WO2020001556A1 - 传感器、掩模板叉、机械手、掩模板传输系统及光刻机 - Google Patents

传感器、掩模板叉、机械手、掩模板传输系统及光刻机 Download PDF

Info

Publication number
WO2020001556A1
WO2020001556A1 PCT/CN2019/093366 CN2019093366W WO2020001556A1 WO 2020001556 A1 WO2020001556 A1 WO 2020001556A1 CN 2019093366 W CN2019093366 W CN 2019093366W WO 2020001556 A1 WO2020001556 A1 WO 2020001556A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
resistor
electrically connected
terminal
Prior art date
Application number
PCT/CN2019/093366
Other languages
English (en)
French (fr)
Inventor
唐文力
朱俊宇
吴芬
郑教增
吴钱忠
祝玥华
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2020001556A1 publication Critical patent/WO2020001556A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof

Definitions

  • Embodiments of the present invention relate to semiconductor manufacturing technologies, such as a sensor, a mask fork, a robot arm, a mask transfer system, and a lithography machine.
  • optical lithography plays an important role.
  • a designed circuit is made into a mask with a specific shape that can transmit light.
  • a light source is projected onto a silicon wafer through the mask to expose and display a specific pattern.
  • the reticle transfer system is mainly used to remove the specified reticle from the reticle storage mechanism, and transport it smoothly, safely, and without pollution to the reticle sub-system or exposure sub-system, and perform the reticle during this process. Alignment of marks in preparation for exposure. The whole process meets the requirements of high speed, high precision and high reliability.
  • the reticle transfer system is an important device for reticle operations during the lithographic process.
  • the robot is an important structure for holding, fixing, and carrying the reticle.
  • a vacuum adsorption method is usually used to fix the reticle to a robot that transfers the reticle.
  • the manipulator includes a fork-shaped mask plate fork, which mainly adsorbs the reticle through an adsorption structure, and is provided with one or more vacuum adsorption windows between the adsorption structure and the reticle.
  • this vacuum adsorption method In exposure equipment, this vacuum adsorption method often produces the phenomenon that the vacuum gas path is blocked or leaked. For example, the vacuum gas path is blocked due to the breakage of the vacuum adsorption window. The particles on the reticle or mask fork make the vacuum adsorption area impossible. Tight fit causes air leakage and so on. All of these will cause the vacuum adsorption force to decrease, making the reticle unable to be firmly and reliably fixed, and reducing the reliability of the equipment. In addition, if the above-mentioned inadequate adsorption condition occurs, the mask plate fork may not be clamped in the mask plate, but the system cannot identify such a condition, so it may cause unnecessary misjudgments or other disadvantages, which may cause semiconductors. The yield of device manufacturing has decreased.
  • This article provides a sensor, mask fork, manipulator, mask transfer system, and lithography machine to achieve effective identification of the current mask fork holding a mask or not, thereby improving the yield of semiconductor devices.
  • an embodiment of the present invention provides a sensor including a voltage stabilization module, a photoelectric induction module, a signal amplification module, and a signal detection module;
  • the voltage stabilizing module is electrically connected to the photoelectric sensing module and the signal amplifying module, and the voltage stabilizing module is configured to provide a constant voltage for the photoelectric sensing module and the signal amplifying module;
  • the photoelectric sensing module is configured to detect whether a target object reaches a set area
  • the signal amplification module is electrically connected to the photoelectric induction module, and the signal amplification module is configured to amplify a signal output by the photoelectric induction module;
  • the signal detection module is electrically connected to the voltage stabilization module and the signal amplification module, and the signal detection module is configured to determine a current working state of the sensor based on a signal output from the signal amplification mode, and the current work
  • the states include open, short, normally triggered, and untriggered.
  • an embodiment of the present invention further provides a mask fork, and the mask fork includes any sensor provided by the embodiment of the present invention.
  • an embodiment of the present invention further provides a manipulator, and the manipulator includes any one of the mask forks provided by the embodiment of the present invention.
  • an embodiment of the present invention further provides a mask transfer system, and the mask transfer system includes any one of the manipulators provided by the embodiments of the present invention.
  • an embodiment of the present invention further provides a lithography machine, which includes any mask transfer system provided by the embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic circuit structure diagram of a voltage stabilization module in a sensor according to an embodiment of the present invention
  • FIG. 3 is a schematic circuit structure diagram of a photoelectric sensing module in a sensor according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a circuit structure of a signal amplification module in a sensor according to an embodiment of the present invention
  • FIG. 5 is a schematic circuit structure diagram of a sensor provided by an embodiment of the present invention obtained by combining FIG. 2, FIG. 3, and FIG. 4;
  • FIG. 6 is a schematic structural diagram of a signal detection module in a sensor according to an embodiment of the present invention.
  • FIG. 7 is a schematic circuit structure diagram of a signal detection module in another sensor according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a mask fork according to an embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional structure diagram of a masking plate clamping assembly according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a putter according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of three states of a mask fork in a working process according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a robot arm according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a mask transmission system according to an embodiment of the present invention.
  • FIG. 14 is a flowchart of a full operation of mask transfer provided by an example of the present invention.
  • FIG. 1 is a schematic structural diagram of a sensor according to an embodiment of the present invention.
  • the sensor includes a voltage stabilization module 100, a photoelectric induction module 200, a signal amplification module 300, and a signal detection module 400.
  • the voltage stabilization module 100 is electrically connected to the photoelectric induction module 200 and the signal amplification module 300.
  • the voltage stabilization module 100 is configured to provide a constant voltage for the photoelectric induction module 200 and the signal amplification module 300; the photoelectric induction module 200 is configured to detect whether a target object has reached a setting Area; the signal amplification module 300 is electrically connected to the photoelectric induction module 200, and the signal amplification module 300 is configured to amplify the signal output by the photoelectric induction module 200; the signal detection module 400 is electrically connected to the voltage stabilization module 100 and the signal amplification module 300, and the signal The detection module 400 is configured to determine a current working state of the sensor based on a signal output by the signal amplification module.
  • the current working state includes an open circuit, a short circuit, a normal trigger, and an untriggered.
  • the current working state of the sensor is determined by using the signal detection module on the signal output by the signal amplification module, and the current working state of the sensor can be used to effectively identify whether the mask fork currently including the sensor is holding the mask or not.
  • the technical solution provided by the examples in this article can monitor the status of the sensors in real time, improving the convenience of system online diagnosis and system security.
  • FIG. 2 is a schematic circuit structure diagram of a voltage stabilization module in a sensor according to an embodiment of the present invention.
  • the voltage stabilization module 100 includes an arithmetic processing unit Amp, a first transistor unit TR1, a reference voltage unit Vref, a first resistor R 1 and a second resistor R 2 .
  • the first input terminal TR1B of the first transistor unit TR1 is electrically connected to the output terminal of the arithmetic processing unit Amp
  • the second input terminal TR1C of the first transistor unit TR1 is electrically connected to the signal input terminal V in of the voltage stabilization module 100
  • the output terminal TR1E of TR1 is electrically connected to the first terminal of the first resistor R 1 and the signal output terminal V out of the voltage stabilization module 100
  • the positive input terminal of the arithmetic processing unit Amp is connected to the second terminal of the first resistor R 1 and the second resistor
  • the first terminal of R 2 is electrically connected
  • the first input terminal of the reference voltage unit Vref is electrically connected to the signal input terminal V in of the voltage stabilization module 100
  • the second input terminal of the reference voltage unit Vref and the second resistor R 2 Both terminals are grounded, and the output terminal of the reference voltage unit Vref is electrically connected to the negative input terminal of the arithmetic processing unit Amp.
  • the photoelectric sensing module 200 may include a light emitting unit and a light sensing unit; both the light emitting unit and the light sensing unit are electrically connected to the signal output terminal V out of the voltage stabilization module 100; the light emitting unit is configured to emit light; the light sensing unit is configured to receive light; Light emitted by the light emitting unit and reflected by the target object.
  • the advantage of this setting is that because the sensor is not in direct contact with the target object, it will not affect the working state of the target object.
  • FIG. 3 is a schematic circuit structure diagram of a photoelectric sensing module in a sensor according to an embodiment of the present invention.
  • the light emitting unit comprises a light emitting diode unit D1
  • the photosensitive unit means comprises a phototransistor TR2
  • photoelectric sensor module 200 further comprises a third resistor R 3.
  • the input terminal of the light emitting diode unit D1 is electrically connected to the first terminal of the third resistor R 3 , and the output terminal of the light emitting diode unit D1 is grounded to GND; the input terminal of the phototransistor unit TR2 is connected to the second terminal of the third resistor R 3 and the voltage is stabilized.
  • a signal output terminal V out module 100 is electrically connected to an electrical input of voltage regulator module and a signal output terminal V out module 100 of the photoelectric sensor 200 is connected to the output terminal of the photo transistor TR2 and the photoelectric cell sensor module signal output terminal of the V sig 200 Electrical connection.
  • FIG. 4 is a schematic circuit structure diagram of a signal amplification module in a sensor according to an embodiment of the present invention.
  • a signal amplifying unit module 300 comprises a third transistor TR3, a fourth transistor TR4 unit, the adjustable resistance unit R v, the fourth resistor R 4, the fifth resistor and the sixth resistor R 5 R 6.
  • Signal amplification module signal input terminal 300 and the signal output terminal V in the voltage regulator 100 is electrically connected to the signal input of voltage regulator in the V 100 is electrically connected to the first terminal of the sixth resistor R 6;
  • signal amplifying module 300 a first signal input terminal and the voltage regulator module output signal V out terminal 100 is electrically connected to voltage regulator output signal V out terminal 100 and the fifth resistor R & lt first end 5 is electrically connected;
  • V sig is electrically connected to the signal output of the photo sensor module V sig R & lt fourth resistor 200 is connected to a first end electrically 4;
  • R v is an adjustable resistance unit connected to ground GND first
  • the first input terminal TR3B of the third transistor unit TR3 is electrically connected to the second terminal of the adjustable resistor unit R v and the second terminal of the fourth resistor R 4 , and the second input terminal TR3E of the third transistor unit TR3 is grounded,
