WO2020003935A1 - 衛生物品 - Google Patents

衛生物品 Download PDF

Info

Publication number
WO2020003935A1
WO2020003935A1 PCT/JP2019/022294 JP2019022294W WO2020003935A1 WO 2020003935 A1 WO2020003935 A1 WO 2020003935A1 JP 2019022294 W JP2019022294 W JP 2019022294W WO 2020003935 A1 WO2020003935 A1 WO 2020003935A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
water
sanitary article
weight
fiber
Prior art date
Application number
PCT/JP2019/022294
Other languages
English (en)
French (fr)
Inventor
小西 拓也
佑輔 赤木
豪伸 石田
Original Assignee
東洋紡株式会社
日本エクスラン工業株式会社
Sdpグローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 日本エクスラン工業株式会社, Sdpグローバル株式会社 filed Critical 東洋紡株式会社
Priority to JP2019553593A priority Critical patent/JP6660515B1/ja
Publication of WO2020003935A1 publication Critical patent/WO2020003935A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/537Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers

Definitions

  • the present invention is a sanitary article for absorbing and retaining bodily fluids such as urine and blood, in which a decrease in the absorption capacity of an absorbent material due to the influence of divalent metal ions present in these bodily fluids has been effectively suppressed. About things.
  • the superabsorbent material of the hygiene article is capable of absorbing a liquid several times the weight of its own weight, and is generally used as a crosslinked product of an acrylate polymer or a starch-acrylate graft copolymer. Crosslinked products of decomposition products are used.
  • Patent Document 1 an absorbent material in which a water-absorbing resin is mixed with a cation exchanger obtained by a radiation graft polymerization method has been proposed (Patent Document 1). reference).
  • a cation exchanger of Patent Literature 1 a cation exchanger obtained by attaching a cation exchange group to a fiber base material formed using polymer fibers by a radiation graft polymerization method is used.
  • the cation exchanger of the absorbent of Patent Document 1 itself has an ability to absorb divalent metal ions in a liquid, the cation exchange group is grafted when used continuously in a sanitary article.
  • the cation exchange group is attached to the fiber base material by the polymerization method, there is a problem that the cation exchange group easily falls off from the fiber base material and the ability cannot be sufficiently exhibited.
  • the sanitary article continuously absorbs the body fluid, there is a problem that the body fluid is not sufficiently absorbed at an early stage due to the influence of divalent metal ions.
  • radiation is used for graft polymerization, there is a high risk, and a large-scale facility is required for radiation source management, and there are problems in terms of safety and economy.
  • the present invention has been conceived in order to solve such problems of the prior art, and an object thereof is to provide a sanitary article for absorbing and retaining bodily fluids such as urine and blood, by continuously using these bodily fluids.
  • An object of the present invention is to provide a material which does not exhibit a decrease in the absorption capacity of an absorbing material due to the influence of divalent metal ions even when absorbed.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, when a crosslinked acrylate polymer fiber having a Na-type or K-type salt-type carboxyl group is used, the carboxyl group of the functional functional group does not fall off.
  • the present invention has the following configurations (1) to (9).
  • a sanitary article comprising a body fluid absorbing layer and a nonwoven fabric layer, wherein the body fluid passes through the nonwoven fabric layer before reaching the body fluid absorbing layer, wherein the body fluid absorbing layer comprises a water-soluble vinyl monomer (a1) and And / or a water-absorbent resin particle (P) containing a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis and a cross-linking agent (b) as essential components, wherein the nonwoven fabric layer has a Na-type carboxyl group or Including a crosslinked acrylate polymer fiber having any of the salt type carboxyl groups of the K type carboxyl group, the amount of the salt type carboxyl group contained in the crosslinked acrylate polymer fiber is 1.0 to 10.0 mmol / g.
  • the crosslinked acrylate polymer fiber has a core-sheath structure comprising a central portion and a surface layer surrounding the central portion, and substantially all of the salt-type carboxyl groups are present in the surface layer.
  • the sanitary article further includes a body fluid permeable sheet and a body fluid impermeable sheet, wherein the body fluid absorbing layer is disposed between the body fluid permeable sheet and the body fluid impermeable sheet, and the body fluid permeable sheet and the body fluid absorbing layer.
  • a nonwoven fabric layer is disposed between the sanitary articles.
  • the sanitary article of the present invention is configured so that a body fluid such as urine or blood passes through a nonwoven fabric layer containing a crosslinked acrylate-based polymer fiber having a Na-type or K-type salt-type carboxyl group before reaching the body-fluid absorbing layer.
  • the divalent metal ions in the body fluid can be adsorbed by the carboxyl groups of the crosslinked acrylate polymer fiber before the body fluid arrives at the body fluid absorbing layer, and as a result, the body fluid is absorbed by the divalent metal ion.
  • the body fluid can be continuously absorbed without being affected by the decrease in the absorption capacity of the layer.
  • the crosslinked acrylate-based polymer fiber having a Na-type or K-type salt-type carboxyl group holds the carboxyl group more firmly by the cross-linking structure. It is possible to continuously adsorb divalent metal ions without falling off.
  • the sanitary articles of the present invention are used for absorbing and retaining body fluids such as urine and blood of humans and animals, and include, for example, diapers, incontinence guards, sanitary napkins, panty liners, and the like.
  • the sanitary article of the present invention has a basic structure conventionally generally used in this field, and specifically, a humor-permeable sheet, a humor-impermeable sheet, and a sheet disposed between both sheets. And a body fluid absorbing layer.
  • These basic structures are conventionally known and can be manufactured by a conventionally known method.
  • the body fluid is configured to pass through a nonwoven fabric layer containing a crosslinked acrylate-based polymer fiber having a Na-type or K-type salt-type carboxyl group before reaching the body-fluid absorption layer.
  • divalent metal ions in the bodily fluid are adsorbed by the Na-type or K-type salt-type carboxyl group present in the crosslinked acrylate-based polymer fiber, and the divalent metal ion is absorbed. It is possible to allow the bodily fluid absorbing layer to accept the bodily fluid that has no or reduced metal ions, so that the absorbing ability of the absorber in the bodily fluid absorbing layer can be continuously used without being reduced by divalent metal ions. it can.
  • the body fluid permeable sheet of the sanitary article of the present invention is a sheet for initially receiving the released body fluid in the sanitary article, and a conventionally known liquid permeable material such as a spunbond nonwoven material is used.
  • the bodily fluid impermeable sheet is a sheet for preventing the bodily fluid in the sanitary article from leaking outside, and a conventionally known liquid impermeable material such as a polyethylene film is used.
  • the bodily fluid absorption layer is disposed so as to be surrounded by the above-mentioned bodily fluid permeable sheet and the bodily fluid impermeable sheet, and after absorbing and acquiring bodily fluid, distributes and stores the acquired bodily fluid to the entire absorbent layer. is there.
  • the body fluid absorbing layer of the sanitary article of the present invention contains a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis and a crosslinking agent (b) as essential components.
  • a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis and a crosslinking agent (b) as essential components.
  • a crosslinking agent (b) a crosslinking agent
  • b crosslinking agent
  • the water-soluble vinyl monomer (a1) is not particularly limited, and may be a known monomer, for example, at least one water-soluble substituent and an ethylenically unsaturated group disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 3648553.
  • anionic vinyl monomers for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers
  • anionic vinyl monomers disclosed in paragraphs 0009 to 0024 of JP-A-2003-165883 nonionic vinyl monomers Monomers and cationic vinyl monomers and at least one selected from the group consisting of a carboxy group, a sulfo group, a phosphono group, a hydroxyl group, a carbamoyl group, an amino group and an ammonium group disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982.
  • Vinyl with one kind Monomer can be used.
  • the vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis (hereinafter, referred to as a hydrolyzable vinyl monomer (a2)) is not particularly limited, and is known (for example, 0024 to 424 of Japanese Patent No. 3648553).
  • a vinyl monomer having a hydrolyzable substituent [a vinyl monomer having a 1,3-oxo-2-oxapropylene (—CO—O—CO—) group, an acyl group, a cyano group, and the like] can be used.
  • the term “water-soluble vinyl monomer” is a concept well known to those skilled in the art, but if it is expressed by using a quantity, it means, for example, a vinyl monomer that dissolves in 100 g of water at 25 ° C. at least 100 g.
  • the hydrolyzability of the hydrolyzable vinyl monomer (a2) is a concept well-known to those skilled in the art, but more specifically, for example, by the action of water and, if necessary, a catalyst (such as an acid or a base). It means that it is hydrolyzed and becomes water-soluble.
  • the hydrolysis of the hydrolyzable vinyl monomer (a2) may be performed during the polymerization, after the polymerization, or both of them. However, from the viewpoint of the absorption performance of the resulting water-absorbent resin particles, the hydrolysis is preferably performed.
  • water-soluble vinyl monomer (a1) is preferable from the viewpoint of absorption performance and the like, and more preferable are the above-mentioned anionic vinyl monomer, carboxy (salt) group, sulfo (salt) group, amino group, carbamoyl group, Vinyl monomers having an ammonio group or a mono-, di- or tri-alkylammonio group, more preferably vinyl monomers having a carboxy (salt) group or carbamoyl group, particularly preferably (meth) acrylic acid (salt) and (Meth) acrylamide, particularly preferred is (meth) acrylic acid (salt), most preferred is acrylic acid (salt).
  • the “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”.
  • (Meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylic acid, and (meth) acrylamide means acrylamide or methacrylamide.
  • the salts include alkali metal (such as lithium, sodium and potassium) salts, alkaline earth metal (such as magnesium and calcium) salts, and ammonium (NH 4 ) salts. Among these salts, alkali metal salts and ammonium salts are preferred from the viewpoint of absorption performance and the like, more preferred are alkali metal salts, and particularly preferred are sodium salts.
  • the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as a structural unit, one type may be used alone as a structural unit, and if necessary, two or more types may be used as a structural unit. good.
  • the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units.
  • the molar ratio [(a1) / (a2)] thereof is preferably from 75/25 to 99/1. More preferably, the ratio is from 85/15 to 95/5, particularly preferably from 90/10 to 93/7, most preferably from 91/9 to 92/8. When it is in this range, the absorption performance is further improved.
  • the crosslinked polymer (A) in addition to the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), another vinyl monomer (a3) copolymerizable therewith is used as a structural unit.
  • another vinyl monomer (a3) copolymerizable therewith is used as a structural unit.
  • the other vinyl monomer (a3) one type may be used alone, or two or more types may be used in combination.
  • the other copolymerizable vinyl monomer (a3) is not particularly limited, and is known (for example, a hydrophobic vinyl monomer disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883). And the vinyl monomers disclosed in paragraph 0025 of JP-A-2005-75982 and the like. Specific examples thereof include vinyl monomers of the following (i) to (iii): Etc. can be used.
  • (I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, and halogen-substituted styrene such as vinylnaphthalene and dichlorostyrene.
  • Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene
  • halogen-substituted styrene such as vinylnaphthalene and dichlorostyrene.
  • Aliphatic ethylenic monomers having 2 to 20 carbon atoms such as alkenes (such as ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene and octadecene); and alkadienes (such as butadiene and isoprene).
  • alkenes such as ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene and octadecene
  • alkadienes such as butadiene and isoprene
  • monoethylenically unsaturated monomers such as pinene, limonene and indene
  • polyethylene-based vinyl monomers such as cyclopentadiene, bicyclopentadiene and ethylidene norbornene.
  • the content (mol%) of the other vinyl monomer (a3) unit is determined based on the total number of moles of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit from the viewpoint of absorption performance and the like. It is preferably from 0 to 5 mol%, more preferably from 0 to 3 mol%, particularly preferably from 0 to 2 mol%, particularly preferably from 0 to 1.5 mol%. From the viewpoint of absorption performance and the like, other vinyl monomers Most preferably, the content of (a3) units is 0 mol%.
  • the crosslinking agent (b) is not particularly limited, and is known (for example, a crosslinking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 3648553, a water-soluble substituent, A crosslinking agent having at least one functional group capable of reacting and having at least one ethylenically unsaturated group and a crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent; JP-A No.
  • crosslinking agent having two or more ethylenically unsaturated groups
  • a crosslinking agent having an ethylenically unsaturated group and a reactive functional group and a crosslinking agent having two or more reactive substituents
  • Crosslinking agents crosslinkable vinyl monomers disclosed in paragraph 0059 of JP-A-2005-75982, and 0015 to 001 of JP-A-2005-95759.
  • Crosslinking agents such that it has a crosslinkable vinyl monomer which is disclosed in paragraph can be used.
  • a crosslinking agent having two or more ethylenically unsaturated groups is preferred, and more preferred are triallyl cyanurate, triallyl isocyanurate and a poly (C) polyol having 2 to 40 carbon atoms.
  • (Meth) allyl ethers particularly preferred are triallyl cyanurate, triallyl isocyanurate, tetraallyloxyethane, polyethylene glycol diallyl ether and pentaerythritol triallyl ether, most preferred is pentaerythritol triallyl ether.
  • the crosslinking agent (b) one type may be used alone, or two or more types may be used in combination.
  • the content (mol%) of the crosslinking agent (b) unit is (a1) when other vinyl monomer (a3) of water-soluble vinyl monomer (a1) unit and hydrolyzable vinyl monomer (a2) unit is also used.
  • the amount is preferably 0.001 to 5 mol%, more preferably 0.005 to 3 mol%, and particularly preferably 0.01 to 1 mol%, based on the total number of moles of (a3). Within this range, the absorption performance is further improved.
  • a polymerization method of the crosslinked polymer (A) there are known solution polymerization (such as adiabatic polymerization, thin film polymerization and spray polymerization; Japanese Patent Application Laid-Open No. 55-133413, etc.) and known reverse phase suspension polymerization (Japanese Patent Publication No. 54-30710, JP-A-56-26909 and JP-A-1-5808).
  • the crosslinked polymer (A) is obtained by polymerizing a monomer composition comprising a water-soluble vinyl monomer (a1) and / or a hydrolyzable vinyl monomer (a2) and a crosslinking agent (b) as essential components.
  • a monomer composition comprising a water-soluble vinyl monomer (a1) and / or a hydrolyzable vinyl monomer (a2) and a crosslinking agent (b) as essential components.
  • a monomer composition comprising a water-soluble vinyl monomer (a1) and / or a hydrolyzable vinyl monomer (a2) and a crosslinking agent (b) as essential components.
  • a monomer composition comprising a water-soluble vinyl monomer (a1) and / or a hydrolyzable vinyl monomer (a2) and a crosslinking agent (b) as essential components.
  • b crosslinking agent
  • the polymerization methods since it is not necessary to use an organic solvent or the like and is advantageous in terms of production cost, it is preferably
  • a mixed solvent containing water and an organic solvent can be used.
  • the organic solvent include methanol, ethanol, acetone, methyl ethyl ketone, N, N-dimethylformamide, dimethyl sulfoxide, and two or more of these. And mixtures thereof.
  • the amount of the organic solvent used is preferably 40% by weight or less, more preferably 30% by weight or less based on the weight of water.
  • a conventionally known initiator for radical polymerization can be used.
  • azo compounds azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis (2-amidinopropane) Hydrochloride, etc.
  • inorganic peroxides hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate, etc.
  • organic peroxides benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, succinate Acid peroxide and di (2-ethoxyethyl) peroxydicarbonate, etc.
  • redox catalysts reducing agents such as alkali metal sulfites or bisulfites, ammonium sulfite, ammonium bisulfite and ascorbic acid and alkali metal persulfate
  • Salts ammonium persulfate, hydrogen peroxide and organic peroxide
  • the amount (% by weight) of the radical polymerization initiator used is (a1) to (a3) when other vinyl monomers (a3) of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are also used. Is preferably 0.0005 to 5% by weight, more preferably 0.001 to 2% by weight, based on the total weight of
  • a polymerization control agent represented by a chain transfer agent may be used in combination as necessary.
  • Specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptans, and alkyl halides. And thiocarbonyl compounds.
  • These polymerization control agents may be used alone or in combination of two or more.
  • the amount (% by weight) of the polymerization control agent used is the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), and when other vinyl monomers (a3) are used, the amounts (a1) to (a3) are used. And 0.0005 to 5% by weight, more preferably 0.001 to 2% by weight, based on the total weight.
  • the polymerization may be performed in the presence of a dispersant or a surfactant, if necessary.
  • a dispersant or a surfactant if necessary.
  • polymerization can be carried out using a hydrocarbon solvent such as xylene, normal hexane and normal heptane.
  • the polymerization initiation temperature can be appropriately adjusted depending on the type of the catalyst used, but is preferably from 0 to 100 ° C, more preferably from 2 to 80 ° C.
  • the content (% by weight) of the organic solvent after the distillation is preferably 0 to 10% by weight, more preferably 0 to 5% by weight, based on the weight of the crosslinked polymer (A). %, Particularly preferably 0 to 3% by weight, most preferably 0 to 1% by weight. When the content is in this range, the absorption performance of the water-absorbent resin particles is further improved.
  • the water (% by weight) after distillation is preferably 0 to 20% by weight, more preferably 1 to 10% by weight, and particularly preferably, based on the weight of the crosslinked polymer (A). It is 2 to 9% by weight, most preferably 3 to 8% by weight. Within this range, the absorption performance is further improved.
  • a crosslinked polymer (A) can be obtained as a hydrogel containing water (that is, a crosslinked polymer (A) that is a hydrogel.
  • hydrogel a crosslinked polymer that is a hydrogel.
  • an acid group-containing monomer such as acrylic acid or methacrylic acid
  • the hydrogel may be neutralized with a base.
  • the degree of neutralization of the acid group is preferably 50 to 80 mol%. If the degree of neutralization is less than 50 mol%, the resulting hydrogel polymer will have high tackiness and may have poor workability during production and use.
  • the neutralization may be performed at any stage after the polymerization of the crosslinked polymer (A) in the production of the water-absorbent resin particles.
  • a preferable example is a method of neutralizing in the state of a hydrogel. Is exemplified.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate and potassium carbonate can be usually used.
  • the hydrogel obtained by polymerization can be shredded as necessary.
  • the size (longest diameter) of the gel after shredding is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved.
  • Shredding can be performed by a known method, and can be shredded using a usual shredding device (for example, Vex mill, rubber chopper, pharma mill, mince machine, impact mill and roll mill). .
  • a usual shredding device for example, Vex mill, rubber chopper, pharma mill, mince machine, impact mill and roll mill.
  • a method of distilling off the solvent including water
  • a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C. a method of drying a thin film by a drum dryer or the like heated to 100 to 230 ° C., ) Drying under reduced pressure, freeze-drying, drying by infrared rays, decantation, filtration and the like can be applied.
  • the pulverizing method is not particularly limited, and a usual pulverizing apparatus (for example, a hammer type pulverizer, an impact type pulverizer, a roll type pulverizer, a shet air flow type pulverizer) and the like can be used.
  • the particle size of the pulverized crosslinked polymer can be adjusted by sieving or the like, if necessary.
  • the weight average particle diameter ( ⁇ m) of the crosslinked polymer (A) when sieved as required is preferably from 100 to 800, more preferably from 200 to 700, further preferably from 250 to 600, particularly preferably from 300 to 500, Most preferably, it is 350 to 450. In this range, the absorption performance is further improved, the entanglement with other materials constituting the body fluid absorption layer is improved, and the shape retention is good.
  • the weight-average particle diameter was measured using a low tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook, 6th edition (Mac Glow Hill Book Company, 1984). , Page 21). That is, a JIS standard sieve is combined from the top in the order of 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 250 ⁇ m, 150 ⁇ m, 125 ⁇ m, 75 ⁇ m and 45 ⁇ m, and the order of the pan. About 50 g of the particles to be measured is placed in the uppermost sieve and shaken with a low tap test sieve shaker for 5 minutes.
