WO2019244548A1 - 2次元材料デバイスおよびその作製方法 - Google Patents

2次元材料デバイスおよびその作製方法 Download PDF

Info

Publication number
WO2019244548A1
WO2019244548A1 PCT/JP2019/020253 JP2019020253W WO2019244548A1 WO 2019244548 A1 WO2019244548 A1 WO 2019244548A1 JP 2019020253 W JP2019020253 W JP 2019020253W WO 2019244548 A1 WO2019244548 A1 WO 2019244548A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional material
concave portion
substrate
terrace
layer
Prior art date
Application number
PCT/JP2019/020253
Other languages
English (en)
French (fr)
Inventor
佳明 関根
芳孝 谷保
日比野 浩樹
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US16/973,386 priority Critical patent/US11651958B2/en
Publication of WO2019244548A1 publication Critical patent/WO2019244548A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/188Preparation by epitaxial growth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7606Transistor-like structures, e.g. hot electron transistor [HET]; metal base transistor [MBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices

Definitions

  • the present invention relates to a two-dimensional material device made of a two-dimensional material such as graphene and a method for manufacturing the same.
  • h-BN hexagonal boron nitride
  • MX 2 transition metal dichalcogenide
  • M transition metal
  • X group 16 chalcogenide such as sulfur, selenium, tellurium
  • the two-dimensional material is very thin, its characteristics are easily affected by the unevenness of the substrate, and it is not easy to obtain a device having good characteristics.
  • the surface of a commercially available substrate 201 is not flat at the atomic level because it is inclined at an inclination angle 212 from the lattice plane 211 of the crystal. 203 are present.
  • the properties of the atomic layer thickness two-dimensional material are strongly affected by the atomic steps 202.
  • SiC silicon carbide
  • terraces are stable crystal planes and are atomically flat. However, it is difficult to manufacture a device on a small terrace having a sub- ⁇ m width.
  • This terrace width depends on the inclination angle between the substrate surface and the crystal plane. For example, in the case of SiC, when the inclination angle of the main surface is 0.1 ° from the (0001) plane and the step height is 1 nm, the terrace width is 0.57 ⁇ m.
  • a wider terrace can be formed by step bunching by high-temperature treatment, as described below.
  • the speed of the step flow by the high-temperature treatment is different between the layers A and B.
  • the speed V B of the step flow of the layer B is twice the speed V A of the step flow of the layer A. Therefore, by performing the high-temperature treatment, the terrace on the layer B formed on the side of the atomic step of the layer A gradually decreases as shown in FIGS. 7A and 7B. Thereafter, as shown in FIG. 7C, when the atomic steps of the layer A and the atomic steps of the layer B overlap, the terrace on the layer A formed on the side of the atomic step of the layer B becomes wider. .
  • h-BN is used for a flat surface, and a two-dimensional material is formed thereon.
  • a thin film of h-BN separated from a bulk crystal of h-BN is transferred to a substrate such as silicon Si.
  • the two-dimensional material having the atomic layer thickness separated from the bulk crystal of the two-dimensional material is transferred onto the h-BN thin film arranged on the silicon substrate in this manner. According to this technology, it is possible to produce a high-quality two-dimensional material that is atomically flat.
  • the size of the two-dimensional material layer that can be manufactured is about ⁇ m, and it is difficult to increase the area, which is indispensable for device application.
  • a layer of a two-dimensional material having a large area required for device application cannot be formed at an arbitrary position on the substrate, and a two-dimensional material having a large area formed at an arbitrary position on the substrate cannot be formed.
  • the device cannot be formed due to the layer of the material.
  • the present invention has been made in order to solve the above problems, and has as its object to configure a device with a large area two-dimensional material layer formed at an arbitrary position on a substrate.
  • the two-dimensional material device includes a first step of forming a concave portion on the surface of a substrate made of a crystal, and a step of forming a flat surface by making the terrace of the crystal surface at the bottom surface of the concave portion wider by a step flow by heating.
  • the method includes two steps, a third step of forming a two-dimensional material layer made of a two-dimensional material on a flat surface, and a fourth step of manufacturing a device made of the two-dimensional material layer.
  • the terrace is extended over the entire bottom surface of the concave portion by a step flow to form a flat surface over the entire bottom surface of the concave portion.
  • the substrate is made of SiC
  • the two-dimensional material layer is graphene formed by heating the bottom surface of the concave portion made of SiC.
  • the two-dimensional material device includes a concave portion formed on the surface of the substrate made of a crystal, a flat surface formed on the bottom surface of the concave portion, and a two-dimensional material formed on the flat surface.
  • the flat surface is a surface formed by making the terrace of the crystal surface on the bottom surface of the concave portion wider by a step flow by heating, which includes a two-dimensional material layer and a device made of a two-dimensional material layer.
  • the flat surface is a surface formed over the entire bottom surface of the concave portion by extending the terrace over the entire bottom surface of the concave portion by the step flow.
  • the substrate is made of SiC
  • the two-dimensional material layer is made of graphene.
  • the terrace of the crystal surface on the bottom surface of the concave portion formed on the surface of the substrate made of crystal is made wider by a step flow by heating to form a flat surface, thereby forming a two-dimensional material layer. Since it is formed, an excellent effect that a device can be constituted by a layer of a two-dimensional material having a large area formed at an arbitrary position on the substrate can be obtained.
  • FIG. 1A is a cross-sectional view showing a state in the middle of the process for explaining the method for manufacturing a two-dimensional material device in the embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing a state in the middle of the process for describing the method for manufacturing a two-dimensional material device in the embodiment of the present invention.
  • FIG. 1C is a cross-sectional view showing a state in the middle of the process for explaining the method for manufacturing the two-dimensional material device in the embodiment of the present invention.
  • FIG. 1D is a cross-sectional view showing a state in the middle of the process for explaining the method for manufacturing the two-dimensional material device in the embodiment of the present invention.