  • FIG. 5 is a schematic circuit structure diagram of a sensor provided by an embodiment of the present invention obtained by combining FIG. 2, FIG. 3, and FIG. 4. The working principle of the sensor is described below with reference to FIG. 5.
  • V D1 ⁇ 1.1V ⁇ 1.2V is the bias voltage of the light emitting diode, and the loss current of the voltage regulator module Because R 5 + R 1 + R 2 + R 4 + R V >> R 3 , I com ⁇ (V out -V D1 ) / R 3 .
  • the phototransistor TR2 cannot receive the light signal from the light-emitting diode D1, and the phototransistor TR2 is in an off state.
  • the I out value when the sensor is in the triggered state or not triggered, the I out value is different. In addition, if the sensor is in an open or short circuit, the I out value is also different. According to this, according to the size of the I out value, the quality of the sensor in the entire signal circuit of the sensor and the sensor trigger can be clearly diagnosed, thereby improving the system's Fault diagnosis ability, reducing misjudgment caused by cable contact, short circuit, sensor damage, etc.
  • the signal detection module 400 includes a signal processing unit and a result determination unit; the signal processing unit is electrically connected to the voltage stabilization module 100 and the signal amplification module 300, and the signal processing unit is configured to process a signal output by the signal amplification module 300, The signal processing result is obtained; the result determination unit is connected to the signal processing unit, and the result determination unit is set to recognize the current working state of the sensor based on the signal processing result.
  • the advantage of this setting is that it can effectively diagnose the quality of the sensor in the entire signal loop of the sensor, and whether the sensor is triggered or not, thereby improving the system's fault diagnosis capability and reducing misjudgments caused by cable contact, short circuit, and sensor damage.
  • the signal processing unit I out values directly detected, or the value of I out for comparison with a reference signal to obtain a comparison result.
  • FIG. 6 is a schematic circuit structure diagram of a signal detection module in a sensor according to an embodiment of the present invention.
  • the signal processing unit comprises a seventh resistor R 7, eighth resistor R 8, a first capacitor C1, a second capacitor C2, the first comparator A1, A2 of the second comparator and the third comparator A3.
  • the first terminal of the seventh resistor R 7 , the first terminal of the eighth resistor R 8 , and the first terminal of the first capacitor C 1 are all electrically connected to form a first terminal with the seventh resistor R 7 and an eighth resistor R.
  • a first terminal and a signal input terminal VSO_in 8 of the signal processing unit of the first capacitor C1 are electrically connected to a first end; a second capacitor C2, a second end, the second end of the seventh resistor R 7 and a second terminal of the capacitor C1 are grounded; a first terminal of the second capacitor C2 is electrically connected to the second terminal of the eighth resistor R 8 and the second end of the eighth resistor R 8 and further the first comparator A1, the second The negative input terminals of the comparator A2 and the third comparator A3 are all electrically connected; the positive input terminals of the first comparator A1, the second comparator A2, and the third comparator A3 are respectively set to input different reference signals; It is electrically connected to the output terminal of the first comparator A1, the output terminal of the second comparator A2, and the output terminal of the third comparator A3.
  • the first comparator A1, the second comparator A2, and the third comparator A3 are all hysteresis comparators, and the model is LM339.
  • I VSO_in is the current output by the sensor, which is equal to I out ;
  • V VSO_in is the voltage output by the sensor after sampling; then:
  • V VSO_in R 7 ⁇ I VSO_in (Equation 1).
  • Table 1 gives a truth table of the output states of the three comparators of a sensor signal detection module provided by an embodiment of the present invention.
  • Y indicates the state of the sensor signal output
  • Y1 indicates whether the sensor is working normally
  • F indicates the output state of VSO_DET
  • G indicates the VSO_SHORT output state
  • H indicates the VSO_OPEN output state
  • 1 indicates the output high level
  • 0 indicates Output low.
  • Y F ⁇ Y1.
  • Y1 0, it indicates that the sensor signal is abnormal (that is, the sensor is in a short circuit or an open circuit).
  • FIG. 7 is a schematic circuit structure diagram of a signal detection module in another sensor according to an embodiment of the present invention.
  • the signal processing unit includes a ninth resistor R 9 , a tenth resistor R 10 , a third capacitor C3, a fourth capacitor C4, a fourth comparator A4, a fifth comparator A5, and a sixth comparator. A6.
  • the signal input terminal VSO_in of the signal processing unit is electrically connected to the first terminal of the ninth resistor R 9 , the first terminal of the tenth resistor R 10 , and the positive input terminal of the fourth comparator A4; the second of the ninth resistor R 9 Terminal, the first terminal of the third capacitor C3 is connected to a constant voltage signal; the second terminal of the tenth resistor R 10 and the first terminal of the fourth capacitor C4, the negative input terminal of the fifth comparator A5, and the sixth comparison
  • the positive input terminal of the comparator A6 is electrically connected; the second terminal of the third capacitor C3 and the second terminal of the fourth capacitor C4 are grounded; the negative input terminal of the fourth comparator A4, the positive input terminal of the fifth comparator A5, and the first The negative inputs of the six comparators A6 are respectively set to input different reference signals; the result determination unit is electrically connected to the output of the fourth comparator A4, the output of the fifth comparator A5, and the output of the sixth comparator A6. .
  • I VSO_in is the current output by the sensor, which is equal to I out ;
  • V VSO_in is the voltage output by the sensor after sampling; then:
  • V VSO_in 15V-R 9 ⁇ I VSO_in (Equation 2).
  • Table 2 gives a truth table of the output states of the three comparators of a sensor signal detection module provided by an embodiment of the present invention.
  • Y to indicate the state of the sensor signal output
  • U to indicate whether the sensor is working normally
  • F to indicate the output state of VSO_DET
  • G to indicate the VSO_SHORT output state
  • H to indicate the VSO_OPEN output state
  • the above description shows that according to the comparison result between the I out value and the reference signals (such as REF_DET, REF_SHORT, and REF_OPEN), the current working state of the sensor can be obtained.
  • the reference signals such as REF_DET, REF_SHORT, and REF_OPEN
  • the specific situation of the sensor circuit (such as open circuit or short circuit, etc.) can also be distinguished.
  • F, G, and H are used as the judgment basis to obtain the specific situation of the sensor circuit.
  • an embodiment of the present invention further provides a mask fork.
  • the mask fork includes any of the sensors provided in the examples herein.
  • the current working state of the sensor is determined by using the signal detection module on the signal output by the signal amplification module, and the current working state of the sensor can be used to effectively identify whether the mask fork currently including the sensor is holding the mask, Improve the manufacturing yield of semiconductor devices.
  • the technical solution provided by the examples in this article can monitor the status of the sensors in real time, improving the convenience of system online diagnosis and system security.
  • FIG. 8 is a schematic structural diagram of a mask fork according to an embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional structure diagram of a masking plate clamping assembly according to an embodiment of the present invention.
  • the mask holder includes a mask holder assembly 50; the mask holder assembly 50 includes a mask fork body 51, a push rod 52, and at least two sensors 53 (including sensors) provided by embodiments of the present invention. 53a and sensor 53b).
  • the mask fork body 51 is provided with a mask fixing region 54, and a hole 510 is provided on a side wall 541 of the mask fixing region 54 that is in contact with the mask.
  • the pusher 52 is disposed in the hole 510 and can be along the hole 510.
  • the extending direction (that is, the X-axis direction in the figure) moves, and the push rod 52 cooperates with the mask fixing area 54 to clamp the mask.
  • At least two sensor installation areas are provided on opposite sides of the inner wall of the hole 510, and each sensor 53 is disposed in the corresponding sensor installation area; the line connecting the geometric center of the at least two sensor installation areas and the hole 510 (that is, X in the figure Axial direction)
  • the extending angle ⁇ in the extending direction is larger than 0 ° and smaller than 90 °.
  • FIG. 10 is a schematic structural diagram of a putter according to an embodiment of the present invention.
  • the push rod 52 includes a first portion 52a, a second portion 52b, a third portion 52c, and a fourth portion 52d that are connected end to end.
  • the width d2 of the second portion 52b is smaller than the width d1 of the first portion 52a.
  • the width d2 of the second portion 52b is smaller than the width d3 of the third portion 52c.
  • the width d4 of the fourth portion 52d is smaller than the width d1 of the first portion 52a, and at the same time, the width d2 of the fourth portion 52d is smaller than the width d3 of the third portion 52c.
  • the width d2 of the second portion 52b and the width d4 of the fourth portion 52d are small, even if the second portion 52b (or the fourth portion 52d) is directly opposite the sensor 53, the outer wall of the second portion 52b (or the fourth portion 52d) The distance from the sensor 53 is relatively long, and the second portion 52b (or the fourth portion 52d) is beyond the detectable distance of the sensor 53 and cannot be sensed by the sensor 53.
  • the width d1 of the first portion 52a and the width d3 of the third portion 52c are larger.
  • the outer wall of the first portion 52a (or the third portion 52c) is very close, and the first portion 52a (or the third portion 52c) is within the detection distance of the sensor 53 and can be sensed by the sensor 53. In this way, when the distance that the push rod 52 extends into the hole 510 is different, the combination of the detection signals fed back by each sensor is different.
  • FIG. 11 is a schematic structural diagram of three states of a mask fork in a working process according to an embodiment of the present invention.
  • the push rod 52 is within the detection range of the sensor 53a, so the sensor 53a has an output signal, and the sensor 53b has no signal (that is, the sensor 53a is triggered and the sensor 53b is not triggered). )
  • the sensor 53a detects the first portion 52a of the putter
  • the sensor 53b detects the second portion 52b of the putter.
  • Figure 9 shows the position between the sensor 53 and the push rod when the mask is clamped.
  • the sensor 53a detects the first portion 52a of the push rod
  • the sensor 53b detects the third portion 52c of the push rod
  • the sensor 53a Both the sensor 53b and the sensor 53b have output signals (that is, the sensor 53a and the sensor 53b are both triggered).
  • the push rod 52 reaches the maximum stroke of the cylinder, and both sensors 53 have no signal (that is, the sensors 53a and 53b are not triggered).
  • the sensor 53a detects the second portion 52b of the push rod.
  • the sensor 53b detects the fourth portion 52d of the putter. Therefore, the working state of the mask fork (such as whether a mask is clamped, etc.) can be obtained from the signals output by the two sensors 53, and Table 3 is obtained.
  • each sensor 53 In practice, by detecting the trigger state of each sensor 53 and relying on Table 3, the current clamping state of the mask in the mask fork can be effectively determined, and the output of each sensor signal detection module is used to determine whether each sensor is in The normal working state improves the safety of the system and the convenience of diagnosis.
  • the outer structure of the push rod 52 enables the sensors 53a and 53b to have the above-mentioned three triggering states, and is very accurate, the clamping state of the reticle can be accurately obtained, avoiding unnecessary operations. , Thereby improving the security of mask materials.
