JP2006201103A - Apparatus for observing state in high-pressure vessel, its observation method, high-pressure solid reactor, high-pressure vessel inspection apparatus, its inspection method, and high-pressure reactor - Google Patents

Apparatus for observing state in high-pressure vessel, its observation method, high-pressure solid reactor, high-pressure vessel inspection apparatus, its inspection method, and high-pressure reactor Download PDF

Info

Publication number
JP2006201103A
JP2006201103A JP2005015132A JP2005015132A JP2006201103A JP 2006201103 A JP2006201103 A JP 2006201103A JP 2005015132 A JP2005015132 A JP 2005015132A JP 2005015132 A JP2005015132 A JP 2005015132A JP 2006201103 A JP2006201103 A JP 2006201103A
Authority
JP
Japan
Prior art keywords
pressure vessel
radiation
pressure
solid particles
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005015132A
Other languages
Japanese (ja)
Inventor
Makoto Fujie
誠 藤江
Tsuneo Omura
恒雄 大村
Yoshie Akai
芳恵 赤井
Toshie Aizawa
利枝 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005015132A priority Critical patent/JP2006201103A/en
Publication of JP2006201103A publication Critical patent/JP2006201103A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To speedily measure a concentration distribution of solids and the state of reaction in reaction containers from the outside of the high-temperature and high-pressure reaction containers. <P>SOLUTION: This apparatus for observing the state in the high-pressure containers comprises radiation sources 4a and 4b for irradiating radiation 10 to a high-pressure container 2 containing solid particles 3 for making the solid particles 3 react in a high-temperature and high-pressure state; radiation detectors 5a and 5b for detecting radiation 11 irradiated from radiation sources 4a and 4b and transmitted through the high-pressure container 2; and a data processing part 6 for computing a concentration distribution of the solid particles 3 in the high-pressure container 2 on the basis of output of the radiation detectors 5a and 5b. The data processing part 6 computes the concentration distribution on the basis of the difference with output of the radiation detectors 5 in the case of the absence of the solid particles 3 in the high-pressure container 2 with reference to the output of the radiation detectors 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放射線の透過量変化を利用して高圧容器内の内部状態を観察する方法および装置などに関する。   The present invention relates to a method and apparatus for observing an internal state in a high-pressure vessel using a change in the amount of transmitted radiation.

近年、有機廃棄物の焼却処分でダイオキシンや窒素酸化物などの有害物質の発生が社会問題となっている。そのため、有害物質の発生が少ない有機物処理技術として、超臨界水雰囲気で有機物を酸素で酸化分解するプロセスが注目されている(たとえば特許文献1参照)。   In recent years, the generation of harmful substances such as dioxins and nitrogen oxides has become a social problem in incineration of organic waste. For this reason, attention has been paid to a process of oxidizing and decomposing organic substances with oxygen in a supercritical water atmosphere as an organic substance treatment technique that generates less harmful substances (see, for example, Patent Document 1).

このプロセスでは物性が異なる種々の有機物の混合物を処理することになるので、有害物質の発生を抑えながら、また完全に水と二酸化炭素まで分解するためには、反応容器の出口で気体と液体の組成を監視しながら、温度、圧力、および有機物と酸素の供給速度をフィードバック制御しながら運転する必要がある。有機物が固体である場合には、反応容器内で反応が不均一になり易く、タールやチャーの発生や固着などのため処理効率の低下が起こりやすい。そのため反応容器内の固形物が正常に反応していることを適宜確認する必要があり、一般には反応容器壁に取り付けたセラミックス製の覗き窓から観察する方法が用いられてきた。
特公平1−38532号公報 特開2004−301717号公報
In this process, a mixture of various organic substances having different physical properties is processed. Therefore, in order to completely decompose water and carbon dioxide while suppressing the generation of harmful substances, gas and liquid at the outlet of the reaction vessel are used. While monitoring the composition, it is necessary to operate with feedback control of the temperature, pressure, and supply rate of organic matter and oxygen. When the organic substance is a solid, the reaction tends to be non-uniform in the reaction vessel, and the processing efficiency tends to decrease due to the generation and fixation of tar and char. Therefore, it is necessary to appropriately confirm that the solid in the reaction vessel is reacting properly, and generally a method of observing from a ceramic viewing window attached to the reaction vessel wall has been used.
Japanese Patent Publication No. 1-38532 JP 2004-301717 A

従来の方法および装置では、窓の取り付け部分は高温高圧容器であるため強度の観点から窓の大きさに制限があり、圧力バウンダリーである窓の破損による稼働率の低下が懸念され、さらに破損に備えた安全設備が必要である。また、覗き窓では光が透過することが必要不可欠であるため、有機物濃度は光が透過できる低濃度の領域の観察のみに適用可能である。固体有機物の超臨界水酸化処理の代表的な形態である流動層や固定層では、固形物を効率良く反応させることにより、有害物質の発生が抑えられ、高い処理効率が得られる。そのためには、層内の固形物の濃度分布や反応状態の検出が必要である。しかし、流動層や固定層では固形物の濃度が高く光が透過しないので、覗き窓は固形物と液体の境界面付近の観察に適用できるのみで、固形物領域の状態を観察することができないという課題があった。   In the conventional method and apparatus, the size of the window is limited from the viewpoint of strength because the mounting part of the window is a high-temperature and high-pressure vessel, and there is a concern that the operating rate may be reduced due to the breakage of the window that is the pressure boundary. Safety equipment provided is necessary. In addition, since it is indispensable for light to pass through the viewing window, the organic substance concentration can be applied only to observation of a low-concentration region where light can be transmitted. In a fluidized bed or a fixed bed, which is a typical form of supercritical water oxidation treatment of solid organic matter, generation of harmful substances can be suppressed and high treatment efficiency can be obtained by reacting solid matter efficiently. For this purpose, it is necessary to detect the concentration distribution and reaction state of the solid matter in the layer. However, since the concentration of solid matter is high in the fluidized bed and fixed bed and light does not transmit, the observation window can only be applied to the vicinity of the boundary surface between the solid matter and the liquid, and the state of the solid matter region cannot be observed. There was a problem.

