagnosis equipment

Country Status (1)

Country Link
JP (1) JPS60253197A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558106U (en) * 1991-12-09 1993-08-03 シーメンス アクチエンゲゼルシヤフト Diagnostic device
WO1997025923A2 (en) * 1996-01-19 1997-07-24 Schering Aktiengesellschaft Optimizing doses of contrasting agent for imaging diagnostic methods
US7672710B2 (en) 1994-09-21 2010-03-02 Medrad, Inc. Data communication and control for medical imaging systems
US8197437B2 (en) 2004-11-16 2012-06-12 Medrad, Inc. Systems and methods of modeling pharmaceutical propagation in a patient
US8428694B2 (en) 2007-07-17 2013-04-23 Medrad, Inc. Methods for determination of parameters for a procedure, for estimation of cardiopulmonary function and for fluid delivery
US9238099B2 (en) 2004-11-24 2016-01-19 Bayer Healthcare Llc System and apparatus for modeling pressures generated during an injection procedure
US9302044B2 (en) 2006-12-29 2016-04-05 Bayer Healthcare Llc Patient-based parameter generation systems for medical injection procedures
US9421330B2 (en) 2008-11-03 2016-08-23 Bayer Healthcare Llc Mitigation of contrast-induced nephropathy
US9949704B2 (en) 2012-05-14 2018-04-24 Bayer Healthcare Llc Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage
US9959389B2 (en) 2010-06-24 2018-05-01 Bayer Healthcare Llc Modeling of pharmaceutical propagation and parameter generation for injection protocols
US10898638B2 (en) 2016-03-03 2021-01-26 Bayer Healthcare Llc System and method for improved fluid delivery in multi-fluid injector systems
US11141535B2 (en) 2017-08-31 2021-10-12 Bayer Healthcare Llc Fluid path impedance assessment for improving fluid delivery performance
US11278853B2 (en) 2013-03-13 2022-03-22 Bayer Healthcare Llc Method for controlling fluid accuracy and backflow compensation
US11478581B2 (en) 2017-08-31 2022-10-25 Bayer Healthcare Llc Fluid injector system volume compensation system and method
US11598664B2 (en) 2017-08-31 2023-03-07 Bayer Healthcare Llc Injector pressure calibration system and method
US11779702B2 (en) 2017-08-31 2023-10-10 Bayer Healthcare Llc Method for dynamic pressure control in a fluid injector system
US11786652B2 (en) 2017-08-31 2023-10-17 Bayer Healthcare Llc System and method for drive member position and fluid injector system mechanical calibration

