WO2020000410A1 - 多站并发测试方法、控制站和多站并发测试装置 - Google Patents

多站并发测试方法、控制站和多站并发测试装置 Download PDF

Info

Publication number
WO2020000410A1
WO2020000410A1 PCT/CN2018/093781 CN2018093781W WO2020000410A1 WO 2020000410 A1 WO2020000410 A1 WO 2020000410A1 CN 2018093781 W CN2018093781 W CN 2018093781W WO 2020000410 A1 WO2020000410 A1 WO 2020000410A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
station
device under
sot signal
sot
Prior art date
Application number
PCT/CN2018/093781
Other languages
English (en)
French (fr)
Inventor
尹诗龙
周鹏
毛怀宇
赵运坤
刘惠鹏
闫肃
周伟
Original Assignee
北京华峰测控技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京华峰测控技术股份有限公司 filed Critical 北京华峰测控技术股份有限公司
Priority to JP2020573493A priority Critical patent/JP6923767B1/ja
Priority to EP18924950.1A priority patent/EP3816642B1/en
Priority to PCT/CN2018/093781 priority patent/WO2020000410A1/zh
Priority to US17/256,820 priority patent/US11105849B1/en
Publication of WO2020000410A1 publication Critical patent/WO2020000410A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2868Complete testing stations; systems; procedures; software aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/10Sequence control of conveyors operating in combination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/80Turntables carrying articles or materials to be transferred, e.g. combined with ploughs or scrapers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2834Automated test systems [ATE]; using microprocessors or computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2894Aspects of quality control [QC]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • G06F11/273Tester hardware, i.e. output processing circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0208Control or detection relating to the transported articles
    • B65G2203/0233Position of the article
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2621Circuits therefor for testing field effect transistors, i.e. FET's