  • FIG. 1A is a cross-sectional view showing a state in the middle of the process for explaining the method for manufacturing a two-dimensional material device in the embodiment of the present invention.
  • FIG. 1B is a cross-sectional view showing a state in the middle of the process for describing the method for manufacturing
  • FIG. 2A is a cross-sectional view schematically showing a more detailed state of an intermediate step in the method for manufacturing a two-dimensional material device according to the embodiment of the present invention.
  • FIG. 2B is a cross-sectional view schematically showing a more detailed state of an intermediate step in the method for manufacturing a two-dimensional material device according to the embodiment of the present invention.
  • FIG. 2C is a cross-sectional view schematically showing a state of a more detailed intermediate step in the method for manufacturing a two-dimensional material device according to the embodiment of the present invention.
  • FIG. 2D is a cross-sectional view schematically showing a state of a more detailed intermediate step in the method for manufacturing a two-dimensional material device according to the embodiment of the present invention.
  • FIG. 2A is a cross-sectional view schematically showing a more detailed state of an intermediate step in the method for manufacturing a two-dimensional material device according to the embodiment of the present invention.
  • FIG. 2B is a cross-sectional view schematically showing a
  • FIG. 3 is a photograph showing a differential interference microscope image of graphene formed in a concave portion of a SiC substrate manufactured by the manufacturing method according to the embodiment.
  • FIG. 4 is a characteristic diagram showing a scattering spectrum of graphene formed in a concave portion of the SiC substrate manufactured by the manufacturing method according to the embodiment.
  • FIG. 5A is a cross-sectional view showing a state in the middle of the process for explaining the method for manufacturing a two-dimensional material device in the embodiment of the present invention.
  • FIG. 5B is a cross-sectional view showing a state in the middle of the process for explaining the method for manufacturing the two-dimensional material device in the embodiment of the present invention.
  • FIG. 5C is a cross-sectional view showing a state in the middle of the process for explaining the method for manufacturing the two-dimensional material device in the embodiment of the present invention.
  • FIG. 5D is a cross-sectional view showing a state in the middle of the process for explaining the method for manufacturing the two-dimensional material device in the embodiment of the present invention.
  • FIG. 6 is a sectional view showing a surface state of a substrate 201 made of a crystal.
  • FIG. 7A is an explanatory diagram for describing terrace extension by step bunching.
  • FIG. 7B is an explanatory diagram for describing terrace extension by step bunching.
  • FIG. 7C is an explanatory diagram for describing terrace extension by step bunching.
  • FIGS. 1A to 1D a method for manufacturing a two-dimensional material device according to an embodiment of the present invention will be described with reference to FIGS. 1A to 1D.
  • a photoresist is applied on a substrate 101 made of a crystal to form a resist layer 102.
  • the substrate 101 is made of, for example, SiC whose main surface is a (0001) plane.
  • a positive type S1813 manufactured by Rohm and Haas may be used.
  • a predetermined pattern is exposed by a known photolithography technique to form a rectangular latent image of 50 to 100 ⁇ m square in a plan view on the resist layer 102, and then developed by an alkali developing solution.
  • an opening 103 is formed in the resist layer 102.
  • the opening 103 is formed in a rectangular shape of 50 to 100 ⁇ m square in plan view.
  • the substrate 101 is etched using the resist layer 102 in which the opening 103 is formed as a mask, thereby forming a concave portion 104 on the surface of the substrate 101 as shown in FIG. 1C (first step).
  • the recess 104 may be formed by reactive ion etching using a reactive gas such as CF 4 .
  • the flat surface 101a is formed on the bottom surface of the recess 104 as shown in FIG. (2nd process).
  • the flat surface 101a is formed on the entire bottom surface of the concave portion 104 by extending the terrace over the entire bottom surface of the concave portion 104 by a step flow.
  • a terrace 121 exists on the surface of the substrate 101, and a terrace 122 exists on the bottom surface of the concave portion 104.
  • the atomic steps move according to the step flow.
  • the terrace 122 in which one end of the bottom surface of the concave portion 104 is a wall of the concave portion 104 has no atomic steps on the side of the wall, so that the atomic steps on the other end move.
  • the terrace 122 in which one end of the bottom surface of the concave portion 104 is a wall of the concave portion 104 becomes wider due to the step flow by heating. Note that the depth of the concave portion 104 is gradually reduced by the step flow.
  • a wide flat surface 101a is formed on the bottom surface of the concave portion 104.
  • a two-dimensional material layer (not shown) made of a two-dimensional material is formed on the flat surface 101a (third step).
  • a device (not shown) is formed (fourth step).
  • graphene formed by heating the bottom surface (flat surface 101a) made of SiC of the recess 104 by heating may be used as the two-dimensional material layer.
  • the two-dimensional material layer formed on the flat surface 101a can be formed without straddling the atomic steps.
  • the concave portion 104 can be formed at any position on the substrate 101, and the two-dimensional material layer can be formed at any position on the substrate 101.
  • the depth of the concave portion 104 is appropriately set depending on conditions such as the inclination angle of the surface of the substrate 101 from the lattice plane (crystal plane), the width of the terrace to be formed, and the like. For example, when the depth of the concave portion 104 is insufficient, the depth of the concave portion is reduced by the step flow, so that the concave shape is broken.
  • the tilt angle of a generally sold SiC substrate is about 0.1 °. In this case, if the depth of the concave portion 104 is 100 nm, a terrace (flat surface 101a) of 50 ⁇ m can be manufactured.
  • a flat surface 101a with an atomically flat terrace can be formed at the bottom of the concave portion 104 by a step flow.
  • the heating time depends not only on the heating temperature but also on the inclination angle and the azimuth of the surface of the substrate 101, a terrace (flat surface 101a) of about 50 ⁇ m can be formed by heating for about 30 minutes.
  • the concave portion 104 is formed on the surface of the substrate 101 made of crystal, the flat surface is formed on the bottom surface of the concave portion 104, and the two-dimensional material is formed on the flat surface.
  • a two-dimensional material device including a two-dimensional material layer and a device including the two-dimensional material layer is obtained.
  • the flat surface is a surface formed by making the terrace of the crystal surface on the bottom surface of the concave portion 104 wider by a step flow by heating.
