WO2020003437A1 - 磁気刺激装置 - Google Patents

磁気刺激装置 Download PDF

Info

Publication number
WO2020003437A1
WO2020003437A1 PCT/JP2018/024585 JP2018024585W WO2020003437A1 WO 2020003437 A1 WO2020003437 A1 WO 2020003437A1 JP 2018024585 W JP2018024585 W JP 2018024585W WO 2020003437 A1 WO2020003437 A1 WO 2020003437A1
Authority
WO
WIPO (PCT)
Prior art keywords
leg
layer
layers
conductor
legs
Prior art date
Application number
PCT/JP2018/024585
Other languages
English (en)
French (fr)
Inventor
斉 加賀谷
紳一 出江
森 仁
建樹 八島
Original Assignee
株式会社Ifg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ifg filed Critical 株式会社Ifg
Priority to PCT/JP2018/024585 priority Critical patent/WO2020003437A1/ja
Priority to JP2018555297A priority patent/JP6535825B1/ja
Priority to CN201880094270.XA priority patent/CN112218680A/zh
Priority to US17/054,772 priority patent/US12029911B2/en
Priority to EP18924324.9A priority patent/EP3785763B1/en
Priority to KR1020207033215A priority patent/KR102514148B1/ko
Publication of WO2020003437A1 publication Critical patent/WO2020003437A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/04Leading of conductors or axles through casings, e.g. for tap-changing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2866Combination of wires and sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets

Definitions

  • the present invention relates to a device for enhancing magnetic stimulation effect by using a coil having a magnetic core and a cooling mechanism when magnetic stimulation is repeatedly performed on a peripheral nerve or a cortical motor area.
  • a rehabilitation method that does not use exercise therapy there is known a method of electrically stimulating peripheral nerves and motor areas of the cerebral cortex to induce muscle movement.
  • an electrical stimulation method transcutaneous electrical nerve stimulation TENS is widely used.
  • the motor nerve is electrically stimulated from the outside to induce contraction of the muscles of the limbs and restore the motor function.
  • a rehabilitation device for dysphagia a medical device that applies electrical stimulation to muscles below the jaw to induce contraction of swallowing-related muscles has recently been developed.
  • strong electrical stimulation is required. Strong electrical stimulation is equivalent to electric shock and is accompanied by strong discomfort and pain.
  • Various studies have been made to improve the frequency and waveform to relieve this discomfort and pain, but have not reached a fundamental solution.
  • Pain due to electrical stimulation is sensed by pain nerves distributed near the surface of the skin. Therefore, the pain of electrical stimulation can be alleviated by implanting the stimulation electrode subcutaneously. However, since the embedded electrode always needs to keep the signal line outside the body, there is a serious problem of bacterial infection from the wound.
  • Magnetic stimulation is another method of electromagnetically stimulating nerves without using contact electrodes. This is a method in which a pulse current is applied to a coil placed near the body surface, and an induced current generated in the body by a magnetic flux generated from the coil to stimulate a nerve to move a muscle.
  • This magnetic stimulation method does not require a step of attaching or embedding an electrode, and in addition, hardly causes discomfort or pain such as electric shock.
  • TMS Transcranial Magnetic Stimulation
  • Patent Document 1 discloses a urinary incontinence treatment device as an invention utilizing the muscle contraction effect of magnetic stimulation. This device performs a urinary incontinence treatment by repeating a cyclic contraction of the bladder sphincter by generating a pulse magnetic field of 0.01 to 3 Tesla at 1 to 100 Hz from a magnetic stimulation coil fixed to a chair or a body. Things.
  • Patent Literature 2 A technique in which a finger or an arm is continuously bent by magnetic stimulation instead of simple muscle contraction as in the treatment of urinary incontinence is disclosed in Patent Literature 2, and a magnetic pulse is repeated at intervals of 10 milliseconds to magnetize the nerve of the arm. It has been shown that stimulation increases the distance the arm bends as the number of pulses increases.
  • the effect of magnetic stimulation increases with the number of repetitions of magnetic stimulation.
  • it is necessary to pass a large current of several hundred amperes or more to the coil.
  • the magnetic stimulation by the continuous pulse has a problem that the heat generation and temperature rise of the coil are severe and the number of pulses cannot be increased.
  • the heat generated by this coil is a major technical constraint for performing continuous magnetic stimulation.
  • Patent Literature 3 discloses a magnetic stimulator in which a part of an O-shaped magnetic core is cut, an opposing portion is narrowed, and a coil is wound therearound to obtain a converged magnetic field.
  • Patent Document 4 discloses a magnetic stimulator in which a magnetic material is disposed in a space formed inside a winding.
  • Patent Document 5 discloses a technique of transcranial magnetic stimulation in which a coil is wound around a horseshoe-shaped core from a semicircle having high magnetic permeability to reduce heat generation of the coil and perform magnetic stimulation of the brain.
  • Patent Document 6 discloses a technique of using a ferromagnetic material having a high magnetic permeability and a high saturation magnetic flux density for a magnetic material core having a similar shape.
  • Patent Literature 7 describes a technique for reducing heat generation of a coil by bundling a thin litz wire, which is a common means of a high-frequency coil, and winding the coil.
  • the ratio of the cross-sectional area of the insulating portion (including the gap between the coils) to the cross-sectional area of the conductive portion is high.
  • the coil part is multi-insulated due to multiple winding of litz wire insulated with poor quality material, and the temperature of the coil part is above the allowable value due to the fact that heat from the part wound inside is difficult to escape to the outside become.
  • continuous magnetic stimulation can provide a strong magnetic stimulation effect, so that there is an advantage that a large movement of a finger or a limb muscle can be induced.
  • Patent Document 8 On the assumption that heat generation of the coil cannot be avoided.
  • Patent Document 8 attempts to suppress the temperature rise of the skin contact surface of the casing by air-cooling the magnetic core, the conductor itself serving as a coil, and the magnetic core and the skin contact surface of the casing. Is what you do.
  • the outline of the device configuration is such that conductors 120 and 160 formed of a material having a wide rectangular cross section (an example of a copper strip: 0.8 ⁇ 9 mm in cross section) are legs of the U-shaped core 200. 220 and 260 are wound in the vertical direction (the longitudinal direction of the copper strip is along the longitudinal direction of the legs 220 and 260).
  • a cooling gap 300 was provided to cool the conductors 120 and 160 and the legs 220 and 260 of the U-shaped core 200 by heating. Tried to solve the problem.
  • the cooling gap is required between the conductors 120 and 160, in other words, the size of the device is increased by the cooling gap, and the area efficiency of the entire conductors 120 and 160 (the overall conductor And the cooling mechanism (for example, a cooling fan or a cooling gas supply tube) for supplying a cooling gas to the casing is required.
  • the cooling mechanism for example, a cooling fan or a cooling gas supply tube
  • the present invention has been made in view of such problems of the related art, and by devising the structure of the conductor, it is possible to suppress the heat generation of the conductor itself, thereby suppressing the temperature rise of the skin contact surface. It is an object to provide a magnetic stimulator.
  • Claim 1 relates to the first structure (multi-stage spiral structure; first embodiment) of the conductors 12 and 16 of the magnetic stimulator A (FIGS. 1 to 5) of the present invention.
  • a magnetic core 20 formed of a core body 21 and a pair of legs 22 and 26 extending from the core body 21 is wound around each of the legs 22 and 26 and stacked in multiple stages.
  • the wires used for the conductor layers 12a to 12n and 16a to 16n each have a square cross section parallel to the longitudinal direction of the legs 22 and 26, Between the pair of legs 22 and 26, the wire constituting each conductor layer 12a to 12n of one leg 22 is connected to the wire constituting each conductor layer 16a to 16n of the other leg 26 in each step. Are respectively connected to
  • Claim 2 relates to a first connection method of the magnetic stimulator A (FIG. 4) according to claim 1.
  • the first layer 12a close to the tip 28 of the leg portion 22 is a conductor layer 16a wound around the other leg 26 in multiple stages.
  • the same layer is connected to the first layer 16a near the tip 28 of the leg portion 26, and the same layers are sequentially connected from the second layer to the nth layer.
  • Claim 3 relates to a second method of connecting the magnetic stimulator A according to claim 1 (FIG. 5).
  • the first layer 12a close to the tip 28 of the leg portion 22 is a conductor layer 16a wound around the other leg 26 in multiple stages.
  • n-th layer 16n connected to the n-th layer 16n closest to the core body 21 of the leg 26
  • the n-th layer 12n of the one leg 22 closest to the core body 21 is connected to the first layer 16a near the tip 28 of the leg 26 wound around the other leg 26 in multiple stages
  • the second layer 12b to the (n-1) th layer 12 (n-1) of the one leg 22 is connected to the (n-1) th layer 16 (n-1) of the other leg 26 from the second layer 12 (n-1). It is characterized by being connected to the layer 16b in reverse order.
  • Claim 4 relates to the second structure (multiple coil spring-like structure: second embodiment) of the conductors 12 and 16 of the magnetic stimulator A of the present invention (FIGS. 1 to 3, 6, and 7).
  • a magnetic core 20 formed of a core body 21 and a pair of legs 22 and 26 extending from the core body 21, and multiple windings around the legs 22 and 26 with different diameters.
  • conductors 12 and 16 made of conductor layers 12a to 12n and 16a to 16n.
  • the wire used for the conductors 12 and 16 has a rectangular cross section parallel to the longitudinal direction of the legs 22 and 26, Between the pair of legs 22, 26, the wires constituting the conductor layers 12 a ′ to 12 n ′ of one leg 22 become the wires constituting the conductor layers 16 a ′ to 16 n ′ of the other leg 26. , For each of the inner and outer layers.
  • Claim 5 relates to a first connection method (FIG. 6) of the magnetic stimulator A according to claim 4.
  • the innermost first layer 12a 'close to the leg section 22 is wound in multiple layers around the other leg section 26.
  • the conductor layers 16a 'to 16n' are connected to the innermost first layer 16a 'close to the leg portion 26, and the second layers 12b' and 16b 'and so on up to the n-th layers 12n' and 16n '. , Characterized in that the same layers are connected to each other.
  • Claim 6 relates to the second connection method (FIG. 7) of the magnetic stimulator A according to claim 4.
  • the innermost first layer 12a 'close to the leg section 22 is wound in multiple layers around the other leg section 26.
  • the conductor layers 16a 'to 16n' are connected to the outermost n-th layer 16n 'of the core body 21 of the leg portion 26,