Definitions

  • the invention relates to the field of integrated circuit testing, and in particular, to a multi-station concurrent test method, a control station, and a multi-station concurrent test device.
  • the existing multi-station concurrent test device is composed of a handler 300 and a plurality of test hardware (or test stations) 210, 220, 230, and 240.
  • the handler 300 sends a SOT (Start of test, start test signal) to test hardware 210, 220, 230, 240, and receive EOT (End of Test, test completion signal) and BIN (test binning signal) from each test hardware.
  • SOT Start of test, start test signal
  • EOT End of Test, test completion signal
  • BIN test binning signal
  • each test station uploads the test result data of each device to the server, which is stored separately by the server for data integration at a later stage.
  • the main purpose of the present invention is to provide a multi-station concurrent testing method, which can not only test all parameters of the device under test in a test system, but also integrate all test data of the device to realize the device under test and Test results correspond one-to-one, preventing data misalignment, saving test time and cost, and improving test efficiency.
  • a multi-station concurrent testing method includes a control station and a plurality of test stations that are communicatively connected to the control station, and different test stations are used to test some parameters of the device under test and provide the parameters to the control station;
  • a manipulator communicatively connected to the control station is used to transmit each device under test to each test station in turn;
  • the test method includes the following steps:
  • the control station controls the manipulator to send the SOT signal of the corresponding test station according to the previous test results of the adjacent test stations of each test station;
  • the control station constructs the SOT signal sequence according to the received SOT signals and the order of each test station;
  • the control station compares the SOT signal sequence with the pre-determined value of the SOT signal sequence. If they match, the corresponding test station performs the test of the device under test, otherwise the control robot clears the device under test at each test station;
  • the pre-judgment value of the SOT signal sequence is generated according to the previous test results of each test station.
  • the parameters of the device under test are divided into multiple test stations for testing, and the control station generates a pre-determined value of the SOT signal sequence according to the previous test station test results, and controls the transmission of the SOT signals of the manipulator corresponding to each test station. Make them match each other.
  • the device under test completes the test at one test station, generate test data for display, and control the device under test to enter the next test station according to the test sequence.
  • the test data will also be merged into the next test station.
  • the step A includes:
  • the manipulator When the device under test is in place by the manipulator to the first test station: the manipulator sends a corresponding SOT signal of the first test station;
  • the robotic arm When the DUT is positioned by the manipulator to the N + 1th, N ⁇ 1 test station: If the test result of the DUT at the Nth test station is as expected, the robotic arm sends the corresponding SOT signal; if it does not meet the expectations or no test is performed, the robot does not send the corresponding SOT signal of the N + 1th test station.
  • the device under test completes the test from the first test station to the last test station, and each test station determines whether to send the SOT signal according to the test result of the previous test station. After the device under test fails the test at a test station, according to the rules, the device under test will enter the subsequent test station with the robot but no longer perform the test. This saves test time and prevents misalignment of test data.
  • the step B includes:
  • the bit value corresponding to the test station in the SOT signal sequence is 1, otherwise it is 0.
  • 1 indicates a high-level SOT signal
  • 0 indicates a low-level no SOT signal
  • a high-level and low-level SOT signal sequence is constructed from this.
  • the pre-judgment value of the SOT signal sequence described in step C is generated according to the test results of the previous test stations, including:
  • the step of generating the first value of the SOT signal is: the first test station has a new device under test entering the first value of 1, and no new device under test entering the first value of 0;
  • each bit value corresponds to the test result of the next previous bit of each test station, and the test station that passed the test in the previous test result has a pre-judgment value of 1 next to the next SOT signal.
  • the next judgment value of the next SOT signal is 0.
  • the control station generates the SOT signal sequence pre-judgment value according to whether the device under test in the first test and the test results after the device under test enters each test station.
  • the robot When the device under test passes the test station, then When entering the next test station, the robot should send a SOT signal. If the test fails, the robot should enter the next test. The robot should not send a SOT signal.
  • the method further includes:
  • the control station saves the test results of the device under test in different test stations, and displays the test results of the device under test corresponding to the device under test.
  • each test station records the test value of the device under test and moves to the next test station with each device under test.
  • the test record is merged and recorded at the test station where the device under test is currently located. Display of all test values.
  • the method further includes:
  • the system prompts an error and saves the SOT signal error time and the comparison between the SOT signal sequence and the SOT signal sequence pre-determined value.
  • the error information is saved in the error file. , It is convenient for the operator to troubleshoot the error information.
  • a sensor is installed at the contact end of the robot hand and the device under test to detect the in-position state of the device under test on the manipulator.
  • the sensor on the manipulator can detect whether the device under test on the manipulator is in place. When the device under test is in position, the SOT signal is sent, otherwise it is not sent.
  • the present invention also provides a control station including a processor and multi-station concurrent test software running on the processor.
  • the multi-station concurrent test software performs the following steps:
  • control robot sends the SOT signal of the corresponding test station
  • the SOT signal sequence is compared with the pre-determined value of the SOT signal sequence generated. If they match, the corresponding test station performs the test of the device under test, otherwise the control robot clears the device under test at each test station;
  • the pre-judgment value of the SOT signal sequence is generated according to the previous test results of each test station.
  • the step A includes:
  • the manipulator When the device under test is in place by the manipulator to the first test station: the manipulator sends a corresponding SOT signal of the first test station;
  • the robotic arm When the DUT is positioned by the manipulator to the N + 1th, N ⁇ 1 test station: If the test result of the DUT at the Nth test station is as expected, the robotic arm sends the corresponding SOT signal; if it does not meet the expectations or no test is performed, the robot does not send the corresponding SOT signal of the N + 1th test station.
  • the step B includes:
  • the bit value corresponding to the test station in the SOT signal sequence is 1, otherwise it is 0.
  • the pre-judgment value of the SOT signal sequence described in step C is generated according to the test results of the previous test stations, including:
  • the step of generating the first value of the SOT signal is: the first test station has a new device under test entering the first value of 1, and no new device under test entering the first value of 0;
  • each bit value corresponds to the test result of the next previous bit of each test station, and the test station that passed the test in the previous test result has a pre-judgment value of 1 next to the next SOT signal.
  • the next judgment value of the next SOT signal is 0.
  • the method further includes:
  • test results of the device under test at different test stations are saved, and the test results of the device under test corresponding to the device under test are combined and displayed.
  • the method further includes:
  • the present invention also provides a multi-station concurrent test system, including any of the control stations described above, and a plurality of test stations which are respectively communicatively connected to the control station. Different test stations are used to test some parameters of the device under test. And providing said parameters to the control station;
  • a manipulator communicatively connected with the control station is used to transmit each device under test to each test station in turn.
  • a sensor is installed at the contact end of the robot hand and the device under test to detect the in-position state of the device under test on the manipulator.
  • FIG. 1 is a schematic diagram of an existing multi-station concurrent testing device
  • FIG. 2 is a schematic diagram of a multi-site concurrent testing device according to the present invention.
  • FIG. 3 is a flowchart of a multi-site concurrent testing method according to the present invention.
  • 4A is a schematic diagram of the position of the device under test at each test station of timing A1 according to the present invention.
  • FIG. 4B is a schematic diagram of test results of test stations at timing A1 according to the present invention.
  • FIG. 5A is a schematic diagram of the position of the device under test at each test station of timing A2 according to the present invention.
  • FIG. 5B is a schematic diagram of test results of test stations at timing A2 of the present invention.
  • FIG. 6A is a schematic diagram of the position of the device under test at each test station of timing A3 according to the present invention.
  • FIG. 6B is a schematic diagram of test results of test stations at timing A3 of the present invention.
  • FIG. 7A is a schematic diagram of the position of the device under test at each test station of timing A4 according to the present invention.
  • FIG. 7B is a schematic diagram of test results of test stations at timing A4 according to the present invention.
  • FIG. 8 is a schematic diagram of a SOT signal sequence corresponding to the PC structure of the present invention.
  • FIG. 9 is a schematic diagram of a PC prompting an SOT signal error report according to the present invention.
  • FIG. 10 is a schematic diagram of an SOT error file of the present invention.
  • FIG. 11 is a schematic diagram of a multi-site concurrent testing device according to a second embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a multi-site concurrent testing device according to a third embodiment of the present invention.
  • the main purpose of the present invention is to provide a multi-station concurrent testing method. By setting rules in advance, different parameters are tested by multiple test stations, thereby realizing sequential testing and data integration of all parameters of the device under test at each test station. It can also achieve concurrent testing of multiple devices under test at multiple test stations, and ensure a one-to-one correspondence between the device under test and test data, saving test time and testing costs, and improving test efficiency.
  • the present invention provides a multi-station concurrent test device, which includes a control station 200 and a test host 100 that are sequentially connected in communication.
  • the control station 200 is installed with multi-station concurrent test software 210, and the control station 200 Optional PC or other processors that support the installation of multi-site concurrent testing software 210;
  • the control station 200 and the test host 100 use a bus to implement communication connection.
  • the test host 100 includes multiple hardware modules 110, 120, 130, and 140, which are respectively connected to at least one test station to form the first to fourth test stations Site1 and Site1. Site2, Site3, and Site4, the four test stations are used to test some parameters of the device under test, and upload the test results of some parameters from the test host 100 to the control station 200;
  • It also includes a manipulator 300 that is communicatively connected to the control station 200 and is used to control the in and out of the device under test and switch between test stations.
  • a sensor is installed on the manipulator 300 to detect the position of the device under test on the manipulator. status;
  • the communication method between the control station 200 and the manipulator 300 includes GPIB, TTL, RS232 and so on.
  • a multi-site concurrent testing method including the following steps:
  • the control station controls the manipulator to send the SOT signal of the corresponding test station according to the previous test results of the adjacent test stations of each test station;
  • the manipulator When the device under test is in place by the manipulator to the first test station: the manipulator sends a corresponding SOT signal of the first test station;