  • the weight of the particles measured on each sieve and the pan is weighed, and the total is taken as 100% by weight to determine the weight fraction of the particles on each sieve.
  • This value is expressed as log probability paper (the horizontal axis indicates the sieve aperture (particle size)). ), The vertical axis is plotted as a weight fraction), and a line connecting the points is drawn to determine a particle diameter corresponding to a weight fraction of 50% by weight, which is defined as a weight average particle diameter.
  • the content (% by weight) of the fine particles described below is preferably 3 or less, more preferably 1 or less.
  • the content of the fine particles can be determined using a graph created when the above-mentioned weight average particle size is determined.
  • the shape of the crosslinked polymer (A) after pulverization is not particularly limited, and examples thereof include irregular pulverized shape, scaly shape, pearl shape, and rice grain shape.
  • the amorphous crushed shape is preferred from the viewpoint that it is well entangled with other materials constituting the bodily fluid absorption layer and there is no fear of falling off from the fibrous material.
  • the cross-linked polymer (A) may contain some other components such as a residual solvent and a residual cross-linking component as long as the performance is not impaired.
  • the crosslinked polymer (A) preferably contains a hydrophobic substance (g) from the viewpoint of surface modification and liquid permeability.
  • hydrophobic substance (g) examples include a hydrophobic substance containing a hydrocarbon group (g1), a hydrophobic substance containing a hydrocarbon group having a fluorine atom (g2), and a hydrophobic substance having a polysiloxane structure (g3). Etc. are included.
  • hydrophobic substance (g1) containing a hydrocarbon group examples include polyolefin resins, polyolefin resin derivatives, polystyrene resins, polystyrene resin derivatives, waxes, long-chain fatty acid esters, long-chain fatty acids and salts thereof, long-chain aliphatic alcohols, and long-chain fatty alcohols. It includes chain aliphatic amides and mixtures of two or more thereof.
  • an olefin having 2 to 4 carbon atoms (ethylene, propylene, isobutylene, isoprene, etc.) as an essential constituent monomer (the content of the olefin is at least 50% by weight based on the weight of the polyolefin resin).
  • Polymers having an average molecular weight of 1,000 to 1,000,000 for example, polyethylene, polypropylene, polyisobutylene, poly (ethylene-isobutylene), isoprene and the like) can be mentioned.
  • polystyrene resin derivative a polymer having a weight-average molecular weight of 1,000 to 1,000,000 (for example, polyethylene thermopolymer) obtained by introducing a carboxy group (—COOH) or 1,3-oxo-2-oxapropylene (—COOCO—) into a polyolefin resin is used.
  • a polymer having a weight-average molecular weight of 1,000 to 1,000,000 for example, polyethylene thermopolymer obtained by introducing a carboxy group (—COOH) or 1,3-oxo-2-oxapropylene (—COOCO—) into a polyolefin resin is used.
  • Degradation products polypropylene thermal degradation products, maleic acid-modified polyethylene, chlorinated polyethylene, maleic acid-modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleated Polybutadiene, ethylene-vinyl acetate copolymer and maleated ethylene-vinyl acetate copolymer).
  • polystyrene resin a polymer having a weight average molecular weight of 1,000 to 1,000,000 can be used.
  • polystyrene resin derivative a polymer having a weight average molecular weight of 1,000 to 1,000,000 (for example, styrene-based polymer) containing styrene as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative).
  • styrene-based polymer a polymer having a weight average molecular weight of 1,000 to 1,000,000 (for example, styrene-based polymer) containing styrene as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative).
  • Maleic anhydride copolymer, styrene-butadiene copolymer, styrene-isobutylene copolymer, etc. styrene-based polymer
  • waxes having a melting point of 50 to 200 ° C. examples include waxes having a melting point of 50 to 200 ° C. (eg, paraffin wax, beeswax, carbana wax, tallow, etc.).
  • esters of fatty acids having 8 to 30 carbon atoms with alcohols having 1 to 12 carbon atoms eg, methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, methyl oleate, oleic acid
  • Ethyl glycerin lauric acid monoester, glycerin stearic acid monoester, glycerin oleic acid monoester, pentaerythritol lauric acid monoester, pentaerythritol stearic acid monoester, pentaerythritol oleic acid monoester, sorbitol lauric acid monoester, Sorbitol stearic acid monoester, sorbit oleic acid monoester, sucrose palmitic acid monoester, sucrose palmitic acid diester, sucrose palmitic acid triester, sucrose stearic acid monoester
  • long-chain fatty acids and salts thereof include fatty acids having 8 to 30 carbon atoms (eg, lauric acid, palmitic acid, stearic acid, oleic acid, dimer acid, and behenic acid).
  • fatty acids having 8 to 30 carbon atoms eg, lauric acid, palmitic acid, stearic acid, oleic acid, dimer acid, and behenic acid.
  • salts with magnesium or aluminum hereinafter, abbreviated as Zn, Ca, Mg, and Al, respectively
  • Zn, Ca, Mg, and Al magnesium or aluminum
  • long-chain aliphatic alcohol examples include aliphatic alcohols having 8 to 30 carbon atoms (eg, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, and the like). From the viewpoint of the moisture resistance of the absorbent article, palmityl alcohol, stearyl alcohol, and oleyl alcohol are preferred, and stearyl alcohol is more preferred.
  • Examples of the long-chain aliphatic amide include an amidated product of a long-chain aliphatic primary amine having 8 to 30 carbon atoms and a carboxylic acid having a hydrocarbon group having 1 to 30 carbon atoms, ammonia or a primary amine having 1 to 7 carbon atoms.
  • an amidated product with a long-chain aliphatic secondary amine having at least one aliphatic chain having 8 to 30 carbon atoms and a carboxylic acid having 1 to 30 carbon atoms an amidated product of a secondary amine having two aliphatic hydrocarbon groups having 1 to 7 carbon atoms and a long-chain fatty acid having 8 to 30 carbon atoms is exemplified.
  • Examples of the amidated product of a long-chain aliphatic primary amine having 8 to 30 carbon atoms and a carboxylic acid having a hydrocarbon group having 1 to 30 carbon atoms include a product obtained by reacting a primary amine with a carboxylic acid at a ratio of 1: 1. : Divided into those reacted in 2. Examples of the product reacted at 1: 1 include N-octylamide acetate, N-hexacylamide acetate, N-octylamide heptacosanoate, and N-hexacosylamide heptacosanoate.
  • Examples of those reacted at a ratio of 1: 2 include N-octylamide diacetate, N-hexacylamide diacetate, N-octylamide diheptacosanoate, and N-hexacosylamide diheptacosanoate.
  • the carboxylic acids used may be the same or different.
  • Examples of the amidated product of ammonia or a primary amine having 1 to 7 carbon atoms and a long-chain fatty acid having 8 to 30 carbon atoms include a compound obtained by reacting ammonia or a primary amine with a carboxylic acid at a ratio of 1: 1 and 1: 2. It is divided into reacted ones.
  • the products reacted at 1: 1 include nonanoic acid amide, nonanoic acid methylamide, nonanoic acid N-heptylamide, heptacosanoic acid amide, heptacosanoic acid N-methylamide, heptacosanoic acid N-heptylamide and heptacosanoic acid N-hexacosylamide And the like.
  • Reactions at a ratio of 1: 2 include dinonanoic acid amide, dinonanoic acid N-methylamide, dinonanoic acid N-heptylamide, dioctadecanoic acid amide, dioctadecanoic acid N-ethylamide, dioctadecanoic acid N-heptylamide, diheptacosanoic acid amide , Diheptacosanoic acid N-methylamide, diheptacosanoic acid N-heptylamide, diheptacosanoic acid N-hexacosylamide and the like.
  • the carboxylic acid used may be same or different.
  • Examples of the amidated product of a long-chain aliphatic secondary amine having at least one aliphatic chain having 8 to 30 carbon atoms and a carboxylic acid having 1 to 30 carbon atoms include N-methyloctylamide acetate and N-methylhexacoxy acetate.
  • Examples of the amidated product of a secondary amine having two aliphatic hydrocarbon groups having 1 to 7 carbon atoms and a long-chain fatty acid having 8 to 30 carbon atoms include nonanoic acid N-dimethylamide, nonanoic acid N-methylheptylamide, Examples include nonanoic acid N-diheptylamide, heptacosanoic acid N-dimethylamide, heptacosanoic acid N-methylheptylamide, and heptacosanoic acid N-diheptylamide.
  • hydrophobic substance (g2) containing a hydrocarbon group having a fluorine atom examples include perfluoroalkane, perfluoroalkene, perfluoroaryl, perfluoroalkyl ether, perfluoroalkyl carboxylic acid, perfluoroalkyl alcohol, and perfluoroalkyl alcohols. And mixtures of more than one species.
  • hydrophobic substance (g3) having a polysiloxane structure examples include polydimethylsiloxane, polyether-modified polysiloxane (such as polyoxyethylene-modified polysiloxane and poly (oxyethylene / oxypropylene) -modified polysiloxane), carboxy-modified polysiloxane, Epoxy-modified polysiloxanes, amino-modified polysiloxanes, alkoxy-modified polysiloxanes, and the like, and mixtures thereof are included.
  • polyether-modified polysiloxane such as polyoxyethylene-modified polysiloxane and poly (oxyethylene / oxypropylene) -modified polysiloxane
  • carboxy-modified polysiloxane examples include polydimethylsiloxane, polyether-modified polysiloxane (such as polyoxyethylene-modified polysiloxane and poly (oxyethylene / oxypropylene) -
  • the HLB value of the hydrophobic substance (g) is preferably 1 to 10, more preferably 2 to 8, and particularly preferably 3 to 7. Within this range, the moisture resistance of the absorbent article is further improved.
  • the HLB value means a hydrophilic-hydrophobic balance (HLB) value and is determined by the Oda method (introduction to new surfactants, page 197, Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd., 1981). .
  • a hydrophobic substance (g1) containing a hydrocarbon group is preferable, and more preferably a long-chain fatty acid ester, a long-chain fatty acid and a salt thereof, Long-chain aliphatic alcohols and long-chain aliphatic amides, more preferably sorbitol stearic acid ester, sucrose stearic acid ester, stearic acid, Mg stearate, Ca stearate Ca, Zn stearate and Al stearate, particularly preferably Sucrose stearate and Mg stearate, most preferably sucrose monostearate.
  • the water-absorbent resin particles (P) of the present invention preferably have a structure in which the surface of the crosslinked polymer (A) is crosslinked by a surface crosslinking agent (d).
  • a surface crosslinking agent (d) By crosslinking the surface of the crosslinked polymer (A), the gel strength of the water-absorbent resin particles can be improved, and the desired amount of water retention and the absorption under load of the water-absorbent resin particles can be satisfied.
  • the surface crosslinking agent (d) include known compounds (for example, polyvalent glycidyl compounds, polyvalent amines, polyvalent aziridine compounds, polyvalent isocyanate compounds described in JP-A-59-189103, JP-A-58-180233).
  • polyhydric alcohols described in JP-A-61-16903 silane coupling agents described in JP-A-61-212305 and JP-A-61-252212, and described in JP-A-5-508425.
  • Alkylene carbonate, polyvalent oxazoline compounds described in JP-A-11-240959, and surface cross-linking agents such as polyvalent metals described in JP-A-51-136588 and JP-A-61-257235) are used. it can.
  • polyhydric glycidyl compounds, polyhydric alcohols and polyamines are preferred from the viewpoint of economy and absorption characteristics, polyhydric glycidyl compounds and polyhydric alcohols are more preferable, and polyhydric glycidyl compounds and polyhydric alcohols are particularly preferable.
  • One type of surface cross-linking agent may be used alone, or two or more types may be used in combination.
  • the amount (% by weight) of the surface cross-linking agent can be variously changed depending on the type of the surface cross-linking agent, cross-linking conditions, target performance, and the like. From the viewpoint and the like, the amount is preferably 0.001 to 3 parts by weight, more preferably 0.005 to 2 parts by weight, and particularly preferably 0.01 to 1.5 parts by weight based on 100 parts by weight of the crosslinked polymer (A). It is.
  • the surface cross-linking of the cross-linked polymer (A) can be performed by mixing the cross-linked polymer (A) and the surface cross-linking agent (d) and heating as necessary.
  • a method of mixing the crosslinked polymer (A) and the surface crosslinking agent (d) there are a cylindrical mixer, a screw mixer, a screw extruder, a turbulizer, a Nauter mixer, a double-arm kneader, and a fluidizer.
  • Cross-linked polymer using a mixing device such as a type mixer, a V-type mixer, a mince mixer, a ribbon type mixer, a flow type mixer, an air flow type mixer, a rotating disk type mixer, a conical blender and a roll mixer.
  • a method of uniformly mixing A) and the surface crosslinking agent (d) is exemplified. At this time, the surface crosslinking agent (d) may be used after being diluted with water and / or any solvent.
  • the temperature at which the crosslinked polymer (A) is mixed with the surface crosslinking agent (d) is not particularly limited, but is preferably 10 to 150 ° C, more preferably 20 to 100 ° C, and particularly preferably 25 to 80 ° C. .
  • the heating temperature is preferably from 100 to 180 ° C., more preferably from 110 to 175 ° C., and particularly preferably from 120 to 170 ° C., from the viewpoint of breaking resistance of the resin particles. Heating at a temperature of 180 ° C. or less enables indirect heating using steam, which is advantageous in terms of equipment. At a heating temperature of less than 100 ° C., absorption performance may deteriorate.
  • the heating time can be appropriately set according to the heating temperature, but is preferably 5 to 60 minutes, more preferably 10 to 40 minutes, from the viewpoint of absorption performance.
  • the water-absorbent resin obtained by surface cross-linking can be further subjected to surface cross-linking using the same or different surface cross-linking agent as the surface cross-linking agent used first.
  • the surface of the crosslinked polymer (A) is crosslinked with a surface crosslinker (d) to obtain water-absorbent resin particles (P), and then, if necessary, sieved to adjust the particle size.
  • the average particle size of the obtained particles is preferably from 100 to 600 ⁇ m, more preferably from 200 to 500 ⁇ m.
  • the content of the fine particles is preferably smaller, the content of the particles having a size of 100 ⁇ m or less is preferably 3% by weight or less, and the content of the particles having a size of 150 ⁇ m or less is more preferably 3% by weight or less.
  • the surface of the water-absorbent resin particles (P) can be further coated with an inorganic powder.
  • Preferred examples of the inorganic powder include glass, silica gel, silica sol, silica, clay, carbon fiber, kaolin, talc, mica, bentonite, sericite, asbestos, and shirasu.
  • silica sol, silica and talc are preferred.
  • the shape of the inorganic powder may be any of irregular (crushed), true sphere, film, rod, fiber, etc., but is preferably irregular (crushed) or true sphere, more preferably true sphere. .
  • the content (% by weight) of the inorganic powder is preferably 0.01 to 3.0% by weight, more preferably 0.05 to 1.0% by weight, and more preferably 0.05 to 1.0% by weight, based on the weight of the crosslinked polymer (A). It is preferably from 0.07 to 0.8% by weight, particularly preferably from 0.10 to 0.6% by weight, most preferably from 0.15 to 0.5% by weight. Within this range, the antifogging property of the absorbent article is further improved.
  • the water-absorbent resin particles (P) may contain other additives (for example, known antiseptics, fungicides, antibacterial agents, antioxidants, and ultraviolet rays (for example, JP-A-2003-225565 and JP-A-2006-131767)). Absorbents, coloring agents, fragrances, deodorants, organic fibrous substances, and the like).
  • the content (% by weight) of the additives is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight, based on the weight of the crosslinked polymer (A). %, Particularly preferably 0.05 to 1% by weight, most preferably 0.1 to 0.5% by weight.
  • the water-absorbent resin particles (P) can absorb physiological saline 40 times their own weight in preferably 40 to 200 seconds, more preferably 55 to 150 seconds, and particularly preferably 65 to 110 seconds. It is preferable from the viewpoint of the whitening time at the time of performing. Further, it is preferable to set an appropriate absorption time in accordance with the adsorption rate of divalent metal ions of the crosslinked acrylate polymer fiber. The absorption time can be appropriately controlled depending on the average particle size of the water-absorbent resin particles (P), the added hydrophobic substance and inorganic powder, and other production conditions.
  • the water-absorbent resin particles (P) may be of one type or a mixture of two or more types as long as they have such a high level of absorption ability.
  • the water-absorbent resin particles (P) can be produced by a known aqueous solution polymerization method or a reversed phase suspension polymerization method.
  • a solution polymerization method it is preferable to employ a solution polymerization method because there is no need to use an organic solvent or the like and the production cost is advantageous.
  • the water-absorbent resin particles (P) preferably have a basic fluidity energy of 500 to 8000 mJ, more preferably 1000 to 5000 mJ, particularly preferably 1500 to 4000 mJ. Within this range, the shape retention of the body fluid absorbing layer after swelling becomes particularly good.
  • the basic fluidity energy can be controlled by adjusting the average particle diameter and apparent density of the water-absorbent resin particles (P) and the type and amount of the surface treatment agent of the water-absorbent resin particles (P).
  • the basic fluidity energy is measured using a powder fluidity analyzer as described in JP-A-2007-040770.
  • the body fluid absorbing layer in the sanitary article of the present invention has the water-absorbing resin particles (P) described above, but may further have a hydrophilic fiber as another material constituting the body fluid absorbing layer. good.
  • the body fluid absorbing layer contains the water-absorbent resin particles (P) and the hydrophilic fibers, the water-absorbent resin particles (P) and the hydrophilic fibers may be uniformly mixed, and one of them may be unevenly distributed. It may be.
  • the weight ratio of the water-absorbent resin particles (P) is preferably 30% by weight or more, more preferably, based on the total weight of the water-absorbent resin particles (P) and the hydrophilic fibers.
  • the hydrophilic fiber is a hydrophilic fiber composed of a material which does not itself have a property of absorbing a liquid and swelling, and for example, retains a large amount of hydroxyl groups such as cotton-like pulp and cellulose. And other natural products.
  • the sanitary article of the present invention is characterized in that the body fluid passes through a nonwoven fabric layer containing a crosslinked acrylate-based polymer fiber having a Na-type or K-type salt-type carboxyl group before reaching the body fluid-absorbing layer.
  • the divalent metal ions in the body fluid are adsorbed by the Na-type or K-type salt-type carboxyl groups present in the crosslinked acrylate-based polymer fiber, and the body fluid from which the divalent metal ions are removed is removed from the body fluid. Acceptable in the absorbent layer.
  • the crosslinked acrylate fiber used in the present invention can be produced from an acrylonitrile copolymer according to a known method.
  • acrylonitrile is preferably at least 50% by weight, more preferably at least 70% by weight, further preferably at least 80% by weight.
  • the crosslinked structure of the crosslinked acrylate fiber can be introduced by reacting a hydrazine compound with a nitrile group of an acrylonitrile polymer.
  • the crosslinked structure greatly affects fiber physical properties and carboxyl group retention. When the copolymerization composition of acrylonitrile is too small, the crosslinked structure is reduced, and there is a possibility that the physical properties and the retention of carboxyl groups are reduced.
  • the copolymerization component other than acrylonitrile in the acrylonitrile-based polymer is not particularly limited as long as it is a monomer copolymerizable with acrylonitrile.
  • sulfonic acid group-containing monomers such as methallylsulfonic acid and p-styrenesulfonic acid are used.
  • Monomers and their salts, carboxylic acid group-containing monomers such as (meth) acrylic acid and metaconic acid and their salts, and monomers such as styrene, vinyl acetate, (meth) acrylic acid esters, and (meth) acrylamide.
  • monomers and their salts such as (meth) acrylic acid and metaconic acid and their salts
  • monomers such as styrene, vinyl acetate, (meth) acrylic acid esters, and (meth) acrylamide Can be mentioned.
  • the nitrile group in the acrylonitrile-based fiber reacts with hydrazine to form a crosslinked structure in the fiber.
  • the hydrazine-based compound include hydrazine hydrate, hydrazine hydrochloride, hydrazine sulfate, neutral hydrazine sulfate, and hydrazine carbonate.
  • a treatment condition for example, a method in which the above-mentioned acrylonitrile-based fiber is immersed in an aqueous solution to which the above-mentioned hydrazine-based compound is added so as to have a hydrazine concentration of 3 to 40% by weight, and treated at 50 to 120 ° C. within 5 hours And the like.
  • a hydrolysis treatment with an alkaline metal compound is performed.
  • the nitrile groups and amide groups present in the fiber are hydrolyzed, and a carboxyl group is formed on the surface layer of the fiber.
  • the carboxyl group becomes a factor for adsorbing divalent metal ions in the body fluid when the crosslinked acrylate polymer fiber comes into contact with the body fluid.
  • the amount of carboxyl groups formed can be adjusted according to the processing conditions.
  • the amide group is generated from a part of the nitrile group during the treatment with the hydrazine-based compound.
  • the cross-linking structure introduction treatment and the hydrolysis treatment may be performed in order as described above, or may be simultaneously performed simultaneously by using an aqueous solution in which the respective treatment chemicals are mixed.
  • an ion exchange treatment with a metal salt such as nitrate, sulfate, hydrochloride, an acid treatment with nitric acid, sulfuric acid, hydrochloric acid, formic acid, or the like, or a pH adjustment treatment with an alkaline metal compound, etc. It is also possible to convert the carboxyl group therein to a desired salt-type carboxyl group or H-type carboxyl group, or to mix different types of salt-type carboxyl groups to adjust the adsorption performance of divalent metal ions. .