ところで、特許文献2には、透過放射線を検出することにより高圧反応容器内の様子を監視する技術が開示されている。しかしこの特許文献2に開示された技術では、一組の放射線源と放射線検出器が用いられるため、2次元的または3次元的な濃度分布を迅速に求めるのは困難であった。また、この文献には、測定された濃度分布をフィードバック制御に用いる技術については開示されていない。   By the way, Patent Document 2 discloses a technique for monitoring the inside of a high-pressure reaction vessel by detecting transmitted radiation. However, in the technique disclosed in Patent Document 2, since a set of radiation sources and radiation detectors are used, it is difficult to quickly obtain a two-dimensional or three-dimensional concentration distribution. Further, this document does not disclose a technique for using the measured concentration distribution for feedback control.

本発明は上記の課題を解決するためになされたものであり、高温高圧の反応容器の外部から反応容器内の固形物の濃度分布や反応状態を迅速に測定する装置や方法、これに関連する高圧容器の検査装置や検査方法、さらに、高温高圧の反応容器の肉厚の異常を検出する装置や方法を提供することを目的とする。   The present invention has been made to solve the above problems, and relates to an apparatus and method for quickly measuring the concentration distribution and reaction state of solids in the reaction vessel from the outside of the high-temperature and high-pressure reaction vessel. An object of the present invention is to provide an inspection apparatus and an inspection method for a high-pressure vessel, and an apparatus and method for detecting an abnormality in the thickness of a high-temperature and high-pressure reaction container.

本発明は上記目的を達成するものであって、本発明に係る高圧容器内状態観察装置は、固体粒子を収容してその固体粒子を高温かつ高圧の状態で反応させる高圧容器に放射線を照射する放射線源と、前記放射線源から照射されて前記高圧容器を透過した放射線をそれぞれ検出する放射線検出器と、前記放射線検出器の出力に基づいて前記高圧容器内の前記固体粒子の濃度分布を演算するデータ処理部と、を有することを特徴とする。   The present invention achieves the above object, and the high-pressure vessel internal state observation device according to the present invention irradiates a high-pressure vessel that contains solid particles and reacts the solid particles at a high temperature and high pressure. A radiation source that detects radiation emitted from the radiation source and transmitted through the high-pressure vessel, and calculates a concentration distribution of the solid particles in the high-pressure vessel based on the output of the radiation detector And a data processing unit.

また本発明に係る高圧固体反応装置は、固体粒子を収容してその固体粒子を高温かつ高圧の状態で反応させる高圧容器と、前記固体容器に放射線を照射する放射線源と、前記放射線源から照射されて前記高圧容器を透過した放射線を検出する放射線検出器と、前記放射線検出器の出力に基づいて前記高圧容器内の前記固体粒子の濃度分布を演算するデータ処理部と、前記データ処理部で得られた濃度分布に基づいて前記高圧容器内の反応を制御する制御部と、を有することを特徴とする。   The high-pressure solid reaction apparatus according to the present invention includes a high-pressure container that contains solid particles and reacts the solid particles in a high-temperature and high-pressure state, a radiation source that irradiates the solid container with radiation, and irradiation from the radiation source. A radiation detector that detects radiation transmitted through the high-pressure vessel, a data processing unit that calculates a concentration distribution of the solid particles in the high-pressure vessel based on an output of the radiation detector, and the data processing unit And a control unit that controls the reaction in the high-pressure vessel based on the obtained concentration distribution.

また本発明に係る高圧容器検査装置は、高温かつ高圧の状態で使用可能な高圧容器に放射線を照射する放射線源と、前記放射線源から照射されて前記高圧容器を透過した放射線を検出する放射線検出器と、前記高圧容器の肉厚が正常な場合の前記放射線検出器の出力を基準データとして記憶する基準データ記憶手段と、前記放射線検出器の出力を前記基準データと比較して前記高圧容器の肉厚の異常を検出する肉厚異常検出手段と、を有することを特徴とする。   The high-pressure vessel inspection apparatus according to the present invention includes a radiation source that irradiates a high-pressure vessel that can be used in a high-temperature and high-pressure state, and radiation detection that detects radiation that has been emitted from the radiation source and transmitted through the high-pressure vessel. A reference data storage means for storing the output of the radiation detector when the thickness of the high pressure vessel is normal as reference data, and comparing the output of the radiation detector with the reference data. And a thickness abnormality detecting means for detecting a thickness abnormality.

また本発明に係る高圧反応装置は、高温かつ高圧の内部で反応が進行する高圧容器と、前記高圧容器に放射線を照射する放射線源と、前記放射線源から照射されて前記高圧容器を透過した放射線を検出する放射線検出器と、前記高圧容器が正常な場合の前記放射線検出器の出力を基準データとして記憶する基準データ記憶手段と、前記放射線検出器の出力を前記基準データと比較して前記高圧容器の肉厚の異常を検出する肉厚異常検出手段と、前記高圧容器の肉厚の異常が検出されたときに前記反応を抑制する反応抑制手段と、を有することを特徴とする。   The high-pressure reactor according to the present invention includes a high-pressure container in which a reaction proceeds at high temperature and high pressure, a radiation source that irradiates the high-pressure container with radiation, and radiation that has been irradiated from the radiation source and transmitted through the high-pressure container. A radiation detector for detecting the radiation detector, reference data storage means for storing the output of the radiation detector when the high-pressure vessel is normal as reference data, and comparing the output of the radiation detector with the reference data for the high-pressure A thickness abnormality detecting means for detecting an abnormality in the thickness of the container, and a reaction suppressing means for suppressing the reaction when an abnormality in the thickness of the high-pressure container is detected.

また本発明に係る高圧容器内状態観察方法は、高圧容器に固体粒子を収容してその固体粒子を高温かつ高圧の状態で反応させ、前記高圧容器に放射線源からの放射線を照射し、前記放射線源から照射されて前記高圧容器を透過した放射線を放射線検出器で検出し、前記放射線検出器の出力に基づいて前記高圧容器内の前記固体粒子の濃度分布を演算すること、を特徴とする。   In the high-pressure vessel internal state observation method according to the present invention, solid particles are contained in a high-pressure vessel, the solid particles are reacted in a high-temperature and high-pressure state, the high-pressure vessel is irradiated with radiation from a radiation source, and the radiation Radiation emitted from a source and transmitted through the high-pressure vessel is detected by a radiation detector, and the concentration distribution of the solid particles in the high-pressure vessel is calculated based on the output of the radiation detector.