  • the robotic arm When the DUT is positioned by the manipulator to the N + 1th, N ⁇ 1 test station: If the test result of the DUT at the Nth test station is as expected, the robotic arm sends the corresponding SOT signal; if it does not meet the expectations or no test is performed, the robot does not send the corresponding SOT signal of the N + 1th test station.
  • the control station constructs a SOT signal sequence according to the received SOT signals and the order of the test stations.
  • the SOT signal sequence corresponds to the test station with a bit value of 1, otherwise it is 0.
  • the control station compares the SOT signal sequence with the pre-determined value of the SOT signal sequence. If they match, the corresponding test station performs the test of the device under test, and the control station compares the device under test at different test stations. The test results are saved, and the test results that the device under test has completed should be displayed in combination with the device under test;
  • the SOT signal sequence If the SOT signal sequence does not match the predicted value of the generated SOT signal sequence, it prompts the SOT signal to report an error, and controls the robot to clear the test device of each test station, and the test results of the test device of each test station are stored in the error file. ;
  • the pre-judgment value of the SOT signal sequence is generated based on the test results of the previous test stations, and the steps include:
  • the step of generating the first value of the SOT signal is: the first test station has a new device under test entering the first value of 1, and no new device under test entering the first value of 0;
  • each bit value corresponds to the test result of the next previous bit of each test station, and the test station that passed the test in the previous test result has a pre-judgment value of 1 next to the next SOT signal.
  • the next judgment value of the next SOT signal is 0, where 1 indicates a high-level SOT signal, and 0 indicates a low-level no SOT signal.
  • SOT signal The signal sent by the robot to the PC after the device under test is placed in the test station of the test station.
  • SOT Start of Test
  • SOT Start of Test
  • EOT End of Test
  • BIN signal The signal sent by the PC when the EOT signal is sent. BIN is used to indicate the bin of the measured parameter, including whether the test passes or fails;
  • SOT signal sequence Corresponding to four test stations arranged in sequence, after the robot arm positions the corresponding devices to each test station in turn, each robot arm sequentially sends out SOT signals in accordance with the SOT transmission rules (described later), and the PC receives the signals accordingly.
  • SOT transmission rules described later
  • the PC predicts the next SOT signal sequence that should be received according to the SOT signal sequence formed by the currently received SOT and the test results of the current test stations.
  • control station selects a PC and runs a multi-station concurrent test software to start the test, the following steps are included:
  • Each test station follows the SOT transmission rules, that is, according to the previous test results of each adjacent test station, determines whether the test result meets the expectations, and controls the robot to send the SOT signal of the corresponding test station accordingly.
  • the SOT sending rule can be specifically described as:
  • the manipulator When the device under test is in place by the manipulator to the first test station: the manipulator sends a SOT signal corresponding to the first test station to the PC;
  • the device under test When the device under test is positioned by the manipulator to the N + 1 (N ⁇ 1) test station: if the device under test is tested at the N test station, the test results of the N test station are transmitted to the PC via the test host, and After the PC judges that the test value meets the expectations, the PC sends EOT and BIN to the robot at the Nth test station, that is, the robot at the Nth test station receives the EOT and BIN signals and indicates that the test passed at the Nth station. Send the SOT signal of the N + 1th test station to the PC after the DUT is in place;
  • the device under test When the device under test is positioned by the manipulator to the N + 1 (N ⁇ 1) test station: if the device under test is tested at the N test station, the test results of the N test station are transmitted to the PC via the test host, and The PC judges that the test value does not meet the expectations of the test station (the test fails), or after the N-th test station fails to perform the test and the PC does not receive the test results of the N-th test station, the PC sends EOT and BIN to the The robot at the N test station, that is, the robot at the Nth test station, after receiving the EOT and BIN signals, indicates that the test at the Nth station failed or failed, and the robot does not send the SOT signal at the corresponding N + 1th test station;
  • Timing A1 As shown in Figure 4A, at the beginning of the test, when the test station other than the first test station has no device under test DUT1, the manipulator sends the SOT signal of the first test station to the PC, and the bit of the first test station The value is 1, other test stations do not send SOT signals, and the bit values of other test stations are 0;
  • Timing A2 As shown in FIG. 5A, when the device under test DUT1 passes the test at the first test station and is positioned by the robot to the second test station, and the device under test DUT2 is positioned by the robot to the first test station, at this time
  • the manipulator sends the SOT signal of the second and first test stations to the PC.
  • the bit value of the second and first test stations is 1.
  • the third and fourth test stations do not send the SOT signal without the device under test. Value is 0;
  • Timing A3 As shown in FIG. 6A, when the device under test DUT1 passes the test at the second test station and is positioned by the robot to the third test station, and the device under test DUT2 fails the test at the first test station, the robot To the second test station, and the device under test DUT3 is in place by the robot to the first test station. At this time, the robot sends the third and first test station SOT signals to the PC.
  • the third and first test stations have a bit value of 1.
  • the DUT2 of the second test station failed to pass the test at the first test station, so that the robot does not send the SOT signal of the second test station and does not perform the test.
  • the bit value of the second test station is 0, and the fourth test station has no device under test. No SOT signal is sent, the bit value of the fourth test station is 0;
  • Timing A4 As shown in FIG. 7A, when the device under test DUT1 passes the test at the third test station and is positioned by the robot to the fourth test station, and the device under test DUT2 is not tested at the second test station, the robot is in position To enter the third test station, and the device under test DUT3 passed the test at the first test station, and was placed in the second test station by the manipulator, and the device under test DUT4 was placed in the first test station by the manipulator.
  • the manipulator Send the SOT signal of the fourth, second, and first test stations, the bit value of the fourth, second, and first test stations is 1, and the DUT2 of the third test station does not test because the third test station robot does not send SOT signal, the bit value of the third test station is 0.
  • the PC sequentially receives the SOT signals sent by the manipulator corresponding to each test station, and constructs the SOT signal sequence corresponding to the order of each test station;
  • step S01 the four test stations corresponding to this example in step S01 are described as an example, where 1 represents a high-level SOT signal and 0 represents a low-level no SOT signal:
  • the PC receives the SOT signal from the first test station sent by the robot, and the SOT signal sequence constructed by the PC is "1000";
  • Corresponding sequence A2 The PC receives the SOT signal from the second and first test stations sent by the robot, and the SOT signal sequence constructed by the PC is "1100";
  • Corresponding sequence A3 The PC receives the SOT signals from the third and first test stations sent by the robot, and the SOT signal sequence constructed by the PC is "1010";
  • Corresponding sequence A4 The PC receives the SOT signals from the fourth, second, and first test stations sent by the robot, and the SOT signal sequence constructed by the PC is "1101".
  • step S03 The PC compares the SOT signal sequence with a pre-determined value of the SOT signal sequence to determine whether the current SOT signal sequence matches the pre-determined value. If they match, step S04 is performed, otherwise step S05 is performed.
  • the generation rule of the SOT signal sequence pre-judgment value is: according to the test results of each test station, the current test station test passes the next station SOT signal pre-judgment value is 1, and the current test station test fails to enter the next station SOT signal
  • the pre-judgment value is 0.
  • the first test station has a new device under test that enters the SOT signal.
  • the pre-judgment value is 1, and no new device under test enters the SOT signal.
  • the pre-judgment value is 0, where 1 is a high-level SOT signal and 0 is low.
  • the level has no SOT signal, detailed description is as follows:
  • SOT signal sequence pre-judgment value of timing A1 As shown in Figure 4A, before the first test or before retesting after each test station is cleared, the manipulator controls the device under test DUT1 to enter the first test station, and other test stations are not tested. The device enters, and the SOT signal sequence of the PC is set to "1000" at this time;
  • the device under test DUT1 passes the test at the first test station, and the manipulator controls the device under test DUT1 to enter the second test station, and controls the device under test DUT2 to enter the first test station. , No other test station enters the test station. At this time, the SOT signal sequence of the PC is set to "1100".
  • the device under test DUT1 passes the test at the second test station, the manipulator controls the device under test DUT1 to enter the third test station, and the device under test DUT2 is tested at the first test station If it fails, the manipulator controls the device under test DUT2 to enter the second test station, and controls the device under test DUT3 to enter the first test station.
  • the fourth test station has no device under test. At this time, the SOT signal sequence of the PC is set to " 1010 ";
  • the device under test DUT1 passes the test at the third test station, and the manipulator controls the device under test DUT1 to enter the fourth test station.
  • the device under test DUT2 is tested at the second test station. If not tested, the manipulator controls the device under test DUT2 to enter the third test station, the device under test DUT3 passes the test at the first test station, the manipulator controls the device under test DUT3 to enter the second test station, and controls the device under test DUT4 to enter the first test station.
  • the pre-judgment value of the SOT signal sequence of the PC is set to "1101".
  • This SOT signal sequence matches the SOT signal sequence pre-judgment value, which means that the SOT signal sent by the robot arm is in line with expectations, and according to the SOT signal sequence currently constructed by the PC, the test of the device under test at each test station is performed;
  • the manipulator controls the device under test in order to complete the test in each test station, and then transfers the passed device to the next station for taping or packing. If the failed device is tested, the manipulator controls the transmission to the failed barrel. Facilitate subsequent retesting or analysis.
  • This SOT signal sequence does not match the SOT signal sequence pre-judgment value, which means that the SOT signal sent by the robot does not meet expectations.
  • the relevant information is recorded in the log file and the robot is controlled to move all the tested devices at each test station to Recycling station, return to step S01 after the material is cleared, and start a new test from the loading;
  • retesting can be performed to reduce the scrap rate.
  • test stations corresponding to this example in step S01 are taken as an example, and steps S02-S05 are further explained as follows:
  • timing A0 the pre-judgment value of the SOT signal sequence of the PC is set to "1000";
  • Corresponding sequence A1 The pre-determined value of the SOT signal sequence generated last time, that is, the pre-determined value of the SOT signal sequence at the above-mentioned sequence A0 is "1000", and it is judged that the SOT signal sequence is "1000" and the pre-determined value matches.
  • the PC After A1 is completed, the PC generates the pre-judgment value of the SOT signal sequence to be used next time according to the test result: "1100";
  • Corresponding sequence A2 It is determined that the SOT signal sequence “1100” constructed by the PC matches the pre-determined value “1100” of the SOT signal sequence generated at A1 sequence. After the completion of this sequence A2, the PC generates the next SOT signal based on the test results The sequence prediction value is "1010";
  • Corresponding sequence A3 The SOT signal sequence "1010” determined by the PC matches the pre-determined value "1010” of the SOT signal sequence generated at A2 sequence. After the completion of this sequence A3, the PC generates the next SOT signal based on the test results The sequence prediction value is "1101";