  • sodium or potassium is used as the metal type constituting the salt-type carboxyl group.
  • a specific type of salt-type carboxyl group such as sodium type or potassium type, it is possible to efficiently adsorb calcium ions and magnesium ions which are typical divalent metal ions in urine.
  • a salt-type carboxyl group of a divalent metal such as magnesium or zinc
  • ions of the divalent metal fall off the crosslinked acrylate polymer fiber and flow out to the water-absorbent resin particles (P).
  • P water-absorbent resin particles
  • crosslinking of the water-absorbing resin particles (P) is promoted by ions of the divalent metal, and the water-absorbing performance of the water-absorbing resin particles (P) is greatly reduced.
  • the amount of salt-type carboxyl groups in the crosslinked acrylate polymer fiber is preferably from 1.0 to 10.0 mmol / g, more preferably from 2.0 to 9.0 mmol / g. More preferably, it is 0 to 8.0 mmol / g. If the amount of the salt-type carboxyl group is less than the above lower limit, the ability to adsorb divalent metal ions in the body fluid may be reduced. As a result, it is necessary to increase the thickness of the nonwoven fabric layer, and the sanitary article may be bulky as a whole.
  • the crosslinked acrylate-based polymer fiber has a core-sheath structure composed of a central portion and a surface layer surrounding the central portion, and the amount of carboxyl groups in the surface layer is preferably larger than that in the central portion.
  • a rigid and elastic structure can be formed at the central portion, the shape retention of the nonwoven fabric layer is maintained, and urine and the like are maintained.
  • the contact time when the body fluid passes through the nonwoven fabric layer can be lengthened.
  • the area occupied by the surface layer portion in the cross section of the crosslinked acrylate polymer fiber is preferably from 10 to 70%, more preferably from 20 to 60%, and even more preferably from 30 to 50%. If the area occupied by the surface layer is less than the above lower limit, the ability to adsorb divalent metal ions may not be sufficiently exhibited. On the other hand, if the area occupied by the surface layer portion exceeds the above upper limit, the fiber properties may be reduced. The area occupied by the surface layer is measured by a method described in Examples described later.
  • the salt-type carboxyl group content is preferably present in the surface layer portion, 95% or more of the salt-type carboxyl group amount, further 98% or more of the salt-type carboxyl group amount, Further, it is preferable that substantially 100% of the amount of the salt-type carboxyl group exists in the surface layer portion. If the proportion of the salt-type carboxyl group in the surface layer is less than the above lower limit, the divalent metal ion adsorption performance may not be sufficiently exhibited.
  • the above-mentioned core-sheath structure can be formed by performing the hydrolysis treatment under a mild condition of an alkali metal compound having a lower concentration than before, and then performing the acid treatment under a more severe condition at a higher temperature than in the past.
  • the crosslinked acrylate-based polymer fiber of the present invention can have a structure in which most of the carboxyl groups are present in the surface layer and the acrylonitrile-based polymer is preserved in the center.
  • the fineness of the crosslinked acrylate polymer fiber is preferably 0.05 to 20 dtex, more preferably 0.5 to 10 dtex.
  • the surface area increases and the speed of adsorbing divalent metal ions increases.However, the strength of short fibers decreases, and when processed into a nonwoven fabric layer, fiber breakage occurs, causing fluff and fiber dust. May occur and productivity may be degraded or quality may be degraded.
  • the productivity and quality of the nonwoven fabric do not deteriorate, but the adsorption rate of divalent metal ions may decrease.
  • the water swelling degree of the crosslinked acrylate polymer fiber is preferably 0.5 to 5 times, more preferably 1.0 to 4 times, and even more preferably 1.5 to 3 times.
  • the degree of water swelling is less than the above lower limit, there is a possibility that divalent metal ions cannot be sufficiently adsorbed.
  • the degree of water swelling exceeds the above upper limit, there is a possibility that a large volume is occupied in the sanitary article after water adsorption.
  • the nonwoven fabric layer in the sanitary article of the present invention contains the above-mentioned crosslinked acrylate polymer fiber preferably in an amount of 20% by weight or more, more preferably 30% by weight or more of the weight of the nonwoven fabric layer, and consists of only the crosslinked acrylate polymer fiber. It may be something.
  • a binder fiber can be used in combination.
  • the proportion of the binder fiber used is preferably 20 to 80% by weight based on the total weight of the nonwoven fabric. If the amount is less than 20% by weight, the effect of improving the strength of the nonwoven fabric may not be obtained, and if the amount is more than 80% by weight, the crosslinked acrylate-based polymer fiber relatively decreases, so that the divalent metal ion adsorption performance is insufficient. It may be.
  • binder fibers include fibers made of a polymer such as polyester, polyamide, polyethylene, and polypropylene, and a plurality of types may be used.
  • an effect of improving the adsorption performance of divalent metal ions in the liquid can be expected by improving the diffusivity of the liquid in the nonwoven fabric.
  • a method for this for example, a method of diffusing the fineness of all or a part of the fibers constituting the nonwoven fabric layer to a fineness of preferably 4.0 dtex or less, more preferably 3.0 dtex or less by capillary action or hydrophilicity It is possible to adopt a method of partially using a fiber provided with an oily agent.
  • a method of obtaining the effect of increasing the adsorption performance of divalent metal ions in the liquid a method of extending the time for which the liquid stays in the nonwoven fabric layer can be adopted.
  • a method in which a fiber in which a water-repellent or hydrophobic oil agent is added to some of the fibers constituting the nonwoven fabric layer is added to suppress the movement of the liquid in the thickness direction can be mentioned.
  • the effect of increasing the diffusivity in the horizontal direction can be expected because the liquid moves slowly in the thickness direction.
  • a method of partially using a fiber having high water retention may be adopted.
  • the fiber having high water retention include a method using a porous fiber or a fibrillated fiber.
  • the porous fiber usable in the present invention has fine pores having openings to the outside inside the fiber, and has an average diameter of 1 to 1000 nm in the pore diameter distribution measured by a mercury intrusion method. It shows the hole diameter.
  • the material of the porous fiber is not particularly limited, and polypropylene, polyester, polyacrylonitrile, polyamide, acrylonitrile-based polymer, or the like can be used. Among these, porous fibers made of an acrylonitrile-based polymer are preferable from the viewpoint of liquid diffusibility and the like.
  • a monomer composition containing acrylonitrile is polymerized, and the content of acrylonitrile is 70% by weight or more, more preferably 80% by weight or more, further preferably 88% by weight or more based on the total weight of the monomer composition. It is preferable that the acrylonitrile polymer is
  • High water retention fibers other than the above include super water-absorbent acrylic fibers having a two-layer structure of an outer layer subjected to super water absorption and an inner layer which is an acrylic fiber, as described in JP-B-07-061370.
  • super-absorbent fibers obtained by esterification from the reaction of the acid groups of acrylic acid with the hydroxyl groups in the acrylic acid / methacrylic acid monomer.
  • the nonwoven fabric layer used in the sanitary article of the present invention can be manufactured by a conventionally known method, for example, a thermal bond nonwoven fabric, an air-through nonwoven fabric, a needle punched nonwoven fabric, a spunlace nonwoven fabric, a nonwoven fabric manufactured by an airlaid method, and the like. Can be used. Among these, a thermal bond nonwoven fabric, an air-through nonwoven fabric, or a spunlace nonwoven fabric is preferable from the viewpoint of thinness and safety required for sanitary articles.
  • the basis weight of the nonwoven fabric is preferably 400 g / m 2 or less, more preferably 20 g / m 2 to 200 g / m 2 , still more preferably 40 g / m 2 to 150 g / m 2 , and more preferably 50 g / m 2. It is particularly preferred that it is from m 2 to 120 g / m 2 . If the amount is less than the lower limit, the amount of the crosslinked acrylate fiber may be small, and a high divalent metal ion removal effect may not be expected. On the other hand, when the upper limit is exceeded, the thickness of the sanitary article may increase, and the feeling of wearing may be deteriorated.
  • the tensile strength of the nonwoven fabric is preferably 10 N / 5 cm or more, and more preferably 30 N / 5 cm or more, in order to secure enough strength to be processed in a factory production line. If it is less than 10 N / 5 cm, the nonwoven fabric may be broken during production.
  • the non-woven fabric layer containing the crosslinked acrylate-based polymer fiber having a Na-type or K-type salt-type carboxyl group is located at a position before the bodily fluid comes into contact with the bodily fluid-absorbing layer. It is preferably provided between the bodily fluid absorbing layers.
  • the bodily fluid in which the content of divalent metal ions is reduced comes into contact with the bodily fluid absorbing layer and is efficiently absorbed by the water-absorbing resin particles (P) in the bodily fluid absorbing layer.
  • the crosslinked acrylate-based polymer fiber having a salt type carboxyl group of Na type or K type is arranged in the body fluid absorbing layer, that is, in the same place as the water-absorbent resin particles (P)
  • the divalent contained in the body fluid The metal ions of the above are interlocked with the crosslinked acrylate polymer fiber having a Na-type or K-type salt-type carboxyl group and the water-absorbing resin particles (P), thereby reducing the absorption capacity of the water-absorbing resin particles (P). Is not preferred.
  • the sanitary article of the present invention described above is configured so that a body fluid passes through a nonwoven fabric layer containing a crosslinked acrylate polymer fiber having a Na-type or K-type salt-type carboxyl group before the body fluid reaches the body fluid absorption layer. Therefore, even if the sanitary article receives a bodily fluid such as urine or blood, the divalent metal ions in the bodily fluid can be adsorbed by the carboxyl group of the crosslinked acrylate polymer fiber before reaching the bodily fluid absorbing layer. Therefore, the sanitary article of the present invention can continuously absorb a body fluid without being affected by a decrease in the absorption capacity of the body fluid absorbing layer due to divalent metal ions even if the body fluid is repeatedly received.
  • the temperature of the physiological saline used and the measurement atmosphere is set to 25 ° C. ⁇ 2 ° C.
  • ⁇ Basic liquid energy> It is measured according to the description in JP-A-2007-040770 (the best mode for carrying out the invention), and can be measured in a basic fluidity energy measurement mode of a powder rheometer FT4 manufactured by Sysmex Corporation at 25 ° C. and 50 ° C. Under a measurement environment of% RH, the blade width and the rotation speed are set to 48 mm and 100 m / s, respectively, and the arithmetic average value of the measurement results obtained seven times is defined as the basic fluidity energy. In addition, the measurement sample was fixed to a capacity of 160 ml, and a sample obtained by putting each of the water-absorbent resin particles (P) by gravity into a 160-ml split container having an inner diameter of 50 mm is used.
  • P water-absorbent resin particles
  • This value is logarithmic probability paper (the horizontal axis indicates the sieve opening ( After plotting the particle diameter) and the vertical axis on the weight fraction), a line connecting the points was drawn to determine the particle diameter corresponding to the weight fraction of 50% by weight, which was defined as the weight average particle diameter.
  • Water retention amount of water absorbent resin particles (P)> A measurement sample (1.00 g) was placed in a tea bag (length 20 cm, width 10 cm) made of nylon mesh having a mesh size of 63 ⁇ m (JIS Z8801-1: 2006), and 1,000 ml of physiological saline (salt concentration: 0.9% by weight) was added. After being immersed for 1 hour without stirring in it, it is suspended for 15 minutes to drain. Thereafter, the whole tea bag is put into a centrifuge, centrifuged at 150 G for 90 seconds to remove excess physiological saline, the weight (h1) including the tea bag is measured, and the water retention amount is determined from the following equation.
  • the swelled gel was wrapped in a beaker containing a 30-fold swollen gel so as not to dry, and the beaker was allowed to stand at 40 ⁇ 2 ° C. for 3 hours and further at 25 ⁇ 2 ° C. for 0.5 hour. After that, the wrap is removed, and the gel elasticity of the 30-fold swollen gel is measured using a card meter (for example, Card Meter Max ME-500 manufactured by I-Tech Techno Engineering Co., Ltd.). The conditions of the card meter are as follows. ⁇ Pressure sensitive axis: 8mm ⁇ Spring: 100g ⁇ Load: 100g ⁇ Rise speed: 1 inch / 7 seconds ⁇ Test property: Break ⁇ Measurement time: 6 seconds ⁇ Measurement atmosphere temperature: 25 ⁇ 2 ° C
  • this material is placed in 200 ml of pure water, and a 1 mol / L aqueous hydrochloric acid solution is added to adjust the pH to 2, and a titration curve is obtained with a 0.1 mol / L aqueous sodium hydroxide solution according to the information. From the titration curve, the consumption amount (Vml) of the aqueous sodium hydroxide solution consumed by all the carboxyl groups is obtained, and the total carboxyl group amount is obtained by the following equation.
  • the amount of H-type carboxyl group was calculated in the same manner except that the first immersion in a 1 mol / L hydrochloric acid aqueous solution and the subsequent washing were not performed. I do.
  • the amount of salt-type carboxyl groups is calculated by subtracting the amount of H-type carboxyl groups from the total amount of carboxyl groups.
  • ⁇ Area ratio of surface layer (sheath) of core-sheath fiber The sample fiber was immersed in a dyeing bath containing 2.5% of a cationic dye (Nichilon Black G 200) and 2% of acetic acid based on the fiber weight at a bath ratio of 1:80, and was boiled for 30 minutes. After that, it is washed with water, dehydrated and dried. The obtained dyed fiber is sliced thinly perpendicularly to the fiber axis, and the fiber cross section is observed with an optical microscope. At this time, the central portion made of the acrylonitrile polymer is dyed black, and the surface layer having many carboxyl groups turns green because the dye is not sufficiently fixed.
  • a cationic dye Naichilon Black G 200
  • acetic acid based on the fiber weight at a bath ratio of 1:80
  • the diameter (D1) of the fiber in the fiber cross section and the diameter (D2) of the central part dyed black with the part where the color change from green to black starts as a boundary are measured, and the surface layer area ratio is calculated by the following equation. I do.
  • the average value of the surface layer part area ratio of 10 samples is used as the surface layer part area ratio of the sample fiber.
  • Surface layer area ratio (%) [ ⁇ ((D1) / 2) 2 ⁇ ⁇ ((D2) / 2) 2 ⁇ / ((D1) / 2) 2 ⁇ ] ⁇ 100
  • Capture rate (%) (metal salt concentration in artificial urine after treatment ⁇ metal salt concentration in artificial urine before treatment) / metal salt concentration in artificial urine before treatment ⁇ 100
  • ⁇ Non-woven fabric weight> Four non-woven fabrics cut into 10 cm squares were collected, humidified in a 20 ° C. ⁇ 65% RH atmosphere, each weight (g) was measured, converted to the weight per square meter, and the average value was calculated. And the basis weight.
  • ⁇ Thickness of nonwoven fabric> Four nonwoven fabrics cut into a 10 cm square were sampled, and their thicknesses were measured according to the JIS L1913: 2010 method 6.1.1A, and the average value was defined as the thickness.
  • Non-woven fabric density The weight per 1 m 3 was calculated from the measured values of the basis weight and thickness of the nonwoven fabric.
  • a metal ring (inner diameter 70 mm, length 50 mm, 300 g) is set in the center of the sanitary article, and 40 ml of artificial urine is injected.
  • the artificial urine finishes absorbing from inside the metal ring that is, gloss by artificial urine on the surface nonwoven fabric
  • Remove the metal ring immediately and measure the time until the nonwoven fabric on the surface dries.
  • the surface nonwoven fabric is wet, but when the water-absorbent resin particles inside the body fluid absorbing layer of the sanitary article start absorbing, the surface nonwoven fabric starts drying.
  • the time until the liquid wetting of the area where the metal ring is set disappears is measured as whitening time 1 (second).
  • the metal ring is set again and 40 ml of the artificial urine is injected, and the same test is repeated, and the whitening time is measured as 2 (seconds).
  • artificial urine, the measurement atmosphere and the standing atmosphere were performed at 25 ⁇ 5 ° C. and 65 ⁇ 10% RH.
  • the time to absorb a physiological saline 40 times its own weight [physiological saline (40 times) absorption time]
  • the amount of water and the gel modulus were measured by the following methods, and are shown in Table 2 together with the weight average particle diameter and the apparent density.
  • a binder fiber a core-sheath fiber (fineness: 4.4 dtex) having a core portion made of polyester and a sheath portion made of polyethylene was used.
  • a porous acrylic fiber Aqua registered trademark, fineness: manufactured by Nippon Exlan Co., Ltd. 2dtex, average pore diameter 35 nm).
  • Example 1 100 parts of the hydrophilic fiber (fluff pulp) and 100 parts of the water-absorbent resin particles (P-1) are mixed by an air flow type mixing device (pad former) to obtain a mixture, and the mixture is weighed to 500 g / m2. 2 was uniformly laminated on an acrylic plate (4 mm thick) and pressed at a pressure of 5 kg / cm 2 for 30 seconds to obtain a body fluid absorbing layer. The body fluid absorbing layer was cut into a rectangle of 10 cm ⁇ 40 cm, and a water permeable sheet (basis weight 15.5 g / m 2 , Advantech Co., filter paper No. 2) having the same size as the body fluid absorbing layer was placed above and below each.
  • a water permeable sheet (basis weight 15.5 g / m 2 , Advantech Co., filter paper No. 2) having the same size as the body fluid absorbing layer was placed above and below each.
  • a polyethylene sheet (polyethylene film UB-1 manufactured by Tamapoly Co., Ltd.) is arranged on the back surface as a body fluid impermeable sheet, and a nonwoven fabric (B-1) is arranged on the front surface as a nonwoven fabric layer.
  • a sanitary article was prepared by placing a nonwoven fabric weight: 25 g / m 2 , 2.2T 44-SMK manufactured by Toyobo Co., Ltd. on the outermost surface.
  • the weight ratio of the water-absorbent resin particles to the hydrophilic fibers in the body fluid absorbing layer was 50/50.
  • Example 2 A sanitary article was prepared in the same manner as in Example 1, except that "nonwoven fabric (B-1)" was changed to “nonwoven fabric (B-2)".
  • Example 3 Other than changing "nonwoven fabric (B-1)” to “nonwoven fabric (B-3)” and changing "water-absorbent resin particles (P-1)” to “water-absorbent resin particles (P-2)” A sanitary article was prepared in the same manner as in Example 1.
  • Example 4 Other than changing "nonwoven fabric (B-1)” to “nonwoven fabric (B-4)” and changing "water-absorbent resin particles (P-1)” to “water-absorbent resin particles (P-5)” A sanitary article was prepared in the same manner as in Example 1.
  • Example 5 Other than changing "nonwoven fabric (B-1)” to “nonwoven fabric (B-5)” and changing "water-absorbent resin particles (P-1)” to “water-absorbent resin particles (P-4)" A sanitary article was prepared in the same manner as in Example 1.
  • Example 6 Other than changing "nonwoven fabric (B-1)” to “nonwoven fabric (B-6)” and changing "water-absorbent resin particles (P-1)” to “water-absorbent resin particles (P-5)” A sanitary article was prepared in the same manner as in Example 1.
  • Example 7 A sanitary article was prepared in the same manner as in Example 1, except that "nonwoven fabric (B-1)" was changed to “nonwoven fabric (B-7)".
  • Example 8 Other than changing "nonwoven fabric (B-1)” to “nonwoven fabric (B-8)” and changing "water-absorbent resin particles (P-1)” to “water-absorbent resin particles (P-3)” A sanitary article was prepared in the same manner as in Example 1.
  • Example 9 A sanitary article was prepared in the same manner as in Example 1, except that "nonwoven fabric (B-1)" was changed to “nonwoven fabric (B-9)".
  • Example 10 A sanitary article was prepared in the same manner as in Example 1, except that "nonwoven fabric (B-1)" was changed to “nonwoven fabric (B-10)".
  • Example 11 A sanitary article was prepared in the same manner as in Example 1, except that "nonwoven fabric (B-1)" was changed to “nonwoven fabric (B-11)".
  • Example 3 A sanitary article was prepared in the same manner as in Example 1, except that "nonwoven fabric (B-1)" was changed to "nonwoven fabric (HB-3)".
  • Comparative Example 1 in which the crosslinked acrylate-based polymer fiber in the nonwoven fabric constituting the nonwoven fabric layer has an H-type carboxyl group instead of a salt-type carboxyl group, the crosslinked acrylate-based polymer fiber in the nonwoven fabric constituting the nonwoven fabric layer Comparative Example 2 having a calcium (divalent metal) -type carboxyl group as a salt-type carboxyl group, a fiber in which a non-woven fabric constituting a non-woven fabric layer is formed using a polymer fiber as described in Patent Document 1.
  • the sanitary article of the present invention can continuously exhibit high absorption capacity for body fluids such as urine and blood, it can be used for children's paper diapers, adult paper diapers, napkins, pet sheets, panty liners, incontinence pads, sweat absorbing It is extremely useful for sheets, medical blood absorbent articles, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Nonwoven Fabrics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