また本発明に係る高圧容器検査方法は、固体粒子を収容してその固体粒子を高温かつ高圧の状態で反応させる高圧容器に放射線源からの放射線を照射し、前記高圧容器が正常な場合に前記放射線検出器の出力を基準データとして記憶し、前記放射線検出器の出力を前記基準データと比較して前記高圧容器の肉厚の異常を検出すること、を有することを特徴とする。   The high-pressure vessel inspection method according to the present invention irradiates radiation from a radiation source to a high-pressure vessel that contains solid particles and reacts the solid particles in a high-temperature and high-pressure state. The output of the radiation detector is stored as reference data, and the abnormality of the thickness of the high-pressure vessel is detected by comparing the output of the radiation detector with the reference data.

本発明の高圧容器内状態観察装置、高圧固体反応装置および高圧容器内状態観察方法によれば、高温高圧の反応容器の外部から迅速且つ簡単に、反応容器内の固形物の濃度分布や反応状態を直接測定することができる。また、本発明の高圧容器検査装置、高圧反応装置および高圧容器検査方法によれば、高圧容器の肉厚異常を外部から簡単に検出することができる。   According to the high-pressure vessel internal state observation device, high-pressure solid reaction device, and high-pressure vessel internal state observation method of the present invention, the concentration distribution and reaction state of solids in the reaction vessel can be quickly and easily from the outside of the high-temperature and high-pressure reaction vessel. Can be measured directly. Moreover, according to the high-pressure vessel inspection device, the high-pressure reactor and the high-pressure vessel inspection method of the present invention, it is possible to easily detect an abnormal thickness of the high-pressure vessel from the outside.

以下、図面を参照しながら本発明の種々の実施形態を説明する。ここで、同一または類似の部分には共通の符号を付して、重複説明は省略する。   Hereinafter, various embodiments of the present invention will be described with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

図1および図2は本発明に係る高圧固体反応装置の内部観察システムの一実施形態を示す模式図であって、図1は測定部を平断面図にして示す図、図2は測定部を立断面図にして示す図である。ただし、図2では2組の放射線源および放射線検出器のうちの放射線源4aおよび放射線検出器5aのみを示している。   1 and 2 are schematic views showing an embodiment of an internal observation system of a high-pressure solid reaction apparatus according to the present invention. FIG. 1 is a diagram showing a measurement unit in a cross-sectional view, and FIG. FIG. However, FIG. 2 shows only the radiation source 4a and the radiation detector 5a of the two sets of radiation sources and radiation detectors.

高温高圧流体1が満たされた高圧容器2内で固体粒子3は、図2に示すように沈降して層を形成している。高圧容器2の外側には高圧容器2をはさむように、2組の放射線源4aと放射線検出器5a、および放射線源4bと放射線検出器5bが、同一水平面内に配置されている。放射線検出器5a、5bの出力データを処理するデータ処理装置6、また、処理されたデータを記録するデータ記録装置7、このデータを表示するモニター8が配置され、それらが信号ケーブル9によって接続されている。   In the high-pressure vessel 2 filled with the high-temperature and high-pressure fluid 1, the solid particles 3 settle to form a layer as shown in FIG. Two sets of the radiation source 4a and the radiation detector 5a, and the radiation source 4b and the radiation detector 5b are arranged in the same horizontal plane so as to sandwich the high-pressure vessel 2 outside the high-pressure vessel 2. A data processing device 6 for processing the output data of the radiation detectors 5a and 5b, a data recording device 7 for recording the processed data, and a monitor 8 for displaying this data are arranged, and these are connected by a signal cable 9. ing.

放射線源4a、4bから照射された放射線10は高圧容器2を通過するときに一部が吸収されて強度が低下し、透過放射線11となって放射線検出器5a、5bに入る。透過放射線11の固体粒子3が無いときの強度Iおよび、透過放射線11の固体粒子3が有るときの強度Iと、照射された放射線10の強度Iの間に次の(1)式および(2)式の関係がある。 A part of the radiation 10 irradiated from the radiation sources 4a and 4b is absorbed when passing through the high-pressure vessel 2 and the intensity thereof is reduced, and the transmitted radiation 11 enters the radiation detectors 5a and 5b. Intensity I b of the absence of solid particles 3 of the transmitted radiation 11 and the intensity I m when the solid particles 3 of the transmitted radiation 11 there, the following equation (1) between the intensity I 0 of the applied radiation 10 And (2) is related.

=I exp(−μρ−μρ) ・・・(1)
=I exp{−μρ−μρ(d−d)−μρ}・・・(2)
ここで、μは物質の線吸収係数、ρは物質の密度、dは放射線が透過する厚さを表わす。また、添字については、mは配管等の構造物、wは高温高圧流体、cは固体粒子を表わす。
I b = I 0 exp (-μ m ρ m d m -μ w ρ w d w) ··· (1)
I m = I 0 exp {-μ m ρ m d m -μ w ρ w (d w -d c) -μ c ρ c d c} ··· (2)
Here, μ represents the linear absorption coefficient of the substance, ρ represents the density of the substance, and d represents the thickness through which the radiation is transmitted. For subscripts, m represents a structure such as a pipe, w represents a high-temperature high-pressure fluid, and c represents a solid particle.

固体粒子3が有るときには透過放射線の強度IはIに比べてわずかに低下するが、この変化量は高圧容器2による放射線強度の低下量に比べて非常にわずかであるため検出が困難である。そのために固体粒子が無い場合の強度Iをバックグラウンドとして、固体粒子が有る場合の強度Iを差し引くことにより、放射線吸収量の変化ΔIを(3)式に示すように顕在化させる。 When the solid particles 3 are present, the intensity I m of the transmitted radiation is slightly lower than I b , but the amount of change is very small compared to the amount of decrease in the radiation intensity caused by the high-pressure vessel 2 and is difficult to detect. is there. The intensity I b where the solid particles are not in order that as a background, by subtracting the intensity I m when the solid particles is present, the change ΔI of radiation absorbed dose (3) to elicit as shown in the expression.