  • the outermost n-th layer 12n 'of the core body 21 of the one leg 22 is connected to the innermost first layer 16a' of the leg 26 wound around the other leg 26 in multiple layers.
  • the second layer 12b 'to the (n-1) th layer 12 (n-1)' of the one leg 22 are the (n-1) th layer 16 (n-1) 'of the other leg 26.
  • the amount of heat generated by the conductors 12 and 16 is suppressed by the above configuration for the reason described later.
  • the temperature of the affected part contact surface 9 of the casing 1 in which the magnetic core 20 is accommodated is kept at a safe level for a time required for the treatment (for example, 2 to 3 minutes or more). It can be kept in the temperature range and does not cause thermal damage such as burns to the affected part.
  • a magnetic stimulating device A By using such a magnetic stimulating device A, it becomes possible to continuously exercise large muscles that are difficult to spontaneously move due to paralysis due to cerebral dysfunction or the like by the action of a pulse magnetic field.
  • a similar muscle contraction effect can be achieved by electrical stimulation, but electrical stimulation involves (1) discomfort and pain similar to electric shock, (2) it takes time to attach or implant electrodes, and (3) There is a risk of burns due to energization.
  • magnetic stimulation does not have these problems (1) to (3). Even if limb paralysis occurs due to cerebral dysfunction, the nervous system and muscles are not damaged, so that appropriate rehabilitation treatment can restore motor function. However, if the person is accompanied by impaired consciousness or stays bedridden, it becomes impossible to restore motor function due to disuse syndrome.
  • continuous magnetic stimulation is performed using the magnetic stimulator A of the present invention, paralyzed limbs and finger muscles can be effectively exercised, and thus it is expected that the rehabilitation effect will be dramatically improved.
  • FIG. 2 is a plan view of FIG. 1 when a cover is removed.
  • FIG. 4 is an essential part perspective view showing a first connection state in the first conductor structure in FIG. 3.
  • FIG. 4 is an essential part perspective view showing a second connection state in the first conductor structure in FIG. 3.
  • FIG. 4 is an essential part perspective view showing a first connection state in a second conductor structure in FIG. 3.
  • FIG. 4 is a perspective view of a main part showing a second connection state in the second conductor structure in FIG. 3.
  • FIG. 5 is a cross-sectional view illustrating a heat generation state of a conductor during energization in FIG. 4.
  • FIGS. 5 to 7 are cross-sectional views showing a heat generation state of the conductor during energization in FIGS. 5 to 7. It is sectional drawing which shows the magnetic flux leakage in a prior art example. It is a comparison graph of the heat generation state of the conventional example and the present invention.
  • the main components of the magnetic stimulator A of the present invention are the conductors 12 and 16 and the magnetic core 20, which are housed in the casing 1.
  • the magnetic core 20 is a U-shaped member in which legs 22 and 26 project in the same direction from both ends of the core body 21 and is formed by laminating a large number of rolled silicon steel sheets with a thin insulating coating.
  • As the magnetic core 20 of this embodiment a member obtained by punching out a U-shaped member as described above or a rolled rolled silicon steel strip multiplexed and divided into two parts is used.
  • the rolled silicon steel sheet used in this example has a thickness of 0.35 mm.
  • the cross section of the leg portions 22 and 26 in the direction perpendicular to the longitudinal direction is a quadrangle (square or rectangular) or a circle (not shown).
  • the conductors 12 and 16 are formed by an aggregate of multi-stage conductor layers 12a to 12n and 16a to 16n wound around the legs 22 and 26 or an aggregate of multiple conductor layers 12a 'to 12n' and 16a 'to 16n'.
  • a member constituting the multi-stage conductor layers 12a to 12n and 16a to 16n or the multiple conductor layers 12a 'to 12n' and 16a 'to 16n' is called a wire.
  • the wire is long and has a square cross section (square or rectangular), for example, a copper strip is used as a raw material, and an insulating coating is formed on the surface thereof.
  • the thickness of the wire is 0.9 mm and the height is 1.6 mm.
  • the insulating film was made of urethane resin and was thinned so as not to hinder heat radiation on the surfaces of the conductors 12 and 16. In this embodiment, the thickness of the insulating film was set to 20 ⁇ m. (In some drawings, the cross section of the wire is represented as a circle for the purpose of drawing, but the cross section is rectangular as described above.)
  • the wire is wound around the legs 22 and 26 several times so that one side of one wire is wound along the outer peripheral surface of one leg 22, and then the other portion is wound around the other leg 26. In the same manner as above, several turns are wound in the opposite direction.
  • a cooling gap 300 (see FIG. 10), and can be wound in close contact with each other. Therefore, the size of the apparatus can be reduced by the cooling gap 300 which is conventionally required.
  • the wire wound around the legs 22 and 26 is a single wire as described above, but for convenience of explanation, a conductor that is an aggregate of the wires wound around the legs 22 and 26 is used. Expressed as 12.16 respectively.
  • a winding method other than the above although not shown, two wires are prepared, and one side of one wire is wound several times along the outer peripheral surface of one leg 22 as described above, and the like. The other wire may be wound several times around one side along the outer peripheral surface of the other leg 26. Then, the respective layers of the wire rod individually wound around the leg portions 22 and 26 may be connected by connecting wires.
  • the casing 1 is made of resin (here, made of ABS) for housing the magnetic core 20 and the conductors 12 and 16 wound around the legs 22 and 26 of the magnetic core 20, and has a casing body with an open top surface. 2 and a lid 5 covering the opening, which is fixed with bolts (not shown), and the upper opening is closed.
  • a convex portion 7 swelling downward is formed at the center of the lower surface of the casing main body 2 (that is, the diseased portion contact surface 9) that comes into contact with the affected portion of the patient.
  • the tips 28 of the legs 22 and 26 slightly protrude from the conductors 12 and 16 from the conductors 12 and 16 wound around the legs 22 and 26 in multiple or multiple stages (the protrusion amount is 3 mm in this embodiment). And this part fits into the concave part inside the convex part 7 as described above.
  • the tips 28 of the leg portions 22 and 26 are held in a state of being in close contact with (or slightly separated from) the concave portion inside the convex portion 7, and the magnetic core 20 is fixed to the casing main body 2 by a fixing member (not shown) or an adhesive. It is fixed in such a way.
  • FIG. 3 is a sectional view of the magnetic stimulator A of the present invention and a partially enlarged view of the first or second structure (first and second embodiments) of the conductors 12 and 16.
  • the conductors 12 and 16 are described as being wound with a gap therebetween for the purpose of drawing, but can be wound without a gap as described above.
  • a first embodiment of the conductors 12 and 16 will be described with reference to FIGS.
  • the structure of the conductors 12 and 16 of the first embodiment is an example in which one wire is wound in plural steps around the legs 22 and 26 of the magnetic core 20 as shown in FIGS. That is, one wire rod is wound on a plane perpendicular to the longitudinal direction of the legs 22 and 26 and provided on a plurality of stages. This plane is provided in a plurality of stages between the tip end 28 of the legs 22 and 26 and the core body 21. Therefore, the conductor layers 12a to 12n and 16a to 16n formed of one wire wound around the legs 22 and 26 are provided in a plurality of stages over the first layers 12a and 16a to the n-th layers 12n and 16n.
  • a layer closer to the tip 28 of the leg portion 22/26 is defined as a first layer 12a / 16a
  • a layer closest to the core layer 21 is defined as a second layer 12b / 16b toward the core body 21.
  • the n-th layers are 12n and 16n.
  • the winding direction of the wire material is such that the direction S (N) of the magnetic field of the other leg 26 is opposite to the direction N (S) of the magnetic field of the other leg 26 throughout the present invention.
  • Can be attached that is, in FIG. 4, when the wire of the left conductor layer 12a... 12n is wound counterclockwise, the wire of the right conductor layer 16a.
  • the corresponding ends of the wires of the left and right conductor layers 12a... 12n 16a... 16n are connected to each other to form one wire.
  • the wires constituting the conductor layers 12a to 12n wound around the legs 22 and 26 have one ends connected in parallel to the legs 22 and 26, respectively, to form the conductors 12 and 16.
  • the wire constituting each layer in FIG. 4 (similarly in FIG. 5 described later) is shown as an example in which the wire is wound in a circular spiral shape.
  • the spiral may be wound in a quadrangular shape in plan view according to the cross-sectional shape of the legs 22 and 26 of the body core 20.
  • the wires constituting the conductor layers 12a to 12n of the one leg 22 are connected to the wires constituting the conductor layers 16a to 16n of the other leg 26 by the respective steps. Each is connected.
  • the magnetic stimulator A assembled as in the first embodiment is energized.
  • an exciting current pulse current or alternating current
  • the exciting current is divided and flows counterclockwise through the parallel conductor layers 12 a to 12 n wound around one leg 22.
  • the current flows clockwise to the parallel conductor layers 16a to 16n wound around the other leg 26, and flows to the other exciting current supply line 14.
  • the magnetic pole at the tip 28 of one leg 22 becomes S
  • the magnetic pole at the tip 28 of the other leg 26 becomes N.
  • the exciting current in one direction ends, the exciting current is reversed, and an exciting current in the opposite direction flows from the other exciting current supply line 14, which shunts and is wound around the other leg 26.