尿や血液などの体液を吸収して保持するための衛生物品において、これらの体液を継続して吸収しても二価の金属イオンの影響による吸収材料の吸収能力の低下が発現しないものを提供する。体液吸収層と不織布層とを含み、体液が体液吸収層に到達する前に不織布層を通るように構成した衛生物品であって、体液吸収層が、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成成分とする吸水性樹脂粒子(P)を含み、不織布層が、Na型カルボキシル基又はK型カルボキシル基のいずれかの塩型カルボキシル基を有する架橋アクリレート系重合体繊維を含み、架橋アクリレート系重合体繊維に含まれる塩型カルボキシル基量が1.0~10.0mmol/gであることを特徴とする衛生物品。

Description

衛生物品
 本発明は、尿や血液などの体液を吸収して保持するための衛生物品において、これらの体液中に存在する二価の金属イオンの影響による吸収材料の吸収能力の低下を効果的に抑制したものに関する。
 尿や血液などの体液を吸収して保持するための衛生物品は、それらを吸収するための超吸収材料の発展に従って著しく進化している。衛生物品の超吸収材料は、自重の数倍の重量の液体を吸収することができるものであり、一般的に、アクリル酸塩重合体の架橋物や澱粉-アクリル酸塩グラフト共重合体の加水分解生成物の架橋物などが使用されている。
 しかしながら、かかるタイプの超吸収材料は、継続的な体液の吸収には必ずしも適していない。即ち、尿などの体液中には、カルシウムイオンやマグネシウムイオンなどの二価の金属イオンが多く含まれているが、かかるタイプの超吸収材料は、このような二価の金属イオンが継続的に存在すると液体吸収能力が低下していき、本来の優れた液体吸収能力を十分に発揮できなくなるという問題がある。
 このような問題に対して、衛生物品に使用される吸収材料として、吸水性樹脂と、放射線グラフト重合法により得られる陽イオン交換体とを混合させた吸収材が提案されている(特許文献1参照)。特許文献1の陽イオン交換体としては、ポリマー繊維を用いて形成された繊維基材に対し、放射線グラフト重合法により陽イオン交換基を付着したものが使用されている。特許文献1の吸収材の陽イオン交換体は、それ自体は液体中の二価の金属イオンの吸収能力を有するが、衛生物品の中に入れて継続して使用すると、陽イオン交換基がグラフト重合法により繊維基材に付着されているため、陽イオン交換基が繊維基材から容易に脱落し、その能力を十分に発揮できなくなるという問題があった。その結果、衛生物品が体液を継続して吸収すると、二価の金属イオンの影響を受け、早い段階で体液を十分に吸収できなくなる問題があった。また、グラフト重合に放射線を用いるため、危険性が高く、放射線源の管理にも大掛かりな設備が必要となり、安全性及び経済性の面においても問題があった。
特開2012-239620号公報
 本発明は、かかる従来技術の問題を解決するために創案されたものであり、その目的は、尿や血液などの体液を吸収して保持するための衛生物品において、これらの体液を継続して吸収しても二価の金属イオンの影響による吸収材料の吸収能力の低下が発現しないものを提供することにある。
 本発明者は、上記目的を達成するために鋭意検討した結果、Na型又はK型の塩型カルボキシル基を有する架橋アクリレート系重合体繊維を用いると、機能性官能基のカルボキシル基が脱落せず、体液中の二価の金属イオンを継続して吸着できること、そして特に、かかる繊維を含む不織布層を衛生物品中の体液吸収層の直前に用いると、体液吸収層が体液中の二価の金属イオンの影響を受けずに高い能力で体液を継続して吸収できることを見出し、本発明の完成に至った。
 即ち、本発明は、以下の(1)~(9)の構成を有するものである。
(1)体液吸収層と不織布層とを含み、体液が体液吸収層に到達する前に不織布層を通るように構成した衛生物品であって、体液吸収層が、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成成分とする吸水性樹脂粒子(P)を含み、不織布層が、Na型カルボキシル基又はK型カルボキシル基のいずれかの塩型カルボキシル基を有する架橋アクリレート系重合体繊維を含み、架橋アクリレート系重合体繊維に含まれる塩型カルボキシル基量が1.0~10.0mmol/gであることを特徴とする衛生物品。
(2)架橋アクリレート系重合体繊維が、中心部とそれを包囲する表層部とからなる芯鞘構造を有し、塩型カルボキシル基の実質的に全てが、表層部に存在することを特徴とする(1)に記載の衛生物品。
(3)架橋アクリレート系重合体繊維の横断面における表層部の占める面積が、10~70%であることを特徴とする(1)又は(2)に記載の衛生物品。
(4)架橋アクリレート系重合体繊維の繊度が、0.05~20dtexであることを特徴とする(1)~(3)のいずれかに記載の衛生物品。
(5)架橋アクリレート系重合体繊維の水膨潤度が、0.5~5倍であることを特徴とする(1)~(4)のいずれかに記載の衛生物品。
(6)不織布層中の架橋アクリレート系重合体繊維の混率が、20重量%以上であり、不織布層の目付が、400g/m以下であり、不織布層の引張強度が、10N/5cm以上であることを特徴とする(1)~(5)のいずれかに記載の衛生物品。
(7)不織布層が、平均細孔径が1~1000nmの多孔質繊維をさらに含むことを特徴とする(1)~(6)のいずれかに記載の衛生物品。
(8)衛生物品が、尿及び/又は血液の体液を吸収することを意図されたものであることを特徴とする(1)~(7)のいずれかに記載の衛生物品。
(9)衛生物品が、体液透過性シートと体液不透過性シートとをさらに含み、体液透過性シートと体液不透過性シートの間に体液吸収層が配置され、体液透過性シートと体液吸収層の間に不織布層が配置されていることを特徴とする(1)~(8)のいずれかに記載の衛生物品。
 本発明の衛生物品は、尿や血液などの体液が体液吸収層に到達する前に、Na型又はK型の塩型カルボキシル基を有する架橋アクリレート系重合体繊維を含む不織布層を通るように構成しているので、体液が体液吸収層に到着する前に体液中の二価の金属イオンを架橋アクリレート系重合体繊維のカルボキシル基で吸着することができ、結果として二価の金属イオンによる体液吸収層の吸収能力の低下の影響を受けずに体液を継続して吸収することができる。特に、Na型又はK型の塩型カルボキシル基を有する架橋アクリレート系重合体繊維は、カルボキシル基を架橋構造により強固に保持しているので、体液を繰り返し受けても機能性官能基のカルボキシル基が脱落することがなく、継続的な二価の金属イオンの吸着が可能である。
 本発明の衛生物品は、人間や動物の尿、血液などの体液を吸収して保持するために使用されるものであり、例えばおむつ、失禁ガード、衛生ナプキン、パンティライナーなどが該当する。本発明の衛生物品は、従来この分野で一般的に採用されている基本構成を有し、具体的には体液透過性シートと、体液不透過性シートと、それらの両シートの間に配置される体液吸収層とを含むものであることが好ましい。これらの基本構成は、従来公知であり、従来公知の方法で製造されることができる。本発明の最大の特徴は、体液が体液吸収層に到達する前に、Na型又はK型の塩型カルボキシル基を有する架橋アクリレート系重合体繊維を含む不織布層を通るように構成したことにある。かかる特徴により、体液が体液吸収層に到達する前に、体液中の二価の金属イオンを、架橋アクリレート系重合体繊維に存在するNa型又はK型の塩型カルボキシル基で吸着し、二価の金属イオンが全くないか又は減少した体液を体液吸収層に受け入れさせ、その結果、体液吸収層中の吸収体の吸収能力を二価の金属イオンによって低下させずに継続して利用することができる。
 本発明の衛生物品の体液透過性シートは、放出された体液を最初に衛生物品内に受け入れるためのシートであり、スパンボンド不織材料などの従来公知の液体透過性材料が使用される。体液不透過性シートは、衛生物品中の体液を外部に漏出させないようにするためのシートであり、ポリエチレンフィルムなどの従来公知の液体不透過性材料が使用される。体液吸収層は、前述の体液透過性シートと体液不透過性シートの間に包囲されて配置され、体液を吸収して取得した後、取得した体液を吸収層全体に分配して貯蔵するものである。
 本発明の衛生物品の体液吸収層は、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成成分とする吸水性樹脂粒子(P)を含む。この吸水性樹脂(P)は、これらの必須構成成分から得られる架橋重合体(A)を必要により表面架橋することによって得られることができる。以下、吸水性樹脂粒子(P)の製造方法について説明する。
 水溶性ビニルモノマー(a1)としては、特に限定はなく、公知のモノマー、例えば、特許第3648553号公報の0007~0023段落に開示されている少なくとも1個の水溶性置換基とエチレン性不飽和基とを有するビニルモノマー(例えばアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー)、特開2003-165883号公報の0009~0024段落に開示されているアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー並びに特開2005-75982号公報の0041~0051段落に開示されているカルボキシ基、スルホ基、ホスホノ基、水酸基、カルバモイル基、アミノ基及びアンモニオ基からなる群から選ばれる少なくとも1種を有するビニルモノマーが使用できる。
 加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)(以下、加水分解性ビニルモノマー(a2)と称する)は、特に限定はなく、公知(例えば、特許第3648553号公報の0024~0025段落に開示されている加水分解により水溶性置換基となる加水分解性置換基を少なくとも1個有するビニルモノマー、特開2005-75982号公報の0052~0055段落に開示されている少なくとも1個の加水分解性置換基[1,3-オキソ-2-オキサプロピレン(-CO-O-CO-)基、アシル基及びシアノ基等]を有するビニルモノマー)のビニルモノマー等が使用できる。なお、水溶性ビニルモノマーとは、当業者に周知の概念であるが、数量を用いて表すなら、例えば、25℃の水100gに少なくとも100g溶解するビニルモノマーを意味する。また、加水分解性ビニルモノマー(a2)における加水分解性とは、当業者に周知の概念であるが、より具体的に表すなら、例えば、水及び必要により触媒(酸又は塩基等)の作用により加水分解され、水溶性になる性質を意味する。加水分解性ビニルモノマー(a2)の加水分解は、重合中、重合後及びこれらの両方のいずれで行っても良いが、得られる吸水性樹脂粒子の吸収性能の観点から、重合後が好ましい。
 これらのうち、吸収性能等の観点から好ましいのは水溶性ビニルモノマー(a1)、より好ましいのは上述のアニオン性ビニルモノマー、カルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ-、ジ-若しくはトリ-アルキルアンモニオ基を有するビニルモノマー、更に好ましいのはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー、特に好ましいのは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、とりわけ好ましいのは(メタ)アクリル酸(塩)、最も好ましいのはアクリル酸(塩)である。
 なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩及びアンモニウム(NH)塩等が挙げられる。これらの塩のうち、吸収性能等の観点から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましいのはアルカリ金属塩、特に好ましいのはナトリウム塩である。
 水溶性ビニルモノマー(a1)又は加水分解性ビニルモノマー(a2)のいずれかを構成単位とする場合、それぞれ1種を単独で構成単位としてもよく、また、必要により2種以上を構成単位としても良い。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合も同様である。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合、これらの含有モル比[(a1)/(a2)]は、75/25~99/1が好ましく、更に好ましくは85/15~95/5、特に好ましくは90/10~93/7、最も好ましくは91/9~92/8である。この範囲内であると、吸収性能が更に良好となる。
 架橋重合体(A)の構成単位として、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の他に、これらと共重合可能なその他のビニルモノマー(a3)を構成単位とすることができる。その他のビニルモノマー(a3)は1種を単独で用いても、2種以上を併用してもよい。
 共重合可能なその他のビニルモノマー(a3)としては、特に限定はなく、公知(例えば、特許第3648553号公報の0028~0029段落に開示されている疎水性ビニルモノマー、特開2003-165883号公報の0025段落及び特開2005-75982号公報の0058段落に開示されているビニルモノマー等)の疎水性ビニルモノマー等が使用でき、具体的には例えば下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン及びジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレン性モノマー
 アルケン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等);並びにアルカジエン(ブタジエン及びイソプレン等)等。
(iii)炭素数5~15の脂環式エチレン性モノマー
 モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等);並びにポリエチレン性ビニルモノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
 その他のビニルモノマー(a3)単位の含有量(モル%)は、吸収性能等の観点から、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位の合計モル数に基づいて、0~5モル%が好ましく、更に好ましくは0~3モル%、特に好ましくは0~2モル%、とりわけ好ましくは0~1.5モル%であり、吸収性能等の観点から、その他のビニルモノマー(a3)単位の含有量が0モル%であることが最も好ましい。
 架橋剤(b)としては、特に限定はなく、公知(例えば、特許第3648553号公報の0031~0034段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも1個有してかつ少なくとも1個のエチレン性不飽和基を有する架橋剤及び水溶性置換基と反応し得る官能基を少なくとも2個有する架橋剤、特開2003-165883号公報の0028~0031段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、エチレン性不飽和基と反応性官能基とを有する架橋剤及び反応性置換基を2個以上有する架橋剤、特開2005-75982号公報の0059段落に開示されている架橋性ビニルモノマー並びに特開2005-95759号公報の0015~0016段落に開示されている架橋性ビニルモノマー)の架橋剤等が使用できる。これらのうち、吸収性能等の観点から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、更に好ましいのはトリアリルシアヌレート、トリアリルイソシアヌレート及び炭素数2~40のポリオールのポリ(メタ)アリルエーテル、特に好ましいのはトリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリロキシエタン、ポリエチレングリコールジアリルエーテル及びペンタエリスリトールトリアリルエーテル、最も好ましいのはペンタエリスリトールトリアリルエーテルである。架橋剤(b)は1種を単独で用いても、2種以上を併用してもよい。
 架橋剤(b)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位の、その他のビニルモノマー(a3)も使用する場合は(a1)~(a3)の、合計モル数に基づいて、0.001~5モル%が好ましく、更に好ましくは0.005~3モル%、特に好ましくは0.01~1モル%である。この範囲であると、吸収性能が更に良好となる。
 架橋重合体(A)の重合方法としては、公知の溶液重合(断熱重合、薄膜重合及び噴霧重合法等;特開昭55-133413号公報等)や、公知の逆相懸濁重合(特公昭54-30710号公報、特開昭56-26909号公報及び特開平1-5808号公報等)が挙げられる。
 架橋重合体(A)は、水溶性ビニルモノマー(a1)及び/又は加水分解性ビニルモノマー(a2)並びに架橋剤(b)を必須構成成分とする単量体組成物を重合することにより得ることができる。重合方法のうち、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、好ましくは溶液重合法であり、体液吸収層を構成する他の材料との絡み性から、更に好ましくは水溶液重合法及び逆相懸濁重合法である。
 水溶液重合を行う場合、水と有機溶媒とを含む混合溶媒を使用することができ、有機溶媒としては、メタノール、エタノール、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、ジメチルスルホキシド及びこれらの2種以上の混合物を挙げられる。
 水溶液重合を行う場合、有機溶媒の使用量(重量%)は、水の重量を基準として40重量%以下が好ましく、更に好ましくは30重量%以下である。
 重合に開始剤を用いる場合、従来公知のラジカル重合用開始剤が使用可能であり、例えば、アゾ化合物[アゾビスイソブチロニトリル、アゾビスシアノ吉草酸及び2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド等]、無機過酸化物(過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等)、有機過酸化物[過酸化ベンゾイル、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド及びジ(2-エトキシエチル)パーオキシジカーボネート等]及びレドックス触媒(アルカリ金属の亜硫酸塩又は重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム及びアスコルビン酸等の還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素及び有機過酸化物等の酸化剤との組み合わせよりなるもの)等が挙げられる。これらの触媒は、単独で使用してもよく、これらの2種以上を併用しても良い。
 ラジカル重合開始剤の使用量(重量%)は、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の、その他のビニルモノマー(a3)も使用する場合は(a1)~(a3)の、合計重量に基づいて、0.0005~5重量%が好ましく、更に好ましくは0.001~2重量%である。