  • the mask holding assembly 50 further includes components such as a cylinder 55, a push head 56, a throttle valve 57, a particle extraction interface 58, a bushing 59, and a spring 501.
  • the cylinder bore and stroke of the cylinder 55 are selected according to actual needs.
  • the push head 56 is arranged at the end of the push rod 52.
  • the PEEK material is used to ensure that the push head 56 is in buffer contact with the reticle and can reduce the generation of particles.
  • the bushing 59 is provided inside the hole 510 and is made of polytetrafluoroethylene. It is used to ensure the smoothness of the push rod 52 during movement and to reduce the generation of particles during the movement.
  • the spring 501 is used to overcome the friction between the seal ring and the cylinder shell to ensure the reset of the push rod 52.
  • a throttle valve 57 is installed at the air source interface of the cylinder.
  • a push rod particle extraction interface 58 is designed in the cylinder body.
  • a dynamic seal ring 551 design and a static seal ring 552 design are respectively provided for the push rod 52 and the cylinder end.
  • the mask fork further includes a flange 61, a torque sensor 62, a recovery mechanism 63, and an anti-collision mechanism.
  • the flange 61 is used to connect with an external structure, such as an arm of a robot.
  • the torque sensor 62 is configured to detect the collision force of the mask plate fork. By setting the threshold value of the torque sensor 62, when the collision force exceeds the threshold value, the trigger signal of the torque sensor 62 is fed back to the manipulator connected to the mask plate fork.
  • the torque sensor 62 may be changed to a contact mode, so as to determine the position and station calibration function of each module relative to the pick-and-place robot.
  • an embodiment of the present invention further provides a manipulator.
  • the robot arm includes any one of the mask forks provided in the examples of the present invention.
  • the current working state of the sensor is determined by using the signal detection module on the signal output by the signal amplification module, and the current working state of the sensor can be used to effectively identify whether the mask fork currently including the sensor is holding the mask, Improve the manufacturing yield of semiconductor devices.
  • the technical solution provided by the examples in this article can monitor the status of the sensors in real time, improving the convenience of system online diagnosis and system security.
  • FIG. 12 is a schematic structural diagram of a robot arm according to an embodiment of the present invention.
  • the manipulator adopts a planar joint type (SCARA) structure, which can realize vertical movement in the Z direction, rotation movement around the first axis Theta1, rotation movement around the second axis Theta2, and rotation around the third axis Roll-axis. motion.
  • the end effector is a mask plate fork, which clamps the mask plate by cylinder movement.
  • the vertical movement in the Z direction drives the screw to rotate through the motor, and the screw nut drives the Z part of the main body of the manipulator to move the end effector to the station for picking and placing the mask.
  • the rotation of the first axis Theta1 is output by the motor, and is used to drive the first arm Arm1 to move around the first axis Theta1 after being decelerated by the harmonic reducer.
  • the second axis Theta2 and the third axis Roll-axis rotary motion are output by the motor. After being transmitted by the synchronous pulley, the second arm Arm2 is rotated around the first arm Arm1 and the end effector is rotated around the first wall Arm1.
  • an embodiment of the present invention further provides a mask transfer system.
  • the mask transfer system includes any of the robots provided in the examples herein.
  • the current working state of the sensor is determined by using the signal detection module on the signal output by the signal amplification module, and the current working state of the sensor can be used to effectively identify whether the mask fork currently including the sensor is holding the mask, Improve the manufacturing yield of semiconductor devices.
  • the technical solution provided by the examples in this article can monitor the status of the sensors in real time, improving the convenience of system online diagnosis and system security.
  • FIG. 13 is a schematic structural diagram of a mask transmission system according to an embodiment of the present invention.
  • FIG. 14 is a flowchart of a full operation of a mask transfer provided by an example in this document. Table 4 shows the full operation flow of mask transmission.
  • the mask transfer system mainly consists of the following parts: an external library module XRL, an internal block module IRL, a pick-and-place robot RO, a granularity detection module MRIS, and a pre-alignment module PA.
  • the framework modules include an RTM framework and an RPM framework (not shown in Figures 12 and 13). Each module is located in an RTM framework and an RPM framework, of which the external library module XRL, the internal module IRL, and the pick-and-place robot RO
  • the granularity detection module MRIS is located on the RTM frame
  • the coarse pre-alignment module CPA, the fine pre-alignment module FPA, and the exchange version of the robot EA are located on the RPM frame.
  • the electrical control cabinet EP and the gas control module PN module are distributed as required. Each module is located on-site either on an RTM frame or an RPM frame.
  • the manipulator provided in the embodiment of the present invention is a pick-and-place robot RO.
  • a mask transfer system described in this article can be configured with left and right settings according to the requirements of the lithography machine, but the names of each module in the two configurations remain the same.
  • the main function is to purify and store masks.
  • the internal version library stores the masks transferred from the external version library into the mask transmission sub-system.
  • the storage performs the granularity detection Mask.
  • the internal hardware of the mask transfer system is equipped with two standard plates. Each internal plate can hold a maximum of 6 mask plates, and the two plates can hold a maximum of 12 mask plates. Use case for select configuration.
  • the internal plate library uses clean air XCDA provided by the whole machine, so that the plate library forms a certain positive pressure environment, thereby ensuring a high clean environment with a relative humidity of less than 1% in the mask storage area.
  • the internal version library is designed with an automatic calibration interface. Pick-and-place robots can perform automatic station calibration through this interface, which can reduce human participation and effectively improve the convenience and convenience of station calibration.
  • External Repository Module XRL It is mainly used to store and transfer the reticle transferred from the factory to the lithography machine.
  • the external version of the library module is configured to interface with the automated production line, or it can be configured to interface with the operator offline.
  • the external version library receives a new version box, it automatically loads the version box, and the mask in the version box is scanned by the bar code when it is taken out by the pick-and-place robot.
  • the external version library is designed with an interface for automatic robot calibration.
  • the pick-and-place robot can perform automatic station calibration through this interface, which can reduce human participation and effectively improve the convenience of station calibration.
  • the external plate library also integrates a reticle box ID reader for reading the ID number of the reticle box.
  • Pick-and-place robot RO It is mainly used to transfer reticle between different equipment.
  • Mask transfer uses Scara robots with high rigidity, high speed, and high cleanliness.
  • the pick-and-place robot can transfer masks between different stations, and adjust the attitude of the masks at the rough pre-alignment station to ensure that the attitudes of different masks remain the same before they are uploaded to the mask table.
  • the robot end is equipped with a plate fork and a safety anti-collision mechanism. When the robot plate fork is collided in any direction from six degrees of freedom, the sensor in the anti-collision mechanism is triggered. The sensor trigger signal controls the robot controller to make the robot emergency stop and protect the robot. No damage, only when the torque sensor returns to normal working state, the robot can resume normal work.
  • the pick-and-place version of the manipulator relies on the implementation of the anti-collision mechanism and the automatic calibration interface designed by each device to realize the automatic calibration function of each station.
  • the granularity detection module is composed of a granularity detection system, which is mainly used to detect the number and distribution of particles on the reticle.
  • the particle size detection module uses a moving table with a mask to move, and uses dark field scattering measurement technology to detect particles on the glass surface and the pellicle surface during the movement.
  • a focus sensor is used to detect the reticle focal plane, and the reticle movement is automatically adjusted by the movement mechanism.
  • the granularity detection design has an interface for automatic calibration of the manipulator.
  • the pick-and-place robot can complete the automatic station calibration through this interface, which can reduce human participation and effectively improve the convenience of the station calibration boundary.
  • Pre-alignment module PA It is mainly used to measure the position of the reticle. Pre-alignment in mask transmission is divided into two parts: coarse pre-alignment (CPA) and fine pre-alignment (FPA).
  • the pre-alignment mechanism includes: a lighting component, an imaging component, two four-quadrant quadcell sensors, and a signal processing board.
  • Coarse pre-alignment is mainly used to eliminate the position deviation of the mask in the transmission process, to ensure the accuracy of the mask before the handover of the mask to the exchange robot, and to avoid the failure of the exchange robot sucker to attract the mask due to large errors;
  • the alignment is mainly used to eliminate the position deviation of the mask during the plate exchange process, so that the mask coordinate system and the machine coordinate system are consistent, to ensure that the position of the mask on the mask to the mask table has a certain repeatability guarantee, so that the mask When the template is sent to the exposure area, the mask mark can enter the coaxial field of view capture range.
  • Exchange version robot EA It is used to transfer the mask to and from the version robot, temporary storage stage, and mask stage. It is mainly composed of a rotating motor, two lifting mechanisms, two exchange forks and a positioning and guiding mechanism.
  • the two lifting mechanisms of the rotary exchange manipulator are lowered (the two lifting mechanisms can be lowered separately).
  • the plate fork respectively adsorbs the mask table and the mask plate on the pick and place robot from the front. After rotating 180 degrees, they are lowered.
  • the plate fork adopts an adaptive structure.
  • the adaptive plate fork is composed of four independent vacuum suction cups. Each suction cup is designed with an adaptive mechanism.
  • the total weight of the adaptive CCM is 0.9KG, which effectively guarantees the high-speed movement of the vertical version of the exchange robot.
  • the adaptive version of the fork also designed the relevant air control protection structure and vacuum air circuit.
  • an embodiment of the present invention further provides a lithography machine.
  • the lithography machine includes any of the mask transfer systems provided in the examples herein.
  • the current working state of the sensor is determined by using the signal detection module on the signal output by the signal amplification module, and the current working state of the sensor can be used to effectively identify whether the mask fork currently including the sensor is holding the mask, Improve the manufacturing yield of semiconductor devices.
  • the technical solution provided by the examples in this article can monitor the status of the sensors in real time, improving the convenience of system online diagnosis and system security.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本发明实施例公开了一种传感器、掩模板叉、机械手、掩模板传输系统及光刻机。该传感器包括稳压模块、光电感应模块、信号放大模块以及信号检测模块;稳压模块与光电感应模块和信号放大模块电连接;光电感应模块设置为探测目标物体是否到达设定区域;信号放大模块与光电感应模块电连接;信号检测模块与稳压模块和信号放大模块均电连接,信号检测模块设置为基于信号放大模式输出的信号判断传感器的当前工作状态。