  • the current flows clockwise in the layers 16a to 16n, then flows counterclockwise in the parallel conductor layers 12a to 12n wound on one leg 22, and flows in one exciting current supply line 10.
  • the magnetic pole at the tip 28 of the other leg 22 becomes S, the magnetic pole N at the tip 28 of the one leg 22, and the magnetic pole is reversed. This is repeated at a predetermined cycle.
  • Magnetic flux G is generated between both ends 28 of the magnetic core 20.
  • FIG. 10 shows a conventional device developed by the present inventors.
  • the same U-shaped core 200 as the magnetic core 20 of the present invention is used, and conductors 120 and 160 are wound around a pair of legs 220 and 260, respectively.
  • the conductors 120 and 160 have an elongated rectangular cross section, and are wound in the vertical direction such that the long sides are along the outer peripheral surfaces of the legs 220 and 260.
  • the long sides of the conductors 120 and 160 are vertically long strips extending from the vicinity of the tips of the legs 220 and 260 to the core body.
  • the thickness of the strip is, for example, 0.8 mm and the height is 9 mm.
  • a cooling gap 300 is provided between the conductors 120 and 160.
  • an exciting current is applied to the conductors 120 and 160, an N pole (S pole) appears at the tip 280 of one leg 220 as described above, and an opposite S pole (opposite) appears at the tip 280 of the other leg 260 as described above. N pole) appears.
  • the inductance of the tip portions of the two legs 220 and 260 of the U-shaped core 200 was partially lower than the inductance of the other portions.
  • the present inventors have found that the exciting current flows intensively at the tip portions of the vertically elongated conductors 120 and 160 facing the tip portions, and have reached the present invention. In other words, the present inventors have found that the current density at the end portions of the vertically installed conductors 120 and 160 is higher than that at the other portions, and the temperature at the end portions of the conductors 120 and 160 is abnormally increased.
  • the leakage magnetic flux W from the two legs 220 and 260 penetrates the conductors 120 and 160 from the inner surface to the outer surface (or vice versa), and the eddy current U1 flows through the conductors 120 and 160 with Joule heat. Also newly arrived at the present invention.
  • a large eddy current U1 flows through the conductors 120 and 160 over the entire height. The inventors have found that this large eddy current U1 also causes a rise in the temperature of the conductors 120 and 160.
  • the conventional apparatus that does not have such knowledge requires a cooling gap 300 and a cooling mechanism that supplies a cooling gas to the cooling gap 300.
  • the present invention has a structure equivalent to that obtained by dividing the conventional vertically elongated conductors 120 and 160 into a plurality of wires, and is connected in parallel to the conductor layers 12a to 12n and 16a to Since 16n is provided in a plurality of stages in the longitudinal direction of the legs 22 and 26, the bias of the current density of each layer (particularly, the first layers 12a and 16a) is largely eliminated, and the eddy current U2 generated in each layer is reduced. As a result, the heat generation of the conductors 12 and 16 has been significantly suppressed.
  • the first connection method is a case where the layers of the conductor layers 12a to 12n and 16a to 16n are connected in the forward direction as shown in FIG. 4, and the second connection method is a method of connecting the conductor layers as shown in FIG. This is the case where the layers 12a to 12n and 16a to 16n are connected in the reverse forward direction. It is the reverse of the first connection method.
  • the first layer 12a of the conductor layers 12a to 12n wound on one leg 22 near the tip 28 of the leg 22 is connected to the conductor layer 12a wound on the other leg 26.
  • the n-th layer 12n which is connected to the first layer 16a of the layers 16a to 16n near the tip 28 of the leg 26 and is closest to the core body 21 of the one leg 22, is wound around the other leg 26.
  • the leg portion 26 is connected to the n-th layer 16n closest to the core body 21.
  • the second layer 12b to the (n-1) th layer 12 (n-1) of the one leg 22 is formed from the second layer 16b to the (n-1) th layer 16 of the other leg 26. (N-1).
  • the first layer 12a of the conductor layers 12a to 12n wound on one leg 22 near the tip 28 of the leg 22 is connected to the other leg 26.
  • the n-th layer 12n of the wound conductor layers 16a to 16n connected to the n-th layer 16n closest to the core main body 21 of the leg 26, and the n-th layer 12n of the one leg 22 closest to the core main body 21 is connected to the other end. Is connected to the first layer 16a near the tip 28 of the leg 26 wound around the leg 26, and from the second layer 12b to the (n-1) th layer 12 (n -1) are connected in reverse order from the (n-1) th layer to the 16 (n-1) to the second layer 16b of the other leg 26.
  • the inductance of the distal ends of the legs 22 and 26 becomes smaller than that of the other portions, and the first layers 12a and 16a wound around the distal ends have other inductance.
  • Excitation current slightly larger than that of the layers 12b and 16b or less flows, and the amount of excitation current of each layer decreases as approaching the core body 21.
  • the conductors 12 and 16 are not formed of a vertically elongated unit, and the conductors 12 and 16 are divided into a plurality of wires, the bias of the current density is reduced.
  • the leakage magnetic flux W emerges from the legs 22 and 26 of the magnetic core 20 and penetrates the conductor layers 12a to 12n and 16a to 16n as in the conventional example. Since 12a to 12n and 16a to 16n are divided, the height of the eddy current U2 due to the leakage magnetic flux W is significantly lower than that of the conventional vertically long case, and the eddy current U2 due to the leakage magnetic flux W is generated. Also occur on the short side of each layer. As a result, the greatly reduced current density deviation and the eddy current U2 generated on the short side of each of the conductor layers 12a to 12n and 16a to 16n cause the heat generation of the conductors 12 and 16 to be larger than in the conventional example. Is suppressed.
  • FIG. 8 schematically shows the temperature rising state of each of the conductor layers 12a to 12n and 16a to 16n in this case. Although the temperature of each of the conductor layers 12a to 12n and 16a to 16n does not have a large temperature difference, the temperature becomes higher as approaching the tip 28 of the leg portions 22 and 26.
  • FIG. 5 a second connection method of the first embodiment will be described (FIG. 5).
  • the exciting current tends to flow slightly biased to the first layers 12 a and 16 a as described above due to the above-described inductance, but is connected to the first layers 12 a and 16 a. Since the exciting current is less likely to flow through the n-th layers 12n and 16n than the first layers 12a and 16a, the n-layers 12n and 16n are rate-limiting to suppress the exciting current flowing through the first layers 12a and 16a. In other words, the exciting current flowing through the first layers 12a and 16a becomes the same as that of the n-th layers 12n and 16n.
  • FIG. 9 schematically shows the temperature rising state of each of the conductor layers 12a to 12n and 16a to 16n in this case.
  • the temperatures of the conductor layers 12a to 12n and 16a to 16n are averaged overall as compared to FIG.
  • the second embodiment is different from the first embodiment in that the conductors 12 and 16 are formed by winding the wires constituting the conductors in close contact with the legs 22 and 26 in the form of coil springs having different diameters from a large diameter to a small diameter. Have been. That is, the smaller diameter conductors 12 and 16 are nested inside the larger diameter conductors.
  • the innermost ones of the conductors 12 and 16 wound in close contact multiplexing are referred to as first layers 12a 'and 16a', the second layers 12b 'and 16b'. ' ⁇ 16n'.
  • the conductors 12 and 16 forming the n-th layers 12n 'and 16n' from the first layers 12a 'and 16a' can suppress the temperature rise of the conductors 12 and 16 as in the first embodiment. It is possible to wind tightly without leaving a gap inside and outside.
  • connection method is basically the same as in the first embodiment. This will be described below.
  • the first connection method connects the innermost first layers 12a 'and 16a' between the legs 22 and 26, and sequentially connects the second and lower layers to the n-th layer. The wires of the same layer are connected outward.
  • the second connection method is as shown in FIG. 7.
  • the innermost first layer 12 a ′ near the leg 22 is The conductor layers 16a 'to 16n' wound around the other leg 26 in multiple layers are connected to the outermost n-th layer 16n 'of the core body 21 of the leg 26, and the one leg 22
  • the outermost n-th layer 12n 'of the core body 21 is connected to the innermost first layer 16a' of the leg 26 wound around the other leg 26 in multiple layers, and the one leg 22
  • the second layer 12b 'to the (n-1) th layer 12 (n-1)' of the other leg 26 are formed from the (n-1) th layer 16 (n-1) 'to the second layer 16b' of the other leg 26.
  • the first layer 12a '(16a') of the one (other) leg 22 is connected to the n-th layer 16n '(12n') of the other (one) leg 26 in the reverse order. Therefore, in the reverse combination of the first layer 12a '(the n-th layer 16n'), a portion corresponding to a portion other than the tip portions of the legs 22 and 26 of the n-th layer 16n '(12n') having the least influence of inductance. 18 is the rate limiting.
  • This relationship is the same for other combinations, and the second connection method of the second embodiment has less current density deviation and better control of temperature rise than the first connection method. As described above, the temperature rise of the conductors 12 and 16 in the second embodiment is as shown in FIG. 9 even if there is a slight difference.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Neurology (AREA)
  • Magnetic Treatment Devices (AREA)
  • Electrotherapy Devices (AREA)