ΔI=I−I
=I〔1−exp{−(μρ−μρ)d}〕 ・・・(3)
ここで、(μρ−μρ)d<<1のとき、次の(4)式のようになる。
ΔI = I b −I m
= I b [1-exp {- (μ c ρ c -μ w ρ w) d c} ] (3)
Here, when the (μ c ρ c -μ w ρ w) d c << 1, so that the following equation (4).

ΔI=I(μρ−μρ)d ・・・(4)
データ処理装置6ではIを二次元で表示したバックグラウンド画像と測定中のIを二次元で表示した画像を差分処理し、結果をデータ記録装置7に保存しモニター8に画像を映し出す。
ΔI = I b (μ c ρ c -μ w ρ w) d c ··· (4)
In the data processing apparatus 6 and the background image displayed the I b in two dimensions I m in the measured differential processing an image displayed in two dimensions, and stores the result in the data recording device 7 displaying an image on the monitor 8.

図3(a)はバックグラウンドを差し引いた固体粒子3層の上部付近の垂直方向の透過放射線強度の模式図であり、図3(b)は高圧容器内部の画像のイメージである。固体粒子3の密度が高いときには強度は増加し画像は明るくなる。逆に固体粒子3の密度が低下すると強度は低下して画像は暗くなる。   FIG. 3A is a schematic diagram of the transmitted radiation intensity in the vertical direction near the top of the three layers of solid particles with the background subtracted, and FIG. 3B is an image of the image inside the high-pressure vessel. When the density of the solid particles 3 is high, the intensity increases and the image becomes bright. Conversely, when the density of the solid particles 3 decreases, the strength decreases and the image becomes dark.

画像の変化をモニター8によって観察することにより、高圧容器2内の反応の状況を知ることができる。固体粒子3の凝集や高圧容器2壁へのタール付着など高圧容器2内の異常を検出することも可能である。さらに、反応容器2内の様子を酸素や高温高圧流体1の流量制御へ反映させることにより、処理効率の高い運転と排気および排水中の有害物質の発生の抑制が期待できる。この方法は高温高圧に限らず反応容器内の観察方法として適用可能である。また、酸化反応に限らず反応容器内の固体の分解反応の観察にも適用可能である。なお、放射線としては、たとえばX線、β線、γ線、中性子線を使用できる。   By observing the change of the image with the monitor 8, the state of the reaction in the high-pressure vessel 2 can be known. It is also possible to detect abnormalities in the high-pressure vessel 2 such as agglomeration of solid particles 3 and tar adhesion to the wall of the high-pressure vessel 2. Furthermore, by reflecting the state in the reaction vessel 2 to the flow rate control of oxygen and the high-temperature and high-pressure fluid 1, it is possible to expect operation with high processing efficiency and suppression of generation of harmful substances in exhaust and waste water. This method is not limited to high temperature and pressure and can be applied as an observation method in the reaction vessel. Moreover, it is applicable not only to the oxidation reaction but also to the observation of the decomposition reaction of the solid in the reaction vessel. As radiation, for example, X-ray, β-ray, γ-ray, and neutron beam can be used.

本実施形態によれば、反応容器に破損の危険性の有る覗き窓が不要で反応容器外部から容器内を直接観察できるとともに、覗き窓では観察できない高濃度の固形物の濃度分布も直接測定することができる。また、本実施形態によれば、複数組の放射線源および放射線検出器を利用するので、迅速に固体粒子濃度分布を求めることができる。   According to the present embodiment, there is no need for a viewing window with a risk of breakage in the reaction container, and the inside of the container can be directly observed from the outside of the reaction container, and the concentration distribution of high-concentration solids that cannot be observed with the viewing window is directly measured. be able to. Further, according to the present embodiment, since a plurality of sets of radiation sources and radiation detectors are used, the solid particle concentration distribution can be quickly obtained.

本実施形態によれば、高圧容器内の固体粒子の2次元分布さらに3次元分布を短時間に測定することができ、反応の精密な制御が期待できる。   According to this embodiment, the two-dimensional distribution and further three-dimensional distribution of solid particles in the high-pressure vessel can be measured in a short time, and precise control of the reaction can be expected.

図4は本発明に係る高圧固体反応装置の内部観察システムの他の実施形態を示す模式図である。図1および図2の構成に加えて、放射線源4a、4bおよび放射線検出器5a、5bは、それぞれの位置を同調して調整する位置調整装置(移動装置)12を備えている。ただし、図4には放射線源4aおよび放射線検出器5aとそれらの位置を調整する位置調整装置12のみを示す。位置調整装置12によって放射線源4a、4bと放射線検出器5a、5bを上下方向に移動することにより、高圧容器2内の広い範囲の任意の場所を測定することが可能である。   FIG. 4 is a schematic view showing another embodiment of the internal observation system of the high pressure solid state reactor according to the present invention. In addition to the configuration of FIGS. 1 and 2, the radiation sources 4a and 4b and the radiation detectors 5a and 5b include a position adjusting device (moving device) 12 that adjusts the respective positions in synchronization. However, FIG. 4 shows only the radiation source 4a and the radiation detector 5a and the position adjusting device 12 that adjusts their positions. By moving the radiation sources 4 a and 4 b and the radiation detectors 5 a and 5 b in the vertical direction by the position adjusting device 12, it is possible to measure an arbitrary place in a wide range in the high-pressure vessel 2.

また、放射線源4a、4bと放射線検出器5a、5bを連続的に移動すれば高圧容器2内の測定範囲全体の固形粒子3の濃度分布を測定することが可能である。さらに、放射線源4a、4bと放射線検出器5a、5bの位置を高圧容器2に対して回転させてそれぞれ2箇所以上の位置で観察を行ない、それらのデータを処理することにより、2次元の固体粒子濃度分布を測定することができる。この操作を上下方向に移動して繰り返し行なうことにより、3次元の固体粒子濃度を測定することができる。   Further, if the radiation sources 4a and 4b and the radiation detectors 5a and 5b are continuously moved, the concentration distribution of the solid particles 3 in the entire measurement range in the high-pressure vessel 2 can be measured. Further, the positions of the radiation sources 4a and 4b and the radiation detectors 5a and 5b are rotated with respect to the high-pressure vessel 2 and observed at two or more positions, respectively, and the data is processed to thereby obtain a two-dimensional solid. The particle concentration distribution can be measured. By repeating this operation by moving up and down, the three-dimensional solid particle concentration can be measured.