Description

传感器、掩模板叉、机械手、掩模板传输系统及光刻机
本公开要求在2018年06月29日提交中国专利局、申请号为201810696848.0的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本发明实施例涉及半导体制作技术,例如涉及一种传感器、掩模板叉、机械手、掩模板传输系统及光刻机。
背景技术
当前半导体科技发展迅速,其中光学光刻技术扮演了重要的角色。光学光刻技术在半导体的应用上,是将设计好的线路制作成具有特定形状可透光的掩模,利用曝光原理,使光源通过掩模投影至硅晶片上,可曝光显示特定的图案。
在曝光设备中,掩模版或硅片等物料传输系统是非常重要的分系统。其中,掩模版传输系统主要用于将指定的掩模版从掩模版存储机构中取出,平稳、安全并且无污染地运输到掩模台分系统或曝光分系统中,并在此过程中进行掩模版标记的对准,为曝光做准备。整个过程满足高速、高精度和高可靠性的要求。
光刻设备已经能够在晶片上形成越来越小的图形,而在光刻设备中,掩模版传输系统则是对光刻过程中掩模版操作的重要装置。在掩模版传输系统中,机械手是夹持、固定和承载掩模版的重要结构。目前,掩模版在传输的过程中通常是采用真空吸附的方法固定在传输掩模版的机械手上。通常情况下,机械手包括一个叉形的掩模板叉,主要通过吸附结构来吸附掩模版,并且在吸附结构与掩模版接触的中间设置有一个或多个真空吸附的窗口。
在曝光设备中,这种真空吸附的方法往往产生真空气路堵塞或漏气的现象,比如真空吸附窗口的破损导致真空气路堵塞,掩模版或掩模板叉上存在的颗粒物使真空吸附处不能紧密地贴合导致漏气等等。这些都会导致真空吸附力下降,使掩模版不能得到牢固并且可靠的固定,使设备的可靠性降低。另外,若出现上述吸附不牢的状况,使得掩模板叉中可能没有夹持有掩模版,但是系统是无法识别这样的状况的,所以可能造成一些不必要的误判或其他弊端,进而造成半导体器件制作良率下降。
发明内容
本文提供一种传感器、掩模板叉、机械手、掩模板传输系统及光刻机,以实现有效识别当前掩模叉夹持掩膜版与否,进而提高半导体器件的制作良率。
第一方面,本发明实施例提供了一种传感器,该传感器包括稳压模块、光电感应模块、信号放大模块以及信号检测模块;
所述稳压模块与所述光电感应模块和所述信号放大模块电连接,所述稳压模块设置为为所述光电感应模块和所述信号放大模块提供恒定电压;
所述光电感应模块设置为探测目标物体是否到达设定区域;
所述信号放大模块与所述光电感应模块电连接,所述信号放大模块设置为 对所述光电感应模块输出的信号进行放大;
所述信号检测模块与所述稳压模块和所述信号放大模块均电连接,所述信号检测模块设置为基于所述信号放大模式输出的信号判断所述传感器的当前工作状态,所述当前工作状态包括开路、短路、正常触发以及未触发。
第二方面,本发明实施例还提供了一种掩模板叉,该掩模板叉包括本发明实施例提供的任意一种传感器。
第三方面,本发明实施例还提供了一种机械手,该机械手包括本发明实施例提供的任意一种掩模板叉。
第三方面,本发明实施例还提供了一种掩模板传输系统,该掩模板传输系统包括本发明实施例提供的任意一种机械手。
第四方面,本发明实施例还提供了一种光刻机,该光刻机包括本发明实施例提供的任意一种掩模板传输系统。
附图说明
图1为本发明实施例提供的一种传感器的结构示意图;
图2为本发明实施例提供的一种传感器中稳压模块的电路结构示意图;
图3为本发明实施例提供的一种传感器中光电感应模块的电路结构示意图;
图4为本发明实施例提供的一种传感器中信号放大模块的电路结构示意图;
图5为将图2、图3和图4结合后得到的本发明实施例提供的一种传感器的电路结构示意图;
图6为本发明实施例提供的一种传感器中信号检测模块的电路结构示意图;
图7为本发明实施例提供的另一种传感器中信号检测模块的电路结构示意图;
图8为本发明实施例提供的一种掩模板叉的结构示意图;
图9为本发明实施例提供的一种掩模板夹持组件的剖面结构示意图;
图10为本发明实施例提供的一种推杆的结构示意图;
图11为本发明实施例提供的一种掩模板叉在工作过程中三个状态的结构示意图;
图12为本发明实施例提供的一种机械手的结构示意图;
图13为本发明实施例提供的一种掩模板传输系统的结构示意图;
图14为本发明示例提供的一种掩模板传输全动作流程图。
具体实施方式
下面结合附图和实施例对本文作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本文,而非对本文的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本文相关的部分而非全部结构。
图1为本发明实施例提供的一种传感器的结构示意图。参见图1,该传感器包括稳压模块100、光电感应模块200、信号放大模块300以及信号检测模块400。稳压模块100与光电感应模块200和信号放大模块300电连接,稳压模块100 设置为为光电感应模块200和信号放大模块300提供恒定电压;光电感应模块200设置为探测目标物体是否到达设定区域;信号放大模块300与光电感应模块200电连接,信号放大模块300设置为对光电感应模块200输出的信号进行放大;信号检测模块400与稳压模块100和信号放大模块300均电连接,信号检测模块400设置为基于信号放大模块输出的信号判断传感器的当前工作状态,当前工作状态包括开路、短路、正常触发以及未触发。
本发明实施例通过利用信号检测模块对信号放大模块输出的信号判断传感器的当前工作状态,进而依赖传感器的当前工作状态可以有效识别当前包括该传感器的掩模叉夹持掩膜版与否,进而提高半导体器件的制作良率。此外,本文示例提供的技术方案可以实现实时监控传感器状态,提高系统在线诊断便利性及系统安全性。
在实际设置时,稳压模块100、光电感应模块200、信号放大模块300以及信号检测模块400的具体结构有多种,不同结构其电路工作原理略有差别。下面就典型示例进行详细说明。
图2为本发明实施例提供的一种传感器中稳压模块的电路结构示意图。参见图2,该传感器中,稳压模块100包括运算处理单元Amp,第一晶体管单元TR1,参考电压单元Vref、第一电阻R 1和第二电阻R 2。第一晶体管单元TR1的第一输入端TR1B与运算处理单元Amp输出端电连接,第一晶体管单元TR1的第二输入端TR1C与稳压模块100的信号输入端V in电连接,第一晶体管单元TR1的输出端TR1E与第一电阻R 1的第一端和稳压模块100的信号输出端V out电连接;运算处理单元Amp正输入端与第一电阻R 1的第二端和第二电阻R 2的第一端均电连接;参考电压单元Vref的第一输入端与稳压模块100的信号输入端V in电连接,参考电压单元Vref的第二输入端和第二电阻R 2的第二端均接地GND,参考电压单元Vref输出端与运算处理单元Amp负输入端电连接。
可选地,光电感应模块200可以包括发光单元和感光单元;发光单元和感光单元均与稳压模块100的信号输出端V out电连接;发光单元设置为出射光线;感光单元设置为接收,由发光单元出射,经目标物体反射的光线。这样设置的好处是,由于传感器与目标物体不直接接触,不会对目标物体的工作状态造成影响。
图3为本发明实施例提供的一种传感器中光电感应模块的电路结构示意图。参见图3,该传感器中,发光单元包括发光二极管单元D1,感光单元包括光敏晶体管单元TR2;光电感应模块200还包括第三电阻R 3。发光二极管单元D1的输入端与第三电阻R 3的第一端电连接,发光二极管单元D1的输出端接地GND;光敏晶体管单元TR2的输入端与第三电阻R 3的第二端以及稳压模块100的信号输出端V out电连接,稳压模块100的信号输出端V out与光电感应模块200的输入端电连接,光敏晶体管单元TR2的输出端与光电感应模块200的信号输出端V sig电连接。
图4为本发明实施例提供的一种传感器中信号放大模块的电路结构示意图。参见图4,该传感器中,信号放大模块300包括第三晶体管单元TR3、第四晶体 管单元TR4、可调电阻单元R v、第四电阻R 4、第五电阻R 5和第六电阻R 6。信号放大模块300的信号输出端与稳压模块100的信号输入端V in电连接,稳压模块100的信号输入端V in与第六电阻R 6的第一端电连接;信号放大模块300的第一信号输入端与稳压模块100的信号输出端V out电连接,稳压模块100的信号输出端V out与第五电阻R 5的第一端电连接;信号放大模块300第二信号输入端与光电感应模块200的信号输出端V sig电连接,光电感应模块200的信号输出端V sig与第四电阻R 4的第一端电连接;可调电阻单元R v的第一端接地GND;第三晶体管单元TR3的第一输入端TR3B与可调电阻单元R v的第二端和第四电阻R 4的第二端均电连接,第三晶体管单元TR3的第二输入端TR3E接地,第三晶体管单元TR3的输出端TR3C与第五电阻R 5的第二端电连接;第四晶体管单元TR4的第一输入端TR4B与第三晶体管单元TR3的输出端TR3C电连接,第四晶体管单元TR4的第二输入端TR4E接地,第四晶体管单元TR4的输出端TR4C与第六电阻R 6的第二端电连接。
图5为将图2、图3和图4结合后得到的本发明实施例提供的一种传感器的电路结构示意图。下面结合图5,对该传感器的工作原理进行说明。
参见图5,稳压模块100输出电压为V out=V ref*(R 1+R 2)/R 2,为恒压源。V D1≈1.1V~1.2V为发光二极管偏置电压,稳压模块损耗电流
Figure PCTCN2019093366-appb-000001
因为R 5+R 1+R 2+R 4+R V>>R 3,所以I com≈(V out-V D1)/R 3
当目标物体(即被检测物体)离传感器距离较远时,光敏晶体管TR2接收不到来自发光二极管D1的光信号,光敏晶体管TR2处于断开状态;此时,V sig≈0V;信号放大模块300内的第三晶体管单元TR3的第一输入端TR3B电压V be3≈0V;信号放大模块300内的第三晶体管单元TR3处于断开状态;信号放大模块300内的第四晶体管单元TR4的第一输入端TR4B电压V be4≈V out;此时,信号放大模块300内的第四晶体管单元TR4处于导通状态;信号放大模块300输出的电流信号约为I sig=(V in‐V ce4)/R 6,因为V ce4可以忽略不计;此时,I sig≈V in/R 6;I out≈I sig+I com