  • Corresponding sequence A4 It is determined that the SOT signal sequence “1101” constructed by the PC matches the pre-determined value “1101” of the SOT signal sequence generated at A2 sequence. After the completion of this sequence A4, the control manipulator will measure the test completed by the fourth test station. The device is binned.
  • an SOT signal error prompt is generated and the robot is controlled to move all the devices under test at each test station to Recycling station. After clearing the material, return to step S01 to start a new test from loading.
  • the mismatch includes the following:
  • the manipulator should send the SOT signal of the N + 1th test station to the PC. If the PC does not receive To the SOT signal sent by the manipulator, prompting the SOT signal to report an error;
  • the manipulator should not send the SOT signal of the N + 1th test station to PC, if the PC receives the SOT signal sent by the robot, it prompts the SOT signal to report an error.
  • Timing A0 it means before the first test or before the retest after the test stations are cleared, the SOT signal sequence pre-judgment value of the PC is set to "1000"; there is no device under test at each test station;
  • Timing A1 The device under test DUT1 is positioned by the robot to the first test station, and the robot sends the SOT signal corresponding to the first test station to the PC;
  • the PC receives the SOT signal from the first test station sent by the manipulator, and constructs the SOT signal sequence "1000" based on it, and judges that it matches the SOT signal sequence pre-judgment value "1000" generated by A0 timing;
  • the PC receives the test result of the corresponding test station through the test host, and displays the DUT1 test result of the test corresponding to the first test station, and the parameters tested by the first test station are ICC, Example, and Vst;
  • the PC sends the EOT and BIN signals of the first test station to the manipulator; and based on the current SOT signal sequence "1000" and the test result of the first test station, the SOT signal sequence pre-judgment value for the next round (ie, timing A2) is generated "1100";
  • Timing A2 After receiving the EOT and BIN signals from the first test station, the manipulator indicates that the test passed at the first test station, the device under test DUT1 is positioned by the manipulator to the second test station, and the device under test DUT2 is positioned by the manipulator to the first Test station, the manipulator sends the SOT signals of the second and first test stations to the PC;
  • the PC receives the SOT signals from the second and first test stations sent by the manipulator, and accordingly constructs the SOT signal sequence "1100", and judges that it matches the SOT signal sequence prediction value "1100" generated by A1 timing;
  • the PC receives the test result of the corresponding test station through the test host, saves the test result, and displays the DUT2 test result corresponding to the first test station and the DUT1 test result corresponding to the second test station.
  • the parameters tested by the second test station are Vcspre, PSRR, and T_delay;
  • the device under test DUT1 passes the test at the second test station, and the PC sends the EOT and BIN signals of the second test station to the robot.
  • the BIN signal indicates that the test passes, and the device under test DUT2 fails the test at the first test station.
  • the PC sends the EOT and BIN signals of the first test station to the robot, where the BIN signal indicates that the test failed; and based on the SOT signal sequence "1100" and the test results of the first and second test stations, the next round (ie, timing A3) is generated. )
  • the predictive value of the SOT signal sequence used is "1010";
  • Timing A3 The manipulator receives the EOT and BIN signals from the second test station, indicating that the device under test DUT1 passed the test at the second test station, the device under test DUT1 is positioned by the manipulator to the third test station; the device under test DUT2 is in the first test The station test fails, the robot is in place to the second test station, and the device under test DUT3 is in place to the first test station. At this time, the robot sends the SOT signals of the third and first test stations to the PC, and the second test station DUT2 of the DUT2 fails to pass the test at the first test station, so that the robot does not send the SOT signal of the second test station;
  • the PC receives the SOT signals from the third and first test stations sent by the manipulator, and constructs the SOT signal sequence "1010" based on it, and judges that it matches the pre-determined value "1010" of the SOT signal sequence generated at A2 timing;
  • the PC receives the test result of the corresponding test station through the test host, saves the test result, and displays the DUT3 test result corresponding to the first test station, and the second test station does not test the device under test DUT2. , The test results are not displayed, and the DUT1 test results corresponding to the display test of the third test station are merged (that is, the test results of timing A1, A2, and A3 are included).
  • the parameters of the third test station are Vcspre1 and PSRR1.
  • the device under test DUT1 passes the test at the third test station, and the PC sends the EOT and BIN signals of the third test station to the robot.
  • the BIN signal prompts the test to pass, and the device under test DUT2 is not tested at the second test station.
  • the PC does not send EOT and BIN signals.
  • the device under test DUT3 passes the test at the first test station.
  • the PC sends the EOT and BIN signals of the first test station to the robot, where the BIN signal indicates that the test has passed; and according to the SOT signal sequence "1010" ",
  • the test results of the first, second, and third test stations generate the pre-judgment value of the SOT signal sequence used in the next round (ie, timing A4) is" 1101 ";
  • Timing A4 The robot receives the EOT and BIN signals from the third test station, indicating that the device under test DUT1 passed the test at the third test station, and the device under test DUT1 is positioned by the robot to the fourth test station; the device under test DUT2 is at the second The test station did not perform a test, and was placed in the third test station by the manipulator.
  • the manipulator received the EOT and BIN signals from the first test station, indicating that the device under test DUT3 passed the test at the first test station, and the device under test DUT3 was in place by the manipulator.
  • the device under test DUT4 is in place by the manipulator to the first test station; at this time, the manipulator sends the SOT signals of the fourth, second, and first test stations to the PC, and DUT2 of the third test station is in the second test
  • the station does not perform a test, so that the robot does not send the SOT signal of the third test station;
  • the PC receives the SOT signals from the fourth, second, and first test stations sent by the manipulator, and accordingly constructs the SOT signal sequence "1101", and judges that it matches the SOT signal sequence pre-judgment value "1101" generated at A3 timing;
  • the PC receives the test result of the corresponding test station through the test host, saves the test result, and combines the DUT4 test result corresponding to the display test of the first test station and the DUT3 test result corresponding to the display test of the second test station.
  • the test results are not displayed, and the DUT1 test results corresponding to the display test of the fourth test station are combined (that is, including timing A1, Test results of A2, A3, A4), the parameter tested by the fourth test station is T_delay1;
  • the device under test DUT1 passes the test at the fourth test station.
  • the PC sends the EOT and BIN signals of the third test station to the robot.
  • the BIN signal prompts the test to pass, and the device under test DUT1 goes to the next link for packaging or other.
  • the device under test DUT2 is not tested at the third test station, the PC does not send EOT and BIN signals; the device under test DUT3 passes the test at the second test station, and the PC sends the EOT and BIN signals of the second test station to the robot, where The BIN signal prompts the test to pass; the device under test DUT4 passes the test at the first test station, and the PC sends the EOT and BIN signals of the first test station to the robot, where the BIN signal indicates that the test passed.
  • the constructed SOT signal sequence “1101” does not match the pre-determined value of the SOT signal sequence “X100” (where X represents 1 or 1) It is 0, because the discontinuous feeding of the device occurs at the first station.)
  • the test software interface of the PC prompts the SOT signal error (SOT error message).
  • the PC sends instructions to control the robot to move the test device at each test station to recycling. Stand, return to step S01 after clearing the material and start a new test from the feeding.
  • the above SOT error information is stored in an error file and stored in other folders under the multi-site concurrent testing software installation directory on the PC.
  • the error information includes the SOT signal error time and the SOT signal sequence and SOT signal sequence.
  • the comparison error information of the pre-judgment value is convenient for the operator to follow up.
  • test data of the station is generated, and the test host sends the test data to the PC, where the PC predicts the rules based on the previously generated SOT signals and Test sequence of the device under test, integrate test data, display test results and specific parameter data in the test window corresponding to the test station according to the test station where the device is currently located, so as to achieve the order of all parameters of the device under test at each test station Testing and data integration can also achieve concurrent testing of multiple devices under test at multiple test stations, and ensure a one-to-one correspondence between the device under test and test data, prevent data misalignment and omission, save test time and test costs, and improve testing effectiveness.
  • the second embodiment of the present invention also provides a multi-station concurrent test device, which includes a control station 200 and a test host 100 which are sequentially connected in communication, and the multi-station concurrent test software is installed on the control station 200.
  • the control station 200 may select a PC or other processor supporting installation of multiple stations of concurrent testing software 210;
  • the control station 200 communicates with the test host 100 through a bus.
  • the test host 100 includes multiple hardware modules 110, 120, 130, and 140, and communicates with the test boxes 410, 420, 430, and 440, respectively. Integrate the test resources of each hardware module separately and connect at least one test station to form the first to fourth test stations Site1, Site2, Site3, and Site4. The four test stations are used to test parts of the device under test. Parameters, and upload the test results of some parameters from the test host 100 to the control station 200;
  • It also includes a manipulator 300 that is communicatively connected to the control station 200 and is used to control the in and out of the device under test and switch between test stations.
  • a sensor is installed on the manipulator 300 to detect the position of the device under test on the manipulator. status;
  • the communication method between the control station 200 and the manipulator 300 includes GPIB, TTL, RS232 and so on.
  • This embodiment is applicable to a case where the device under test is required to be closer to the test box.
  • the principle is the same as the principle of the multi-site concurrent test method, and details are not described herein.
  • the third embodiment of the present invention also provides a multi-station concurrent testing device, which includes a control station 100.
  • the control station 100 has multi-station concurrent testing software 110 installed.
  • the control station 100 is optional. PC or other processor supporting installation of multi-site concurrent testing software 110;
  • test hardware or test stations 210, 220, 230, and 240 that are communicatively connected to the control station 100 are used to test some parameters of the device under test, and upload the test results of some parameters to the control. Station 100,
  • the manipulator 300 also includes a manipulator 300 that is communicatively connected to the control station 100 and is used to control the in and out of the device under test and switch between test stations.
  • the manipulator 300 is equipped with a sensor that can detect the position of the device under test on the manipulator. status;
  • the communication method between the control station 100 and the manipulator 300 includes GPIB, TTL, RS232, and so on.
  • the multi-site concurrent testing device When the multi-site concurrent testing device provided in this embodiment performs the multi-site concurrent testing, the principle is the same as the above-mentioned multi-site concurrent testing method, and details are not described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Manipulator (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本发明提供了一种多站并发测试方法,包括以下步骤:A:控制站依据各测试站的相邻测试站的前次测试结果,控制机械手发送相应测试站的SOT信号;B:控制站根据接收到的各个SOT信号,并对应各测试站的次序构造出SOT信号序列;C:控制站将所述SOT信号序列与其生成的SOT信号序列预判值进行比较,若匹配,则相应的测试站执行被测器件的测试,否则控制机械手将各测试站被测器件清料;所述SOT信号序列预判值为根据前次各测试站测试结果生成。本发明既可实现被测器件的所有参数在同一个测试系统中进行测试,节省测试成本,还整合了被测器件的所有测试数据,实现被测器件与测试结果一一对应,防止数据错位的现象。