Abstract

導体の構造を工夫することにより、導体自体の発熱を抑制することでその皮膚接触面の昇温を抑制することができる磁気刺激装置を提供する。 【解決手段】磁気刺激装置Aは、コア本体21と、コア本体21から同方向に伸びた一対の脚部22・26とでU字形に形成された磁性体コア20と、脚部22・26それぞれの周囲に巻設され、且つ多段に積み重ねられた導体層12a~12n・16a~16nからなる導体12・16とで構成されている。導体層12a~12n・16a~16nにそれぞれ用いられる線材は、脚部22・26の長手方向に平行なその断面が四角形で、且つ前記脚部22・26のそれぞれにおいて並列接続されている。脚部22・26間では、一方の脚部22の各導体層12a~12nを構成する線材が、他方の脚部26の各導体層16a~16nを構成する線材に、各段毎にそれぞれ接続されている。

Description

磁気刺激装置
 本発明は、末梢神経、或いは大脳皮質運動野を繰り返し磁気刺激する際に、磁性体コア及び冷却機構を有するコイルを使用することで、磁気刺激効果を高める装置に関する。
 現在、脳血管障害の後遺症や脊髄損傷により四肢に麻痺を有する患者は200万人に達しており、日本の年齢構成の推移によって、その数は更に増加している。麻痺が長期間継続すると、廃用症候群によって筋肉の機能が著しく低下し、回復が困難な状態になる。片麻痺や四肢麻痺による廃用症候群を防止し、筋肉の機能を積極的に回復させるために運動療法によるリハビリテーションは最も重要な治療法とされている。
 同様に、日本の年齢構成の推移により、脳血管障害の後遺症や高齢化による嚥下障害が社会問題となっている。現在、国内死因第3位である肺炎の大多数は、嚥下障害を原因とする誤嚥性肺炎である。この嚥下障害のリハビリテーション方法としても、嚥下に関連する筋を反復的に動かす運動療法によるリハビリテーションが主流である。 
 一方、運動療法によらないリハビリテーション方法として、末梢神経や大脳皮質運動野を電気的に刺激して筋肉の運動を誘発する手法が知られている。電気的な刺激方法として、経皮電気的神経刺激TENSが広く用いられている。この原理は外部から電気的に運動神経を刺激することで、手足の筋の収縮を誘発し、運動機能を回復させるものである。同様に嚥下障害のリハビリテーション機器として、顎下の筋に電気的刺激を与えて嚥下関連筋の収縮を誘発する医療機器が近年開発されている。電気刺激によって大きな筋収縮を得るためには、強い電気刺激を必要とする。強い電気刺激は、感電と同等であり強い不快感や痛みを伴う。この不快感および痛みを和らげるために周波数や波形を改良するなど様々な研究が行われているが根本的な解決にはいたっていない。
 電気刺激に伴う疼痛は皮膚の表面近くに分布する痛覚神経によって感知される。従って、刺激電極を皮下に埋め込むことにより電気刺激の疼痛を緩和できる。しかしながら、埋め込み電極は常に信号線を体外に出しておく必要があるので、傷口からの細菌感染という大きな問題を伴う。
 接触電極を用いないで、神経を電磁気的に刺激する他の方法に磁気刺激法がある。これは、体表の近くに置いたコイルにパルス電流を流し、コイルから発生する磁束により体内に生じる誘導電流で、神経を刺激して筋肉を動かす方法である。この磁気刺激法は電極を貼り付ける、或いは埋め込むなどの工程が不要であり、加えて感電のような不快感や痛みがほとんどない。
 この理由で、前記電気刺激法に比べて強い刺激が可能であり、大きな筋収縮が得られる利点がある。このため、磁気刺激は、病気の診断・治療への応用が進んでおり、経頭蓋磁気刺激(TMS:Transcranial Magnetic Stimulation)として実用化されている。特に磁気刺激を反復するTMSと運動療法の組み合わせはリハビリテーションの効果が大きい(非特許文献1、2)。 
 磁気刺激による筋収縮作用を活用する発明に、特許文献1の尿失禁治療装置がある。この装置は椅子或いは体に固定した磁気刺激用コイルから0.01~3テスラのパルス磁場を1~100Hzで発生させることによって、膀胱括約筋の周期的な収縮を繰り返すことで、尿失禁治療を行うものである。
 尿失禁治療のように単純な筋収縮ではなく、指或いは腕を磁気刺激によって連続的に曲げる技術は特許文献2に示されており、10ミリ秒間隔で磁気パルスを繰り返して腕の神経を磁気刺激すると、パルス数の増加とともに腕が曲がる距離も増すことが示されている。
 磁気刺激の効果は、磁気刺激の繰り返し回数とともに増加する。しかしながら磁気刺激を起こすには、コイルに数百アンペア以上の大電流を流す必要がある。このために連続パルスによる磁気刺激はコイルの発熱・温度上昇が激しく、パルス数を増やすことができないという問題がある。このコイルの発熱が連続磁気刺激を行うための大きな技術的制約となっている。
 磁気刺激用コイルの発熱を低減するには、少ない電流で強い磁界が得られる磁性体コア(磁心)付きコイルの使用が有効である。このために経頭蓋磁気刺激用の磁性体コア付き磁気刺激用コイルに関する特許出願がなされている。特許文献3はO型磁心の一部を切断し、対向する部分を細くしてそこにコイルを巻くことにより収束磁界を得る磁気刺激装置が開示されている。
 上記特許文献2の改良型として、特許文献4は巻線の内側に形成される空間に磁性体を配置した磁気刺激装置を開示している。また、特許文献5には高透磁率の半円から馬蹄形磁心にコイルを巻いてコイルの発熱を少なくし、脳の磁気刺激を行う経頭蓋骨磁気刺激の技術が記載されている。これと類似した形状の磁性体コアに、透磁率や飽和磁束密度の高い強磁性体を使用する技術が特許文献6に示されている。
 特許文献7には、高周波コイルの常套手段である細いリッツ線を束ねてコイルを巻くことにより、コイルの発熱を低減する技術が記載されている。しかしながら、リッツ線は導電部分の断面積に対する絶縁部分(コイル間の隙間部分も含む)の断面積の占める割合が高く、リッツ線自体の断面積から考えると電気抵抗が高くなること、熱伝導率の悪い素材で絶縁されたリッツ線を多重に巻きつけるため、コイル部分が多重断熱状態になり、内側に巻かれた部分からの熱が外部に逃げにくいことなどによりコイル部分の温度が許容値以上になる。
 このような熱の問題点を抱えつつも連続磁気刺激によれば強い磁気刺激効果が得られるので、指や手足の筋肉の大きな運動を誘発できるというメリットを有する。
 そこで、発明者らは、コイルの発熱は避けることができないものとして特許文献8に開示するような方法をとった。
医歯薬出版(株)「磁気刺激法の基礎と応用」、出江著、脳血管障害、P.198 中央法規出版(株)「回復する身体と脳」、出江著、磁気刺激により麻痺が改善した例、P.183
特開平10-234870号公報 特開2010-166971号公報 特開平7-171220号公報 特開平8-52231号公報 特表2000-504966号公報 特表2001-525947号公報 特開2002-306614号公報 特開2016-28640号公報
 特許文献8に開示する手段は、磁性体コア、コイルとして働く導体そのもの、及び磁性体コアとケーシングの皮膚接触面との間を空冷することによって、ケーシングの皮膚接触面の昇温を抑制しようとするものである。装置構成の概略は、図10に示す通りで、幅広の断面四角形の素材(銅帯材の一例:断面形状0.8×9mm)で形成された導体120・160がU字形コア200の脚部220・260に縦方向(銅帯材の長手方向が脚部220・260の長手方向に沿う方向)に巻き付けられている。この時点では、通電時の導体120・160の発熱原因が不明であったので、冷却用間隙300を設けて導体120・160及びU字形コア200の脚部220・260を冷却する方法で昇温問題を解決しようとした。
 しかしながらこの方法では、導体120・160間に前記冷却用間隙を必要とすること、換言すれば、冷却用間隙の分だけ装置が大きくなることや、導体120・160全体の面積効率(導体全体の断面積当たりの導電部分の占める割合)が低下するという問題点や、冷却用気体をケーシングに供給するための冷却機構(例えば、冷却ファンや冷却気体供給チューブ)が必要であり、冷却ファンの分だけ重くなったり、チューブの存在により使い勝手が悪くなるという問題が生じた。
 本発明はこのような従来技術の問題点に鑑みてなされたもので、導体の構造を工夫することにより、導体自体の発熱を抑制することでその皮膚接触面の昇温を抑制することができる磁気刺激装置を提供することをその課題とする。
 請求項1は、本発明の磁気刺激装置A(図1~図5)の導体12・16の第1の構造(多段渦巻構造;第1実施例)に関し、
 コア本体21と、該コア本体21から伸びた一対の脚部22・26とで形成された磁性体コア20と、前記脚部22・26それぞれの周囲に巻設され、且つ多段に積み重ねられた導体層12a~12n・16a~16nからなる導体12・16とで構成され、
 前記導体層12a~12n・16a~16nにそれぞれ用いられる線材は、前記脚部22・26の長手方向に平行なその断面が四角形であり、
 前記一対の脚部22・26間では、一方の脚部22の各導体層12a~12nを構成する線材が、他方の脚部26の各導体層16a~16nを構成する線材に、各段毎にそれぞれ接続されていることを特徴とする。
 請求項2は、請求項1に記載の磁気刺激装置A(図4)の第1の結線方法に関し、
 一方の脚部22に多段に巻設された導体層12a~12nにおいて、該脚部22の先端28に近い第1層12aは、前記他方の脚部26に多段に巻設された導体層16a~16nで、該脚部26の先端28に近い第1層16aに接続され、且つ第2層以下、第n層に至るまで順次、同じ層同士が接続されていることを特徴とする。
 請求項3は、請求項1に記載の磁気刺激装置A(図5)の第2の結線方法に関し、
 一方の脚部22に多段に巻設された導体層12a~12nにおいて、該脚部22の先端28に近い第1層12aは、前記他方の脚部26に多段に巻設された導体層16a~16nで、該脚部26のコア本体21に最も近い第n層16nに接続され、
 前記一方の脚部22のコア本体21に最も近い第n層12nは、前記他方の脚部26に多段に巻設された該脚部26の先端28に近い第1層16aに接続され、
 前記一方の脚部22の第2層12bから第(n-1)層12(n-1)は、前記他方の脚部26の第(n-1)層16(n-1)から第2層16bに逆順に接続されていることを特徴とする。
 請求項4は、本発明の磁気刺激装置A(図1~図3、図6、図7)の導体12・16の第2の構造(多重コイルスプリング状構造:第2実施例)に関し、
 コア本体21と、該コア本体21から伸びた一対の脚部22・26とで形成された磁性体コア20と、前記脚部22・26それぞれの周囲に、その直径を違えて多重に巻設された導体層12a~12n・16a~16nからなる導体12・16とで構成され、
 前記導体12・16に用いられる線材は、前記脚部22・26の長手方向に平行なその断面が四角形であり、
 前記一対の脚部22・26間では、一方の脚部22の各導体層12a’~12n’を構成する線材が、他方の脚部26の各導体層16a’~16n’を構成する線材に、内外の各層毎にそれぞれ接続されていることを特徴とする。
 請求項5は、請求項4に記載の磁気刺激装置Aの第1の結線方法(図6)に関し、
 一方の脚部22に多重に巻設された導体層12a’~12n’において、該脚部22に近い最内層の第1層12a’は、前記他方の脚部26に多重に巻設された導体層16a’~16n’で、該脚部26に近い最内層の第1層16a’に接続され、且つ第2層12b’・16b’以下、第n層12n’・16n’に至るまで順次、同じ層同士が接続されていることを特徴とする。
 請求項6は、請求項4に記載の磁気刺激装置Aの第2の結線方法(図7)に関し、
 一方の脚部22に多重に巻設された導体層12a’~12n’において、該脚部22に近い最内側の第1層12a’は、前記他方の脚部26に多重に巻設された導体層16a’~16n’で、該脚部26のコア本体21の最外層の第n層16n’に接続され、