当目标物体(被检测物体)离传感器距离较近时,当光敏晶体管TR2接收到经目标物体反射回来的来自发光二极管D1的光信号时,光敏晶体管TR2处 于导通状态;V sig=V out‐V ce2;信号放大模块300内的第三晶体管单元TR3的第一输入端TR3B电压
Figure PCTCN2019093366-appb-000002
信号放大模块300内的第三晶体管单元TR3处于导通状态;信号放大模块300内的第四晶体管单元TR4的第一输入端TR4B电压V be4=V out‐R 5*I ce3;信号放大模块内的第四晶体管单元TR4处于断开状态;信号放大模块300输出的电流信号约为I sig≈0A;此时,I out≈I com
由此可见,当传感器处于触发状态或未被触发状态,I out值不同。另外若传感器处于开路或短路时,I out值同样存在差异,据此,可以根据I out值的大小,可明确诊断出传感器整个信号回路中传感器的好坏、传感器触发与否,从而提高系统的故障诊断能力,减少因线缆接触、短路、传感器损坏等造成的误判断。
可选地,信号检测模块400包括信号处理单元和结果判定单元;信号处理单元与稳压模块100和信号放大模块300均电连接,信号处理单元设置为对信号放大模块300输出的信号进行处理,并得到信号处理结果;结果判定单元与信号处理单元相连,结果判定单元设置为基于信号处理结果,对传感器的当前工作状态进行识别。这样设置的好处是,可以有效诊断出传感器整个信号回路中传感器的好坏、传感器触发与否,从而提高系统的故障诊断能力,减少因线缆接触、短路、传感器损坏等造成的误判断。
在实际设置时,可选地,信号处理单元对I out值直接进行检测,或者将I out值与基准信号进行比对,以得到比对结果。相对于对I out值直接进行检测的方法,将I out值与基准信号进行比对,以得到比对结果的方法,对设备要求低,成本低廉,结构简单,更易于实现。
图6为本发明实施例提供的一种传感器中信号检测模块的电路结构示意图。参见图6,该传感器中,信号处理单元包括第七电阻R 7、第八电阻R 8、第一电容C1、第二电容C2、第一比较器A1、第二比较器A2以及第三比较器A3。第七电阻R 7的第一端、第八电阻R 8的第一端以及第一电容C1的第一端均电连接,以形成有与第七电阻R 7的第一端、第八电阻R 8的第一端以及第一电容C1的第一端的均电连接的所述信号处理单元的信号输入端VSO_in;第二电容C2的第二端、第七电阻R 7的第二端和第一电容C1的第二端均接地;第二电容C2的第一端与第八电阻R 8的第二端电连接,第八电阻R 8的第二端还与第一比较器A1、第二比较器A2以及第三比较器A3的负输入端均电连接;第一比较器A1、第二比较器A2以及第三比较器A3的正输入端分别设置为输入不同的基准信号;结果判定单元与第一比较器A1的输出端、第二比较器A2的输出端以及第三比较器A3的输出端均电连接。
示例性地,设置第一比较器A1、第二比较器A2以及第三比较器A3均为迟滞比较器,其型号为LM339。
定义:I VSO_in为传感器输出的电流,等于I out;V VSO_in为经采样后传感器输出的电压;则:V VSO_in=R 7×I VSO_in(公式1)。
由图6可知,根据公式1计算出来的电压值大小、以及传感器正常工作时不同的电流大小计算并设置不同的参考电压(如REF_DET,REF_SHORT以及REF_OPEN),从而可判断传感器回路中不同状态,包括开路、短路、以及正常触发、未触发状态。
表1
传感工作状态 VSO_DET/F VSO_SHORT/G VSO_OPEN/H Y1 Y
触发 1 1 0 1 1
未触发 0 1 0 1 0
输入端开路 1 1 1 0 0
输入端短路 0 0 0 0 0
表1给出了本发明实施例提供的一种传感器信号检测模块的三个比较器输出状态的真值表。其中,以Y表示传感器信号输出的状态,Y1表示传感器是否正常工作的状态,F表示VSO_DET的输出状态,G表示VSO_SHORT输出状态,H表示VSO_OPEN输出状态,并以1表示输出高电平,0表示输出低电平。
Figure PCTCN2019093366-appb-000003
Y=F·Y1。当Y1为0的时候表示传感器信号异常(即传感器处于短路或开路),当Y1为1的时候表示传感器正常工作。当Y=1,Y1=1时表示传感器被触发(即传感器检测到目标物体),当Y=0,Y1=1时表示传感器未检测到目标物体。
图7为本发明实施例提供的另一种传感器中信号检测模块的电路结构示意图。参见图7,该传感器中,信号处理单元包括第九电阻R 9、第十电阻R 10、第三电容C3、第四电容C4、第四比较器A4、第五比较器A5以及第六比较器A6。信号处理单元的信号输入端VSO_in与第九电阻R 9的第一端、第十电阻R 10的第一端、第四比较器A4的正输入端均电连接;第九电阻R 9的第二端、第三电容C3的第一端均接入恒定电压信号;第十电阻R 10的第二端与第四电容C4的第一端、第五比较器A5的负输入端、以及第六比较器A6的正输入端均电连接;第三电容C3的第二端和第四电容C4的第二端接地;第四比较器A4的负输入端、第五比较器A5的正输入端以及第六比较器A6的负输入端分别设置为输入不同的基准信号;结果判定单元与第四比较器A4的输出端、第五比较器A5的输出端以及第六比较器A6的输出端均电连接。
定义:I VSO_in为传感器输出的电流,等于I out;V VSO_in为经采样后传感器输出的电压;则:V VSO_in=15V-R 9×I VSO_in(公式2)。
由图7可知,根据公式2计算出来的电压值大小、以及传感器正常工作时不同的电流大小计算并设置不同的参考电压(如REF_DET,REF_SHORT以及REF_OPEN),从而可判断传感器回路中不同状态,包括开路、短路、以及正常触发、未触发状态。在本文传感器中,传感器检测状态真值表如表2所示。
表2
传感工作状态 VSO_DET/F VSO_SHORT/G VSO_OPEN/H U Y
触发 1 0 0 0 1
未触发 0 0 0 0 0
输入端开路 1 0 1 1 0
输入端短路 0 1 0 1 0
表2给出了本发明实施例提供的一种传感器信号检测模块的三个比较器输出状态的真值表。其中,我们以Y表示传感器信号输出的状态,U表示传感器是否正常工作的状态,F表示VSO_DET的输出状态,G表示VSO_SHORT输出状态,H表示VSO_OPEN输出状态,并以1表示输出高电平,0表示输出低电平,则U=G||H,
Figure PCTCN2019093366-appb-000004
当U为1的时候表示传感器信号异常(即传感器处于短路或开路),当U为0的时候表示正常工作。当Y=1,U=0时表示传感器被触发(即传感器检测到目标物体),当Y=0,U=0时表示传感器未检测到目标物体。
上述内容说明,根据I out值与基准信号(如REF_DET,REF_SHORT以及REF_OPEN)的比对结果,可获得当前传感器的工作状态。
另外,若传感器信号异常,基于I out值与基准信号(如REF_DET,REF_SHORT以及REF_OPEN)的比对结果还可以分辨传感器回路的具体情况(如开路或短路等)。示例性地,将F、G以及H均作为判断依据,以得到传感器回路的具体情况。
基于同样的发明构思,本发明实施例还提供一种掩模板叉。该掩模板叉包括本文示例提供的任意一种传感器。
本发明实施例通过利用信号检测模块对信号放大模块输出的信号判断传感器的当前工作状态,进而依赖传感器的当前工作状态可以有效识别当前包括该传感器的掩模叉夹持掩膜版与否,进而提高半导体器件的制作良率。此外,本文示例提供的技术方案可以实现实时监控传感器状态,提高系统在线诊断便利性及系统安全性。
图8为本发明实施例提供的一种掩模板叉的结构示意图。图9为本发明实施例提供的一种掩模板夹持组件的剖面结构示意图。参见图8和图9,该掩模板叉包括掩模板夹持组件50;掩模板夹持组件50包括掩模板叉本体51、推杆52以及至少两个本发明实施例提供的传感器53(包括传感器53a和传感器53b)。掩模板叉本体51上设置有掩模板固定区54,掩模板固定区54的设置为与掩模板接触的侧壁541上设置有孔510;推杆52设置于孔510内,且可沿孔510延伸方向(即图中X轴方向)运动,推杆52与掩模板固定区54共同配合以对掩模板进行夹持。孔510的内壁上相对的两侧设置有至少两个传感器设置区,每个传感器53设置于与其对应的传感器设置区;至少两个传感器设置区几何中心的连线与孔510(即图中X轴方向)延伸方向夹角γ大于0°且小于90°。
图10为本发明实施例提供的一种推杆的结构示意图。参见图9和图10,推杆52包括首尾相接的第一部52a、第二部52b、第三部52c以及第四部52d,第二部52b的宽度d2小于第一部52a的宽度d1,同时,第二部52b的宽度d2小于第三部52c的宽度d3。第四部52d的宽度d4小于第一部52a的宽度d1,同时,第四部52d的宽度d2小于第三部52c的宽度d3。由于第二部52b的宽度d2和 第四部52d的宽度d4较小,即使第二部52b(或第四部52d)与传感器53正对,第二部52b(或第四部52d)的外壁距传感器53的距离较远,第二部52b(或第四部52d)处于传感器53的可检测距离之外,无法被传感器53感知。而第一部52a的宽度d1和第三部52c的宽度d3较大,当第一部52a(或第三部52c)与传感器53正对,第一部52a(或第三部52c)的外壁距传感器53的距离很近,第一部52a(或第三部52c)处于传感器53的检测距离之内,可以被传感器53感知。这样当推杆52伸入到孔510的距离不同,每个传感器反馈的检测信号的组合不同。