Description

多站并发测试方法、控制站和多站并发测试装置 技术领域
本发明涉及集成电路测试领域,特别涉及一种多站并发测试方法、控制站和多站并发测试装置。
背景技术
在对批量的复杂的器件(既有IC又有MOSFET)的测试中,要测试非常多的参数,包括测试IC的性能参数,还需要测试MOSFET的UIS(雪崩耐量测试)、热阻、驱动电容和驱动电阻等参数,这些参数在实际的测试过程中,通常需要利用多个测试硬件对批量器件分别测试。每个测试硬件需要测试的参数不同,且测试的参数数量也不同。
如图1所示,现有的多站并发测试装置由机械手(handler)300和多个测试硬件(或称为测试站)210、220、230、240构成,其中,机械手300分别发送SOT(Start of Test,开始测试信号)至测试硬件210、220、230、240,并接收每个测试硬件反馈的EOT(End of Test,测试完成信号)和BIN(测试分档信号),所述测试硬件分别对被测器件进行测试,并将各自独立生成的测试结果上传给服务器100。
由于这些测试硬件可能属于不同的测试系统或测试仪器,这种分别测试的最大的缺陷是相同的一颗器件在各个测试站的被测结果数据是被各自分开存储的,不能直接显示出该颗器件的全部被测结果数据,同时对于器件被测结果数据的分档来说,由于这些数据被各自分开存储导致数据不能放在一起,无法对多个测试站的参数测试结果组合分档。
基于此,目前也提供了多个测试站并发测试的方案,以实现被测结果数据的后期整合,其中各个器件的不间断的上料由机械手实现。
具体来说,在对批量器件测试过程中,各测试站分别将各器件被测结果数据上传至服务器,由服务器进行分别存储,以在后期进行数据整合。
但是,当某被测器件在某个测试站测试未通过或者未进行测试时,不会生成和上传数据,服务器并不知晓该情况,当服务器接收到该测试站的下一个被测器件的被测结果数据后,会认为是该被测器件的被测结果数据,从而会导致在后期各个器件的各被测结果数据整合时产生数据错位,导致服务器统计的数据发生错误,因此,需要提出一种多站并发测试方法,以实现被测器件与测试结果一一对应,从而整合器件的所有测试数据时防止数据错位的现象。
发明内容
有鉴于此,本发明的主要目的在于提供一种多站并发测试方法,既能实现被测器件的所有参数在一个测试系统中的测试,还可整合器件的所有测试数据,实现被测器件与测试结果一一对应,防止数据错位的现象,节省测试时间和测试成本,提高测试效率。
为实现上述目的,本发明采用的技术方案为:
一种多站并发测试方法,包括控制站和分别与控制站通讯连接的复数个测试站,不同的测试站用于测试被测器件的部分参数,并将所述参数提供给控制站;
与所述控制站通讯连接的机械手,用于传送各被测器件依次就位各测试站;该测试方法包括以下步骤:
A:控制站依据各测试站的相邻测试站的前次测试结果,控制机械手发送相应测试站的SOT信号;
B:控制站根据接收到的各个SOT信号,并对应各测试站的次序构造出SOT信号序列;
C:控制站将所述SOT信号序列与其生成的SOT信号序列预判值进行比较,若匹配,则相应的测试站执行被测器件的测试,否则控制机械手将各测试站被测器件清料;
所述SOT信号序列预判值为根据前次各测试站测试结果生成。
由上,通过将被测器件的参数分为多测试站进行测试,由控制站根据前次各测试站测试结果生成SOT信号序列预判值,控制各测试站对应的机械手的SOT信号的发送,使其互相匹配,当被测器件在一个测试站完成测试后,生成测试数据进行显示,并根据测试顺序控制该被测器件进入下一测试站,其测试数据也会合并到下一测试站中,既可实现被测器件的所有参数在同一个测试系统中进行测试,节省测试成本,还整合了被测器件的所有测试数据,实现被测器件与测试结果一一对应,防止数据错位的现象。
其中,所述步骤A包括:
当被测器件被机械手就位到第一测试站时:机械手发送对应的该第一测试站的SOT信号;
当被测器件被机械手就位到第N+1,N≥1测试站时:若该被测器件在第N测试站的测试结果符合预期,则机械手发送对应的该第N+1测试站的SOT信号;若不符合预期或未进行测试,则机械手不发送对应的该第N+1测试站的SOT信号。
由上,按照该SOT信号发送规则,可保证被测器件完成第一个测试站到最后一个测试站的测试,并且每个测试站根据上一个测试站的测试结果来判定是否发送SOT信号,当被测器件在某个测试站测试未通过后,按照规则,该被测器件会随着机械手进入后续的测试站但不再进行测试,节省测试时间的同时,还可防止测试数据的错位。
其中,所述步骤B包括:
若接收到其中一个测试站的SOT信号,则该SOT信号序列中的对应该测试站的位值为1,否则为0。
由上,1表示高电平SOT信号,0表示低电平无SOT信号,并以此构造高低电平SOT信号序列。
其中,步骤C所述SOT信号序列预判值为根据前次各测试站测试结果生成的步骤包括:
SOT信号首位值生成步骤为:第一测试站有新被测器件进入该首 位值为1,无新被测器件进入该首位值为0;
SOT信号其他各位值生成步骤为:各位值对应各测试站相邻前一位的测试结果,前次测试结果中测试通过的测试站其相邻下一SOT信号预判值为1,未通过则相邻下一SOT信号预判值为0。
由上,控制站根据第一测试中是否有被测器件以及被测器件进入各测试站测试之后的测试结果,生成SOT信号序列预判值,当被测器件在该测试站测试通过时,则进入下一测试站,机械手应当发送SOT信号,若测试未通过,则进入下一测试中,机械手不应发送SOT信号。
进一步改进,步骤C所述相应的测试站执行被测器件的测试后还包括:
所述控制站将被测器件在不同测试站的测试结果保存,并将被测器件已经完成的测试结果对应该被测器件合并显示。
由上,测试过程中,各测试站对被测器件的测试值进行记录并跟随各个被测器件移动至下一测试站时,测试记录进行文本合并记录,并在被测器件当前所在测试站进行所有测试值的显示。
进一步改进,步骤C所述清料后还包括:
提示SOT信号出错,并将出错信息保存在报错文件。
由上,若机械手发送的SOT信号与控制站构造出的SOT信号序列不一致,则系统进行报错提示并将SOT信号出错时间及SOT信号序列与SOT信号序列预判值的对比出错信息保存在报错文件,方便操作人员进行报错信息的排查。
进一步改进,所述机械手与被测器件的接触端安装有传感器,用于检测机械手上的被测器件的就位状态。
由上,该机械手上的传感器可检测机械手上的被测器件是否就位完成,当被测器件处于就位状态时,才发送SOT信号,否则不发送。
本发明还提供了一种控制站,包括处理器及在处理器上运行的多站并发测试软件,所述多站并发测试软件执行以下步骤:
A:依据各测试站的相邻测试站的前次测试结果,控制机械手发 送相应测试站的SOT信号;
B:根据接收到的各个SOT信号,并对应各测试站的次序构造出SOT信号序列;
C:将所述SOT信号序列与其生成的SOT信号序列预判值进行比较,若匹配,则相应的测试站执行被测器件的测试,否则控制机械手将各测试站被测器件清料;
所述SOT信号序列预判值为根据前次各测试站测试结果生成。
其中,所述步骤A包括:
当被测器件被机械手就位到第一测试站时:机械手发送对应的该第一测试站的SOT信号;
当被测器件被机械手就位到第N+1,N≥1测试站时:若该被测器件在第N测试站的测试结果符合预期,则机械手发送对应的该第N+1测试站的SOT信号;若不符合预期或未进行测试,则机械手不发送对应的该第N+1测试站的SOT信号。
其中,所述步骤B包括:
若接收到其中一个测试站的SOT信号,则该SOT信号序列中的对应该测试站的位值为1,否则为0。
其中,步骤C所述SOT信号序列预判值为根据前次各测试站测试结果生成的步骤包括:
SOT信号首位值生成步骤为:第一测试站有新被测器件进入该首位值为1,无新被测器件进入该首位值为0;
SOT信号其他各位值生成步骤为:各位值对应各测试站相邻前一位的测试结果,前次测试结果中测试通过的测试站其相邻下一SOT信号预判值为1,未通过则相邻下一SOT信号预判值为0。
进一步改进,步骤C所述相应的测试站执行被测器件的测试后还包括:
将被测器件在不同测试站的测试结果保存,并将被测器件已经完成的测试结果对应该被测器件合并显示。
进一步改进,步骤C所述清料后还包括:
提示SOT信号出错,并将出错信息保存在报错文件。
本发明还提供了一种多站并发测试系统,包括上述任一所述的控制站,及分别与控制站通讯连接的复数个测试站,不同的测试站用于测试被测器件的部分参数,并将所述参数提供给控制站;
与所述控制站通讯连接的机械手,用于传送各被测器件依次就位各测试站。
进一步改进,所述机械手与被测器件的接触端安装有传感器,用于检测机械手上的被测器件的就位状态。
附图说明
图1为现有多站并发测试装置的原理示意图;
图2为本发明多站并发测试装置的原理示意图;
图3为本发明多站并发测试方法的流程图;
图4A为本发明时序A1各测试站的被测器件的位置示意图;
图4B为本发明时序A1各测试站的测试结果示意图;
图5A为本发明时序A2各测试站的被测器件的位置示意图;
图5B为本发明时序A2各测试站的测试结果示意图;
图6A为本发明时序A3各测试站的被测器件的位置示意图;
图6B为本发明时序A3各测试站的测试结果示意图;
图7A为本发明时序A4各测试站的被测器件的位置示意图;
图7B为本发明时序A4各测试站的测试结果示意图;
图8为本发明PC构造的对应时序的SOT信号序列的示意图;
图9为本发明PC提示SOT信号报错的示意图;
图10为本发明SOT报错文件的示意图;
图11为本发明第二实施例多站并发测试装置的原理示意图;
图12为本发明第三实施例多站并发测试装置的原理示意图。
具体实施方式
本发明的主要目的在于提供一种多站并发测试方法,通过预先设 定规则,由多个测试站进行不同参数的测试,从而实现被测器件的所有参数在各测试站的依次测试和数据整合,还可实现多个被测器件在多个测试站的并发测试,并保证被测器件和测试数据的一一对应,节省测试时间和测试成本,提高测试效率。
如图2所示,本发明提供了一种多站并发测试装置,包括依次通讯连接的控制站200、测试主机100,所述控制站200上安装有多站并发测试软件210,该控制站200可选用PC或其他支持安装多站并发测试软件210的处理器;
该控制站200与测试主机100采用总线实现通讯连接,所述测试主机100包括多个硬件模块110、120、130、140,分别连接至少一个测试工位,组成第一至第四测试站Site1、Site2、Site3、Site4,所述四个测试站分别用于测试被测器件的部分参数,并将部分参数的测试结果由测试主机100上传至控制站200;
还包括与所述控制站200通讯连接的机械手300,用于控制被测器件的进出和在各测试站上的切换,该机械手300上安装有传感器,可检测机械手上的被测器件的就位状态;
所述控制站200与机械手300的通讯方式包括GPIB,TTL,RS232等。
如图3所示,结合上述多站并发测试装置,还提供了一种多站并发测试方法,包括以下步骤:
A:控制站依据各测试站的相邻测试站的前次测试结果,控制机械手发送相应测试站的SOT信号;
当被测器件被机械手就位到第一测试站时:机械手发送对应的该第一测试站的SOT信号;
当被测器件被机械手就位到第N+1,N≥1测试站时:若该被测器件在第N测试站的测试结果符合预期,则机械手发送对应的该第N+1测试站的SOT信号;若不符合预期或未进行测试,则机械手不发送对应的该第N+1测试站的SOT信号。
B:控制站根据接收到的各个SOT信号,并对应各测试站的次序 构造出SOT信号序列,该SOT信号序列中对应该测试站的位值为1,否则为0。
C:控制站将所述SOT信号序列与其生成的SOT信号序列预判值进行比较,若匹配,则相应的测试站执行被测器件的测试,所述控制站将被测器件在不同测试站的测试结果保存,并将被测器件已经完成的测试结果对应该被测器件合并显示;
若所述SOT信号序列与其生成的SOT信号序列预判值不匹配,则提示SOT信号报错,并控制机械手将各测试站被测器件清料,各测试站被测器件的测试结果保存在报错文件;
其中,所述SOT信号序列预判值为根据前次各测试站测试结果生成,步骤包括:
SOT信号首位值生成步骤为:第一测试站有新被测器件进入该首位值为1,无新被测器件进入该首位值为0;
SOT信号其他各位值生成步骤为:各位值对应各测试站相邻前一位的测试结果,前次测试结果中测试通过的测试站其相邻下一SOT信号预判值为1,未通过则相邻下一SOT信号预判值为0,其中1表示高电平SOT信号,0表示低电平无SOT信号。
为了更清楚的对本发明进行说明,在此结合本发明采用四个测试站的实施例,先对本发明所提到的词语解释说明如下:
SOT信号:机械手将被测器件就位到测试站的测试工位后所发给PC的信号,SOT(Star of Test)用于指示当前次测试开始;
EOT信号:PC收到测试站的当前次测试结果后,所发给机械手的信号,EOT(End of Test)用于指示当前次测试结束;
BIN信号:PC发送EOT信号时同时所发送的信号,BIN用于表示被测参数的分档,包括测试通过或测试未通过;
SOT信号序列:对应顺序排列的四个测试站,机械手将对应器件依次就位到各测试工位后,各机械手依照SOT发送规则(将在后文描述)依次发出SOT信号,PC据此接收的SOT信号所构成的序列;
SOT信号序列预判值:PC根据当前收到的SOT构成的SOT信号 序列和当次各测试站的测试结果,所预判的下一次应当接收的SOT信号序列。
下面,参照附图4A~图10,对本发明测试方法详细说明,当控制站选用PC,运行多站并发测试软件开始测试时,包括以下步骤:
S01:各测试站依据SOT发送规则,即根据各相邻测试站的前次测试结果,确定该测试结果是否符合预期,并据此控制机械手发送相应测试站的SOT信号。
该SOT发送规则,具体可描述为:
当被测器件被机械手就位到第一测试站时:机械手向PC发送该第一测试站对应的SOT信号;
当被测器件被机械手就位到第N+1(N≥1)测试站时:若该被测器件在第N测试站测试时,该第N测试站测试结果经测试主机传输至PC,并由PC判断测试值符合预期后,由PC发送EOT和BIN至该第N测试站的机械手,即该第N测试站的机械手接收到EOT和BIN信号后,表示在第N站测试通过,则机械手就位被测器件后向PC发送该第N+1测试站的SOT信号;
当被测器件被机械手就位到第N+1(N≥1)测试站时:若该被测器件在第N测试站测试时,该第N测试站测试结果经测试主机传输至PC,并由PC判断测试值不符合该测试站预期(测试未通过),或在第N测试站未进行测试导致PC未接收到该第N测试站的测试结果后,由PC发送EOT和BIN至该第N测试站的机械手,即该第N测试站的机械手接收到EOT和BIN信号后,表示在第N站测试未通过或未测试,则机械手不发送对应的第N+1测试站的SOT信号;
下面以本例中的四个测试站,以及四个测试器件依次进入该四个测试站分别测试为例,对本步骤进一步详细说明:
时序A1:如图4A所示,刚开始测试时,当除第一测试站其他测试站均无被测器件DUT1时,则机械手向PC发送第一测试站的SOT信号,第一测试站的位值为1,其他测试站不发送SOT信号,其他测试站的位值为0;
时序A2:如图5A所示,当被测器件DUT1在第一测试站测试通过,并被机械手就位到第二测试站,且被测器件DUT2被机械手就位到第一测试站,此时,机械手向PC发送第二、一测试站的SOT信号,第二、一测试站的位值为1,第三、四测试站没有被测器件不发送SOT信号,第三、四测试站的位值为0;
时序A3:如图6A所示,当被测器件DUT1在第二测试站测试通过,并被机械手就位到第三测试站,且被测器件DUT2在第一测试站测试未通过,被机械手就位到第二测试站,且被测器件DUT3被机械手就位到第一测试站,此时,机械手向PC发送第三、一测试站SOT信号,第三、一测试站的位值为1,第二测试站的DUT2由于在第一测试站测试未通过导致机械手不发送该第二测试站SOT信号,且不进行测试,第二测试站的位值为0,第四测试站没有被测器件不发送SOT信号,第四测试站的位值为0;
时序A4:如图7A所示,当被测器件DUT1在第三测试站测试通过,并被机械手就位到第四测试站,且被测器件DUT2在第二测试站未测试,被机械手就位到进入第三测试站,且被测器件DUT3在第一测试站测试通过,并被机械手就位到第二测试站,且被测器件DUT4被机械手就位到第一测试站,此时,机械手发送第四、二、一测试站的SOT信号,第四、二、一测试站的位值为1,第三测试站的DUT2由于在第二测试站未测试导致该第三测试站机械手不发送SOT信号,第三测试站的位值为0。
S02:PC依次接收对应各测试站的机械手发送的SOT信号,并对应各测试站的次序构造出SOT信号序列;
下面如图8所示,对应步骤S01中本例的四个测试站为例说明如下,其中1表示高电平SOT信号,0表示低电平无SOT信号:
对应时序A1:PC收到来自机械手发送的第一测试站的SOT信号,PC构造出的SOT信号序列为“1000”;
对应时序A2:PC收到来自机械手发送的第二、一测试站的SOT信号,PC构造出的SOT信号序列为“1100”;
对应时序A3:PC收到来自机械手发送的第三、一测试站的SOT信号,PC构造出的SOT信号序列为“1010”;
对应时序A4:PC收到来自机械手发送的第四、二、一测试站的SOT信号,PC构造出的SOT信号序列为“1101”。
S03:PC将所述SOT信号序列,与其生成的SOT信号序列预判值进行比较,确定本次SOT信号序列是否与预判值匹配,若匹配,则执行步骤S04,否则执行步骤S05。
其中,SOT信号序列预判值的产生规则为:根据各测试站的测试结果,当前测试站测试通过进入下一站SOT信号预判值为1,当前测试站测试未通过进入下一站SOT信号预判值为0,第一测试站有新被测器件进入SOT信号预判值为1,无新被测器件进入SOT信号预判值为0,其中1表示高电平SOT信号,0表示低电平无SOT信号,详细描述如下:
时序A1的SOT信号序列预判值:如图4A所示,首次测试前,或各测试站清料后的重新测试前,机械手控制被测器件DUT1进入第一测试站,其他测试站无被测器件进入,此时设定PC的SOT信号序列预判值为“1000”;
时序A2的SOT信号序列预判值:如图5A所示,被测器件DUT1在第一测试站测试通过,机械手控制被测器件DUT1进入第二测试站,控制被测器件DUT2进入第一测试站,其他测试站无被测器件进入,此时设定PC的SOT信号序列预判值为“1100”;
时序A3的SOT信号序列预判值:如图6A所示,被测器件DUT1在第二测试站测试通过,机械手控制被测器件DUT1进入第三测试站,被测器件DUT2在第一测试站测试未通过,机械手控制被测器件DUT2进入第二测试站,控制被测器件DUT3进入第一测试站,第四测试站无被测器件进入,此时设定PC的SOT信号序列预判值为“1010”;
时序A4的SOT信号序列预判值:如图7A所示,被测器件DUT1在第三测试站测试通过,机械手控制被测器件DUT1进入第四测试站, 被测器件DUT2在第二测试站测试未测试,机械手控制被测器件DUT2进入第三测试站,被测器件DUT3在第一测试站测试通过,机械手控制被测器件DUT3进入第二测试站,控制被测器件DUT4进入第一测试站,此时设定PC的SOT信号序列预判值为“1101”。
S04:本次SOT信号序列与SOT信号序列预判值匹配,表示机械手发送的SOT信号符合预期,根据PC当前构造的SOT信号序列,执行各测试站被测器件的测试;
机械手控制被测器件依次在各测试站完成测试后,将测试通过的器件传送至下一站,进行编带或打包,测试未通过的器件,则由机械手控制传输至未通过的料筒内,便于进行后续的重新测试或者分析处理。
S05:本次SOT信号序列与SOT信号序列预判值不匹配,表示机械手发送的SOT信号不符合预期,此时,相关信息记入日志文件,并控制机械手将各测试站全部被测器件移至回收站,清料后返回步骤S01重新从上料开始进行新的测试;
针对回收站内的被测器件,可进行重新测试,降低报废率。
下面,对应步骤S01中本例的四个测试站为例,对步骤S02-S05进一步说明如下:
首次测试前,或各测试站清料后的重新测试前,为方便描述起见设置为时序A0:此时设定PC的SOT信号序列预判值为“1000”;
对应时序A1:其前次所生成的SOT信号序列预判值即上述时序A0时的SOT信号序列预判值为“1000”,判断SOT信号序列为“1000”与预判值匹配,在本时序A1完成后,PC根据测试结果生成下次所使用的SOT信号序列预判值为“1100”;
对应时序A2:判断PC构造的SOT信号序列“1100”与在A1时序生成的SOT信号序列预判值“1100”匹配,在本时序A2完成后,PC根据测试结果生成下次所使用的SOT信号序列预判值为“1010”;
对应时序A3:判断PC构造的SOT信号序列“1010”与在A2时序生成的SOT信号序列预判值“1010”匹配,在本时序A3完成后, PC根据测试结果生成下次所使用的SOT信号序列预判值为“1101”;
对应时序A4:判断PC构造的SOT信号序列“1101”与在A2时序生成的SOT信号序列预判值“1101”匹配,在本时序A4完成后,控制机械手将第四测试站测试完成的被测器件进行分档。
若上述任一对应时序中,PC构造的SOT信号序列与上一时序生成的SOT信号序列预判值不匹配,则生成SOT信号报错提示,并控制机械手将各测试站的全部被测器件移至回收站,清料后返回步骤S01重新从上料开始进行新的测试,所述不匹配的情况包括如下:
若被测器件在第N站测试通过,当该被测器件被机械手就位到第N+1测试站时,所述机械手应该发送第N+1测试站的SOT信号至PC,若PC未接收到机械手发送的SOT信号,提示SOT信号报错;
若被测器件在第N站测试未通过或未测试,当该被测器件被机械手就位到第N+1测试站时,所述机械手不应该再发送第N+1测试站的SOT信号至PC,若PC接收到机械手发送的SOT信号,提示SOT信号报错。
依次类推,后续其他被就位至测试站的被测器件不再赘述。
下面,再从上述各个时序的角度,来对本发明进行说明:
时序A0:表示为首次测试前,或各测试站清料后的重新测试前,此时设定PC的SOT信号序列预判值为“1000”;此时各测试站上没有被测器件;
时序A1:被测器件DUT1被机械手就位到第一测试站,机械手向PC发送该第一测试站对应的SOT信号;
PC收到来自机械手发送第一测试站的SOT信号,并据此构造出SOT信号序列“1000”,判断与A0时序生成的SOT信号序列预判值“1000”匹配;
如图4B所示,PC通过测试主机接收对应测试站的测试结果,并将对应第一测试站显示测试的DUT1测试结果,第一测试站测试的参数为ICC、Example、Vst;
PC向机械手发送第一测试站的EOT和BIN信号;并根据本次 SOT信号序列“1000”、第一测试站测试结果,生成下一轮(即时序A2)所用的SOT信号序列预判值为“1100”;
时序A2:机械手收到第一测试站的EOT和BIN信号后表示在第一测试站测试通过,被测器件DUT1被机械手就位到第二测试站,被测器件DUT2被机械手就位到第一测试站,机械手向PC发送第二、一测试站的SOT信号;
PC收到来自机械手发送的第二、一测试站的SOT信号,并据此构造出SOT信号序列“1100”,判断与A1时序生成的SOT信号序列预判值“1100”匹配;
如图5B所示,PC通过测试主机接收对应测试站的测试结果,将测试结果保存,并将对应第一测试站显示测试的DUT2测试结果,对应第二测试站显示测试的DUT1测试结果的合并(即包含时序A1、A2的测试结果),第二测试站测试的参数为Vcspre、PSRR、T_delay;
本时序中,被测器件DUT1在第二测试站测试通过,PC向机械手发送第二测试站的EOT和BIN信号,其中BIN信号提示测试通过,被测器件DUT2在第一测试站测试未通过,PC向机械手发送第一测试站的EOT和BIN信号,其中BIN信号提示测试未通过;并根据本次SOT信号序列“1100”、第一、二测试站测试结果,生成下一轮(即时序A3)所用的SOT信号序列预判值为“1010”;
时序A3:机械手收到第二测试站的EOT和BIN信号表示被测器件DUT1在第二测试站测试通过,被测器件DUT1被机械手就位到第三测试站;被测器件DUT2在第一测试站测试未通过,被机械手就位到第二测试站,被测器件DUT3被机械手就位到第一测试站;此时,机械手向PC发送第三、一测试站的SOT信号,第二测试站的DUT2由于在第一测试站测试未通过导致机械手不发送该第二测试站的SOT信号;
PC收到来自机械手发送的第三、一测试站的SOT信号,并据此构造出SOT信号序列“1010”,判断与在A2时序生成的SOT信号序列预判值“1010”匹配;
如图6B所示,PC通过测试主机接收对应测试站的测试结果,将测试结果保存,并将对应第一测试站显示测试的DUT3测试结果,对应第二测试站未对被测器件DUT2进行测试,不显示测试结果,对应第三测试站显示测试的DUT1测试结果的合并(即包含时序A1、A2、A3的测试结果),第三测试站测试的参数为Vcspre1、PSRR1;