  • the substrate 101 only needs to have a stable crystal plane and be made of a crystal material that causes a step flow, and the applicable range is wide.
  • the substrate 101 is not limited to SiC, and may be made of, for example, single crystal silicon.
  • the two-dimensional material layer may be made of graphene, h-BN, MX 2 or the like. These can be grown over a large area on a metal substrate by chemical vapor deposition (CVD).
  • the two-dimensional material formed in such a large area may be transferred to the flat surface 101a of the concave portion 104 to form a two-dimensional material layer.
  • the size of the concave portion 104 in plan view is several tens ⁇ m and the depth of the concave portion 104 is several tens nm
  • the two-dimensional material is transferred onto the flat surface 101a without being formed into a suspension bridge by transferring the two-dimensional material. A state in which a layer is formed is obtained.
  • a two-dimensional material layer made of graphene can be formed by growing graphene on the flat surface 101a by the SiC surface thermal decomposition method.
  • the honeycomb structure formed first is a buffer layer which is an insulator in which a part of C is bonded to Si of the SiC substrate. Thereafter, a second buffer layer is formed below the first buffer layer by further desorption of Si. By the formation of the second buffer layer, the first buffer layer is separated from the SiC substrate and becomes graphene. This is a general graphene growth method by the SiC surface thermal decomposition method.
  • the buffer layer can be made into graphene.
  • the growth temperature can be lowered because only the buffer layer is grown on SiC. The low growth temperature is advantageous for maintaining a flat terrace in the recess.
  • a concave portion was formed on the surface of the SiC substrate, and then heated at 1570 ° C. for several minutes in an argon atmosphere to grow a buffer layer on the surface of the SiC substrate (including the bottom surface of the concave portion). Thereafter, heating was performed at 700 ° C. in a hydrogen atmosphere, and hydrogen was intercalated between the formed buffer layer and the SiC substrate to produce graphene.
  • FIG. 3 shows a differential interference microscope image obtained by observing the state of the graphene manufactured as described above.
  • a flat terrace formed in (the entire area of) the bottom of the concave portion having a width of 50 ⁇ m and a length of 100 ⁇ m in plan view is observed. Outside the recess is a normal step and terrace structure. It can be seen that a terrace of several tens of ⁇ m square can be formed at an arbitrarily designed place on the substrate.
  • FIG. 4 shows a Raman scattering spectrum of graphene formed in the above-described concave portion.
  • a 2D peak characteristic of graphene is observed at 2680 cm -1 .
  • Graphene quality can be evaluated by the half-width of the 2D peak.
  • the 2D half-width of graphene grown on the flat terrace on the bottom surface of the concave portion was 21 cm -1
  • the half-width of graphene formed so as to straddle an atomic step in a region other than the concave portion was 24 cm -1 .
  • the small 2D half-width of the graphene grown on the flat terrace on the bottom surface of the recess is almost the same as that of the suspension bridge type graphene, indicating that high-quality graphene is growing. Since the device performance is greatly affected by the quality of the two-dimensional material, a high-performance device can be manufactured by using graphene formed on a flat surface formed by a wide terrace formed at the bottom of the concave portion.
  • a two-dimensional material layer made of graphene can be formed by growing graphene by CVD because the substrate 101 has high heat resistance and can maintain a stable terrace structure even at high temperatures.
  • CVD chemical vapor deposition
  • MBE molecular beam epitaxy
  • a two-dimensional material can be directly grown while maintaining the state of the terrace in the concave portion even at a high temperature.
  • the temperature of the step flow for forming the flat surface 101a is referred to. This temperature is about 1200 ° C. for Si, about 1400 ° C. for sapphire, about 1100 ° C. for GaN, and about 1600 ° C. for SiC.
  • the growth temperature of a two-dimensional material is as follows in the case of a SiC substrate.
  • the temperature of the SiC surface thermal decomposition method of graphene and the growth temperature by CVD are about 1600 ° C.
  • the growth temperature of h-BN by MBE and CVD is 1000 ° C.
  • the growth temperature of MoS 2 by CVD is about 1100 ° C.
  • the growth temperature of WSe 2 by CVD is about 800 ° C.
  • the growth temperature of graphene on SiC is almost the same as the temperature for forming the recess terrace, but other two-dimensional materials have a low growth temperature and can maintain the terrace structure in the recess.
  • a graphene layer 105 is formed on a substrate 101 made of SiC in which a concave portion 104 is formed.
  • a flat surface 101a is formed on the bottom surface of the recess 104 by a step flow by heating.
  • the two-dimensional material layer 105a is formed on the flat surface 101a by patterning the graphene layer 105 by a known lithography technique and etching technique, as shown in FIG. 5B.
  • the etching may be, for example, dry etching using oxygen plasma.
  • a source electrode 106 and a drain electrode 107 connected to one end and the other end of the two-dimensional material layer 105a are formed.
  • a resist pattern having an opening in each electrode formation region is formed.
  • an adhesive layer of titanium, chromium, nickel, palladium, or the like is formed by vapor deposition, and then gold is vapor deposited to form an electrode metal layer. Thereafter, by removing (lifting off) the resist pattern to remove the electrode metal layer other than the electrode formation region, the source electrode 106 and the drain electrode 107 can be formed.
  • a gate insulating layer 108 and a gate electrode 109 are formed on the two-dimensional material layer 105a in a region sandwiched between the source electrode 106 and the drain electrode 107.
  • a resist pattern having an opening in a gate formation region is formed.
  • an insulating material such as alumina, yttrium oxide, or silicon oxide is vapor-deposited in an oxygen atmosphere to form an insulating layer, and then an adhesive layer such as titanium, chromium, nickel, or palladium is formed by vapor deposition. Evaporate to form a gate metal layer.
  • the gate insulating layer 108 and the gate electrode 109 can be formed.
  • a field effect transistor two-dimensional material device in which the two-dimensional material layer 105a in the region sandwiched between the source electrode 106 and the drain electrode 107 serves as a channel is obtained.
  • the flat surface is formed by making the terrace of the crystal surface at the bottom surface of the concave portion formed on the surface of the substrate made of crystal wider by the step flow by heating.
  • a device can be constituted by a layer of a two-dimensional material having a larger area formed at an arbitrary position on the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