图11为本发明实施例提供的一种掩模板叉在工作过程中三个状态的结构示意图。如图9、图10和图11所示,在初始状态,推杆52在传感器53a的检测范围内,故传感器53a有输出信号,传感器53b无信号(即传感器53a被触发,传感器53b未被触发),此时传感器53a探测到推杆的第一部52a,传感器53b探测到推杆的第二部52b。图9所示为当夹持有掩模板时传感器53与推杆之间的位置,此时传感器53a探测到推杆的第一部52a,传感器53b探测到推杆的第三部52c,传感器53a和传感器53b均有输出信号(即传感器53a和传感器53b均被触发)。当未夹持有掩模板时,推杆52达到气缸的最大行程,两个传感器53均无信号(即传感器53a和传感器53b均未被触发)此时传感器53a探测到推杆的第二部52b,传感器53b探测到推杆的第四部52d。故由两个传感器53输出信号可以得到该掩模板叉的工作状态(如是否夹持有掩模板等),由此得到表3。
表3
传感器53a 触发 触发 未触发
传感器53b 未触发 触发 未触发
掩模板叉工作状态 初始状态 夹持有掩模板 未夹持掩模板
在实际中,通过检测每个传感器53的触发状态,并依赖表3,可以有效判断当前掩模板叉中掩模板的夹持状态,并且依赖每个传感器信号检测模块输出进行判断每个传感器是否处于正常工作状态,提高了系统的安全性及诊断的便利性。
示例性地,上述技术方案,由于推杆52的外形结构使传感器53a和传感器53b具有上述三种触发状态,而且十分准确,故能够准确的获得掩模版夹持状态,避免出现一些不必要的操作,进而提高掩模版物料的安全性。
继续参见图9,可选地,该掩模板夹持组件50还包括气缸55、推头56、节流阀57、抽颗粒接口58、衬套59、弹簧501等零部件组成。其中气缸55的缸径、行程根据实际需求选择。推头56设置于推杆52的端部,采用PEEK材料,能保证推头56与掩模版进行缓冲接触并且能降低颗粒的产生;衬套59设置于孔510内部,采用聚四氟乙烯材料,用来保证推杆52运动时的流畅性和降低运动时颗粒的产生;弹簧501用于克服密封圈与缸体壳的摩擦力来保证推杆52的复位,同时,为了调节推杆52的速度,在该气缸气源接口处安装了节流阀57。另外,为保证掩模板夹持组件50使用时的洁净度,在缸体内设计了推杆抽颗粒 接口58。可选地,为了保证该气缸55在使用时具有良好的密封性,对推杆52和气缸末端分别设置动密封圈551设计和静密封圈552设计。
继续参见8,该掩模板叉还包括法兰61、力矩传感器62、恢复机构63以及防碰撞机构等。法兰61用于与外部结构(如机械手的臂)相连。力矩传感器62设置为检测掩模板叉碰撞力,通过设定力矩传感器62的阈值,当碰撞力超过阈值,力矩传感器62触发信号反馈给与与该掩模板叉相连的机械手。可选地,在应用过程中,力矩传感器62可改为接触模式,以实现确定每个模块相对取放版机械手的位置和工位标定作用。
基于同样的发明构思,本发明实施例还提供一种机械手。该机械手包括本发明示例提供的任意一种掩模板叉。
本发明实施例通过利用信号检测模块对信号放大模块输出的信号判断传感器的当前工作状态,进而依赖传感器的当前工作状态可以有效识别当前包括该传感器的掩模叉夹持掩膜版与否,进而提高半导体器件的制作良率。此外,本文示例提供的技术方案可以实现实时监控传感器状态,提高系统在线诊断便利性及系统安全性。
图12为本发明实施例提供的一种机械手的结构示意图。示例性地,参见图12,该机械手采用平面关节型(SCARA)结构,可实现Z向垂直运动、绕第一轴Theta1旋转运动、绕第二轴Theta2旋转运动,绕第三轴Roll-axis旋转运动。末端执行器为掩模板版叉,通过气缸运动来夹紧掩模板。Z向垂直运动通过电机带动丝杆旋转,丝杆螺母带动机械手主体部分Z向运动,使末端执行器能到达工位进行掩模版的取放。第一轴Theta1旋转运动通过电机输出,经谐波减速器减速后用来驱动第一臂Arm1绕第一轴Theta1运动。第二轴Theta2及第三轴Roll-axis旋转运动是通过电机输出,经同步带轮传递后分别带动第二臂Arm2绕第一臂Arm1旋转运动及末端执行器绕第一壁Arm1旋转运动。
基于同样的发明构思,本发明实施例还提供一种掩模板传输系统。该掩模板传输系统包括本文示例提供的任意一种机械手。
本发明实施例通过利用信号检测模块对信号放大模块输出的信号判断传感器的当前工作状态,进而依赖传感器的当前工作状态可以有效识别当前包括该传感器的掩模叉夹持掩膜版与否,进而提高半导体器件的制作良率。此外,本文示例提供的技术方案可以实现实时监控传感器状态,提高系统在线诊断便利性及系统安全性。
表四
Figure PCTCN2019093366-appb-000005
Figure PCTCN2019093366-appb-000006
Figure PCTCN2019093366-appb-000007
Figure PCTCN2019093366-appb-000008
图13为本发明实施例提供的一种掩模板传输系统的结构示意图。图14为本文示例提供的一种掩模板传输全动作流程图。表4为掩模传输全动作流程说明。参见图13和图14和表4,该掩模板传输系统主要由以下几部分组成:外部版库模块XRL,内部版块模块IRL,取放版机械手RO,颗粒度检测模块MRIS,预对准模块PA(包含粗预对准模块CPA和精预对准模块FPA),交换版机械手EA,框架模块FM(图12和图13中未示出),电控柜EP,气控模块PN,(图12和图13中未示出)。框架模块包括RTM框架和RPM框架(图12和图13中未示出),每个模块分别坐落在RTM框架和RPM框架内,其中外部版库模块XRL、内部版块模块IRL、取放版机械手RO、颗粒度检测模块MRIS坐落在RTM框架上,粗预对准模块CPA、精预对准模块FPA、交换版机械手EA坐落在RPM 框架上,电控柜EP和气控模块PN模块根据需要分布在每个模块现场位置或者坐落在RTM框架或RPM框架上。
示例性地,本发明实施例提供的机械手为取放版机械手RO。
本文所述一种掩模传输系统根据光刻机需要硬件可进行左配和右配两种设置,但两种配置下的每个模块名称保持一致。
本文所述一种掩模传输系统各部件的基本工作原理如下所述:
内部版块模块IRL:主要作用是掩模版净化存储,一方面内部版库存储从外部版库传送进掩模传输分系统内部的掩模版,另一方面按照整机配置需要,存储执行完颗粒度检测的掩模版。掩模传输系统内部版库硬件标配为2个,每个内部版库最多可放置6块掩模版,两个版库最多可放置12块掩模版,同时可根据需要对每个槽掩模版的使用情况进行选择配置。内部版库使用由整机提供洁净空气XCDA,使版库形成一定的正压环境,从而保证掩模版存储区域相对湿度小于1%的高洁净度环境。内部版库设计有自动标定接口,取放版机械手可通过该接口完成自动工位校准,可减少人的参与,有效提高了工位标定的快捷便利性。
外部版库模块XRL:主要用于存储并传送由工厂输送到光刻机的掩模版。外部版库硬件配置共有两个,分别可处理6英寸SMIF单版或者六槽版盒。根据Fab要求,外部版库模配置为在线与自动化产线对接,也可以配置为离线与操作员对接。当外部版库接收到一个新的版盒后,自动进行版盒加载,版盒中的掩模版在被取放版机械手取出的过程中进行条码扫描。外部版库设计有机械手自动标定的接口,取放版机械手可通过该接口完成工位自动校准,可减少人的参与,有效提高工位标定的边界便利性。为了保证掩模版ID编号与掩模版盒ID编号的一致性,外部版库还集成了掩模版盒ID读取器,用于读取掩模版盒的ID号。
取放版机械手RO:主要用于在不同设备间传输掩模版。掩模传输采用的是高刚性,高速度,高清洁度的Scara机械手。取放版机械手可在不同工位间进行掩模版的传送,同时也可在粗预对准工位进行掩模版姿态的调整,从而保证不同掩模版上载到掩模台前姿态保持一致。机械手末端装配有版叉和安全防撞机构,当机械手版叉受到来自六个自由度任何方向碰撞时,防撞机构中的传感器触发,传感器触发信号控制机械手控制器,使机械手急停,保护机械手不致损坏,只有当力矩传感器恢复至正常工作状态,机械手才可以恢复正常工作。取放版机械手依赖防碰撞机构实现以及每个设备设计的自动标定接口实现每个工位的自动标定功能。
颗粒度检测模块MRIS:颗粒度检测模块由颗粒度检测系统组成,主要用于检测掩模版上颗粒的数量及分布。颗粒度检测模块在进行颗粒检测过程中,采用运动台带掩模版运动,在运动过程中采用暗场散射测量技术检测玻璃面和pellicle面的颗粒。同时使用调焦传感器进行掩模版焦面的检测,并通过运动机构带动掩模版运动自动调焦。颗粒度检测设计有机械手自动标定的接口,取放版机械手可通过该接口完成工位自动校准,可减少人的参与,有效提高工位标 定的边界便利性。
预对准模块PA:主要用来测量掩模版的位置,掩模传输中预对准分为粗预对准(CPA)和精预对准(FPA)两部分。预对准机构包括:照明组件、成像组件、两个四象限quadcell传感器和信号处理板。粗预对准主要用于消除掩模版在传输过程中产生的位置偏差,保证掩模版交接到交换版机械手前上版精度,避免误差较大带来的交换版机械手吸盘吸附掩模版失败;精预对准的主要用于消除掩模版在交换版过程中产生的位置偏差,使得掩模坐标系和机器坐标系一致,保证掩模版上版到掩模台的位置有一定的重复性保证,使得掩模版被送到曝光区时掩模标记能进入同轴对准视场捕捉范围。
交换版机械手EA:用于和取放版机械手、暂存台、掩模台之间传输掩模。主要由旋转电机、两个升降机构、2个交换版叉和定位导向机构组成。旋转交换机械手上的两个升降机构下降(2个升降机构可以分别下降),同时版叉分别把掩模台和取放版机械手上的掩模版从正面进行吸附,旋转180度后,再分别下降,将掩模版放在掩模台和取放版机械手上,完成掩模版的交接;当掩模传输分系统出现断电等异常状态时,交换版机械手可将版叉上的掩模版放至暂存台上。为补偿版叉同掩模台和取放版机械手、暂存台掩模吸附面之间的平行度误差,版叉采用自适应结构,该自适应版叉由四个独立的真空吸盘组成,每个吸盘分别设计自适应机构,该自适应CCM总重量0.9KG,从而有效保证了交换版机械手垂向运动轴的高速运动。此外,为确保正面吸附掩模的安全性,自适应版叉还设计了相关的气控保护结构和真空气路。
基于同样的发明构思,本发明实施例还提供一种光刻机。该光刻机包括本文示例提供的任意一种掩模板传输系统。
本发明实施例通过利用信号检测模块对信号放大模块输出的信号判断传感器的当前工作状态,进而依赖传感器的当前工作状态可以有效识别当前包括该传感器的掩模叉夹持掩膜版与否,进而提高半导体器件的制作良率。此外,本文示例提供的技术方案可以实现实时监控传感器状态,提高系统在线诊断便利性及系统安全性。