本时序中,被测器件DUT1在第三测试站测试通过,PC向机械手发送第三测试站的EOT和BIN信号,其中BIN信号提示测试通过,被测器件DUT2在第二测试站未进行测试,PC不发送EOT和BIN信号,被测器件DUT3在第一测试站测试通过,PC向机械手发送第一测试站的EOT和BIN信号,其中BIN信号提示测试通过;并根据本次SOT信号序列“1010”、第一、二、三测试站测试结果,生成下一轮(即时序A4)所用的SOT信号序列预判值为“1101”;
时序A4:机械手收到第三测试站的EOT和BIN信号,表示被测器件DUT1在第三测试站测试通过,被测器件DUT1被机械手就位到第四测试站;被测器件DUT2在第二测试站未进行测试,被机械手就位到第三测试站;机械手收到第一测试站的EOT和BIN信号,表示被测器件DUT3在第一测试站测试通过,被测器件DUT3被机械手就位到第二测试站;被测器件DUT4被机械手就位到第一测试站;此时,机械手向PC发送第四、二、一测试站的SOT信号,第三测试站的DUT2由于在第二测试站未进行测试导致机械手不发送该第三测试站的SOT信号;
PC收到来自机械手发送的第四、二、一测试站的SOT信号,并据此构造出SOT信号序列“1101”,判断与在A3时序生成的SOT信号序列预判值“1101”匹配;
如图7B所示,PC通过测试主机接收对应测试站的测试结果,将测试结果保存,并将对应第一测试站显示测试的DUT4测试结果,对应第二测试站显示测试的DUT3测试结果的合并(即包含时序A3、A4的测试结果),对应第三测试站未对被测器件DUT2进行测试,不显示测试结果,对应第四测试站显示测试的DUT1测试结果的合并 (即包含时序A1、A2、A3、A4的测试结果),第四测试站测试的参数为T_delay1;
本时序中,被测器件DUT1在第四测试站测试通过,PC向机械手发送第三测试站的EOT和BIN信号,其中BIN信号提示测试通过,被测器件DUT1进行下一个环节,进行打包或者其他处理;被测器件DUT2在第三测试站未进行测试,PC不发送EOT和BIN信号;被测器件DUT3在第二测试站测试通过,PC向机械手发送第二测试站的EOT和BIN信号,其中BIN信号提示测试通过;被测器件DUT4在第一测试站测试通过,PC向机械手发送第一测试站的EOT和BIN信号,其中BIN信号提示测试通过;
然后,再次从对应上述时序A0开始,重新进行新的测试。
如图9所示,当PC依次接收机械手发送的对应各测试站的SOT信号,构造的SOT信号序列“1101”与SOT信号序列预判值“X100”不匹配(其中X表示可以是1也可以是0,因为第一站有器件不连续进料的情况出现),PC的测试软件界面提示SOT信号报错(SOT error message),此时PC发送指令控制机械手将各测试站被测器件移至回收站,清料后返回步骤S01重新从上料开始进行新的测试。
如图10所示,上述SOT报错信息存入一报错文件,存入PC中多站并发测试软件安装目录下的其他文件夹中,该报错信息包括SOT信号出错时间及SOT信号序列与SOT信号序列预判值的对比出错信息,方便操作人员进行后续查阅。
综上所述,本发明提供的测试方法中,每个测试站在完成测试后,会生成该站的测试数据,由测试主机发送至PC,所述PC根据之前生成的SOT信号预判规则和被测器件的测试顺序,整合测试数据,根据被测器件当前所在测试站,在该测试站对应的测试窗口显示测试结果及具体参数数据,从而实现被测器件的所有参数在各测试站的依次测试和数据整合,还可实现多个被测器件在多个测试站的并发测试,并保证被测器件和测试数据的一一对应,防止数据错位和遗漏,节省测试时间和测试成本,提高测试效率。
如图11所示,本发明的第二实施例还提供了一种多站并发测试装置,包括依次通讯连接的控制站200、测试主机100,所述控制站200上安装有多站并发测试软件210,该控制站200可选用PC或其他支持安装多站并发测试软件210的处理器;
该控制站200与测试主机100采用总线实现通讯连接,所述测试主机100包括多个硬件模块110、120、130、140,分别通讯连接测试盒410、420、430、440,所述各测试盒分别将各硬件模块的测试资源整合,并分别连接至少一个测试工位,组成第一至第四测试站Site1、Site2、Site3、Site4,所述四个测试站分别用于测试被测器件的部分参数,并将部分参数的测试结果由测试主机100上传至控制站200;
还包括与所述控制站200通讯连接的机械手300,用于控制被测器件的进出和在各测试站上的切换,该机械手300上安装有传感器,可检测机械手上的被测器件的就位状态;
所述控制站200与机械手300的通讯方式包括GPIB,TTL,RS232等。
本实施例适用于要求被测器件距离测试盒较近的情况,其进行多站并发测试时,与上述多站并发测试方法的原理一致,在此不做赘述。
如图12所示,本发明的第三实施例还提供了一种多站并发测试装置,包括控制站100,所述控制站100上安装有多站并发测试软件110,该控制站100可选用PC或其他支持安装多站并发测试软件110的处理器;
分别与所述控制站100通讯连接的复数个测试硬件(或称为测试站)210、220、230、240,分别用于测试被测器件的部分参数,并将部分参数的测试结果上传至控制站100,
还包括与所述控制站100通讯连接的机械手300,用于控制被测器件的进出和在各测试站上的切换,该机械手300上安装有传感器,可检测机械手上的被测器件的就位状态;
所述控制站100与机械手300的通讯方式包括GPIB,TTL,RS232等。
本实施例提供的多站并发测试装置进行多站并发测试时,与上述多站并发测试方法的原理一致,在此不做赘述。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种多站并发测试方法,包括控制站和分别与控制站通讯连接的复数个测试站,不同的测试站用于测试被测器件的部分参数,并将所述参数提供给控制站;
    与所述控制站通讯连接的机械手,用于传送各被测器件依次就位各测试站;其特征在于,该测试方法包括以下步骤:
    A:控制站依据各测试站的相邻测试站的前次测试结果,控制机械手发送相应测试站的SOT信号;
    B:控制站根据接收到的各个SOT信号,并对应各测试站的次序构造出SOT信号序列;
    C:控制站将所述SOT信号序列与其生成的SOT信号序列预判值进行比较,若匹配,则相应的测试站执行被测器件的测试,否则控制机械手将各测试站被测器件清料;
    所述SOT信号序列预判值为根据前次各测试站测试结果生成。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤A包括:
    当被测器件被机械手就位到第一测试站时:机械手发送对应的该第一测试站的SOT信号;
    当被测器件被机械手就位到第N+1,N≥1测试站时:若该被测器件在第N测试站的测试结果符合预期,则机械手发送对应的该第N+1测试站的SOT信号;若不符合预期或未进行测试,则机械手不发送对应的该第N+1测试站的SOT信号。
  3. 根据权利要求1所述的方法,其特征在于,所述步骤B包括:
    若接收到其中一个测试站的SOT信号,则该SOT信号序列中的对应该测试站的位值为1,否则为0。
  4. 根据权利要求3所述的方法,其特征在于,步骤C所述SOT信号序列预判值为根据前次各测试站测试结果生成的步骤包括:
    SOT信号首位值生成步骤为:第一测试站有新被测器件进入该首位值为1,无新被测器件进入该首位值为0;
    SOT信号其他各位值生成步骤为:各位值对应各测试站相邻前一位的测试结果,前次测试结果中测试通过的测试站其相邻下一SOT信号预判值为1,未通过则相邻下一SOT信号预判值为0。
  5. 根据权利要求1所述的方法,其特征在于,步骤C所述相应的测试站执行被测器件的测试后还包括:
    所述控制站将被测器件在不同测试站的测试结果保存,并将被测器件已经完成的测试结果对应该被测器件合并显示。
  6. 根据权利要求1所述的方法,其特征在于,步骤C所述清料后还包括:
    提示SOT信号出错,并将出错信息保存在报错文件。
  7. 根据权利要求1所述的方法,其特征在于,所述机械手与被测器件的接触端安装有传感器,用于检测机械手上的被测器件的就位状态。
  8. 一种控制站,包括处理器及在处理器上运行的多站并发测试软件,其特征在于,所述多站并发测试软件执行以下步骤:
    A:依据各测试站的相邻测试站的前次测试结果,控制机械手发送相应测试站的SOT信号;
    B:根据接收到的各个SOT信号,并对应各测试站的次序构造出SOT信号序列;
    C:将所述SOT信号序列与其生成的SOT信号序列预判值进行比较,若匹配,则相应的测试站执行被测器件的测试,否则控制机械手将各测试站被测器件清料;
    所述SOT信号序列预判值为根据前次各测试站测试结果生成。
  9. 根据权利要求8所述的控制站,其特征在于,所述步骤A包括:
    当被测器件被机械手就位到第一测试站时:机械手发送对应的该第一测试站的SOT信号;
    当被测器件被机械手就位到第N+1,N≥1测试站时:若该被测器件在第N测试站的测试结果符合预期,则机械手发送对应的该第 N+1测试站的SOT信号;若不符合预期或未进行测试,则机械手不发送对应的该第N+1测试站的SOT信号。
  10. 根据权利要求8所述的控制站,其特征在于,所述步骤B包括:
    若接收到其中一个测试站的SOT信号,则该SOT信号序列中的对应该测试站的位值为1,否则为0。
  11. 根据权利要求10所述的控制站,其特征在于,步骤C所述SOT信号序列预判值为根据前次各测试站测试结果生成的步骤包括:
    SOT信号首位值生成步骤为:第一测试站有新被测器件进入该首位值为1,无新被测器件进入该首位值为0;
    SOT信号其他各位值生成步骤为:各位值对应各测试站相邻前一位的测试结果,前次测试结果中测试通过的测试站其相邻下一SOT信号预判值为1,未通过则相邻下一SOT信号预判值为0。
  12. 根据权利要求8所述的控制站,其特征在于,步骤C所述相应的测试站执行被测器件的测试后还包括:
    将被测器件在不同测试站的测试结果保存,并将被测器件已经完成的测试结果对应该被测器件合并显示。
  13. 根据权利要求8所述的控制站,其特征在于,步骤C所述清料后还包括:
    提示SOT信号出错,并将出错信息保存在报错文件。
  14. 一种多站并发测试装置,其特征在于,包括根据权利要求8~13任一所述的控制站,及分别与控制站通讯连接的复数个测试站,不同的测试站用于测试被测器件的部分参数,并将所述参数提供给控制站;
    与所述控制站通讯连接的机械手,用于传送各被测器件依次就位各测试站。
  15. 根据权利要求14所述的装置,其特征在于,所述机械手与被测器件的接触端安装有传感器,用于检测机械手上的被测器件的就位状态。
PCT/CN2018/093781 2018-06-29 2018-06-29 多站并发测试方法、控制站和多站并发测试装置 WO2020000410A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020573493A JP6923767B1 (ja) 2018-06-29 2018-06-29 マルチステーション並行テスト方法、制御ステーション及びマルチステーション並行テストデバイス
EP18924950.1A EP3816642B1 (en) 2018-06-29 2018-06-29 Multi-station concurrent testing method, control station and multi-station concurrent testing apparatus
PCT/CN2018/093781 WO2020000410A1 (zh) 2018-06-29 2018-06-29 多站并发测试方法、控制站和多站并发测试装置
US17/256,820 US11105849B1 (en) 2018-06-29 2018-06-29 Multi-station concurrent testing method, control station and multi-station concurrent testing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093781 WO2020000410A1 (zh) 2018-06-29 2018-06-29 多站并发测试方法、控制站和多站并发测试装置