 前記一方の脚部22のコア本体21の最外層の第n層12n’は、前記他方の脚部26に多重に巻設された該脚部26の最内側の第1層16a’に接続され、
 前記一方の脚部22の第2層12b’から第(n-1)層12(n-1)’は、前記他方の脚部26の第(n-1)層16(n-1)’から第2層16b’に逆順に接続されていることを特徴とする。
 本発明の磁気刺激装置Aは、上記構成により後述する理由で導体12・16の発熱量が抑制される。その結果、これを用いて治療を行うと、磁性体コア20が収納されたケーシング1の患部接触面9の温度を、治療に必要な時間(例えば、2~3分以上)の間、安全な温度域に保つことが可能であり、患部に火傷のような熱的なダメージを生じない。
 なお、このような磁気刺激装置Aを用いれば、脳機能障害等による麻痺のために自発運動が困難な筋肉を、パルス磁界の作用で連続的に大きく運動させることが可能になる。同様の筋収縮効果は電気刺激によっても可能であるが、電気刺激は、(1)感電に類似する不快感と疼痛を伴い、(2)電極を貼り付ける、或いは埋め込む手数がかかり、(3)通電に伴う火傷の危険性がある。しかし、磁気刺激はこれらの(1)~(3)の問題がない。脳機能障害によって四肢麻痺が生じても、神経系と筋肉は損傷を受けていないので、適切なリハビリテーション治療を施すことにより、運動機能を回復することができる。しかしながら、意識障害を伴う、或いは寝たきりの状態が続くと、廃用症候群のために運動機能を回復することができなくなる。本発明の磁気刺激装置Aを用いて連続磁気刺激を行えば、麻痺した四肢や指の筋肉を効果的に運動させることができるので、リハビリテーション効果を画期的に高めることが期待される。
本発明の磁気刺激装置の斜視図である。 蓋部をとった時の図1の平面図である。 図1の断面図である。 図3における第1の導体構造における第1の結線状態を示す要部斜視図である。 図3における第1の導体構造における第2の結線状態を示す要部斜視図である。 図3における第2の導体構造における第1の結線状態を示す要部斜視図である。 図3における第2の導体構造における第2の結線状態を示す要部斜視図である。 図4における通電時の導体の発熱状態を示す断面図である。 図5~7における通電時の導体の発熱状態を示す断面図である。 従来例における磁束漏れを示す断面図である。 従来例と本発明との発熱状態の比較グラフである。
 次に、本発明の詳細を実施例に基づいて説明する。なお、この実施例は当業者の理解を容易にするためのものである。すなわち、本発明の明細書の全体に記載されている技術思想によってのみ限定されるものであり、本実施例のみに限定されるものでないことは理解されるべきことである。
 本発明の磁気刺激装置Aの主要部品は、導体12・16と磁性体コア20で、ケーシング1に収納されている。
 磁性体コア20は、コア本体21の両端から脚部22・26が同方向に突き出した、U字形の部材で、薄い絶縁被膜付きの圧延ケイ素鋼板を多数枚積層したものである。本実施例の磁性体コア20はU字形に打ち抜いた部材を上記のように積層したもの、或いは圧延ケイ素鋼帯を多重に巻き、これを2分割したものなどが用いられる。本実施例で使用した圧延ケイ素鋼板は、厚さが0.35mmのものである。
 なお、脚部22・26の長手方向に対して直角方向の断面は、本実施例では四角形(正方形或いは長方形、)又は図示していないが円形である。
 導体12・16は、脚部22・26に巻き付けられた多段の導体層12a~12n・16a~16nの集合体、或いは多重の導体層12a’~12n’・16a’~16n’の集合体を言う。
 多段の導体層12a~12n・16a~16n、或いは多重の導体層12a’~12n’・16a’~16n’を構成する部材を線材と言う。
 該線材は長尺で断面四角形(正方形又は長方形)の、例えば、銅条が素材として使用され、その表面には絶縁被膜が形成されている。一例を示せば、線材の厚みは0.9mm、高さは1.6mmである。絶縁被膜はウレタン樹脂を用い、導体12・16表面の放熱を妨げないように薄くした。本実施例では絶縁被膜の厚みは20μmとした。(なお、図において、作図の関係から線材の断面を円形としてあらわしているものもあるが、上記のように断面は四角形である。)
 脚部22・26への線材の巻き方は、1本の線材の一側面を一方の脚部22の外周面に沿うようにして数周巻き付け、続いてその残りの部分を他方の脚部26に同様にして反対方向に数周巻き付けることになる。また、線材の表面には絶縁被膜が形成されていること、後述するように全体としての導体12・16自体の発熱が小さいところから、従来必要とされていた線材間に冷却用間隙300(図10参照)を設ける必要がなく、互いに密着させて巻き付けることが可能である。従って、従来必要であった冷却用間隙300の分だけ装置を小さくすることができる。
 この場合、脚部22・26に巻着された線材は、上記のように1本の線材であるが、説明の便宜上、各脚部22・26に巻き付けられた線材の集合体である導体をそれぞれ12・16として表す。
 上記以外の巻き方として、図示していないが、二本の線材を用意し、上記のように一方の線材の一側面を一方の脚部22の外周面に沿うようにして数周巻き付け、同様に他の線材の一側面を他方の脚部26の外周面に沿うようにして数周巻き付けるようにしてもよい。そして、脚部22・26に個別に巻き付けられた線材の各層をそれぞれ接続線で接続するようにしてもよい。
 ケーシング1は、磁性体コア20と、磁性体コア20の脚部22・26に巻かれた導体12・16とを収納する樹脂製(ここではABS製)のもので、上面が開口したケーシング本体2と、その開口を覆う蓋部5とで形成されており、図示しないボルトで固定され、前記上面開口が閉塞されている。
 患者の患部に接触するケーシング本体2の下面(即ち、患部接触面9)の中央に下方に膨出した凸部7が形成されている。
 ケーシング1に収納された磁性体コア20の脚部22・26の先端28は、ケーシング本体2に被嵌された蓋部5の凸部7の内側の凹部に嵌まり込む。
 そして脚部22・26に多段又は多重に巻き付けられた導体12・16から脚部22・26の先端28は導体12・16から若干突出した状態(本実施例では突出量は3mmである。)になり、この部分が上記のように凸部7の内側の凹部に嵌まり込む。なお、脚部22・26の先端28は凸部7の内側の凹部に密着(或いはこれから若干離間)した状態で保持され、且つ磁性体コア20がケーシング本体2に図示しない固定部材或いは接着などのような方法で固定される。
 また、脚部22・26に多段又は多重に巻かれた導体12・16の結線方法もそれぞれの構造(第1・2実施例)に付いて2種類ある。
 図3は、本発明の磁気刺激装置Aの断面図と、導体12・16の第1又は第2の構造(第1・2実施例)の部分拡大図である。なお、添付図面では、導体12・16は作図の関係上、隙間を開けて巻き付けられたように記載されているが、既述のように隙間なしで巻き付けることが可能である。
<第1実施例>
 導体12・16の第1実施例を図4、図5に従って説明する。
 第1実施例の導体12・16の構造は、図4、図5に示すように、1本の線材を磁性体コア20の脚部22・26に複数の段状に巻き付けた例である。即ち、1本の前記線材が、脚部22・26の長手方向に対して直角で、且つ複数段に設けられた平面上にそれぞれ巻き付けられている。そしてこの平面が脚部22・26の先端28からコア本体21の間で複数段に設けられている。
 従って、脚部22・26に巻設された、1本の線材で構成された導体層12a~12n・16a~16nは、第1層12a・16a~第n層12n・16nにわたって複数段、設けられることになる。
 ここで、層の数え方として、脚部22・26の先端28に近い方を第1層12a・16aとし、コア本体21に向かって第2層12b・16b、コア本体21に最も近い層を第n層12n・16nとする。
 そして線材の巻き付け方向は、本発明全体を通じて、一方の脚部22の磁場の方向N(S)に対して、他方の脚部26の磁場の方向S(N)が逆向きとなるように巻きつけられる。
 即ち、図4において、左側の導体層12a・・12nの線材を反時計方向に巻き付けると、右側の導体層16a・・16nの線材は時計方向に巻き付けることになる。そして前記一対の脚部22・26間では、左右の導体層12a・・12n・16a・・16nの線材の対応端部同士がそれぞれ接続されて1本の線材となる。
 更に、各脚部22・26に巻き付けられた各導体層12a~12nを構成する線材は、その一方の端部をそれぞれ脚部22・26毎に並列接続されて導体12・16が構成され、外部電源に接続された励磁電流供給線10・14にそれぞれ接続されている。換言すれば、並列接続された導体層12a~12nを構成する線材は、後述する図10の従来例の縦長帯状導体120・160を複数本の線材に分割した構造になる。
 なお、図4(後述する図5も同様)の各層を構成する線材は丸形の渦巻状に巻かれた例を示すが、図2及び後述する図6,図7に示したように、磁性体コア20の脚部22・26の断面形状に合わせた平面視四角形の渦巻状に巻いてもよい。
 そして、一対の脚部22・26間では、一方の脚部22の各導体層12a~12nを構成する線材が、他方の脚部26の各導体層16a~16nを構成する線材に、各段毎にそれぞれ接続されている。
 次に、このように第1実施例のように組み立てられた磁気刺激装置Aに通電した場合について説明する。
 一方の励磁電流供給線10から励磁電流(パルス電流或いは交流電流)を供給すると、励磁電流は分流して一方の脚部22に巻かれた並列導体層12a~12nに反時計方向に流れ、続いて他方の脚部26に巻かれた並列導体層16a~16nに時計方向に流れ、他方の励磁電流供給線14に流れる。これにより一方の脚部22の先端28の磁極はSとなり、他方の脚部26の先端28の磁極はNとなる。
 そして、一方向の励磁電流が流れ終わると、該励磁電流は反転して他方の励磁電流供給線14から反対方向の励磁電流が流れ、これが分流して他方の脚部26に巻かれた並列導体層16a~16nに時計方向に流れ、続いて一方の脚部22に巻かれた並列導体層12a~12nに反時計方向に流れ、一方の励磁電流供給線10に流れる。これにより他方の脚部22の先端28の磁極はSとなり、一方の脚部22の先端28の磁極Nとなり、磁極が反転する。これを所定周期で繰り返す。磁性体コア20の両先端28間に磁束Gが発生する。
 続いて本発明の磁気刺激装置Aの通電時における作用について説明することになるが、その前に図10に従って従来例の作用について説明する。
 図10は、本発明者らが開発した従来装置である。この装置には本発明の磁性体コア20と同じU字形コア200を使用し、その一対の脚部220・260に導体120・160を巻設したものである。
 この導体120・160は、その断面が細長い長方形で、長辺側が脚部220・260の外周面に沿うように縦方向で巻き付けられたものである。導体120・160の長辺は脚部220・260の先端近傍からコア本体に至る縦長の帯材である。帯材の厚みは例えば、0.8mm、高さは9mmである。そして、この導体120・160の間には冷却用間隙300が設けられている。
 そしてこの導体120・160に励磁電流を通電すると、上記のように一方の脚部220の先端280にN極(S極)が現れ、他方の脚部260の先端280にその反対のS極(N極)が現れる。
 そして従来装置を開発した時点では解明できていなかったが、この時、U字形コア200の両脚部220・260の先端部分のインダクタンスが他の部分のインダクタンスより部分的に低くなり、その結果、当該先端部分に面する縦長導体120・160の先端部分に集中して励磁電流が流れることを発見し、本発明に到達した。換言すれば、これにより縦長に設置された導体120・160の先端部分の電流密度が他の部分より高くなり、これにより導体120・160の先端部分の温度が異常に上昇することを見出した。
 加えて、両脚部220・260からの漏れ磁束Wが導体120・160をその内面側から外面側(或いはその逆)に貫通し、導体120・160にジュール熱を伴って渦電流U1が流れることも新たに見出し本発明に到達した。