Claims (13)

  1. 一种传感器,包括稳压模块(100)、光电感应模块(200)、信号放大模块(300)以及信号检测模块(400);
    所述稳压模块(100)与所述光电感应模块(200)和所述信号放大模块(300)电连接,所述稳压模块(100)设置为为所述光电感应模块(200)和所述信号放大模块(300)提供恒定电压;
    所述光电感应模块(200)设置为探测目标物体是否到达设定区域;
    所述信号放大模块(300)与所述光电感应模块(200)电连接,所述信号放大模块(300)设置为对所述光电感应模块(200)输出的信号进行放大;
    所述信号检测模块(400)与所述稳压模块(100)和所述信号放大模块(300)均电连接,所述信号检测模块(400)设置为基于所述信号放大模块(300)输出的信号判断所述传感器的当前工作状态,所述当前工作状态包括开路、短路、正常触发以及未触发。
  2. 根据权利要求1所述的传感器,其中,
    所述稳压模块(100)包括运算处理单元(Amp),第一晶体管单元(TR1),参考电压单元(Vref)、第一电阻(R 1)和第二电阻(R 2),
    所述第一晶体管单元(TR1)的第一输入端(TR1B)与所述运算处理单元(Amp)的输出端电连接,所述第一晶体管单元(TR1)的第二输入端(TR1C)与所述稳压模块(100)的信号输入端(V in)电连接,所述第一晶体管单元(TR1)的输出端(TR1E)与所述第一电阻(R 1)的第一端和所述稳压模块(100)的信号输出端(V out)电连接;
    所述运算处理单元(Amp)正输入端与所述第一电阻(R 1)的第二端和所述第二电阻(R 2)的第一端均电连接;
    所述参考电压单元(Vref)的第一输入端与所述稳压模块(100)的信号输入端(V in)电连接,所述参考电压单元(Vref)的第二输入端和所述第二电阻(R 2)的第二端均接地,所述参考电压单元(Vref)输出端与所述运算处理单元(Amp)负输入端电连接。
  3. 根据权利要求1或2所述的传感器,其中,
    所述光电感应模块(200)包括发光单元和感光单元;
    所述发光单元和所述感光单元均与所述稳压模块(100)的信号输出端(V out)电连接;
    所述发光单元设置为出射光线;
    所述感光单元设置为接收,由所述发光单元出射,经所述目标物体反射的光线。
  4. 根据权利要求3所述的传感器,其中,
    所述发光单元包括发光二极管单元(D1),所述感光单元包括光敏晶体管单元(TR2);所述光电感应模块(200)还包括第三电阻(R 3);
    所述发光二极管单元(D1)的输入端与所述第三电阻(R 3)的第一端电连接,所述发光二极管单元(D1)的输出端接地;
    所述光敏晶体管单元(TR2)的输入端与所述第三电阻(R 3)的第二端、以 及所述稳压模块(100)的信号输出端(V out)电连接,所述光电感应模块(200)的信号输入端与稳压模块(100)的信号输出端(V out)电连接,所述光敏晶体管单元(TR2)的输出端与所述光电感应模块(200)的信号输出端(V sig)电连接。
  5. 根据权利要求1-4任一项所述的传感器,其中,所述信号放大模块(300)包括第三晶体管单元(TR3)、第四晶体管单元(TR4)、可调电阻单元(R v)、第四电阻(R 4)、第五电阻(R 5)和第六电阻(R 6);
    所述信号放大模块(300)的信号输出端与所述稳压模块(100)的信号输入端(V in)电连接,所述稳压模块(100)的信号输入端(V in)与所述第六电阻(R 6)的第一端电连接,所述信号放大模块(300)的第一信号输入端与所述稳压模块(100)的信号输出端(V out)电连接,所述稳压模块(100)的信号输出端(V out)与所述第五电阻(R 5)的第一端电连接,所述信号放大模块第二信号输入端与所述光电感应模块(200)的信号输出端(V sig)电连接,所述光电感应模块(200)的信号输出端(V sig)与所述第四电阻(R 4)的第一端电连接;所述可调电阻单元(R v)的第一端接地;
    所述第三晶体管单元(TR3)的第一输入端(TR3B)与所述可调电阻单元(R v)的第二端和所述第四电阻(R 4)的第二端均电连接,所述第三晶体管单元(TR3)的第二输入端(TR3E)接地,所述第三晶体管单元(TR3)的输出端(TR3C)与所述第五电阻(R 5)的第二端电连接;
    所述第四晶体管单元(TR4)的第一输入端(TR4B)与所述第三晶体管单元(TR3)的输出端(TR3C)电连接,所述第四晶体管单元(TR4)的第二输入端(TR4E)接地,所述第四晶体管单元(TR4)的输出端(TR4C)与所述第六电阻(R 6)的第二端电连接。
  6. 根据权利要求1-5任一项所述的传感器,其中,
    所述信号检测模块(400)包括信号处理单元和结果判定单元;
    所述信号处理单元与所述稳压模块(100)和所述信号放大模块(300)均电连接,所述信号处理单元设置为对所述信号放大模块(300)输出的信号进行处理,并得到信号处理结果;
    所述结果判定单元与所述信号处理单元相连,所述结果判定单元设置为基于所述信号处理结果,对所述传感器的当前工作状态进行识别。
  7. 根据权利要求6所述的传感器,其中,
    所述信号处理单元包括第七电阻(R 7)、第八电阻(R 8)、第一电容(C1)、第二电容(C2)、第一比较器(A1)、第二比较器(A2)以及第三比较器(A3);
    所述第七电阻(R 7)的第一端、所述第八电阻(R 8)的第一端以及所述第一电容(C1)的第一端均电连接,以形成有与所述第七电阻(R 7)的第一端、所述第八电阻(R 8)的第一端以及所述第一电容(C1)的第一端均电连接的所述信号处理单元的信号输入端(VSO_in);所述第二电容(C2)的第二端、所述第七电阻(R 7)的第二端和所述第一电容(C1)的第二端均接地;所述第二电容(C2)的第一端与所述第八电阻(R 8)的第二端电连接,所述第八电阻(R 8) 的第二端还与所述第一比较器(A1)、所述第二比较器(A2)以及所述第三比较器(A3)的负输入端均电连接;所述第一比较器(A1)、所述第二比较器(A2)以及所述第三比较器(A3)的正输入端分别设置为输入不同的基准信号;
    所述结果判定单元与所述第一比较器(A1)的输出端、所述第二比较器(A2)的输出端以及所述第三比较器(A3)的输出端均电连接。
  8. 根据权利要求6所述的传感器,其中,
    所述信号处理单元包括第九电阻(R 9)、第十电阻(R 10)、第三电容(C3)、第四电容(C4)、第四比较器(A4)、第五比较器(A5)以及第六比较器(A6);
    所述信号处理单元的信号输入端(VSO_in)与所述第九电阻(R 9)的第一端、所述第十电阻(R 10)的第一端、所述第四比较器(A4)的正输入端均电连接;
    所述第九电阻(R 9)的第二端、所述第三电容(C3)的第一端均接入恒定电压信号;
    所述第十电阻(R 10)的第二端与所述第四电容(C4)的第一端、所述第五比较器(A5)的负输入端、以及所述第六比较器(A6)的正输入端均电连接;
    所述第三电容(C3)的第二端和所述第四电容(C4)的第二端接地;所述第四比较器(A4)的负输入、所述第五比较器(A5)的正输入端以及所述第六比较器(A6)的负输入端分别设置为输入不同的基准信号;
    所述结果判定单元与所述第四比较器(A4)的输出端、所述第五比较器(A5)的输出端以及所述第六比较器(A6)的输出端均电连接。
  9. 一种掩模板叉,包括权利要求1-8任一项所述的传感器。
  10. 根据权利要求9所述的掩模板叉,还包括掩模板夹持组件;
    所述掩模板夹持组件包括掩模板叉本体(51)、推杆(52)以及至少两个权利要求1-9任一项所述的传感器;
    所述掩模板叉本体(51)上设置有掩模板固定区(54),所述掩模板固定区(54)的设置为与掩模板接触的侧壁(541)上设置有孔(510);所述推杆(52)设置于所述孔(510)内,且可沿所述孔(510)延伸方向运动,所述推杆(52)设置为与所述掩模板固定区(54)共同配合以对掩模板进行夹持;
    所述孔(510)的内壁上相对的两侧设置有至少两个传感器设置区,每个传感器(53)设置于与其对应的传感器设置区;至少两个传感器设置区几何中心的连线与孔(510)延伸方向夹角(γ)大于0°且小于90°。
  11. 一种机械手,包括权利要求9-10任一项所述的掩模板叉。
  12. 一种掩模板传输系统,包括权利要求11所述的机械手。
  13. 一种光刻机,包括权利要求12所述的掩模板传输系统。
PCT/CN2019/093366 2018-06-29 2019-06-27 传感器、掩模板叉、机械手、掩模板传输系统及光刻机 WO2020001556A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810696848.0A CN110658685B (zh) 2018-06-29 2018-06-29 传感器、掩模板叉、机械手、掩模板传输系统及光刻机
CN201810696848.0 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020001556A1 true WO2020001556A1 (zh) 2020-01-02