凹部(104)の底面の結晶表面のテラスを加熱によるステップフローでより広することで、凹部(104)の底面に平坦面(101)aを形成し、形成した平坦面(101a)の上に2次元材料からなる2次元材料層(不図示)を形成し、次いで、2次元材料層からなるデバイス(不図示)を作製する。

Description

2次元材料デバイスおよびその作製方法
 本発明は、グラフェンなどの2次元材料から構成された2次元材料デバイスおよびその作製方法に関する。
 グラフェン、六方晶窒化ホウ素(h-BN)、遷移金属ダイカルコゲナイド(MX2;M=遷移金属、X=硫黄、セレン、テルルなどの16族カルコゲナイド)などの、層厚が原子層レベルの2次元材料が注目されている。これら2次元材料は、電気的、光学的、機械的、化学的に様々な優れた特性を示し、これらのヘテロ接合デバイスなど応用が期待されている。
 しかし、2次元材料は、非常に薄いために、その特性は基板の凹凸の影響を受けやすく、特性のよいデバイスを得ることが容易ではない。図6に示すように、一般に市販されている基板201の表面は、結晶の格子面211から傾斜角212で傾いているために原子レベルでは平坦でなく、原子ステップ202と、サブμmサイズのテラス203が存在している。原子層厚の2次元材料の特性は、原子ステップ202の影響を強く受ける。炭化シリコン(SiC)基板上に成長したグラフェンを例にとると、SiCの原子ステップをグラフェンがまたぐ領域で電気特性が劣化することが知られている(非特許文献1参照)。
 一方、テラスは安定な結晶面であり、原子的に平坦な面である。しかし、サブμm幅の小さなテラスにデバイスを作製するのは困難である。このテラス幅は、基板の表面と結晶面の傾斜角に依存する。例えば、SiCの場合、主表面の傾斜角が(0001)面から0.1°で、ステップ高さが1nmの場合、テラス幅は0.57μmである。
 単結晶の材料では、高温処理によるステップバンチングで、以下に説明するように、より広いテラスを形成することができる。
 SiCの場合、図7Aに示すように、各々異なる結晶多形の層Aと層Bとが交互に積層しており、高温処理によるステップフローの速度が層Aと層Bとで異なる。例えば、層Bのステップフローの速度VBは、層Aのステップフローの速度VAの2倍となる。このため、高温処理をすることで、図7A、図7Bに示すように、層Aの原子ステップの側方に形成される層Bの上のテラスは、徐々に小さくなる。この後、図7Cに示すように、層Aの原子ステップと層Bの原子ステップとが重なれば、層Bの原子ステップの側方に形成される層Aの上のテラスが、より広くなる。
S. H. Ji et al., "Atomic-scale transport in epitaxial graphene", NATURE Materials, vol. 11, pp. 114-119, 2012.
 しかしながら、上述した技術では、所望とする特定の場所のテラスを広げることができない。特性のよいデバイスとするための2次元材料は、原子ステップをまたがないよう配置する必要があり、テラスを広げるだけでは、基板上の任意の場所にデバイスを作製することはできない。
 現在、平坦な面に2次元材料を作製する技術としては、剥離・転写法がある。この技術では、平坦面にh-BNを用い、この上に2次元材料を形成する。まず、h-BNのバルク結晶から剥離した薄膜のh-BNをシリコンSiなどの基板に転写する。このようにしてシリコン基板の上に配置したh-BN薄膜の上に、2次元材料のバルク結晶から剥離した原子層厚の2次元材料を転写する。この技術によれば、原子的に平坦で高品質な2次元材料の作製が可能である。
 しかし、作製できる2次元材料の層の大きさはμm程度であり、デバイス応用に不可欠な大面積化が困難である。このように、従来では、デバイス応用に必要な広い面積の2次元材料の層を、基板上の任意の箇所に形成することができず、基板上の任意の箇所に形成した広い面積の2次元材料の層により、デバイスを構成することができないという問題があった。
 本発明は、以上のような問題点を解消するためになされたものであり、基板上の任意の箇所に形成した広い面積の2次元材料の層によりデバイスを構成することを目的とする。
 本発明に係る2次元材料デバイスは、結晶からなる基板の表面に凹部を形成する第1工程と、凹部の底面の結晶表面のテラスを加熱によるステップフローでより広くして平坦面を形成する第2工程と、平坦面の上に2次元材料からなる2次元材料層を形成する第3工程と、2次元材料層からなるデバイスを作製する第4工程とを備える。
 上記2次元材料デバイスの作製方法において、第2工程では、ステップフローによりテラスを凹部の底面の全域に広げて凹部の底面の全域に平坦面を形成する。
 上記2次元材料デバイスの作製方法において、基板はSiCから構成し、2次元材料層は、凹部のSiCからなる底面に加熱により形成したグラフェンである。
 また、本発明に係る2次元材料デバイスは、結晶からなる基板の表面に形成された凹部と、凹部の底面に形成された平坦面と、平坦面の上に形成された2次元材料からなる2次元材料層と、2次元材料層からなるデバイスとを備え、平坦面は、凹部の底面の結晶表面のテラスを加熱によるステップフローでより広くすることで形成された面である。
 上記2次元材料デバイスにおいて、平坦面は、ステップフローによりテラスを凹部の底面の全域に広げて凹部の底面の全域に形成された面である。
 上記2次元材料デバイスにおいて、基板は、SiCから構成され、2次元材料層は、グラフェンから構成されている。
 以上説明したように、本発明によれば、結晶からなる基板の表面に形成した凹部の底面の結晶表面のテラスを加熱によるステップフローでより広くして平坦面を形成して2次元材料層を形成するので、基板上の任意の箇所に形成した広い面積の2次元材料の層によりデバイスを構成することができるという優れた効果が得られる。