 従来装置では、導体120・160を縦長に設置しているので、導体120・160には全高さに亘って大きな渦電流U1が流れる。そしてこの大きな渦電流U1も導体120・160の昇温の原因となることを見出した。
 即ち、導体120・160は縦長に設置された幅広で1枚ものの銅帯材なので、上記電流密度の偏りと、大きな渦電流U1の発生の相乗効果により導体120・160の先端部分の温度が異常に上昇することを見出した。そのためにこのような知見を持たなかった従来装置では冷却用間隙300と、この冷却用間隙300に冷却用気体を供給する冷却機構を必要としていた。
 本発明はこのような知見に基づき、上記のように、従来の縦長の導体120・160を複数の線材に分割したものと同等の構造である、並列接続された導体層12a~12n・16a~16nを脚部22・26の長手方向に複数段、設けたので、各層(特に、第1層12a・16a)の電流密度の偏りを大幅に解消するとともに、各層に発生する渦電流U2を小さなものとし、その結果、導体12・16の発熱を大幅に抑制することに成功した。
 上記の点をさらに詳しく説明する。第1実施例においては、導体層12a~12n・16a~16n間の結線方法が2通りある。
 第1の結線方法は、図4に示したように導体層12a~12n・16a~16nの各層が順方向に接続されている場合であり、第2の結線方法は図5示したように導体層12a~12n・16a~16nの各層が逆順方向に接続されている場合である。第1の結線方法とは逆である。
 第1の結線方法は、一方の脚部22に巻設された導体層12a~12nの該脚部22の先端28に近い第1層12aが、前記他方の脚部26に巻設された導体層16a~16nの該脚部26の先端28に近い第1層16aに接続され、前記一方の脚部22のコア本体21に最も近い第n層12nは、前記他方の脚部26に巻設された該脚部26のコア本体21に最も近い第n層16nに接続されている。同様に、前記一方の脚部22の第2層12bから第(n-1)層12(n-1)は、前記他方の脚部26の第2層16bから第(n-1)層16(n-1)に順に接続されている。
 これに対して、第2の結線方法は、一方の脚部22に巻設された導体層12a~12nの該脚部22の先端28に近い第1層12aが、前記他方の脚部26に巻設された導体層16a~16nの該脚部26のコア本体21に最も近い第n層16nに接続され、前記一方の脚部22のコア本体21に最も近い第n層12nは、前記他方の脚部26に巻設された該脚部26の先端28に近い第1層16aに接続されており、前記一方の脚部22の第2層12bから第(n-1)層12(n-1)は、前記他方の脚部26の第(n-1)層から16(n-1)から第2層16bに逆順に接続されている。
 いずれの場合も導体12・16に励磁電流を通電すると、一方の脚部22の先端28にN極(S極)が現れ、他方の脚部26の先端28にその反対のS極(N極)が交互に現れ、両極間に磁束Gが発生する。
 第1の結線方法では、通電時、既に述べたように脚部22・26の先端部分のインダクタンスが他の部分より小さくなり、この先端部分に巻き付けられた第1層12a・16aには他の層12b・16b以下より若干多くの励磁電流が流れ、コア本体21に近付くに連れて各層の励磁電流量は減少する。ただし、従来例のように、導体12・16を縦長一体物で構成せず、導体12・16が複数の線材に分割されているため電流密度の偏りは軽減される。
 そして、磁性体コア20の脚部22・26から上記のように漏れ磁束Wが出て、従来例と同様、各導体層12a~12n・16a~16nを貫通するが、この場合は各導体層12a~12n・16a~16nが分割されているため、漏れ磁束Wによる渦電流U2は、従来例の縦長の場合に比べて高さが大幅に低く、漏れ磁束Wによる渦電流U2が発生したとしても各層の短辺上で小さく発生することになる。
 その結果、大幅に軽減された電流密度の偏りと、各導体層12a~12n・16a~16nの短辺上で小さく発生する渦電流U2により、導体12・16の発熱が従来例に比べて大幅に抑制される。
 なお、渦電流U2は図3において各層の線材の外側に描かれているが、これは図面を見やすくするために記載したもので、実際は線材に発生する。
 図8にこの場合の各導体層12a~12n・16a~16nの昇温状態を模式的に示す。各導体層12a~12n・16a~16nの温度は、大きな温度差はないものの、脚部22・26の先端28に近づく程、高温になる。
 次に、第1実施例の第2の結線方法について説明する(図5)。導体12・16に励磁電流を流すと、上記インダクタンスの関係から、上記のように第1層12a・16aにやや偏って励磁電流が流れようとするが、この第1層12a・16aに接続されている第n層12n・16nは第1層12a・16aに比べて励磁電流が流れにくいので、第n層12n・16nが律速となって第1層12a・16aに流れる励磁電流を抑制する。換言すれば、第1層12a・16aに流れる励磁電流は第n層12n・16nと同じになる。
 この関係は、第2層12b・16bと第(n-1)層12(n-1)・16(n-1)その他、逆順に接続された層間においても当て嵌まり、全体としてほぼ均一で抑制された励磁電流が各層の導体12・16中を流れる。
 その結果、図5に示す第1結線方法に比べてより発熱を抑制することができる。なお、漏れ磁束Wによる発熱は、図5の場合と同じである。
 図9にこの場合の各導体層12a~12n・16a~16nの昇温状態を模式的に示す。各導体層12a~12n・16a~16nの温度は、図8に比べて全体的に平均化される。
 次に第2実施例について説明する。第2実施例は第1実施例と異なり、導体12・16は、これを構成する線材が大径から細径まで直径の異なるコイルスプリング状に脚部22・26に密着多重に巻かれて構成されている。即ち、導体12・16の細径のものは太径のものの内側に入れ子状態に配置されている。この密着多重に巻かれた導体12・16の最内側のものを第1層12a’・16a’とし、外側に向かって第2層12b’・16b’・・、最外側のもの第n層12n’・16n’とする。
 第1層12a’・16a’から第n層12n’・16n’を構成する導体12・16は、第1実施例と同様、導体12・16の昇温を抑制することが出来るため、上下・内外で隙間を空けることなく密着巻きすることが可能である。
 そして、第1実施例同様、前記脚部22・26間では、一方の脚部22の各導体層12a’~12n’を構成する線材が、他方の脚部26の各導体層16a’~16n’の線材にそれぞれ接続されている。線材の巻設方向及び脚部22・26間の接続は、一方の脚部22の磁場の方向に対して、他方の脚部26の磁場の方向が逆向きとなるように設定されている。
 即ち、一方の脚部22に巻設された各導体層12a’~12n’の巻設方向が時計回りとすれば、他方の脚部26に巻設された各導体層16a’~16n’の巻設方向は反時計回りとなり、脚部22・26間では内外の導体層12a’~12n’・16a’~16n’を構成する線材は、内外の各層毎に上記巻設方向に一致するように接続されている。
 更に、前記脚部22・26に巻設された複数の導体層12a’~12n’・16a’~16n’の線材は、それぞれ脚部22・26毎に並列接続されている。
 この導体12・16に通電すると、内外の各導体層12a’~12n’・16a’~16n’は脚部22・26の上から下(又は下から上)に向かって励磁電流が流れる。この時、上記のように脚部22・26の先端部分のインダクタンスが他の部分より小さいとしても、上記のように各導体層12a’~12n’・16a’~16n’の、インダクタンスの大きい脚部22・26の先端部分以外の部分に対応する部分18が律速となり、導体12・16を流れる励磁電流量は脚部22・26の先端部分以外に対応する部分18に従うことになる。換言すれば、電流密度の偏りが相当程度解消されることになる。
 従ってこの場合、導体12・16の昇温状態は、図9のように全体的に低くある程度均一に保たれることになる。
 なお、図3に脚部22・26の先端部分に対応する部分17、脚部22・26の先端部分以外の部分に対応する部分18を模式的に示す。
 第2実施例の結線方法も2通りある。結線方法は基本的に第1実施例と同じである。以下説明する。
 第1結線方法は、図6に示す通りで、脚部22・26の間において、最内側の第1層12a’・16a’同士を接続し、第2層以下、第n層に至るまで順次、外側に向かって同じ層の線材同士を接続する。
 第2結線方法は、図7に示す通りで、一方の脚部22に多重に巻設された導体層12a’~12n’において、該脚部22に近い最内側の第1層12a’は、前記他方の脚部26に多重に巻設された導体層16a’~16n’で、該脚部26のコア本体21の最外層の第n層16n’に接続され、前記一方の脚部22のコア本体21の最外層の第n層12n’は、前記他方の脚部26に多重に巻設された該脚部26の最内側の第1層16a’に接続され、前記一方の脚部22の第2層12b’から第(n-1)層12(n-1)’は、前記他方の脚部26の第(n-1)層16(n-1)’から第2層16b’に逆順に接続されている。
 上記に示すように、通電時、脚部22・26の先端部分のインダクタンスが他の部分より小さくなるが、この影響は径方向においても先端部分に近い内側の層程、顕著に現れる。換言すれば、第1層12a’・16a’の先端部分と、最外層12n’・16n’の先端部分とを比較すると、第1層12a’・16a’の方が大きな影響を受ける。
 その結果、第1層12a’・16a’を流れる励磁電流は、最外層12n’・16n’のそれよりも若干強くなる。
 第1結線方式では、第1層12a’は第1層16a’、第n層12n’は第n層16n’というように、同じ層同士が接続されているので、最内層である第1層12a’(16a’)同士は、上記インダクタンスの影響をある程度受け、最外層である第n層12n’(16n’)に対する上記影響は、第1層12a’(16a’)同士ほどではない。
 しかし、いずれの層もこの場合、脚部22・26の先端方向からコア本体21方向に巻き付けられているので、脚部22・26の先端部分以外に対応する部分18が律速となり、上記影響を大幅に打ち消している。
 この結果、第2実施例では、第1結線方式を採用しても電流密度の偏りが第1実施例の第1結線方式と比べて大幅に少なく、昇温もよりよく抑制できる。
 第2結線方式では、一方(他方)の脚部22の第1層12a’(16a’)は、他方(一方)の脚部26の第n層16n’(12n’)に逆順に接続されているので、第1層12a’(第n層16n’)という逆順の組み合わせにおいて、インダクタンスの影響が最も小さい第n層16n’(12n’)の脚部22・26の先端部分以外に対応する部分18が律速となる。この関係は他の組み合わせでも同様であり、第2実施例の第2結線方式は第1結線方式に比べてより電流密度の偏りが少なく、昇温もよりよく抑制できる。
 以上から、第2実施例の導体12・16の昇温状況は、僅かな差はあるとしても図9に示す通りとなる。
<実験例>
 図11は、図10に示す従来例を比較例とし、第1実施例の第1結線方法と第2結線方法とを比較した時間―昇温グラフである。
 図中、実線は第1実施例の第2結線方法、破線は第1実施例の第2結線方法、1点鎖線は従来例である。
 そして、各線の細線は、コアの脚部の中央部分に位置する導体層の温度、太線は、コアの脚部の先端部分に位置する導体層の温度である。単位は℃である。電流源としては、コンデンサ容量120マイクロFのパルス電源を用い、出力電圧は420Vに固定して比較した。実験条件は以下の通りである。
(比較例)
導線の断面      :0.8×9mm  1本使い
電源出力電圧     :420V
磁束密度(コア間中心):0.64T
励磁電流       :1100A
(第1実施例)
導線の断面      :0.9×1.6mm  5本使い
電源出力電圧     :420V
磁束密度(コア間中心):0.62T
励磁電流       :1100A
 