Family

ID=68985836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093366 WO2020001556A1 (zh) 2018-06-29 2019-06-27 传感器、掩模板叉、机械手、掩模板传输系统及光刻机

Country Status (3)

Country Link
CN (1) CN110658685B (zh)
TW (1) TWI752329B (zh)
WO (1) WO2020001556A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114253083B (zh) * 2020-09-25 2023-03-14 上海微电子装备(集团)股份有限公司 旋转承载装置、光刻机及旋转承载装置的校准方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1940734A (zh) * 2005-09-28 2007-04-04 中国科学院自动化研究所 掩模传输系统四象限对准装置
CN104972451A (zh) * 2014-04-08 2015-10-14 上海微电子装备有限公司 一种用于掩模传输的机械手
CN205157052U (zh) * 2015-10-27 2016-04-13 扬中市南方矿用电器有限公司 一种带故障自诊断功能的矿用火焰传感器
CN206209287U (zh) * 2016-09-30 2017-05-31 上海微电子装备有限公司 掩模版传输系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071302A (ja) * 1998-08-28 2000-03-07 Futaba Corp 金型異常検出装置
CN201503858U (zh) * 2009-09-25 2010-06-09 北京京东方光电科技有限公司 掩模板更换装置
US9198266B2 (en) * 2014-04-22 2015-11-24 Pixart Imaging (Penang) Sdn. Bhd. Optical navigation sensor with integrated charge pump
TWM498239U (zh) * 2014-10-23 2015-04-01 Ching Tsang Ind Co Ltd 車輛用智慧型輔助裝置
CN107561868A (zh) * 2016-06-30 2018-01-09 上海微电子装备(集团)股份有限公司 用于掩模版传输的交换版机械手装置及具有其的光刻机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1940734A (zh) * 2005-09-28 2007-04-04 中国科学院自动化研究所 掩模传输系统四象限对准装置
CN104972451A (zh) * 2014-04-08 2015-10-14 上海微电子装备有限公司 一种用于掩模传输的机械手
CN205157052U (zh) * 2015-10-27 2016-04-13 扬中市南方矿用电器有限公司 一种带故障自诊断功能的矿用火焰传感器
CN206209287U (zh) * 2016-09-30 2017-05-31 上海微电子装备有限公司 掩模版传输系统

Also Published As

Publication number Publication date
TWI752329B (zh) 2022-01-11
TW202001419A (zh) 2020-01-01
CN110658685A (zh) 2020-01-07
CN110658685B (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
US8688261B2 (en) Transport apparatus, position teaching method, and sensor jig
US9111979B2 (en) System and method for real time positioning of a substrate in a vacuum processing system
US10048680B2 (en) Robot system, robot teaching method and control device therefor
US8751047B2 (en) Systems and methods for calibrating end effector alignment in a plasma processing system
JPH11254359A (ja) 部材搬送システム
TWI704639B (zh) 遮罩傳輸裝置和方法
TW201347937A (zh) 傳送系統
US20150202774A1 (en) Touch auto-calibration of process modules
US11232962B2 (en) Alignment device, semiconductor wafer processing device, and alignment method
KR102143676B1 (ko) 위치 민감 기판 디바이스
US11984331B2 (en) EFEM robot auto teaching methodology
US20230119986A1 (en) Wafer transfer apparatus and wafer transfer method
Cheng et al. Accuracy analysis of dynamic-wafer-handling robotic system in semiconductor manufacturing
WO2020001556A1 (zh) 传感器、掩模板叉、机械手、掩模板传输系统及光刻机
US20150253765A1 (en) Teaching jig, teaching system, and teaching method
CN110303505B (zh) 机器人的位置信息恢复方法
US20240170318A1 (en) Teaching Substrate for Production and Process-Control Tools
US11638998B2 (en) Transfer system and transfer control method
JP2010140933A (ja) ラインセンサの補正方法、アライメント装置及び基板搬送装置
CN105719986A (zh) 基片校准装置及半导体加工设备
JP6615199B2 (ja) 検出方法
US11413767B2 (en) Sensor-based position and orientation feedback of robot end effector with respect to destination chamber
CN109545722B (zh) 半导体生产系统及其量测系统和量测设备
CN215896354U (zh) 一种适用各种尺寸晶圆中心的矫正装置
CN214526667U (zh) 半导体检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826243

Country of ref document: EP

Kind code of ref document: A1