 重合時には、必要に応じて連鎖移動剤に代表される重合コントロール剤を併用しても良く、これらの具体例としては、次亜リン酸ナトリウム、亜リン酸ナトリウム、アルキルメルカプタン類、ハロゲン化アルキル類、チオカルボニル化合物類等が挙げられる。これらの重合コントロール剤は、単独で使用してもよく、これらの2種以上を併用しても良い。
 重合コントロール剤の使用量(重量%)は、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の、その他のビニルモノマー(a3)も使用する場合は(a1)~(a3)の、合計重量に基づいて、0.0005~5重量%が好ましく、更に好ましくは0.001~2重量%である。
 重合方法として懸濁重合法又は逆相懸濁重合法をとる場合は、必要に応じて、分散剤又は界面活性剤の存在下に重合を行っても良い。また、逆相懸濁重合法の場合、キシレン、ノルマルヘキサン及びノルマルヘプタン等の炭化水素系溶媒を使用して重合を行うことができる。
 重合開始温度は、使用する触媒の種類によって適宜調整することができるが、0~100℃が好ましく、更に好ましくは2~80℃である。
 重合に溶媒(有機溶媒及び水等)を使用する場合、重合後に溶媒を留去することが好ましい。溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0~10重量%が好ましく、更に好ましくは0~5重量%、特に好ましくは0~3重量%、最も好ましくは0~1重量%である。この範囲であると、吸水性樹脂粒子の吸収性能が更に良好となる。
 溶媒に水を含む場合、留去後の水分(重量%)は、架橋重合体(A)の重量に基づいて、0~20重量%が好ましく、更に好ましくは1~10重量%、特に好ましくは2~9重量%、最も好ましくは3~8重量%である。この範囲であると、吸収性能が更に良好となる。
 前記の重合方法により架橋重合体(A)が水を含んだ含水ゲル状物(すなわち、含水ゲル状物である架橋重合体(A)。以下、含水ゲルと略記する)を得ることができ、更に含水ゲルを乾燥することで乾燥した架橋重合体(A)を得ることができる。
 水溶性ビニルモノマー(a1)としてアクリル酸やメタクリル酸等の酸基含有モノマーを用いる場合、含水ゲルを塩基で中和しても良い。酸基の中和度は、50~80モル%であることが好ましい。中和度が50モル%未満の場合、得られる含水ゲル重合体の粘着性が高くなり、製造時及び使用時の作業性が悪化する場合がある。更に得られる吸水性樹脂粒子の保水量が低下する場合がある。一方、中和度が80モル%を超える場合、得られた樹脂のpHが高くなり人体の皮膚に対する安全性が懸念される場合がある。
 なお、中和は、吸水性樹脂粒子の製造において、架橋重合体(A)の重合以降のいずれの段階で行ってもよく、例えば、含水ゲルの状態で中和する等の方法が好ましい例として例示される。
 中和する塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物や、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩を通常使用できる。
 重合によって得られる含水ゲルは、必要に応じて細断することができる。細断後のゲルの大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは1mm~1cmである。この範囲であると、乾燥工程での乾燥性が更に良好となる。
 細断は、公知の方法で行うことができ、通常の細断装置(例えば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機)等を使用して細断できる。
 溶媒(水を含む。)を留去する方法としては、80~230℃の温度の熱風で留去(乾燥)する方法、100~230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用できる。
 含水ゲルを乾燥して架橋重合体(A)を得た後、乾燥後に粉砕することができる。粉砕方法については、特に限定はなく、通常の粉砕装置(例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機)等が使用できる。粉砕された架橋重合体は、必要によりふるい分け等により粒度調整できる。
 必要によりふるい分けした場合の架橋重合体(A)の重量平均粒子径(μm)は、100~800が好ましく、更に好ましくは200~700、次に好ましくは250~600、特に好ましくは300~500、最も好ましくは350~450である。この範囲であると、吸収性能が更に良好となり、体液吸収層を構成する他の材料との絡み性も良くなり、形状保持性が良い。
 なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンバニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、並びに受け皿の順等に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙(横軸がふるいの目開き(粒子径)、縦軸が重量分率)にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径とする。
 また、粉砕した場合、粉砕後の架橋重合体(A)に含まれる微粒子の含有量は少ないほど吸収性能が良好となるため、架橋重合体(A)の合計重量に占める106μm以下(好ましくは150μm以下)の微粒子の含有率(重量%)は3以下が好ましく、更に好ましくは1以下である。微粒子の含有量は、上記の重量平均粒子径を求める際に作成するグラフを用いて求めることができる。
 粉砕した場合、粉砕後の架橋重合体(A)の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、体液吸収層を構成する他の材料とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。
 なお、架橋重合体(A)は、その性能を損なわない範囲で残留溶媒や残存架橋成分等の他の成分を多少含んでも良い。
 架橋重合体(A)は、表面改質や通液性の観点から疎水性物質(g)を含有することが好ましい。
 疎水性物質(g)としては、炭化水素基を含有する疎水性物質(g1)、フッ素原子をもつ炭化水素基を含有する疎水性物質(g2)及びポリシロキサン構造をもつ疎水性物質(g3)等が含まれる。
 炭化水素基を含有する疎水性物質(g1)としては、ポリオレフィン樹脂、ポリオレフィン樹脂誘導体、ポリスチレン樹脂、ポリスチレン樹脂誘導体、ワックス、長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪族アルコール、長鎖脂肪族アミド及びこれらの2種以上の混合物等が含まれる。
 ポリオレフィン樹脂としては、炭素数2~4のオレフィン(エチレン、プロピレン、イソブチレン及びイソプレン等)を必須構成単量体(オレフィンの含有量はポリオレフィン樹脂の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体(たとえば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(エチレン-イソブチレン)及びイソプレン等)が挙げられる。
 ポリオレフィン樹脂誘導体としては、ポリオレフィン樹脂にカルボキシ基(-COOH)や1,3-オキソ-2-オキサプロピレン(-COOCO-)等を導入した重量平均分子量1000~100万の重合体(たとえば、ポリエチレン熱減成体、ポリプロピレン熱減成体、マレイン酸変性ポリエチレン、塩素化ポリエチレン、マレイン酸変性ポリプロピレン、エチレン-アクリル酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、マレイン化ポリブタジエン、エチレン-酢酸ビニル共重合体及びエチレン-酢酸ビニル共重合体のマレイン化物等)が挙げられる。
 ポリスチレン樹脂としては、重量平均分子量1000~100万の重合体等が使用できる。
 ポリスチレン樹脂誘導体としては、スチレンを必須構成単量体(スチレンの含有量は、ポリスチレン誘導体の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体(たとえば、スチレン-無水マレイン酸共重合体、スチレン-ブタジエン共重合体及びスチレン-イソブチレン共重合体等)が挙げられる。
 ワックスとしては、融点50~200℃のワックス(たとえば、パラフィンワックス、ミツロウ、カルバナワックス及び牛脂等)が挙げられる。
 長鎖脂肪酸エステルとしては、炭素数8~30の脂肪酸と炭素数1~12のアルコールとのエステル(たとえば、ラウリン酸メチル、ラウリン酸エチル、ステアリン酸メチル、ステアリン酸エチル、オレイン酸メチル、オレイン酸エチル、グリセリンラウリン酸モノエステル、グリセリンステアリン酸モノエステル、グリセリンオレイン酸モノエステル、ペンタエリスリットラウリン酸モノエステル、ペンタエリスリットステアリン酸モノエステル、ペンタエリスリットオレイン酸モノエステル、ソルビットラウリン酸モノエステル、ソルビットステアリン酸モノエステル、ソルビットオレイン酸モノエステル、ショ糖パルミチン酸モノエステル、ショ糖パルミチン酸ジエステル、ショ糖パルミチン酸トリエステル、ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステル及び牛脂等)が挙げられる。
 長鎖脂肪酸及びその塩としては、炭素数8~30の脂肪酸(たとえば、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、ダイマー酸及びベヘニン酸等)が挙げられ、その塩としては亜鉛、カルシウム、マグネシウム又はアルミニウム(以下、それぞれZn、Ca、Mg、Alと略す)との塩(たとえば、パルミチン酸Ca、パルミチン酸Al、ステアリン酸Ca、ステアリン酸Mg、ステアリン酸Al等)が挙げられる。
 長鎖脂肪族アルコールとしては、炭素数8~30の脂肪族アルコール(たとえば、ラウリルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコール等)が挙げられる。吸収性物品の耐モレ性の観点等から、パルミチルアルコール、ステアリルアルコール、オレイルアルコールが好ましく、さらに好ましくはステアリルアルコールである。
 長鎖脂肪族アミドとしては、炭素数8~30の長鎖脂肪族一級アミンと炭素数1~30の炭化水素基を有するカルボン酸とのアミド化物、アンモニア又は炭素数1~7の1級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物、炭素数8~30の脂肪族鎖を少なくとも1つ有する長鎖脂肪族二級アミンと炭素数1~30のカルボン酸とのアミド化物及び炭素数1~7の脂肪族炭化水素基を2個有する二級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物が挙げられる。
 炭素数8~30の長鎖脂肪族一級アミンと炭素数1~30の炭化水素基を有するカルボン酸とのアミド化物としては、1級アミンとカルボン酸とが1:1で反応した物と1:2で反応した物に分けられる。1:1で反応した物としては、酢酸N-オクチルアミド、酢酸N-ヘキサコシルアミド、ヘプタコサン酸N-オクチルアミド及びヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。1:2で反応したものとしては、二酢酸N-オクチルアミド、二酢酸N-ヘキサコシルアミド、ジヘプタコサン酸N-オクチルアミド及びジヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。なお、1級アミンとカルボン酸とが1:2で反応した物の場合、使用するカルボン酸は、同一でも異なっていてもよい。
 アンモニア又は炭素数1~7の1級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物としては、アンモニア又は1級アミンとカルボン酸とが1:1で反応した物と1:2で反応した物に分けられる。1:1で反応した物としては、ノナン酸アミド、ノナン酸メチルアミド、ノナン酸N-ヘプチルアミド、ヘプタコサン酸アミド、ヘプタコサン酸N-メチルアミド、ヘプタコサン酸N-ヘプチルアミド及びヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。1:2で反応したものとしては、ジノナン酸アミド、ジノナン酸N-メチルアミド、ジノナン酸N-ヘプチルアミド、ジオクタデカン酸アミド、ジオクタデカン酸N-エチルアミド、ジオクタデカン酸N-ヘプチルアミド、ジヘプタコサン酸アミド、ジヘプタコサン酸N-メチルアミド、ジヘプタコサン酸N-ヘプチルアミド及びジヘプタコサン酸N-ヘキサコシルアミド等が挙げられる。なお、アンモニア又は1級アミンとカルボン酸とが1:2で反応した物としては、使用するカルボン酸は、同一でも異なっていてもよい。
 炭素数8~30の脂肪族鎖を少なくとも1つ有する長鎖脂肪族二級アミンと炭素数1~30のカルボン酸とのアミド化物としては、酢酸N-メチルオクチルアミド、酢酸N-メチルヘキサコシルアミド、酢酸N-オクチルヘキサコシルアミド、酢酸N-ジヘキサコシルアミド、ヘプタコサン酸N-メチルオクチルアミド、ヘプタコサン酸N-メチルヘキサコシルアミド、ヘプタコサン酸N-オクチルヘキサコシルアミド及びヘプタコサン酸N-ジヘキサコシルアミド等が挙げられる。
 炭素数1~7の脂肪族炭化水素基を2個有する二級アミンと炭素数8~30の長鎖脂肪酸とのアミド化物としては、ノナン酸N-ジメチルアミド、ノナン酸N-メチルヘプチルアミド、ノナン酸N-ジヘプチルアミド、ヘプタコサン酸N-ジメチルアミド、ヘプタコサン酸N-メチルヘプチルアミド及びヘプタコサン酸N-ジヘプチルアミド等が挙げられる。
 フッ素原子をもつ炭化水素基を含有する疎水性物質(g2)としては、パーフルオロアルカン、パーフルオロアルケン、パーフルオロアリール、パーフルオロアルキルエーテル、パーフルオロアルキルカルボン酸、パーフルオロアルキルアルコール及びこれらの2種以上の混合物等が含まれる。
 ポリシロキサン構造をもつ疎水性物質(g3)としては、ポリジメチルシロキサン、ポリエーテル変性ポリシロキサン(ポリオキシエチレン変性ポリシロキサン及びポリ(オキシエチレン・オキシプロピレン)変性ポリシロキサン等)、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン、アミノ変性ポリシロキサン、アルコキシ変性ポリシロキサン等及びこれらの混合物等が含まれる。
 疎水性物質(g)のHLB値は、1~10が好ましく、さらに好ましくは2~8、特に好ましくは3~7である。この範囲であると、吸収性物品の耐モレ性がさらに良好となる。なお、HLB値は、親水性-疎水性バランス(HLB)値を意味し、小田法(新・界面活性剤入門、197頁、藤本武彦、三洋化成工業株式会社発行、1981年発行)により求められる。
 疎水性物質(g)のうち、吸収性物品の耐モレ性の観点から、炭化水素基を含有する疎水性物質(g1)が好ましく、より好ましくは長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪族アルコール並びに長鎖脂肪族アミドであり、さらに好ましくはソルビットステアリン酸エステル、ショ糖ステアリン酸エステル、ステアリン酸、ステアリン酸Mg、ステアリン酸Ca、ステアリン酸Zn及びステアリン酸Al、特に好ましくはショ糖ステアリン酸エステル及びステアリン酸Mgであり、最も好ましくはショ糖ステアリン酸モノエステルである。
 本発明の吸水性樹脂粒子(P)は、架橋重合体(A)の表面が表面架橋剤(d)により架橋された構造を有することが好ましい。架橋重合体(A)の表面を架橋することにより吸水性樹脂粒子のゲル強度を向上させることができ、吸水性樹脂粒子の望ましい保水量と荷重下における吸収量とを満足させることができる。表面架橋剤(d)としては、公知(特開昭59-189103号公報に記載の多価グリシジル化合物、多価アミン、多価アジリジン化合物及び多価イソシアネート化合物等、特開昭58-180233号公報及び特開昭61-16903号公報の多価アルコール、特開昭61-211305号公報及び特開昭61-252212号公報に記載のシランカップリング剤、特表平5-508425号公報に記載のアルキレンカーボネート、特開平11-240959号公報に記載の多価オキサゾリン化合物並びに特開昭51-136588号公報及び特開昭61-257235号公報に記載の多価金属等)の表面架橋剤等が使用できる。これらの表面架橋剤のうち、経済性及び吸収特性の観点から、多価グリシジル化合物、多価アルコール及び多価アミンが好ましく、更に好ましいのは多価グリシジル化合物及び多価アルコール、特に好ましいのは多価グリシジル化合物、最も好ましいのはエチレングリコールジグリシジルエーテルである。表面架橋剤は1種を単独で用いても良いし、2種以上を併用しても良い。
 表面架橋をする場合、表面架橋剤の使用量(重量%)は、表面架橋剤の種類、架橋させる条件、目標とする性能等により種々変化させることができるため特に限定はないが、吸収特性の観点等から、架橋重合体(A)100重量部に対して、0.001~3重量部が好ましく、更に好ましくは0.005~2重量部、特に好ましくは0.01~1.5重量部である。
 架橋重合体(A)の表面架橋は、架橋重合体(A)と表面架橋剤(d)とを混合し、必要に応じて加熱することで行うことができる。架橋重合体(A)と表面架橋剤(d)との混合方法としては、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、ミンチ混合機、リボン型混合機、流動式混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等の混合装置を用いて架橋重合体(A)と表面架橋剤(d)とを均一混合する方法が挙げられる。この際、表面架橋剤(d)は、水及び/又は任意の溶剤で希釈して使用しても良い。
 架橋重合体(A)と表面架橋剤(d)とを混合する際の温度は特に限定されないが、10~150℃が好ましく、更に好ましくは20~100℃、特に好ましくは25~80℃である。
 架橋重合体(A)と表面架橋剤(d)とを混合した後、加熱処理を行う。加熱温度は、樹脂粒子の耐壊れ性の観点から好ましくは100~180℃、更に好ましくは110~175℃、特に好ましくは120~170℃である。180℃以下の加熱であれば蒸気を利用した間接加熱が可能であり設備上有利であり、100℃未満の加熱温度では吸収性能が悪くなる場合がある。また、加熱時間は加熱温度により適宜設定することができるが、吸収性能の観点から、好ましくは5~60分、更に好ましくは10~40分である。表面架橋して得られる吸水性樹脂を、最初に用いた表面架橋剤と同種又は異種の表面架橋剤を用いて、更に表面架橋することも可能である。
 架橋重合体(A)の表面を表面架橋剤(d)により架橋して吸水性樹脂粒子(P)を得た後、必要により篩別して粒度調整される。得られた粒子の平均粒経は、好ましくは100~600μm、更に好ましくは200~500μmである。微粒子の含有量は少ない方が好ましく、100μm以下の粒子の含有量は3重量%以下であることが好ましく、150μm以下の粒子の含有量が3重量%以下であることが更に好ましい。