測定結果の経時変化が所定の範囲に収まるように固体粒子3や酸素の供給速度を制御することにより、処理効率の高い運転と排気および排水中の有害物質の発生の抑制が期待できる。測定結果が所定範囲を超えた場合に、装置を停止させるインターロックとしての利用も期待できる。この方法および装置は、酸化反応の他に、分解反応など容器内で固体を扱う装置に適用可能である。また、この方法は高温かつ高圧の容器に限定するものではなく、容器内で固体粒子を取り扱う装置において適用可能である。   By controlling the supply speed of the solid particles 3 and oxygen so that the change over time in the measurement results falls within a predetermined range, it is possible to expect high-efficiency operation and suppression of generation of harmful substances in exhaust and waste water. When the measurement result exceeds a predetermined range, it can be expected to be used as an interlock for stopping the apparatus. This method and apparatus can be applied to an apparatus that handles solids in a container such as a decomposition reaction in addition to an oxidation reaction. Further, this method is not limited to a high-temperature and high-pressure container, and can be applied to an apparatus that handles solid particles in the container.

本実施形態によれば、高圧容器内の広い範囲の固体粒子の濃度分布を測定することができ、容器内の固体粒子濃度の経時変化の測定も可能である。高い処理効率の維持および排気・排水中の有害物質の抑制に効果がある。圧力、温度などの他の計装器機と組み合わせたインターロックとなる安全装置としての利用も期待できる。   According to the present embodiment, the concentration distribution of a wide range of solid particles in the high-pressure vessel can be measured, and the change with time of the solid particle concentration in the vessel can also be measured. Effective in maintaining high treatment efficiency and controlling harmful substances in exhaust and waste water. It can be expected to be used as a safety device that can be interlocked with other instrumentation such as pressure and temperature.

図5は本発明に係る高圧固体反応装置の内部観察方法を利用した高圧固体反応システムの一実施形態を示す模式図である。ヒータ13で包まれた高圧容器(反応容器)2をはさむように放射線源4と放射線検出器5が配置されている。また、高圧容器2に固体有機物スラリー15と酸素16を供給するポンプ17、高圧容器2内部の温度を検出する温度放射線検出器18が配置されている。さらに、高圧容器2から流出する高温の流体を冷却する冷却器19、圧力を制御する圧力制御弁20、圧力が下がった流体を気体と液体に分離する気液分離器21、気体または液体の成分を分析する気体分析装置22および液体分析装置23、システム全体を制御する運転制御装置24が配置されている。   FIG. 5 is a schematic diagram showing an embodiment of a high-pressure solid reaction system using the internal observation method of the high-pressure solid reaction apparatus according to the present invention. A radiation source 4 and a radiation detector 5 are arranged so as to sandwich a high-pressure vessel (reaction vessel) 2 wrapped with a heater 13. Further, a pump 17 for supplying the solid organic slurry 15 and oxygen 16 to the high pressure vessel 2 and a temperature radiation detector 18 for detecting the temperature inside the high pressure vessel 2 are arranged. Furthermore, a cooler 19 that cools the high-temperature fluid flowing out from the high-pressure vessel 2, a pressure control valve 20 that controls the pressure, a gas-liquid separator 21 that separates the reduced-pressure fluid into gas and liquid, and components of gas or liquid The gas analyzer 22 and the liquid analyzer 23 for analyzing the above, and the operation controller 24 for controlling the entire system are arranged.

容器内の固体濃度分布、気体および液体の組成、計装機器からの温度や圧力などデータを運転制御装置24で処理して、未燃焼物や有害物質の量が基準値以下になり、固体粒子の反応が効率良く行なわれ高い処理速度が得られるように、固形有機物スラリー15と酸素16を供給するポンプの供給速度、ヒータ13の出力などをフィードバック制御する。反応の圧力依存が高い場合には、圧力制御弁20のコントロールも有効である。この方式は、酸化反応システムに限定するものでなく、分解反応、合成反応など内部の観察が困難な高圧容器を用いるシステムにも有効である。   Data such as the solid concentration distribution in the container, the composition of gas and liquid, temperature and pressure from instrumentation equipment are processed by the operation control device 24, and the amount of unburned substances and harmful substances becomes below the reference value, so that solid particles The feed rate of the pump that feeds the solid organic slurry 15 and oxygen 16, the output of the heater 13, and the like are feedback controlled so that the above reaction is performed efficiently and a high processing rate is obtained. When the pressure dependency of the reaction is high, the control of the pressure control valve 20 is also effective. This method is not limited to an oxidation reaction system, but is also effective for a system using a high-pressure vessel where internal observation is difficult, such as a decomposition reaction and a synthesis reaction.

本実施形態によれば、プラント運転中の固体粒子の濃度分布を直接モニターしながらフィードバック制御できるので、有害物質の発生を抑制しながら処理速度の向上が期待できる。   According to the present embodiment, feedback control can be performed while directly monitoring the concentration distribution of solid particles during plant operation, so that an improvement in processing speed can be expected while suppressing generation of harmful substances.

なお、放射線源4と放射線検出器5は一組でもよいし、たとえば図1に示すように複数組であってもよい。   In addition, the radiation source 4 and the radiation detector 5 may be one set, for example, as shown in FIG.

図6は本発明に係る高温高圧装置の容器検査システムの一実施形態の構成図である。高温高圧流体1の入った高圧容器2をはさむよう対向する位置に配置された放射線源4と放射線検出器5が、回転・位置調整テーブル27によって保持されている。また、放射線検出器5で得られたデータを処理するデータ処理装置6、処理後のデータを保存するデータ記録装置7、観察画像を映し出すモニター8とこれらを結ぶ信号ケーブル9が配置されている。   FIG. 6 is a configuration diagram of an embodiment of a container inspection system for a high-temperature and high-pressure apparatus according to the present invention. A radiation source 4 and a radiation detector 5 arranged so as to face each other so as to sandwich the high-pressure vessel 2 containing the high-temperature high-pressure fluid 1 are held by a rotation / position adjustment table 27. In addition, a data processing device 6 that processes data obtained by the radiation detector 5, a data recording device 7 that stores processed data, a monitor 8 that displays an observation image, and a signal cable 9 that connects them are arranged.