図1Aは、本発明の実施の形態における2次元材料デバイスの作製方法を説明する途中工程の状態を示す断面図である。 図1Bは、本発明の実施の形態における2次元材料デバイスの作製方法を説明する途中工程の状態を示す断面図である。 図1Cは、本発明の実施の形態における2次元材料デバイスの作製方法を説明する途中工程の状態を示す断面図である。 図1Dは、本発明の実施の形態における2次元材料デバイスの作製方法を説明する途中工程の状態を示す断面図である。 図2Aは、本発明の実施の形態における2次元材料デバイスの作製方法におけるより詳細な途中工程の状態を模式的に示す断面図である。 図2Bは、本発明の実施の形態における2次元材料デバイスの作製方法におけるより詳細な途中工程の状態を模式的に示す断面図である。 図2Cは、本発明の実施の形態における2次元材料デバイスの作製方法におけるより詳細な途中工程の状態を模式的に示す断面図である。 図2Dは、本発明の実施の形態における2次元材料デバイスの作製方法におけるより詳細な途中工程の状態を模式的に示す断面図である。 図3は、実施の形態における作製方法で作製したSiC基板の凹部に形成されたグラフェンの微分干渉顕微鏡像を示す写真である。 図4は、実施の形態における作製方法で作製したSiC基板の凹部に形成されたグラフェンの散乱分光スペクトルを示す特性図である。 図5Aは、本発明の実施の形態における2次元材料デバイスの作製方法を説明する途中工程の状態を示す断面図である。 図5Bは、本発明の実施の形態における2次元材料デバイスの作製方法を説明する途中工程の状態を示す断面図である。 図5Cは、本発明の実施の形態における2次元材料デバイスの作製方法を説明する途中工程の状態を示す断面図である。 図5Dは、本発明の実施の形態における2次元材料デバイスの作製方法を説明する途中工程の状態を示す断面図である。 図6は、結晶からなる基板201の表面状態を示す断面図である。 図7Aは、ステップバンチングによるテラス拡張について説明するための説明図である。 図7Bは、ステップバンチングによるテラス拡張について説明するための説明図である。 図7Cは、ステップバンチングによるテラス拡張について説明するための説明図である。
 以下、本発明の実施の形態おける2次元材料デバイスの作製方法について図1A~図1Dを参照して説明する。
 まず、図1Aに示すように、結晶からなる基板101の上に、フォトレジストを塗布してレジスト層102を形成する。基板101は、例えば、主表面を(0001)面としたSiCから構成されている。フォトレジストは、例えば、ポジ型のS1813(ロームアンドハース社製)を用いればよい。
 次に、公知のフォトリソグラフィ技術により、所定のパターンを露光してレジスト層102に、平面視50~100μm角の矩形状の潜像を形成し、この後アルカリ現像液により現像処理をすることで、図1Bに示すように、レジスト層102に開口部103を形成する。開口部103は、平面視で50~100μm角の矩形に形成される。
 次に、開口部103を形成したレジスト層102をマスクとして基板101をエッチングすることで、図1Cに示すように、基板101の表面に凹部104を形成する(第1工程)。例えば、CF4などの反応性ガスを用いた反応性イオンエッチングにより、凹部104を形成すればよい。
 次に、レジスト層102を除去した後、凹部104の底面の結晶表面のテラスを加熱によるステップフローでより広くすることで、図1Dに示すように、凹部104の底面に平坦面101aを形成する(第2工程)。例えば、ステップフローによりテラスを凹部104の底面の全域に広げて凹部104の底面の全域に平坦面101aを形成する。
 ステップフローについて説明すると、まず、図2Aに示すように、凹部104を形成すると、基板101の表面にはテラス121が存在し、凹部104の底面にはテラス122が存在する状態となっている。この状態において、加熱することで、ステップフローにより原子ステップが移動する。このステップフローにおいて、凹部104の底面の一端側が凹部104の壁となっているテラス122は、壁の側には原子ステップがないので、他端側の原子ステップが移動することになる。この結果、図2B~図2Dに示すように、加熱によるステップフローにより、凹部104の底面の一端側が凹部104の壁となっているテラス122は、より広くなる。なお、ステップフローにより、凹部104の深さは徐々に浅くなる。
 以上のことにより、凹部104の底面に広い平坦面101aが形成されるようになる。このようにして、平坦面101aを形成した後、この後、平坦面101aの上に2次元材料からなる2次元材料層(不図示)を形成し(第3工程)、次いで、2次元材料層からなるデバイス(不図示)を作製する(第4工程)。例えば、凹部104のSiCからなる底面(平坦面101a)に加熱により形成したグラフェンを2次元材料層とすればよい。
 実施の形態によれば、平坦面101aの上に形成した2次元材料層は、原子ステップをまたぐことなく形成することができる。また、凹部104は、基板101の任意の箇所に形成可能であり、2次元材料層を基板101の任意の箇所に形成できる。
 ここで、凹部104の深さは、基板101の表面の格子面(結晶面)からの傾斜角、作製するテラス幅などの条件により、適宜に設定する。例えば、凹部104の深さが足りない場合、ステップフローにより凹部の深さが浅くなるため、凹部形状が崩れることになる。一般に販売されているSiC基板の傾斜角は、0.1°程度である。この場合、凹部104の深さを100nmとすれば、50μmのテラス(平坦面101a)が作製できる。
 例えば、凹部104を形成した後、水素雰囲気下で基板101を1570℃に加熱することで、ステップフローにより、凹部104の底に原子的に平坦なテラスによる平坦面101aが形成できる。加熱の時間は、加熱温度だけでなく、基板101の表面の傾斜角や傾斜の方位にも依存するが、30分程度の加熱で、50μm程度のテラス(平坦面101a)が作製できる。
 上述した実施の形態における作製方法により、結晶からなる基板101の表面に形成された凹部104と、凹部104の底面に形成された平坦面と、平坦面の上に形成された2次元材料からなる2次元材料層と、2次元材料層からなるデバイスとを備える2次元材料デバイスが得られる。平坦面は、凹部104の底面の結晶表面のテラスを加熱によるステップフローでより広くすることで形成された面である。
 ここで、基板101は、安定な結晶面を持ち、ステップフローをおこす結晶材料から構成されていればよく、適用範囲は広い。基板101は、SiCに限らず、例えば、単結晶シリコンから構成されていてもよい。
 次に、2次元材料層は、グラフェン、h-BN、MX2などから構成すればよい。これらは、金属基板上に化学気相成長法(CVD)により、大面積に成長できる。MX2としては、例えば、MoS2、WSe2などがある。このように大面積に形成した2次元材料を凹部104の平坦面101aへ転写することで、2次元材料層を形成してもよい。凹部104の平面視の寸法を、数十μmとし、凹部104の深さを数十nmとすれば、2次元材料の転写により、吊り橋状になることなく、平坦面101aの上に2次元材料層が形成された状態が得られる。
 また、基板101をSiCから構成した場合、前述したように、SiC表面熱分解法により平坦面101aの上に、グラフェンを成長させることで、グラフェンからなる2次元材料層を形成することができる。