 吸水性樹脂粒子(P)は更に表面に無機質粉末をコーティングすることもできる。このましい無機質粉末としては、ガラス、シリカゲル、シリカゾル、シリカ、クレー、炭素繊維、カオリン、タルク、マイカ、ベントナイト、セリサイト、アスベスト及びシラス等)が挙げられる。無機質粉末のうち、好ましいのはシリカゾル、シリカ及びタルクである。
 無機質粉末の形状としては、不定形(破砕状)、真球状、フィルム状、棒状及び繊維状等のいずれでもよいが、不定形(破砕状)又は真球状が好ましく、更に好ましくは真球状である。
 無機質粉末の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0.01~3.0重量%が好ましく、更に好ましくは0.05~1.0重量%、次に好ましくは0.07~0.8重量%、特に好ましくは0.10~0.6重量%、最も好ましくは0.15~0.5重量%である。この範囲であると、吸収性物品の耐カブレ性が更に良好となる。
 吸水性樹脂粒子(P)には、他の添加剤(例えば、公知(特開2003-225565号、特開2006-131767号等)の防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、着色剤、芳香剤、消臭剤及び有機質繊維状物等)を含むこともできる。これらの添加剤を含有させる場合、添加剤の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0.001~10重量%が好ましく、更に好ましくは0.01~5重量%、特に好ましくは0.05~1重量%、最も好ましくは0.1~0.5重量%である。
 吸水性樹脂粒子(P)は、自重の40倍の生理食塩水を好ましくは40~200秒、さらに好ましくは55~150秒、特に好ましくは65~110秒で吸収することができることが衛生物品にした際の白化時間の観点から好ましい。また、架橋アクリレート系重合体繊維の二価の金属イオンの吸着速度に合わせて適切な吸収時間にすることが好ましい。吸収時間は、吸水性樹脂粒子(P)の平均粒径、添加する疎水性物質や無機質粉末及びその他製造条件等によって、適宜制御することができる。吸水性樹脂粒子(P)は、このような高レベルの吸収能力を有する限り、1種でもよいし、2種以上の混合物であってもよい。
 吸水性樹脂粒子(P)は、公知の水溶液重合法や、逆相懸濁重合法によって製造することができる。重合方法のうち、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、溶液重合法を採用することが好ましい。
 吸水性樹脂粒子(P)は、好ましくは500~8000mJ、更に好ましくは1000~5000mJ、特に好ましくは1500~4000mJの基本流動性エネルギーを有することが好ましい。この範囲であると、体液吸収層の膨潤後の形状保持性が特に良好になる。基本流動性エネルギーは、吸水性樹脂粒子(P)の平均粒子径、見かけ密度及び吸水性樹脂粒子(P)の表面処理剤の種類や量を調整することによって制御することができる。なお、基本流動性エネルギーは、粉体流動性分析装置を使用して、特開2007-040770号公報に記載されるようにして測定される。
 また、本発明の衛生物品における体液吸収層は、上述してきた吸水性樹脂粒子(P)を有してなるが、体液吸収層を構成する他の材料として更に親水性繊維を有していても良い。体液吸収層が、吸水性樹脂粒子(P)と親水性繊維とを含む場合、吸水性樹脂粒子(P)と親水性繊維とは均一に混合されていてもよく、いずれか一方が偏在する形態であってもよい。体液吸収層が親水性繊維を有する場合、吸水性樹脂粒子(P)の重量比率は、吸水性樹脂粒子(P)と親水性繊維との合計重量に基づいて30重量%以上が好ましく、更に好ましくは50%重量以上、特に好ましくは70重量%以上、最も好ましくは90重量%以上である。なお、親水性繊維とは、それ自体は液体を吸収して膨潤する性質を有さない材料で構成されている親水性の繊維であり、例えば綿状パルプ等の及びセルロース等の水酸基を多く保持する天然物由来の繊維等が挙げられる。
 次に、不織布層について説明する。本発明の衛生物品は、体液が体液吸収層に到達する前に、Na型又はK型の塩型カルボキシル基を有する架橋アクリレート系重合体繊維を含む不織布層を通るように構成したことを最大の特徴とする。このような構成により、体液中の二価の金属イオンを、架橋アクリレート系重合体繊維に存在するNa型又はK型の塩型カルボキシル基で吸着し、二価の金属イオンを除去した体液を体液吸収層に受け入れることができる。その結果、二価の金属イオンによる体液吸収層中の吸収体の吸収能力の低下の影響を発現しないようにすることができる。
 本発明で使用する架橋アクリレート系繊維は、アクリロニトリル系共重合物から公知の方法に準じて製造されることができる。前記共重合体の組成としては、アクリロニトリルが50重量%以上であることが好ましく、より好ましくは70重量%以上、更に好ましくは80重量%以上である。架橋アクリレート系繊維の架橋構造は、アクリロニトリル系重合物のニトリル基とヒドラジン系化合物を反応させることによって導入されることができる。架橋構造は、繊維物性やカルボキシル基の保持性に大きく影響する。アクリロニトリルの共重合組成が少なすぎる場合には、架橋構造が少なくなり、物性やカルボキシル基の保持性の低下を招く可能性がある。
 アクリロニトリル系重合体におけるアクリロニトリル以外の共重合成分としては、アクリロニトリルと共重合可能な単量体であれば特に限定されないが、例えば、メタリルスルホン酸、p-スチレンスルホン酸などのスルホン酸基含有単量体及びその塩、(メタ)アクリル酸、メタコン酸等のカルボン酸基含有単量体及びその塩、スチレン、酢酸ビニル、(メタ)アクリル酸エステル、(メタ)アクリルアミド等の単量体などを挙げることができる。
 ヒドラジン系化合物等を含有する溶液でアクリロニトリル系繊維を処理することにより、アクリロニトリル系繊維中のニトリル基とヒドラジンが反応し、繊維中に架橋構造が形成される。ヒドラジン系化合物としては、水加ヒドラジン、塩酸ヒドラジン、硫酸ヒドラジン、中性硫酸ヒドラジン、炭酸ヒドラジンなどを挙げることができる。処理条件としては、例えば、ヒドラジン濃度として3~40重量%となるように上記のヒドラジン系化合物を添加した水溶液に上述したアクリロニトリル系繊維を浸漬し、50~120℃、5時間以内で処理する方法などが挙げられる。
 このようにして架橋構造が導入された後、アルカリ性金属化合物による加水分解処理を行う。これにより、繊維中に存在しているニトリル基やアミド基が加水分解され、繊維の表層部にカルボキシル基が形成される。カルボキシル基は、架橋アクリレート系重合体繊維が体液と接触した際に体液中の二価の金属イオンを吸着する要因となる。形成されるカルボキシル基量は、処理条件によって調整することができる。なお、アミド基は、ヒドラジン系化合物での処理の際に、一部のニトリル基から生成される。また、架橋構造導入処理及び加水分解処理は、上述のように順に行なってもよいが、それぞれの処理薬剤を混合した水溶液を使用して、一括して同時に行なうこともできる。
 本発明では、更に硝酸塩、硫酸塩、塩酸塩などの金属塩によるイオン交換処理、硝酸、硫酸、塩酸、ギ酸などによる酸処理、あるいは、アルカリ性金属化合物などによるpH調整処理などを施すことにより、繊維中のカルボキシル基を所望の塩型カルボキシル基あるいはH型カルボキシル基に変換したり、異種の塩型カルボキシル基を混在させたりして、二価の金属イオンの吸着性能を調整することも可能である。
 本発明では、塩型カルボキシル基を構成する金属種類として、ナトリウム又はカリウムを使用する。このようなナトリウム型又はカリウム型という特定の種類の塩型カルボキシル基を使用することによって、尿中の代表的な二価の金属イオンであるカルシウムイオンやマグネシウムイオンを効率的に吸着することができる。仮に、マグネシウムや亜鉛などの二価の金属の塩型カルボキシル基を使用すると、二価の金属のイオンが架橋アクリレート系重合体繊維から脱落して、吸水性樹脂粒子(P)の側に流出してしまう。そうすると、二価の金属のイオンによって吸水性樹脂粒子(P)の架橋が促進されてしまい、吸水性樹脂粒子(P)の吸水性能が大きく低下してしまう。
 本発明では、架橋アクリレート系重合体繊維の塩型カルボキシル基量は1.0~10.0mmol/gであることが好ましく、2.0~9.0mmol/gであることがより好ましく、3.0~8.0mmol/gであることが更に好ましい。塩型カルボキシル基量が上記下限未満では、体液中の二価の金属イオンを吸着する能力が低くなるおそれがある。その結果、不織布層の厚さを大きくすることが必要となり、衛生物品が全体として嵩高くなるおそれがある。一方、塩型カルボキシル基量が上記上限を越えると、カルボキシル基を繊維に付与するための処理時間が長くなり、経済的効果が低くなるとともに、吸水により繊維が膨潤し、不織布形状の維持が難しくなるおそれがある。
 架橋アクリレート系重合体繊維は、中心部とそれを包囲する表層部とからなる芯鞘構造を有し、表層部のカルボキシル基量が中心部より多いことが好ましい。このように、中心部とそれを包囲する表層部とからなる芯鞘構造を有することにより、中心部で硬い弾力性のある構造を作ることができ、不織布層の形状保持性を保ち、尿等の体液が不織布層を通過する際の接触時間を長くすることができる。
 架橋アクリレート系重合体繊維の横断面における表層部の占める面積は、10~70%であることが好ましく、20~60%であることがより好ましく、30~50%であることが更に好ましい。表層部の占める面積が上記下限未満では、二価の金属イオンの吸着性能を十分に発揮できないおそれがある。一方、表層部の占める面積が上記上限を越えると、繊維物性が低下するおそれがある。なお、表層部の占める面積は、後述の実施例に記載の方法で測定される。
 架橋アクリレート系重合体繊維は、その塩型カルボキシル基量の90%以上が表層部に存在することが好ましく、塩型カルボキシル基量の95%以上、さらには塩型カルボキシル基量の98%以上、さらには塩型カルボキシル基量の実質的に100%が表層部に存在することが好ましい。表層部中の塩型カルボキシル基量の存在割合が上記下限未満では、二価の金属イオンの吸着性能を十分に発揮できないおそれがある。
 上述のような芯鞘構造は、加水分解処理を従来より低濃度のアルカリ金属化合物の緩い条件で行い、その後の酸処理を従来より高温での厳しい条件で行なうことによって形成することができる。このようにすることにより、本発明の架橋アクリレート系重合体繊維は、表層部にカルボキシル基のほとんどが存在し、中心部にアクリロニトリル系重合体が温存された構造をとることができる。
 架橋アクリレート系重合体繊維の繊度は、0.05~20dtexであることが好ましく、0.5~10dtexであることがより好ましい。繊度が細くなれば、表面積が大きくなり、二価の金属イオンを吸着する速度が速くなるが、短繊維の強力が低くなり、不織布層に加工する際、繊維破断が発生し、毛羽や繊維粉じんが発生し、生産性が悪化したり品位が低下するおそれがある。また、繊度が太くなれば、不織布の生産性や品位は悪化しないが、二価の金属イオンの吸着速度が遅くなるおそれがある。
 架橋アクリレート系重合体繊維の水膨潤度は、0.5~5倍であることが好ましく、1.0~4倍であることがより好ましく、1.5~3倍であることが更に好ましい。水膨潤度が上記下限未満では、二価の金属イオンを十分に吸着できないおそれがある。一方、水膨潤度が上記上限を越えると、衛生物品中で水吸着後に大きな容積を占めてしまうおそれがある。
 本発明の衛生物品中の不織布層は、上述の架橋アクリレート系重合体繊維を不織布層重量の好ましくは20重量%以上、より好ましくは30重量%以上含有し、架橋アクリレート系重合体繊維のみからなるものであってもよい。
 また、本発明の衛生物品中の不織布層においては、バインダー繊維を併用することもできる。バインダー繊維の併用割合としては、不織布総重量の20~80重量%であることが好ましい。20重量%を下回ると不織布強度の向上効果が得られない場合があり、80重量%を上回ると相対的に架橋アクリレート系重合体繊維が少なくなるため、二価の金属イオンの吸着性能が不十分となる場合がある。また、かかるバインダー繊維としては、例えば、ポリエステル、ポリアミド、ポリエチレン、ポリプロピレン等の重合体からなる繊維を挙げることができ、複数種類を用いてもよい。
 また、本発明の衛生物品中の不織布層においては、不織布内での液体の拡散性を向上させることにより、液体中の二価の金属イオンの吸着性能を高める効果を期待できる。このための方法として、例えば、不織布層を構成する繊維の全部または一部について繊度を、好ましくは4.0dtex以下、より好ましくは3.0dtex以下の細い繊度として、毛細管現象により拡散させる方法や親水性の油剤を付与した繊維を一部に使用する方法を採用しうる。
 また、液体中の二価の金属イオンの吸着性能を高める効果を得る方法としては、不織布層中に液体が滞留する時間を長くする方法も採用しうる。かかる方法としては、例えば、不織布層を構成する繊維の一部に撥水性もしくは疎水性の油剤を付与した繊維を加えて、液体の厚さ方向の移動を抑制する方法を挙げることができる。かかる方法においては、液体の厚さ方向の移動が遅くなる分、水平方向へ拡散性が大きくなる効果も期待できる。
 また、滞留時間を長くする方法としては、保水性の高い繊維を一部に使用する方法も採用しうる。保水性の高い繊維としては、多孔質繊維やフィブリル化した繊維などを使用する方法が挙げられる。
 ここで、本発明で使用可能な多孔質繊維は、繊維内部に、外部への開口部を有する微細な孔を有するものであり、水銀圧入法により測定された孔径分布において、1~1000nmの平均孔径を示すものである。多孔質繊維の素材は、特に限定されず、ポリプロピレン、ポリエステル、ポリアクリロニトリル、ポリアミド及びアクリロニトリル系重合体等を用いることができる。これらの中でも液体の拡散性等の観点から、アクリロニトリル系重合体からなる多孔質繊維であることが好ましい。特に、アクリロニトリルを含む単量体組成物を重合してなり、アクリロニトリルの含有率が単量体組成物の合計重量に基づいて70重量%以上、更には80重量%以上、更には88重量%以上であるアクリロニトリル系重合体であることが好ましい。
 また、上記以外の保水性の高い繊維としては、特公平07-061370等に記載の、超吸水加工した外層と、アクリル繊維である内層の2層構造を有する超吸水性アクリル繊維や、特表2011-526220に記載の、アクリル酸、メタクリル酸、およびアクリル酸/メタクリル酸モノマーに基づく高吸収性繊維であって、アクリル酸がアクリル酸ナトリウムに部分的に中和されていて、ポリマー鎖の間の架橋を、アクリル酸の酸基とアクリル酸/メタクリル酸モノマー中のヒドロキシル基との反応からのエステル基によって得られる超吸水性繊維を挙げることができる。
 本発明の衛生物品に使用される不織布層は、従来公知の方法によって製造されることができ、例えばサーマルボンド不織布、エアスルー不織布、ニードルパンチ不織布、スパンレース不織布、エアレイド法によって製造される不織布などを使用することができる。これらの中では、衛生物品に要求される薄型性と安全性の面から、サーマルボンド不織布、エアスルー不織布、又はスパンレース不織布が好ましい。
 不織布の目付は、400g/m以下であることが好ましく、20g/m~200g/mであることがより好ましく、40g/m~150g/mであることが更に好ましく、50g/m~120g/mであることが特に好ましい。上記下限未満では、架橋アクリレート系繊維の繊維量が少なくなり、高い二価の金属イオンの除去効果が期待できないおそれがある。一方、上記上限を越えると、衛生物品の厚さが大きくなり、着用感が悪くなる可能性があるおそれがある。
 不織布の引張強度は、工場の製造ラインで加工できる程度の強度を確保するため、10N/5cm以上であることが好ましく、30N/5cm以上であることが更に好ましい。10N/5cmを下回ると、生産中に不織布が破断する恐れがある。
 本発明の衛生物品において、Na型又はK型の塩型カルボキシル基を有する架橋アクリレート系重合体繊維を含む不織布層は、体液が体液吸収層に接触する前の位置に、特に体液透過性シートと体液吸収層の間に設けることが好ましい。かかる位置に不織布層を配置することによって、体液吸収層に体液が接触する前に、体液は不織布層に接触し、体液中の二価の金属イオンが不織布中のNa型又はK型の塩型カルボキシル基を有する架橋アクリレート系重合体繊維によって吸着されることができる。それにより、二価の金属イオンの含有量が減少した体液が、体液吸収層に接触し、体液吸収層中の吸水性樹脂粒子(P)によって効率的に吸収されることになる。一方、Na型又はK型の塩型カルボキシル基を有する架橋アクリレート系重合体繊維を体液吸収層中に、即ち吸水性樹脂粒子(P)と同じ場所に配置した場合、体液中に含まれる二価の金属イオンをNa型又はK型の塩型カルボキシル基を有する架橋アクリレート系重合体繊維と吸水性樹脂粒子(P)とで取り合ってしまい、吸水性樹脂粒子(P)の吸収能力を低下させることになるので、好ましくない。
 以上説明してきた本発明の衛生物品は、Na型又はK型の塩型カルボキシル基を有する架橋アクリレート系重合体繊維を含む不織布層を、体液が体液吸収層に到達する前に通るように構成しているので、衛生物品が尿や血液などの体液を受けても体液吸収層に到着する前に体液中の二価の金属イオンを架橋アクリレート系重合体繊維のカルボキシル基で吸着することができる。従って、本発明の衛生物品は、体液を繰り返し受けても二価の金属イオンによる体液吸収層の吸収能力の低下の影響を受けずに体液を継続して吸収することができる。
 以下の実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中の比率は断りのない限り重量基準で示す。実施例中の特性の評価方法は以下の通りである。
 <生理食塩水の吸収時間>
 100mlビーカーに測定試料1.00gを入れ、生理食塩水(食塩濃度0.9重量%)40gを添加する。無撹拌下で静置して、生理食塩水が完全に吸水されるまでの時間(吸水終盤でビーカーを少し傾けて液残りを確認する)を測定し、吸収時間(t1)とする。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃とする。
 <基本流動性エネルギー>
 特開2007-040770号公報(発明を実施するための最良の形態)の記載に準拠して測定され、シスメックス株式会社製パウダーレオメーターFT4の基本流動性エネルギー測定モードで測定でき、25℃及び50%RHの測定環境下でブレード幅と回転速度をそれぞれ48mm、100m/sに設定し、7回行った測定結果の算術平均値を基本流動性エネルギーとする。なお、測定サンプルは容量160mlに固定して行い、内径50mmの160mlスプリット容器内に吸水性樹脂粒子(P)のそれぞれを自然落下で投入して得られたものを用いる。
 <重量平均粒子径>