高圧容器2の使用開始時に、放射線源4から放射線10を高圧容器2に照射して透過放射線11を放射線検出器5で画像化して初期画像としデータ記録装置7に保存する操作を、回転・位置調整テーブル27を使って検査が必要な領域全体に行ない位置情報とともに保存する。検査時には、使用開始時の初期画像撮影時と同じように検査領域の画像を撮影し、データ記録装置7に保存してある同じ測定位置の初期画像をバックグラウンド画像として検査時の画像をデータ処理装置6で差分処理し、データ記録装置7に検査時の画像として位置情報とともに保存する。回転・位置調整テーブル27で高圧容器2の周囲を角度を変えて複数位置で測定し、データ処理することにより、3次元の画像を得ることも可能である。この結果をモニター8に表示することにより、検査員が使用開始時からの高圧容器2の変化を直接検出することも可能である。   At the start of use of the high-pressure vessel 2, the operation of irradiating the high-pressure vessel 2 with radiation 10 from the radiation source 4, imaging the transmitted radiation 11 with the radiation detector 5, and storing it as an initial image in the data recording device 7 Using the adjustment table 27, the entire area that needs to be inspected is stored together with position information. At the time of inspection, an image of the inspection area is captured in the same manner as at the time of initial image capturing at the start of use, and the initial image at the same measurement position stored in the data recording device 7 is used as a background image to process the image at the time of inspection. Difference processing is performed by the apparatus 6, and the data recording apparatus 7 stores the image together with position information as an image at the time of inspection. It is also possible to obtain a three-dimensional image by measuring the circumference of the high-pressure vessel 2 at a plurality of positions by changing the angle with the rotation / position adjustment table 27 and processing the data. By displaying this result on the monitor 8, it is also possible for the inspector to directly detect a change in the high-pressure vessel 2 from the start of use.

図7は3次元データから抽出したモニターに映し出される高圧容器2の断面の模式図の一例である。高圧容器使用開始時には無かった付着物28、容器減肉29、腐食生成物30などの使用中に発生した変化が表示される。また、初期画像と検査中の画像の撮影位置をわずかにずらして画像の差分処理を行なうと高圧容器2の傷の検出も可能である。   FIG. 7 is an example of a schematic diagram of a cross section of the high-pressure vessel 2 displayed on a monitor extracted from three-dimensional data. Changes that occurred during use of the deposit 28, the container thinning 29, the corrosion product 30 and the like that were not present when the high-pressure container was used are displayed. Further, if the image difference processing is performed while slightly shifting the shooting positions of the initial image and the image under examination, it is possible to detect a flaw in the high-pressure vessel 2.

この方法は運転中の監視装置としても有効であり、変化量が予め設定した範囲を超える場合に、装置を停止するなど、インターロックとしての利用も期待できる。この方法は、高圧容器が高温高圧状態である場合に限定するものではない。また、この方法は運転中に限定するものではなく、定期検査に利用すれば経年変化が分かり、予防保全としてのメンテナンスに有効であり、安全性が向上し装置稼働率も向上して、経済的にも有効である。   This method is also effective as a monitoring device during operation, and can be expected to be used as an interlock, such as stopping the device when the amount of change exceeds a preset range. This method is not limited to the case where the high-pressure vessel is in a high-temperature and high-pressure state. In addition, this method is not limited to operation, but if used for periodic inspections, it can be used to understand secular changes, is effective for maintenance as preventive maintenance, improves safety, improves equipment availability, and is economical. Also effective.

本実施形態によれば、運転中の高圧容器の異常の検出が容易に行なえ、安全性が向上し、稼働率および経済的効果も期待できる。定期検査に利用すれば予防保全が容易になり、装置寿命の向上による経済的効果も期待できる。   According to the present embodiment, it is possible to easily detect abnormality of the high-pressure vessel during operation, to improve safety, and to expect an operating rate and an economic effect. If it is used for periodic inspections, preventive maintenance is facilitated, and an economic effect can be expected due to the improvement of the device life.

本発明に係る高圧固体反応装置の内部状態観察システムの一実施形態の模式的平面図。1 is a schematic plan view of an embodiment of an internal state observation system for a high-pressure solid reactor according to the present invention. 図1の高圧固体反応装置の内部状態観察システムの模式的立面図。FIG. 2 is a schematic elevation view of the internal state observation system of the high-pressure solid reaction apparatus of FIG. 1. (a)は本発明に係るバックグラウンド補正した高圧容器鉛直方向の放射線強度分布の例を示すグラフ、(b)は画像のイメージの例を示す図。(A) is a graph which shows the example of the radiation intensity distribution of the high-pressure container vertical direction which carried out the background correction | amendment which concerns on this invention, (b) is a figure which shows the example of the image of an image. 本発明に係る高圧固体反応装置の内部状態観察システムの他の実施形態の模式的立面図。The typical elevation of other embodiments of the internal state observation system of the high-pressure solid reaction device concerning the present invention. 本発明に係る高圧固体反応装置の内部状態観察システムのさらに他の実施形態の模式的構成図。The typical block diagram of other embodiment of the internal state observation system of the high-pressure solid-state reactor which concerns on this invention. 本発明に係る高温高圧装置の容器検査システムの一実施形態の模式的構成図。The typical block diagram of one Embodiment of the container inspection system of the high temperature / high pressure apparatus which concerns on this invention. 本発明に係る高温高圧容器の容器検査システムで得られる検査結果の一例の模式容器水平断面図。The schematic container horizontal sectional view of an example of the test result obtained with the container inspection system of the high-temperature / high-pressure container according to the present invention.