 ここで、SiC表面熱分解法によるグラフェンの作製について説明する。主表面を(0001)面としたSiC基板を加熱すると、基板表面では、選択的にSiが脱離し、残った炭素(C)がSiC基板の表面にハニカム構造を形成する。最初に形成されるハニカム構造は、Cの一部がSiC基板のSiと結合した絶縁体であるバッファー層である。この後、さらなるSiの脱離により、最初のバッファー層の下に、2番目のバッファー層が形成される。この2番目のバッファー層の形成により、最初のバッファー層はSiC基板から切り離され、グラフェンとなる。これが、一般的なSiC表面熱分解法によるグラフェン成長方法である。
 また、バッファー層とSiC基板の間に水素などをインターカレーションし、C-Si結合を切断することで、バッファー層をグラフェンにできる。このインターカレーションによるグラフェン成長では、SiC上にバッファー層のみを成長するため、成長温度を低くできる。成長温度が低いことは、凹部での平坦なテラスの保持に有利である。
 以下、バッファー層からの水素インターカレーションにより、実際にグラフェンを作製した結果について示す。SiC基板の表面に凹部を形成し、この後、アルゴン雰囲気下において、1570℃で数分加熱することで、SiC基板の表面(凹部の底面を含む)にバッファー層を成長した。この後、水素雰囲気下、700℃で加熱し、形成されているバッファー層とSiC基板の間に水素をインターカレーションし、グラフェンを作製した。
 上述したことにより作製したグラフェンの状態を観察した微分干渉顕微鏡像を図3に示す。平面視の形状が幅50μm、長さ100μmの凹部の底(の全域)に形成された、平坦なテラスが観察される。凹部の外は、通常のステップとテラスの構造である。基板上の任意に設計された場所に、数十μm四方のテラスが作製できることが分かる。
 次に、上述した凹部に形成されたグラフェンのラマン散乱分光スペクトルについて、図4に示す。グラフェンに特徴的な2Dピークが2680cm-1に観測される。2Dピークの半値幅により、グラフェン品質を評価できる。凹部の底面の平坦なテラス上に成長したグラフェンの2D半値幅は21cm-1となり、凹部以外の領域の原子ステップをまたぐように形成されているグラフェンの半値幅は24cm-1であった。凹部の底面の平坦なテラス上に成長したグラフェンの小さな2D半値幅は、吊り橋型グラフェンと同程度であり、高品質なグラフェンが成長していることを示している。デバイス性能は、2次元材料の品質により大きく影響を受けるため、凹部の底部に形成した広くしたテラスによる平坦面上に形成したグラフェンを用いることで、高性能デバイスが作製できる。
 また、基板101をSiCから構成した場合、高い耐熱性を備えて高温においても安定なテラス構造が維持できるため、CVDによりグラフェンを成長することでグラフェンからなる2次元材料層を形成することができる。また、h-BNまたはMX2をCVDや分子線エピタキシー法(MBE)により成長することで、平坦面101aの上に、h-BNまたはMX2などによる2次元材料層が形成できる。
 SiCに限らず、窒化ガリウム(GaN)、サファイアなどの基板上においては、高温でも凹部におけるテラスの状態を保持したまま2次元材料が直接成長できる。形成した凹部におけるテラスの状態が保持される温度に関しては、平坦面101a形成のためのステップフローの温度が参考になる。この温度は、Siでは1200℃程度、サファイアでは1400℃程度、GaNでは1100℃程度、SiCでは1600℃程度である。
 一方、2次元材料の成長温度は、SiC基板の場合には以下になる。グラフェンのSiC表面熱分解法の温度、およびCVDによる成長温度は1600℃程度である。h-BNのMBE、CVDによる成長温度は1000℃である。MoS2のCVDによる成長温度は1100℃程度である。WSe2のCVDによる成長温度は800℃程度である。SiC上のグラフェン成長温度は、凹部テラス作製温度と同程度であるが、他の2次元材料は成長温度が低く、凹部におけるテラス構造を保持できる。
 次に、実施の形態におけるグラフェンからなる2次元材料層による2次元材料デバイスについて、電界効果トランジスタを例に説明する。
 まず、図5Aに示すように、凹部104が形成されたSiCからなる基板101の上に、グラフェン層105を形成する。凹部104の底面には、加熱によるステップフローで、平坦面101aが形成されている。次に、公知のリソグラフィ技術およびエッチング技術によりグラフェン層105をパターニングすることで、図5Bに示すように、平坦面101aの上に、2次元材料層105aが形成された状態とする。エッチングは、例えば酸素プラズマによるドライエッチングを用いればよい。
 次に、図5Cに示すように、2次元材料層105aの一端および他端に接続するソース電極106およびドレイン電極107を形成する。例えば、各電極形成領域に開口部を備えるレジストパターンを形成する。次いで、チタン、クロム、ニッケル、パラジウムなどの接着層を蒸着により形成し、続いて、金を蒸着して電極金属層とする。この後、レジストパターンを除去(リフトオフ)することで、電極形成領域以外の電極金属層を除去すれば、ソース電極106およびドレイン電極107が形成できる。
 次に、図5Dに示すように、ソース電極106およびドレイン電極107に挾まれた領域の2次元材料層105aの上に、ゲート絶縁層108およびゲート電極109を形成する。例えば、ゲート形成領域に開口部を備えるレジストパターンを形成する。次いで、アルミナ、酸化イットリウム、酸化シリコンなどの絶縁材料を酸素雰囲気中で蒸着して絶縁層を形成し、続いてチタン、クロム、ニッケル、パラジウムなどの接着層を蒸着により形成し、続いて金を蒸着してゲート金属層を形成する。
 この後、レジストパターンを除去(リフトオフ)することで、ゲート形成領域以外の絶縁層およびゲート金属層を除去すれば、ゲート絶縁層108およびゲート電極109が形成できる。以上の工程、ソース電極106およびドレイン電極107に挾まれた領域の2次元材料層105aがチャネルとなる電界効果トランジスタ(2次元材料デバイス)が得られる。
 以上に説明したように、本発明によれば、結晶からなる基板の表面に形成した凹部の底面の結晶表面のテラスを加熱によるステップフローでより広くして平坦面を形成して2次元材料層を形成するので、基板上の任意の箇所に形成したより広い面積の2次元材料の層によりデバイスを構成することができるようになる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…基板、101a…平坦面、102…レジスト層、103…開口部、104…凹部、105…グラフェン層、105a…2次元材料層、106…ソース電極、107…ドレイン電極、108…ゲート絶縁層、109…ゲート電極。