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558106U (en) * 1991-12-09 1993-08-03 シーメンス アクチエンゲゼルシヤフト Diagnostic device
US7672710B2 (en) 1994-09-21 2010-03-02 Medrad, Inc. Data communication and control for medical imaging systems
US7937134B2 (en) 1994-09-21 2011-05-03 Medrad, Inc. Systems for controlling injection and/or imaging procedures
US8055328B2 (en) 1994-09-21 2011-11-08 Medrad, Inc. Interface unit for use with injectors and imaging systems and related devices
US8160679B2 (en) 1994-09-21 2012-04-17 Medrad, Inc. Methods of coordinating an imaging procedure and an injection procedure
WO1997025923A2 (en) * 1996-01-19 1997-07-24 Schering Aktiengesellschaft Optimizing doses of contrasting agent for imaging diagnostic methods
WO1997025923A3 (en) * 1996-01-19 1997-08-28 Schering Ag Optimizing doses of contrasting agent for imaging diagnostic methods
US8295914B2 (en) 2004-11-16 2012-10-23 Medrad, Inc. Systems and methods of determining patient transfer functions and modeling patient response to a pharmaceutical injection
US8346342B2 (en) 2004-11-16 2013-01-01 Medrad, Inc. Systems and methods of determining patient physiological parameters from an imaging procedure
US8197437B2 (en) 2004-11-16 2012-06-12 Medrad, Inc. Systems and methods of modeling pharmaceutical propagation in a patient
US9616166B2 (en) 2004-11-16 2017-04-11 Bayer Healthcare Llc Systems and methods of determining injection protocols for diagnostic imaging procedures
US10166326B2 (en) 2004-11-24 2019-01-01 Bayer Healthcare Llc Devices, systems and methods for determining parameters of one or more phases of an injection procedure
US9238099B2 (en) 2004-11-24 2016-01-19 Bayer Healthcare Llc System and apparatus for modeling pressures generated during an injection procedure
US9950107B2 (en) 2004-11-24 2018-04-24 Bayer Healthcare Llc Systems and methods for managing workflow for injection procedures
US9302044B2 (en) 2006-12-29 2016-04-05 Bayer Healthcare Llc Patient-based parameter generation systems for medical injection procedures
US10463782B2 (en) 2006-12-29 2019-11-05 Bayer Healthcare Llc Patient-based parameter generation systems for medical injection procedures
US8428694B2 (en) 2007-07-17 2013-04-23 Medrad, Inc. Methods for determination of parameters for a procedure, for estimation of cardiopulmonary function and for fluid delivery
US9008759B2 (en) 2007-07-17 2015-04-14 Bayer Medical Care Inc. Devices and systems for determination of parameters for a procedure, for estimation of cardiopulmonary function and for fluid delivery
US9421330B2 (en) 2008-11-03 2016-08-23 Bayer Healthcare Llc Mitigation of contrast-induced nephropathy
US9959389B2 (en) 2010-06-24 2018-05-01 Bayer Healthcare Llc Modeling of pharmaceutical propagation and parameter generation for injection protocols
US9949704B2 (en) 2012-05-14 2018-04-24 Bayer Healthcare Llc Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage
US11191501B2 (en) 2012-05-14 2021-12-07 Bayer Healthcare Llc Systems and methods for determination of pharmaceutical fluid injection protocols based on x-ray tube voltage
US11278853B2 (en) 2013-03-13 2022-03-22 Bayer Healthcare Llc Method for controlling fluid accuracy and backflow compensation
US10898638B2 (en) 2016-03-03 2021-01-26 Bayer Healthcare Llc System and method for improved fluid delivery in multi-fluid injector systems
US11672902B2 (en) 2016-03-03 2023-06-13 Bayer Healthcare Llc System and method for improved fluid delivery in multi-fluid injector systems
US11141535B2 (en) 2017-08-31 2021-10-12 Bayer Healthcare Llc Fluid path impedance assessment for improving fluid delivery performance
US11478581B2 (en) 2017-08-31 2022-10-25 Bayer Healthcare Llc Fluid injector system volume compensation system and method
US11598664B2 (en) 2017-08-31 2023-03-07 Bayer Healthcare Llc Injector pressure calibration system and method
US11779702B2 (en) 2017-08-31 2023-10-10 Bayer Healthcare Llc Method for dynamic pressure control in a fluid injector system
US11786652B2 (en) 2017-08-31 2023-10-17 Bayer Healthcare Llc System and method for drive member position and fluid injector system mechanical calibration
US11826553B2 (en) 2017-08-31 2023-11-28 Bayer Healthcare Llc Fluid path impedance assessment for improving fluid delivery performance

Also Published As

Publication number Publication date
JPH0531871B2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
JPS60253197A (en) X-ray diagnosis equipment
US7460643B2 (en) Radiographic apparatus and radiation detection signal processing method
US5125018A (en) X-ray diagnostic apparatus
EP0105618B1 (en) X-ray imaging system having radiation scatter compensation and method
EP0123276A2 (en) X-ray diagnostic apparatus
US7377691B2 (en) Radiographic apparatus that removes time lag by recursive computation
JPH0670235A (en) Contrasting method of peripheral blood vessel as well as arrangement and constitution for execution of it
JPH0136375B2 (en)
JPH0429383B2 (en)
US4544948A (en) Diagnostic X-ray apparatus
US20020154802A1 (en) Apparatus for and method of generating an enhanced contrast information digital image
US20050031088A1 (en) Radiographic apparatus and radiation detection signal processing method
WO2019225204A1 (en) Radiographic device, radiographic system, radiographic method, and program
Gould et al. Investigation of a video frame averaging digital subtraction fluoroscopic system
US8326009B2 (en) Method for producing an X-ray image during a mammography
US4514759A (en) Diagnostic radiology system for angiographic x-ray examinations
NO843712L (en) REAL ESTIMATE REAL ESTIMATE APPLIANCES
JPH08321995A (en) Image diagnostic device
US20050031079A1 (en) Radiographic apparatus and radiation detection signal processing method
JPH08266524A (en) Radiographic heat photographing system
JPH062370Y2 (en) X-ray dose detector for concentration calibration
JPH0371136B2 (en)
JPH0351153B2 (en)
JPH01305929A (en) X-ray diagnosing device
JPH0446033B2 (en)