符号の説明Explanation of symbols

1…高温高圧流体、2…高圧容器(反応容器)、3…固体粒子、4…放射線源、4a…放射線源、4b…放射線源、5…放射線検出器、5a…放射線検出器、5b…放射線検出器、6…データ処理装置、7…データ記録装置、8…モニター、9…信号ケーブル、10…放射線、11…透過放射線、12…位置調整装置(移動装置)、13…ヒータ、15…固形有機物スラリー、16…酸素、17…ポンプ、18…温度放射線検出器、19…冷却器、20…圧力制御弁、21…気液分離器、22…気体分析装置、23…液体分析装置、24…運転制御装置、25…データ信号、26…制御信号、27…回転・位置調整テーブル、28…付着物、29…容器減肉、30…腐食生成物 DESCRIPTION OF SYMBOLS 1 ... High temperature high pressure fluid, 2 ... High pressure container (reaction vessel), 3 ... Solid particle, 4 ... Radiation source, 4a ... Radiation source, 4b ... Radiation source, 5 ... Radiation detector, 5a ... Radiation detector, 5b ... Radiation Detector: 6 ... Data processing device, 7 ... Data recording device, 8 ... Monitor, 9 ... Signal cable, 10 ... Radiation, 11 ... Transmission radiation, 12 ... Position adjustment device (moving device), 13 ... Heater, 15 ... Solid Organic substance slurry, 16 ... oxygen, 17 ... pump, 18 ... temperature radiation detector, 19 ... cooler, 20 ... pressure control valve, 21 ... gas-liquid separator, 22 ... gas analyzer, 23 ... liquid analyzer, 24 ... Operation control device, 25 ... data signal, 26 ... control signal, 27 ... rotation / position adjustment table, 28 ... deposit, 29 ... container thinning, 30 ... corrosion product

Claims (8)

固体粒子を収容してその固体粒子を高温かつ高圧の状態で反応させる高圧容器に放射線を照射する放射線源と、
前記放射線源から照射されて前記高圧容器を透過した放射線を検出する放射線検出器と、
前記放射線検出器の出力に基づいて前記高圧容器内の前記固体粒子の濃度分布を演算するデータ処理部と、
を有することを特徴とする高圧容器内状態観察装置。
A radiation source that emits radiation to a high-pressure vessel that contains solid particles and reacts the solid particles in a high-temperature and high-pressure state;
A radiation detector for detecting radiation irradiated from the radiation source and transmitted through the high pressure vessel;
A data processing unit that calculates the concentration distribution of the solid particles in the high-pressure vessel based on the output of the radiation detector;
An apparatus for observing a state of a high-pressure vessel characterized by comprising:
前記データ処理部は、前記高温容器内に固体粒子がない場合の前記放射線検出器の出力を基準としてこの出力との差に基づいて前記濃度分布を演算するものであること、を特徴とする請求項1に記載の高圧容器内状態観察装置。   The data processing unit is configured to calculate the concentration distribution based on a difference from the output of the radiation detector when there is no solid particle in the high-temperature container as a reference. Item 2. The high-pressure vessel internal state observation device according to Item 1. 前記放射線源および放射線検出器を同調して移動させる移動機構をさらに有すること、を特徴とする請求項1または2に記載の高圧容器内状態観察装置。   The high-pressure vessel internal state observation device according to claim 1, further comprising a moving mechanism that moves the radiation source and the radiation detector in a synchronized manner. 固体粒子を収容してその固体粒子を高温かつ高圧の状態で反応させる高圧容器と、
前記固体容器に放射線を照射する放射線源と、
前記放射線源から照射されて前記高圧容器を透過した放射線を検出する放射線検出器と、
前記放射線検出器の出力に基づいて前記高圧容器内の前記固体粒子の濃度分布を演算するデータ処理部と、
前記データ処理部で得られた濃度分布に基づいて前記高圧容器内の反応を制御する制御部と、
を有することを特徴とする高圧固体反応装置。
A high pressure vessel containing solid particles and reacting the solid particles in a high temperature and high pressure state;
A radiation source for irradiating the solid container;
A radiation detector for detecting radiation irradiated from the radiation source and transmitted through the high pressure vessel;
A data processing unit that calculates the concentration distribution of the solid particles in the high-pressure vessel based on the output of the radiation detector;
A control unit for controlling the reaction in the high-pressure vessel based on the concentration distribution obtained in the data processing unit;
A high-pressure solid reaction apparatus characterized by comprising:
高温かつ高圧の状態で使用可能な高圧容器に放射線を照射する放射線源と、
前記放射線源から照射されて前記高圧容器を透過した放射線を検出する放射線検出器と、
前記高圧容器の肉厚が正常な場合の前記放射線検出器の出力を基準データとして記憶する基準データ記憶手段と、
前記放射線検出器の出力を前記基準データと比較して前記高圧容器の肉厚の異常を検出する肉厚異常検出手段と、
を有することを特徴とする高圧容器検査装置。
A radiation source that emits radiation to a high-pressure vessel that can be used in a high-temperature and high-pressure state;
A radiation detector for detecting radiation irradiated from the radiation source and transmitted through the high pressure vessel;
Reference data storage means for storing the output of the radiation detector when the thickness of the high-pressure vessel is normal as reference data;
A thickness abnormality detecting means for detecting an abnormality in the thickness of the high-pressure vessel by comparing the output of the radiation detector with the reference data;
A high-pressure vessel inspection apparatus characterized by comprising:
高温かつ高圧の内部で反応が進行する高圧容器と、
前記高圧容器に放射線を照射する放射線源と、
前記放射線源から照射されて前記高圧容器を透過した放射線を検出する放射線検出器と、
前記高圧容器が正常な場合の前記放射線検出器の出力を基準データとして記憶する基準データ記憶手段と、
前記放射線検出器の出力を前記基準データと比較して前記高圧容器の肉厚の異常を検出する肉厚異常検出手段と、
前記高圧容器の肉厚の異常が検出されたときに前記反応を抑制する反応抑制手段と、
を有することを特徴とする高圧反応装置。
A high-pressure vessel in which the reaction proceeds in a high temperature and high pressure,
A radiation source for irradiating the high pressure vessel;
A radiation detector for detecting radiation irradiated from the radiation source and transmitted through the high pressure vessel;
Reference data storage means for storing the output of the radiation detector when the high-pressure vessel is normal as reference data;
A thickness abnormality detecting means for detecting an abnormality in the thickness of the high-pressure vessel by comparing the output of the radiation detector with the reference data;
Reaction suppressing means for suppressing the reaction when an abnormality in the thickness of the high-pressure vessel is detected;
A high-pressure reactor characterized by comprising:
高圧容器に固体粒子を収容してその固体粒子を高温かつ高圧の状態で反応させ、
前記高圧容器に放射線源からの放射線を照射し、
前記放射線源から照射されて前記高圧容器を透過した放射線を放射線検出器で検出し、
前記放射線検出器の出力に基づいて前記高圧容器内の前記固体粒子の濃度分布を演算すること、
を特徴とする高圧容器内状態観察方法。
The solid particles are stored in a high-pressure vessel and the solid particles are reacted at a high temperature and high pressure.
Irradiating the high-pressure vessel with radiation from a radiation source;
Detecting radiation irradiated from the radiation source and transmitted through the high-pressure vessel with a radiation detector,
Calculating the concentration distribution of the solid particles in the high-pressure vessel based on the output of the radiation detector;
A method for observing the inside of a high-pressure vessel, characterized by:
固体粒子を収容してその固体粒子を高温かつ高圧の状態で反応させる高圧容器に放射線源からの放射線を照射し、
前記高圧容器が正常な場合に前記放射線検出器の出力を基準データとして記憶し、
前記放射線検出器の出力を前記基準データと比較して前記高圧容器の肉厚の異常を検出すること、
を有することを特徴とする高圧容器検査方法。
Irradiating radiation from a radiation source to a high-pressure vessel that contains solid particles and reacts the solid particles at a high temperature and high pressure,
When the high-pressure vessel is normal, the output of the radiation detector is stored as reference data,
Comparing the output of the radiation detector with the reference data to detect an abnormal thickness of the high-pressure vessel;
A high-pressure vessel inspection method characterized by comprising:
JP2005015132A 2005-01-24 2005-01-24 Apparatus for observing state in high-pressure vessel, its observation method, high-pressure solid reactor, high-pressure vessel inspection apparatus, its inspection method, and high-pressure reactor Withdrawn JP2006201103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015132A JP2006201103A (en) 2005-01-24 2005-01-24 Apparatus for observing state in high-pressure vessel, its observation method, high-pressure solid reactor, high-pressure vessel inspection apparatus, its inspection method, and high-pressure reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015132A JP2006201103A (en) 2005-01-24 2005-01-24 Apparatus for observing state in high-pressure vessel, its observation method, high-pressure solid reactor, high-pressure vessel inspection apparatus, its inspection method, and high-pressure reactor