Claims (6)

  1.  結晶からなる基板の表面に凹部を形成する第1工程と、
     前記凹部の底面の結晶表面のテラスを加熱によるステップフローでより広くして平坦面を形成する第2工程と、
     前記平坦面の上に2次元材料からなる2次元材料層を形成する第3工程と、
     前記2次元材料層からなるデバイスを作製する第4工程と
     を備えることを特徴とする2次元材料デバイスの作製方法。
  2.  請求項1記載の2次元材料デバイスの作製方法において、
     前記第2工程では、ステップフローにより前記テラスを前記凹部の底面の全域に広げて前記凹部の底面の全域に前記平坦面を形成することを特徴とする2次元材料デバイスの作製方法。
  3.  請求項1または2記載の2次元材料デバイスの作製方法において、
     前記基板はSiCから構成し、前記2次元材料層は、前記凹部のSiCからなる底面に加熱により形成したグラフェンであることを特徴とする2次元材料デバイスの作製方法。
  4.  結晶からなる基板の表面に形成された凹部と、
     前記凹部の底面に形成された平坦面と、
     前記平坦面の上に形成された2次元材料からなる2次元材料層と、
     前記2次元材料層からなるデバイスと
     を備え、
     前記平坦面は、前記凹部の底面の結晶表面のテラスを加熱によるステップフローでより広くすることで形成された面であることを特徴とする2次元材料デバイス。
  5.  請求項4記載の2次元材料デバイスにおいて、
     前記平坦面は、ステップフローにより前記テラスを前記凹部の底面の全域に広げて前記凹部の底面の全域に形成された面であることを特徴とする2次元材料デバイス。
  6.  請求項4または5記載の2次元材料デバイスにおいて、
     前記基板は、SiCから構成され、
     前記2次元材料層は、グラフェンから構成されている
     ことを特徴とする2次元材料デバイス。
PCT/JP2019/020253 2018-06-18 2019-05-22 2次元材料デバイスおよびその作製方法 WO2019244548A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/973,386 US11651958B2 (en) 2018-06-18 2019-05-22 Two-dimensional material device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018115147A JP6988710B2 (ja) 2018-06-18 2018-06-18 2次元材料デバイスの作製方法
JP2018-115147 2018-06-18