 比較例は、通電後、70秒で脚部の先端部分に位置する導体層の温度が80℃に達したが、第1実施例の第1結線方式では130秒、同第2結線方式では190秒であった。
 これにより、本装置における連続磁気治療時間を大幅に長くすることが出来た。
なお、第2実施例も上記理論により、連続磁気治療時間を大幅に長くすることが出来るものと考えられる。
 A:磁気刺激装置、G:磁束、U1・U2:渦電流、W:漏れ磁束、1:ケーシング、2:ケーシング本体、5:蓋部、7:凸部、9:患部接触面、10・14:励磁電流供給線、12・16:導体、12a~12n・16a~16n/12a’~12n’・16a’~16n’:導体層(第1層~第n層)、17:コア先端部分に対応する部分、18:コア先端部分以外に対応する部分、20:磁性体コア、21:コア本体、22・26:脚部、28:脚部の先端、120・160:導体、200:U字形コア、220・260:脚部、280:先端、300:冷却用間隙。

Claims (6)

  1.  コア本体と、該コア本体から伸びた一対の脚部とで形成された磁性体コアと、前記脚部それぞれの周囲に巻設され、且つ多段に積み重ねられた導体層からなる導体とで構成され、
     前記導体層にそれぞれ用いられる線材は、前記脚部の長手方向に平行なその断面が四角形であり、
     前記一対の脚部間では、一方の脚部の各導体層を構成する線材が、他方の脚部の各導体層を構成する線材に、各段毎にそれぞれ接続されていることを特徴とする磁気刺激装置。
  2.  一方の脚部に多段に巻設された導体層において、該脚部の先端に近い第1層は、前記他方の脚部に多段に巻設された導体層で、該脚部の先端に近い第1層に接続され、且つ第2層以下、第n層に至るまで順次、同じ層同士が接続されていることを特徴とする請求項1に記載の磁気刺激装置。
  3.  一方の脚部に多段に巻設された導体層において、該脚部の先端に近い第1層は、前記他方の脚部に多段に巻設された導体層で、該脚部のコア本体に最も近い第n層に接続され、
     前記一方の脚部のコア本体に最も近い第n層は、前記他方の脚部に多段に巻設された、該脚部の先端に近い第1層に接続され、
     前記一方の脚部の第2層から第(n-1)層は、前記他方の脚部の第(n-1)層から第2層に逆順に接続されていることを特徴とする請求項1に記載の磁気刺激装置。
  4.  コア本体と、該コア本体から同方向に伸びた一対の脚部とでU字形に形成された磁性体コアと、前記脚部それぞれの周囲に、その直径を違えて多重に巻設された導体層からなる導体とで構成され、
     前記導体に用いられる線材は、前記脚部の長手方向に平行なその断面が四角形であり、
     前記一対の脚部間では、一方の脚部の各導体層を構成する線材が、他方の脚部の各導体層を構成する線材に、内外の各層毎にそれぞれ接続されていることを特徴とする磁気刺激装置。
  5.  一方の脚部に多重に巻設された導体層において、該脚部に近い最内層の第1層は、前記他方の脚部に多重に巻設された導体層で、該脚部に近い最内層の第1層に接続され、且つ第2層以下、第n層に至るまで順次、同じ層同士が接続されていることを特徴とする請求項4に記載の磁気刺激装置。
  6.  一方の脚部に多重に巻設された導体層において、該脚部に近い最内側の第1層は、前記他方の脚部に多重に巻設された導体層で、該脚部のコア本体の最外層の第n層に接続され、
     前記一方の脚部のコア本体の最外層の第n層は、前記他方の脚部に多重に巻設された該脚部の最内側の第1層に接続され、
     前記一方の脚部の第2層から第(n-1)層は、前記他方の脚部の第(n-1)層から第2層に逆順に接続されていることを特徴とする請求項4に記載の磁気刺激装置。
PCT/JP2018/024585 2018-06-28 2018-06-28 磁気刺激装置 WO2020003437A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/024585 WO2020003437A1 (ja) 2018-06-28 2018-06-28 磁気刺激装置
JP2018555297A JP6535825B1 (ja) 2018-06-28 2018-06-28 磁気刺激装置
CN201880094270.XA CN112218680A (zh) 2018-06-28 2018-06-28 磁刺激装置
US17/054,772 US12029911B2 (en) 2018-06-28 Magnetic stimulation device
EP18924324.9A EP3785763B1 (en) 2018-06-28 2018-06-28 Magnetic stimulation device
KR1020207033215A KR102514148B1 (ko) 2018-06-28 2018-06-28 자기 자극 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024585 WO2020003437A1 (ja) 2018-06-28 2018-06-28 磁気刺激装置

Publications (1)

Publication Number Publication Date
WO2020003437A1 true WO2020003437A1 (ja) 2020-01-02

Family

ID=67023764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024585 WO2020003437A1 (ja) 2018-06-28 2018-06-28 磁気刺激装置

Country Status (5)

Country Link
EP (1) EP3785763B1 (ja)
JP (1) JP6535825B1 (ja)
KR (1) KR102514148B1 (ja)
CN (1) CN112218680A (ja)
WO (1) WO2020003437A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4174241A1 (en) 2021-11-01 2023-05-03 Memis Oguzhan Wood building system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4088778B1 (en) * 2020-01-08 2024-03-06 IFG Corporation Magnetic stimulator
KR102624102B1 (ko) 2021-11-03 2024-01-11 주식회사 리메드 공냉식 자기 자극 장치
KR20230094311A (ko) 2021-12-21 2023-06-28 주식회사 리메드 유냉식 자기 자극 장치
KR20230094312A (ko) 2021-12-21 2023-06-28 주식회사 리메드 중공 코일을 구비한 자기 자극 장치
KR20240012685A (ko) 2022-07-21 2024-01-30 (주)리메드브레인스팀 이동형 자기장 치료장치
KR20240013316A (ko) 2022-07-22 2024-01-30 (주)리메드브레인스팀 자기장 발생장치 및 이를 구비한 자기장 치료장치

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125006U (ja) * 1985-01-25 1986-08-06
JPH07171220A (ja) 1993-12-17 1995-07-11 Akio Nagano 磁気刺激装置
JPH0852231A (ja) 1994-08-10 1996-02-27 Akio Nagano 磁気刺激装置
JPH10234870A (ja) 1996-12-27 1998-09-08 Nippon Koden Corp 磁気刺激式尿失禁治療用コイル装置
JP2000504966A (ja) 1996-08-15 2000-04-25 ニュートナス,インコーポレーテッド 径頭蓋骨脳刺激
JP2001525947A (ja) 1997-05-23 2001-12-11 ドユルセル、ウオテイエ 立体画像の製作方法およびその方法を実施する装置
JP2002306614A (ja) 2001-04-18 2002-10-22 Nippon Koden Corp リッツ線コイルを用いた磁気刺激装置
JP2010166971A (ja) 2009-01-20 2010-08-05 Tohoku Univ 筋肉の動きを増強又は回復させる方法及び装置
JP2014188014A (ja) * 2013-03-26 2014-10-06 Hokoen Co Ltd 磁気治療器
WO2016013146A1 (ja) * 2014-07-25 2016-01-28 株式会社Ifg 連続磁気パルス発生装置
JP2017184979A (ja) * 2016-04-05 2017-10-12 株式会社Ifg 静音磁気刺激コイル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237687A (ja) * 2004-02-26 2005-09-08 Hashimoto Giken:Kk 磁気治療用電磁石
JP2009226037A (ja) * 2008-03-24 2009-10-08 Terumo Corp 治療装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125006U (ja) * 1985-01-25 1986-08-06
JPH07171220A (ja) 1993-12-17 1995-07-11 Akio Nagano 磁気刺激装置
JPH0852231A (ja) 1994-08-10 1996-02-27 Akio Nagano 磁気刺激装置
JP2000504966A (ja) 1996-08-15 2000-04-25 ニュートナス,インコーポレーテッド 径頭蓋骨脳刺激
JPH10234870A (ja) 1996-12-27 1998-09-08 Nippon Koden Corp 磁気刺激式尿失禁治療用コイル装置
JP2001525947A (ja) 1997-05-23 2001-12-11 ドユルセル、ウオテイエ 立体画像の製作方法およびその方法を実施する装置
JP2002306614A (ja) 2001-04-18 2002-10-22 Nippon Koden Corp リッツ線コイルを用いた磁気刺激装置
JP2010166971A (ja) 2009-01-20 2010-08-05 Tohoku Univ 筋肉の動きを増強又は回復させる方法及び装置
JP2014188014A (ja) * 2013-03-26 2014-10-06 Hokoen Co Ltd 磁気治療器
WO2016013146A1 (ja) * 2014-07-25 2016-01-28 株式会社Ifg 連続磁気パルス発生装置
JP2016028640A (ja) 2014-07-25 2016-03-03 株式会社Ifg 連続磁気パルス発生装置
JP2017184979A (ja) * 2016-04-05 2017-10-12 株式会社Ifg 静音磁気刺激コイル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. IZUMI: "Jikishigeki-niyori Mahiga Kaizen-shita Rei (in Japanese", CHUOHOKI PUBLISHING CO., LTD., article "Kaifuku-suru Shintai to Nou", pages: 183
S. IZUMI: "Noukekkan Shogai", ISHIYAKU PUBLISHERS, INC., article "Jikishigeki-ho no Kiso to Oyo", pages: 198

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4174241A1 (en) 2021-11-01 2023-05-03 Memis Oguzhan Wood building system

Also Published As

Publication number Publication date
CN112218680A (zh) 2021-01-12
JP6535825B1 (ja) 2019-06-26
KR20200142074A (ko) 2020-12-21
EP3785763A1 (en) 2021-03-03
US20210244959A1 (en) 2021-08-12
KR102514148B1 (ko) 2023-03-29
EP3785763B1 (en) 2023-11-08
JPWO2020003437A1 (ja) 2020-07-09
EP3785763A4 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
WO2020003437A1 (ja) 磁気刺激装置
US9636519B2 (en) Magnetic stimulation methods and devices for therapeutic treatments
US9586057B2 (en) Magnetic stimulation methods and devices for therapeutic treatments
ES2546081T3 (es) Aparato de terapia de convulsiones
US9931518B2 (en) Magnetic core for medical procedures
JP6190809B2 (ja) 球状表面の構成部分の2つの層を有する磁気コイル
KR20010033769A (ko) 말초 신경 자극을 위한 자기 신경 자극기
KR100484618B1 (ko) 신경 자극기
JP5893689B2 (ja) 連続磁気パルス発生装置
US12029911B2 (en) Magnetic stimulation device
JP2017184979A (ja) 静音磁気刺激コイル
EP4088778A1 (en) Magnetic stimulator
US708216A (en) Electromedical appliance.
Wang et al. A noninvasive field-enhanced magnetic stimulator using secondary ferrite core and resonant structure
JP2022134700A (ja) 磁気刺激装置
Lassing Electro Therapeutics

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018555297

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207033215

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018924324

Country of ref document: EP

Effective date: 20201124

NENP Non-entry into the national phase

Ref country code: DE