 1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μmの目開きを有する標準ふるいを順に重ね、受け皿の上に組み合わせた。最上段のふるい上に吸水性樹脂粒子(P-1)約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせた。各ふるい及び受け皿の上に残存した粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙(横軸がふるいの目開き(粒子径)、縦軸が重量分率)にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径とした。
 <見掛け密度>
 25℃の環境下で、JIS K7365:1999に準拠して測定した。
 <吸水性樹脂粒子(P)の保水量>
 目開き63μm(JIS Z8801-1:2006)のナイロン網で作成したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水(食塩濃度0.9重量%)1,000ml中に無撹拌下、1時間浸漬した後、15分間吊るして水切りする。その後、ティーバッグごと、遠心分離器に入れ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバックを含めた重量(h1)を測定し次式から保水量を求める。
 保水量(g/g)=(h1)-(h2)
 なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃とする。
 測定試料を用いない以外は上記と同様にして、遠心脱水後のティーバックの重量を測定し(h2)とする。
 <ゲル弾性率>
 人工尿[尿素200重量部、塩化ナトリウム80重量部、硫酸マグネシウム(7水塩)8重量部、塩化カルシウム(2水塩)3重量部、硫酸第2鉄(7水塩)2重量部、イオン交換水9704重量部]60.0gを100mlビーカー(内径5cm)に量り取り、JIS K7224-1996に記載された操作と同様にして、測定試料2.0gを精秤して上記ビーカーに投入し、30倍膨潤ゲルを作成する。
 この膨潤ゲルが乾燥しないように30倍膨潤ゲルの入ったビーカーにラップをし、このビーカーを40±2℃の雰囲気下で3時間、更に25±2℃の雰囲気下で0.5時間静置した後、ラップを取り外し、30倍膨潤ゲルのゲル弾性率をカードメーター(例えば、株式会社アイテックテクノエンジニアリング製カードメーター・マックスME-500)を用いて測定する。なお、カードメーターの条件は以下の通りである。
・感圧軸:8mm
・スプリング:100g用
・荷重:100g
・上昇速度:1インチ/7秒
・試験性質:破断
・測定時間:6秒
・測定雰囲気温度:25±2℃
 <カルボキシル基量>
 (1)全カルボキシル基量
 十分乾燥した試料約1gを精秤し(W1g)、これに200mlの1mol/L塩酸水溶液を加え、試料を浸漬させて、30分間放置した後、ガラスフィルターで濾過し、水を加えて水洗する。この処理を3回繰返した後、濾液のpHが5以上になるまで十分に水洗する。次にこの資料を200mlの純水に入れ、1mol/L塩酸水溶液を添加してpH2にした後、0.1mol/L水酸化ナトリウム水溶液で情報に従って滴定曲線を求める。該滴定曲線から、全カルボキシル基に消費された水酸化ナトリウム水溶液消費量(Vml)を求め、次式によって全カルボキシル基量を求める。
 全カルボキシル基量(mmol/g)=(0.1×V)/W1
 (2)塩型カルボキシル基量
 上記の全カルボキシル基量の測定方法において、最初の1mol/L塩酸水溶液への浸漬およびそれに続く水洗を実施しないこと以外は同様にして、H型カルボキシル基量を算出する。かかるH型カルボキシル基量を上記の全カルボキシル基量から差し引くことで、塩型カルボキシル基量を算出する。
 <芯鞘繊維の表層部(鞘部)の占める面積割合>
 試料繊維を、繊維重量に対して2.5%のカチオン染料(Nichilon Black G 200)および2%の酢酸を含有する染色浴に、浴比1:80となるように浸漬し、30分間煮沸処理した後に、水洗、脱水、乾燥する。得られた染色済みの繊維を、繊維軸に垂直に薄くスライスし、繊維断面を光学顕微鏡で観察する。このとき、アクリロニトリル系重合体からなる中心部は黒く染色され、カルボキシル基が多く有する表層部は染料が十分に固定されず緑色になる。繊維断面における、繊維の直径(D1)、および、緑色から黒色へ変色し始める部分を境界として黒く染色されている中心部の直径(D2)を測定し、以下の式により表層部面積割合を算出する。なお、10サンプルの表層部面積割合の平均値をもって、試料繊維の表層部面積割合とする。
 表層部面積割合(%)=[{((D1)/2)π-((D2)/2)π}/((D1)/2)π]×100
 <繊維の繊度>
 JIS-L1015(2010)の「8.5 繊度」のA法に則り測定する。
 <多孔質繊維の平均孔径>
 JIS-R1655(2003)の水銀圧入法により測定する。
 <繊維の水膨潤度>
 イオン交換水100gをビーカーに入れ、十分乾燥した試料約1gを精秤し(W1g)、入れる。30分間放置した後、遠心脱水機で160Gの加重で5分間脱水し、その直後の重量を測定する(W2g)。次式により水膨潤度を求める。
 水膨潤度(g/g)=W2/W1-1
 <繊維の脱塩性能の評価方法>
 人工尿は、以下の表1の配分に従い、調製する。
Figure JPOXMLDOC01-appb-T000001
 人工尿をビーカーに240mL入れ、繊維2gを十分に解した状態でビーカー内に入れる。30秒間放置した後、繊維を取り出し、残液をJIS K0102の方法に従い、MgとCaの金属塩濃度を測定する。また、繊維を入れる前の人工尿の金属塩濃度も同じ方法で評価する。
 金属塩の捕捉率は、以下の式で算出する。
 捕捉率(%)=(処理後の人工尿中の金属塩濃度-処理前の人工尿中の金属塩濃度)/処理前の人工尿中の金属塩濃度×100
 <不織布の目付>
 10cm角に切り取った不織布を4枚採取し、20℃×65%RH雰囲気下で調湿した後、それぞれの重量(g)を計測し、1平方メートル当たりの重量に換算した後、平均値を算出し、目付とした。
 <不織布の厚み>
 10cm角に切り取った不織布を4枚採取し、JIS L1913:2010の6.1.1A法に従い、それぞれの厚みを計測し、その平均値を厚みとした。
 <不織布の密度>
 不織布の目付と厚みの測定値から、1m当たりの重量を算出した。
 <引張強度>
 JIS L1913:2010の6.3.1の方法に従い、50mm×300mmの試験片を5枚作成し、掴み間隔200mmで引張速度100mm/分で試験を行った。
 <衛生物品のドライネス評価方法>
 衛生物品の中央に金属リング(内径70mm、長さ50mm、300g)をセットし、人工尿40mlを注入し、人工尿が金属リング内から吸収を終えたら(つまり、表面不織布上に人工尿による光沢が確認できなくなったら)、直ちに金属リングを取り去り、表面の不織布が乾くまでの時間を測定する。金属リングを取り去った時点では表面不織布は濡れているが、衛生物品の体液吸収層の内部の吸水性樹脂粒子が吸収を始めると表面不織布が乾き始める。金属リングをセットしていたエリアの液濡れがなくなるまでの時間を白化時間1(秒)として測定する。最初の人工尿を注入し始めてから30分後に、再度金属リングをセットして人工尿40mlを注入し、同様の試験を繰り返し実施し、白化時間2(秒)として測定する。
 なお、人工尿、測定雰囲気及び放置雰囲気は、25±5℃、65±10%RHで行った。
 [吸水性樹脂粒子の製造例P-1]
 水溶性ビニルモノマー(a1)(アクリル酸)155部(2.15モル部)、架橋剤(a3)(ペンタエリスリトールトリアリルエーテル)0.6225部(0.0024モル部)及び脱イオン水340.27部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.62部、2%アスコルビン酸水溶液1.1625部及び2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]水溶液2.325部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより含水ゲル(1)を得た。
 次に、この含水ゲル(1)502.27部をミンチ機で細断しながら48.5%水酸化ナトリウム水溶液128.42部を添加して混合し、引き続き疎水性物質(a4)(ステアリン酸Mg)1.9部を添加して混合し、細断ゲル(2)を得た。更に細断ゲル(2)を通気型バンド乾燥機(150℃、風速2m/秒)で乾燥し、乾燥体を得た。乾燥体をジューサーミキサーにて粉砕した後、目開き150、300,500,600、710μmのふるいを用いて150~710μmの粒度に調整することにより、乾燥体粒子を得た。この乾燥体粒子100部を高速攪拌しながらエチレングリコールジグリシジルエーテルの2%水/メタノール混合溶液(水/メタノールの重量比=70/30)の5部をスプレー噴霧しながら加えて混合し、150℃で30分間静置して表面架橋した後、高速攪拌しながらシリカ(アエロジル200)を0.10部添加して、吸水性樹脂粒子(P-1)を得た。
 [吸水性樹脂粒子の製造例P-2]
 「目開き150、300,500,600、710μmのふるいを用いて150~710μmの粒度に調整」を「目開き150、300,500,600μmのふるいを用いて150~600μmの粒度に調整」に変更したこと以外、製造例P-1と同様にして吸水性樹脂粒子(P-2)を得た。
 [吸水性樹脂粒子の製造例P-3]
 「目開き150、300,500,600、710μmのふるいを用いて150~710μmの粒度に調整」を「目開き150、300,500μmのふるいを用いて150~500μmの粒度に調整」に変更したこと以外、製造例P-1と同様にして吸水性樹脂粒子(P-3)を得た。
 [吸水性樹脂粒子の製造例P-4]
 「シリカ(アエロジル200)を0.1部」を「シリカ(アエロジル200)を0.5部」に変更したこと以外、製造例P-1と同様にして吸水性樹脂粒子(P-4)を得た。
 [吸水性樹脂粒子の製造例P-5]
 「疎水性物質(a4)(ステアリン酸Mg)1.9部」を使用しなかったこと、及び「シリカ(アエロジル200)を0.1部」を使用しなかったこと以外、製造例P-1と同様にして吸水性樹脂粒子(P-5)を得た。
 得られた吸水性樹脂粒子(P-1)~(P-5)について、自重の40倍の生理食塩水を吸収する時間[生理食塩水(40倍)吸収時間]、基本流動性エネルギー、保水量及びゲル弾性率を下記の方法で測定し、重量平均粒子径及び見掛け密度と共に表2に記載した。
Figure JPOXMLDOC01-appb-T000002
[不織布層用の繊維の製造例b-1]
 アクリロニトリル90重量%、アクリル酸メチルエステル10重量%のアクリロニトリル系重合体を常法に従って紡糸、水洗、延伸、捲縮、熱処理をして原料繊維を得た。該原料繊維に、水加ヒドラジン水溶液15重量%を含有する水溶液中で、100℃×3時間処理した。該架橋繊維を水洗後、更に水酸化ナトリウム2重量%を含有する水溶液中で100℃×1時間加水分解した。次いで、水洗し、乾燥することで、Na塩型カルボキシル基を有する架橋アクリレート系重合体繊維を得た。得られた架橋アクリレート系重合体繊維の詳細と評価結果を表3に示す。なお、かかる繊維の赤外線吸収測定においては、ニトリル基に由来する2250cm-1付近に吸収があり、繊維表層部においてはニトリル基の加水分解が進行しているが、繊維中心部においてはニトリル基が残存していることが確認された。
[不織布層用の繊維の製造例b-2~b-7、不織布層用の繊維の比較製造例hb-1]
 製造例b-1の原料繊維に対して、表3に記載の水加ヒドラジンおよびアルカリ性金属化合物を含有する水溶液を用いて、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8重量%硝酸水溶液で、120℃×3時間処理し、水洗、乾燥することにより、架橋アクリレート系重合体繊維を得た。得られた架橋アクリレート系重合体繊維の詳細と評価結果を表3に示す。なお、かかる繊維の赤外線吸収測定においては、ニトリル基に由来する2250cm-1付近に吸収があり、繊維表層部においてはニトリル基の加水分解が進行しているが、繊維中心部においてはニトリル基が残存していることが確認された。
[不織布層用の繊維の比較製造例hb-2]
 製造例b-1の架橋アクリレート系重合体繊維に対して、硝酸カルシウム1重量%を含有する水溶液中で60℃×1時間処理してイオン交換を行い、Ca塩型架橋アクリレート系重合体繊維を得た。得られた架橋アクリレート系重合体繊維の詳細と評価結果を表3に示す。なお、かかる繊維の赤外線吸収測定においては、ニトリル基に由来する2250cm-1付近に吸収があり、繊維表層部においてはニトリル基の加水分解が進行しているが、繊維中心部においてはニトリル基が残存していることが確認された。
[不織布層用の繊維の比較製造例hb-3]
 特開2012-239620号公報(特許文献1)に記載の製造例1、2の方法に準じて、ポリエチレン繊維にメタクリル酸グリシジルをグラフト重合した繊維を得た。ただし、得られた繊維は繊維物性が弱く、水膨潤度の測定の際には成分の脱落が認められた。得られた架橋アクリレート系重合体繊維の詳細と評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 [不織布の製造例B-1~B-11、不織布の比較製造例HB-1~3]
 表4に示す割合で各繊維を混合したカード綿を作成した。製造例B-1~B-10及び比較製造例HB-1~HB-3は、得られたカード綿を130℃でエンボス形状のカレンダーロールを通過させ、各製造例の不織布を得た。製造例B-11は、得られたカード綿にニードルパンチ加工を行い、不織布を得た。得られた不織布の特性を表4に示す。なお、バインダー繊維としては、芯部分がポリエステル、鞘部分がポリエチレンからなる芯鞘繊維(繊度4.4dtex)を用い、多孔質繊維としては、日本エクスラン工業製多孔質アクリル繊維アクア(登録商標、繊度2dtex、平均細孔径35nm)を用いた。
Figure JPOXMLDOC01-appb-T000004
 [実施例1]
 親水性繊維(フラッフパルプ)100部と吸水性樹脂粒子(P-1)100部とを気流型混合装置(パッドフォーマー)で混合して、混合物を得た後、この混合物を目付500g/mとなるように均一にアクリル板(厚み4mm)上に積層し、5kg/cmの圧力で30秒間プレスし、体液吸収層を得た。この体液吸収層を10cm×40cmの長方形に裁断し、各々の上下に体液吸収層と同じ大きさの透水性シート(目付け15.5g/m、アドバンテック社製、フィルターペーパー2番)を配置し、更に体液不透過性シートとしてポリエチレンシート(タマポリ社製ポリエチレンフィルムUB-1)を裏面に、不織布層として不織布(B-1)を表面に配置し、更に、体液透過性シートとして別の不織布(不織布目付:25g/m、東洋紡社製2.2T 44-SMK)を最表面に配置することにより、衛生物品を調製した。体液吸収層中の吸水性樹脂粒子と親水性繊維の重量比率(吸水性樹脂粒子の重量/親水性繊維の重量)は、50/50であった。
 [実施例2]
 「不織布(B-1)」を「不織布(B-2)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [実施例3]
 「不織布(B-1)」を「不織布(B-3)」に変更したこと、「吸水性樹脂粒子(P-1)」を「吸水性樹脂粒子(P-2)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [実施例4]
 「不織布(B-1)」を「不織布(B-4)」に変更したこと、「吸水性樹脂粒子(P-1)」を「吸水性樹脂粒子(P-5)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [実施例5]
 「不織布(B-1)」を「不織布(B-5)」に変更したこと、「吸水性樹脂粒子(P-1)」を「吸水性樹脂粒子(P-4)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [実施例6]
 「不織布(B-1)」を「不織布(B-6)」に変更したこと、「吸水性樹脂粒子(P-1)」を「吸水性樹脂粒子(P-5)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [実施例7]
 「不織布(B-1)」を「不織布(B-7)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [実施例8]
 「不織布(B-1)」を「不織布(B-8)」に変更したこと、「吸水性樹脂粒子(P-1)」を「吸水性樹脂粒子(P-3)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [実施例9]
 「不織布(B-1)」を「不織布(B-9)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [実施例10]
 「不織布(B-1)」を「不織布(B-10)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [実施例11]
 「不織布(B-1)」を「不織布(B-11)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [比較例1]
 「不織布(B-1)」を「不織布(HB-1)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [比較例2]
 「不織布(B-1)」を「不織布(HB-2)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 [比較例3]
「不織布(B-1)」を「不織布(HB-3)」に変更したこと以外、実施例1と同様にして衛生物品を調製した。
 実施例1~11で得られた衛生物品及び比較例1~3で得られた比較用衛生物品について、衛生物品のドライネス(白化時間)を評価し、結果を表5に記載した。
Figure JPOXMLDOC01-appb-T000005
 表5から判るように、本発明の構成要件を満たす実施例1~11の衛生物品はいずれも、白化時間1及び白化時間2が明らかに短く、不織布の乾きが優れていた。また、白化時間2と白化時間1との差も小さく、体液吸収能力を継続的に発揮していた。これに対して、不織布層を構成する不織布中の架橋アクリレート系重合体繊維が塩型カルボキシル基でなくH型カルボキシル基を有する比較例1、不織布層を構成する不織布中の架橋アクリレート系重合体繊維が塩型カルボキシル基としてカルシウム(二価の金属)型カルボキシル基を有する比較例2、不織布層を構成する不織布の繊維が、特許文献1に記載のように、ポリマー繊維を用いて形成された繊維基材に対し、放射線グラフト重合法により陽イオン交換基を付着したものである比較例3はいずれも、白化時間1及び白化時間2が長く、不織布の乾きに劣っていた。また、白化時間2と白化時間1との差も大きく、継続的な体液吸収能力に劣っていた。したがって、本発明の衛生物品を使用した場合、尿や血液などの体液を継続的に吸収しても、体液中の二価の金属イオンの影響による吸収材料の吸収能力の低下が少なく、それに伴う皮膚のカブレ等を引き起こすことがないことが容易に予測される。
 本発明の衛生物品は、尿や血液などの体液に対して高い吸収能力を継続的に発揮することができるため、子供用紙おむつ、大人用紙おむつ、ナプキン、ペットシート、パンティーライナー、失禁パッド、汗取りシート、医療用血液吸収性物品等に極めて有用である。