Publications (1)

Publication Number Publication Date
JP2006201103A true JP2006201103A (en) 2006-08-03

Family

ID=36959226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015132A Withdrawn JP2006201103A (en) 2005-01-24 2005-01-24 Apparatus for observing state in high-pressure vessel, its observation method, high-pressure solid reactor, high-pressure vessel inspection apparatus, its inspection method, and high-pressure reactor

Country Status (1)

Country Link
JP (1) JP2006201103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145308A (en) * 2006-12-12 2008-06-26 Cataler Corp Method and device for checking slurry, and method for coating slurry
WO2016056107A1 (en) * 2014-10-09 2016-04-14 株式会社ニコン Projection data generator, measuring device, and structure manufacturing method
CN113418890A (en) * 2021-06-11 2021-09-21 南京航空航天大学 System and method for measuring spectral emissivity of high-temperature particle curtain

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145308A (en) * 2006-12-12 2008-06-26 Cataler Corp Method and device for checking slurry, and method for coating slurry
WO2016056107A1 (en) * 2014-10-09 2016-04-14 株式会社ニコン Projection data generator, measuring device, and structure manufacturing method
CN113418890A (en) * 2021-06-11 2021-09-21 南京航空航天大学 System and method for measuring spectral emissivity of high-temperature particle curtain
CN113418890B (en) * 2021-06-11 2022-07-26 南京航空航天大学 System and method for measuring spectral emissivity of high-temperature particle curtain

Similar Documents

Publication Publication Date Title
RU2390006C1 (en) Installation and method of detecting contraband in air transport containers
Nassar et al. Sensing defects during directed-energy additive manufacturing of metal parts using optical emissions spectroscopy
SG165402A1 (en) X-ray inspection with contemporaneous and proximal transmission and backscatter imaging
JP2010538297A (en) Carbon measurement in aqueous samples using oxidation at high temperature and pressure
Yu et al. On-line monitor of hydrogen porosity based on arc spectral information in Al–Mg alloy pulsed gas tungsten arc welding
JP2006201103A (en) Apparatus for observing state in high-pressure vessel, its observation method, high-pressure solid reactor, high-pressure vessel inspection apparatus, its inspection method, and high-pressure reactor
KR102176101B1 (en) Monitoring system for radiation dose
JP6301303B2 (en) Equipment for inspecting moving products, especially equipment for inspecting moving fabrics with X-rays
JP2011027738A (en) System for automated testing and/or measurement of a plurality of substantially identical components using x-ray radiation
JP2008249668A (en) Inspection apparatus and inspection method for can seaming
KR20200130961A (en) A device that inspects of pipe weldzone
US9625391B2 (en) LIBS measurement tube
Hensler et al. Non-invasive investigation of the cross-sectional solids distribution in CFB risers by X-ray computed tomography
JP2012185148A (en) Apparatus for inspecting belt of belt conveyer
JP2006047206A (en) Compound type microscope
JP5490611B2 (en) X-ray inspection equipment
CN101183082B (en) Ship radiation image-forming detecting system
JP2009080030A (en) X-ray inspection device
JP6937497B2 (en) X-ray diffractometer and attachment device
JP2007132796A (en) X-ray inspection device and x-ray inspection program
CN201188088Y (en) Detection system for ship radialization imaging
JP2010230559A (en) X-ray inspection apparatus
JP5184746B2 (en) Reactor and operating method thereof, reactor inspection apparatus and inspection method thereof
US5831143A (en) Method for detecting hydrogen in waste compounds
Ebensperger et al. Comparison of different sources for laboratory X-ray microscopy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401