Publications (1)

Publication Number Publication Date
WO2020000410A1 true WO2020000410A1 (zh) 2020-01-02

Family

ID=68984595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093781 WO2020000410A1 (zh) 2018-06-29 2018-06-29 多站并发测试方法、控制站和多站并发测试装置

Country Status (4)

Country Link
US (1) US11105849B1 (zh)
EP (1) EP3816642B1 (zh)
JP (1) JP6923767B1 (zh)
WO (1) WO2020000410A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667273A (zh) * 2009-09-27 2010-03-10 西门子威迪欧汽车电子(惠州)有限公司 一种检测过程的互锁和防错方法及其系统
US20150022231A1 (en) * 2013-07-18 2015-01-22 Chroma Ate Inc. Test Apparatus with Sector Conveyance Device
CN105074482A (zh) * 2014-03-11 2015-11-18 新东工业株式会社 被测试器件的检查系统及其操作方法
CN106391512A (zh) * 2016-08-29 2017-02-15 福州派利德电子科技有限公司 Sot外形集成电路芯片测试分选装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8374815B2 (en) * 2010-04-28 2013-02-12 Apple Inc. Self-calibrating test system
US9817062B2 (en) * 2011-05-19 2017-11-14 Celerint, Llc. Parallel concurrent test system and method
US9606183B2 (en) * 2012-10-20 2017-03-28 Advantest Corporation Pseudo tester-per-site functionality on natively tester-per-pin automatic test equipment for semiconductor test
US9606171B2 (en) * 2015-01-28 2017-03-28 Asm Technology Singapore Pte Ltd High throughput test handler system
SG10201505439TA (en) * 2015-07-10 2017-02-27 Aem Singapore Pte Ltd A configurable electronic device tester system
CN107290642B (zh) * 2017-07-28 2019-09-06 华南理工大学 Led光源产品电特性参数多工位多参数综合并发测试方法及装置
US10514416B2 (en) * 2017-09-29 2019-12-24 Advantest Corporation Electronic component handling apparatus and electronic component testing apparatus
US11536760B2 (en) * 2017-11-28 2022-12-27 Ase Test, Inc. Testing device, testing system, and testing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667273A (zh) * 2009-09-27 2010-03-10 西门子威迪欧汽车电子(惠州)有限公司 一种检测过程的互锁和防错方法及其系统
US20150022231A1 (en) * 2013-07-18 2015-01-22 Chroma Ate Inc. Test Apparatus with Sector Conveyance Device
CN105074482A (zh) * 2014-03-11 2015-11-18 新东工业株式会社 被测试器件的检查系统及其操作方法
CN106391512A (zh) * 2016-08-29 2017-02-15 福州派利德电子科技有限公司 Sot外形集成电路芯片测试分选装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3816642A4 *

Also Published As

Publication number Publication date
EP3816642B1 (en) 2022-12-21
EP3816642A4 (en) 2022-02-23
EP3816642A1 (en) 2021-05-05
JP6923767B1 (ja) 2021-08-25
JP2021522518A (ja) 2021-08-30
US20210247443A1 (en) 2021-08-12
US11105849B1 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
CN1155069C (zh) 控制半导体集成电路测试过程的系统和方法
KR101238601B1 (ko) 로컬 테스트 설비와의 무선 인터페이스를 갖는 원격 테스트설비
CN110716126A (zh) 芯片老化测试系统、方法及装置
US9322874B2 (en) Interposer between a tester and material handling equipment to separate and control different requests of multiple entities in a test cell operation
US9448276B2 (en) Creation and scheduling of a decision and execution tree of a test cell controller
CN105717439A (zh) 芯片测试方法及系统
US6842022B2 (en) System and method for heterogeneous multi-site testing
TWI472780B (zh) 半導體裝置測試系統
US20130275357A1 (en) Algorithm and structure for creation, definition, and execution of an spc rule decision tree
CN110658394B (zh) 多站并发测试方法、控制站和多站并发测试装置
US20080004829A1 (en) Method and apparatus for automatic test equipment
WO2020000410A1 (zh) 多站并发测试方法、控制站和多站并发测试装置
CN108072855B (zh) 一种测试装置及测试系统
US7849375B2 (en) Semiconductor test system
KR102326670B1 (ko) 진단 디바이스가 구비된 반도체 디바이스 테스트 장치
TWM575174U (zh) Detection Systems
CN113012410A (zh) 一种晶圆测试预警方法
TWI832514B (zh) 選擇性調整伺服器測試項目之方法
US6883113B2 (en) System and method for temporally isolating environmentally sensitive integrated circuit faults
CN111323770B (zh) 测试定位系统及其方法
US7127652B2 (en) X-tree test method and apparatus in a multiplexed digital system
JP3067687U (ja) 半導体試験装置
JPH11232139A (ja) 故障監視システム
CN116978441A (zh) 一种芯片老化测试方法和测试电路
KR100822889B1 (ko) Ate를 이용한 실제속도 칩 테스트 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020573493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018924950

Country of ref document: EP

Effective date: 20210129