Claims (9)

  1.  体液吸収層と不織布層とを含み、体液が体液吸収層に到達する前に不織布層を通るように構成した衛生物品であって、体液吸収層が、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成成分とする吸水性樹脂粒子(P)を含み、不織布層が、Na型カルボキシル基又はK型カルボキシル基のいずれかの塩型カルボキシル基を有する架橋アクリレート系重合体繊維を含み、架橋アクリレート系重合体繊維に含まれる塩型カルボキシル基量が1.0~10.0mmol/gであることを特徴とする衛生物品。
  2.  架橋アクリレート系重合体繊維が、中心部とそれを包囲する表層部とからなる芯鞘構造を有し、塩型カルボキシル基の実質的に全てが、表層部に存在することを特徴とする請求項1に記載の衛生物品。
  3.  架橋アクリレート系重合体繊維の横断面における表層部の占める面積が、10~70%であることを特徴とする請求項1又は2に記載の衛生物品。
  4.  架橋アクリレート系重合体繊維の繊度が、0.05~20dtexであることを特徴とする請求項1~3のいずれかに記載の衛生物品。
  5.  架橋アクリレート系重合体繊維の水膨潤度が、0.5~5倍であることを特徴とする請求項1~4のいずれかに記載の衛生物品。
  6.  不織布層中の架橋アクリレート系重合体繊維の混率が、20重量%以上であり、不織布層の目付が、400g/m以下であり、不織布層の引張強度が、10N/5cm以上であることを特徴とする請求項1~5のいずれかに記載の衛生物品。
  7.  不織布層が、平均細孔径が1~1000nmの多孔質繊維をさらに含むことを特徴とする請求項1~6のいずれかに記載の衛生物品。
  8.  衛生物品が、尿及び/又は血液の体液を吸収することを意図されたものであることを特徴とする請求項1~7のいずれかに記載の衛生物品。
  9.  衛生物品が、体液透過性シートと体液不透過性シートとをさらに含み、体液透過性シートと体液不透過性シートの間に体液吸収層が配置され、体液透過性シートと体液吸収層の間に不織布層が配置されていることを特徴とする請求項1~8のいずれかに記載の衛生物品。
PCT/JP2019/022294 2018-06-25 2019-06-05 衛生物品 WO2020003935A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019553593A JP6660515B1 (ja) 2018-06-25 2019-06-05 衛生物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018119719 2018-06-25
JP2018-119719 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020003935A1 true WO2020003935A1 (ja) 2020-01-02

Family

ID=68986484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022294 WO2020003935A1 (ja) 2018-06-25 2019-06-05 衛生物品

Country Status (2)

Country Link
JP (1) JP6660515B1 (ja)
WO (1) WO2020003935A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020255680A1 (ja) * 2019-06-20 2020-12-24
CN115305647A (zh) * 2022-06-21 2022-11-08 西安工程大学 一种回收料制备纳米纤维复合絮片的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149A (ja) * 1991-06-24 1993-01-08 Mitsubishi Petrochem Co Ltd 使い捨ておむつ
JP2009213719A (ja) * 2008-03-11 2009-09-24 Kao Corp 吸収性物品
JP2010207811A (ja) * 2008-06-10 2010-09-24 Kao Corp 吸収体及び吸収性物品
JP2016526983A (ja) * 2013-07-03 2016-09-08 ディーエスジー テクノロジー ホールディングス リミテッド 吸収複合材、吸収複合材を用いた吸収物品、並びに吸収複合材及び/又は吸収物品の製造方法、製造システム、及び製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149A (ja) * 1991-06-24 1993-01-08 Mitsubishi Petrochem Co Ltd 使い捨ておむつ
JP2009213719A (ja) * 2008-03-11 2009-09-24 Kao Corp 吸収性物品
JP2010207811A (ja) * 2008-06-10 2010-09-24 Kao Corp 吸収体及び吸収性物品
JP2016526983A (ja) * 2013-07-03 2016-09-08 ディーエスジー テクノロジー ホールディングス リミテッド 吸収複合材、吸収複合材を用いた吸収物品、並びに吸収複合材及び/又は吸収物品の製造方法、製造システム、及び製造装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020255680A1 (ja) * 2019-06-20 2020-12-24
WO2020255680A1 (ja) * 2019-06-20 2020-12-24 日本エクスラン工業株式会社 イオン交換繊維および該繊維を含有するイオン交換フィルター
JP7441429B2 (ja) 2019-06-20 2024-03-01 日本エクスラン工業株式会社 イオン交換繊維および該繊維を含有するイオン交換フィルター
CN115305647A (zh) * 2022-06-21 2022-11-08 西安工程大学 一种回收料制备纳米纤维复合絮片的方法
CN115305647B (zh) * 2022-06-21 2024-05-03 西安工程大学 一种回收料制备纳米纤维复合絮片的方法

Also Published As

Publication number Publication date
JPWO2020003935A1 (ja) 2020-07-02
JP6660515B1 (ja) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6722654B2 (ja) 水性液体吸収性樹脂粒子の製造方法、水性液体吸収性樹脂粒子、吸収体及び吸収性物品
EP2797638B1 (en) Absorbent article
EP2797566B1 (en) Water-absorbent resin powder and absorber and absorbent article using the same
WO2018147317A1 (ja) 吸水性樹脂粒子並びにこれを用いた吸収体及び吸収性物品
JP7278443B2 (ja) 吸収性物品の製造方法
JP2018039944A (ja) 吸収性樹脂粒子の製造方法
JP6660515B1 (ja) 衛生物品
JP6510561B2 (ja) 吸収性物品
CN111433258A (zh) 吸收性树脂颗粒、吸收体和吸收性物品、以及吸收性树脂颗粒的制造方法
JP7120739B2 (ja) 吸収性樹脂組成物粒子及びその製造方法
JP2018021090A (ja) 吸収性樹脂粒子及びその製造方法
JP2018016750A (ja) 吸水性樹脂粒子及びその製造方法
JP6898842B2 (ja) 吸収性樹脂粒子、これを含有してなる吸収体及び吸収性物品
JP6952648B2 (ja) 吸収性物品
WO2018225815A1 (ja) 吸水性樹脂粒子及びその製造方法
JP2019218429A (ja) 吸水性樹脂粒子および吸収性物品
JP6952649B2 (ja) 吸収性物品
JP2018039929A (ja) 水性液体吸収性樹脂粒子並びにこれを用いた吸収体及び吸収性物品
CN112334517B (zh) 吸水性树脂颗粒、包含其的吸收体和吸收性物品
JP2011032442A (ja) 吸収性樹脂粒子、吸収体及び吸収体物品
WO2019059019A1 (ja) 吸水性樹脂組成物及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019553593

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824785

Country of ref document: EP

Kind code of ref document: A1