Publications (1)

Publication Number Publication Date
WO2019244548A1 true WO2019244548A1 (ja) 2019-12-26

Family

ID=68983601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020253 WO2019244548A1 (ja) 2018-06-18 2019-05-22 2次元材料デバイスおよびその作製方法

Country Status (3)

Country Link
US (1) US11651958B2 (ja)
JP (1) JP6988710B2 (ja)
WO (1) WO2019244548A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138986A (ja) * 1994-09-14 1996-05-31 Nippon Telegr & Teleph Corp <Ntt> シリコン基板の表面処理方法
WO2008126541A1 (ja) * 2007-04-05 2008-10-23 Sumitomo Electric Industries, Ltd. 半導体装置およびその製造方法
JP2009527127A (ja) * 2006-02-16 2009-07-23 アルカテル−ルーセント ユーエスエー インコーポレーテッド 単結晶基板上にエピタキシャル成長したグラフェン層を含むデバイス
JP2011230959A (ja) * 2010-04-27 2011-11-17 Kazuto Yamauchi SiC基板へのグラフェン成膜方法及びグラフェン付きSiC基板
JP2017043495A (ja) * 2015-08-24 2017-03-02 富士通株式会社 ヘテロ接合グラフェンナノリボン、共鳴トンネルダイオード及びその製造方法
WO2017188382A1 (ja) * 2016-04-27 2017-11-02 学校法人関西学院 グラフェン前駆体付きSiC基板の製造方法及びSiC基板の表面処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542739B (zh) * 2006-11-21 2011-03-23 住友电气工业株式会社 碳化硅半导体器件及其制造方法
US7858990B2 (en) * 2008-08-29 2010-12-28 Advanced Micro Devices, Inc. Device and process of forming device with pre-patterned trench and graphene-based device structure formed therein

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138986A (ja) * 1994-09-14 1996-05-31 Nippon Telegr & Teleph Corp <Ntt> シリコン基板の表面処理方法
JP2009527127A (ja) * 2006-02-16 2009-07-23 アルカテル−ルーセント ユーエスエー インコーポレーテッド 単結晶基板上にエピタキシャル成長したグラフェン層を含むデバイス
WO2008126541A1 (ja) * 2007-04-05 2008-10-23 Sumitomo Electric Industries, Ltd. 半導体装置およびその製造方法
JP2011230959A (ja) * 2010-04-27 2011-11-17 Kazuto Yamauchi SiC基板へのグラフェン成膜方法及びグラフェン付きSiC基板
JP2017043495A (ja) * 2015-08-24 2017-03-02 富士通株式会社 ヘテロ接合グラフェンナノリボン、共鳴トンネルダイオード及びその製造方法
WO2017188382A1 (ja) * 2016-04-27 2017-11-02 学校法人関西学院 グラフェン前駆体付きSiC基板の製造方法及びSiC基板の表面処理方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUKIDOME, H. ET AL.: "Precise control of epitaxy of graphene by microfabricating SiC substrate", APPLIED PHYSICS LETTERS, vol. 101, 2012, pages 041605 - 1 - 041605-4, Retrieved from the Internet <URL:https://doi.org/10.1063/1.4740271> *
FUKIDOME, HIROKAZU: "Fabrication of ultra-high quality graphene with the assistance of substrate micromachining", MATERIAL STAGE, vol. 13, no. 3, 2013, pages 23 - 26 *
HEER, WALT A. ET AL.: "Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 108, no. 41, 2011, pages 16900 - 16905, XP055664669, Retrieved from the Internet <URL:https://doi.org/10.1073/pnas.1105113108> *
SEKINE, YOSHIAKI ET AL.: "Growth of Graphene on a Single SiC Terrace", LECTURE PREPRINTS OF THE 65TH JSAP SPRING MEETING , 2018, vol. 65, 5 March 2018 (2018-03-05), pages 17a - C202-3 *

Also Published As

Publication number Publication date
JP6988710B2 (ja) 2022-01-05
US20210210347A1 (en) 2021-07-08
US11651958B2 (en) 2023-05-16
JP2019218221A (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
Bae et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications
KR101351691B1 (ko) 장치, 장치 제조 방법 및 전계 효과 트랜지스터
US9520285B2 (en) Silicon carbide epitaxy
JP5109648B2 (ja) 層状炭素構造体の製造方法および半導体装置の製造方法
US20110014457A1 (en) Graphene Layer With An Engineered Stress Supported On A Substrate
JP5990145B2 (ja) グラフェン製造方法
JP6884532B2 (ja) SiC構造体の製造方法
JP6019640B2 (ja) 電子デバイス及びその製造方法
US7947581B2 (en) Formation of graphene wafers on silicon substrates
CN111785610A (zh) 一种散热增强的金刚石基氮化镓材料结构及其制备方法
CN105895530B (zh) 二维材料结构的制造方法和二维材料器件
JP6479198B2 (ja) 単結晶iiia族窒化物層を備える半導体ウェハ
JP4904541B2 (ja) 有機薄膜を有する基板及びそれを用いたトランジスタ並びにそれらの製造方法
TW202230783A (zh) 二維層狀材料之連續自對準單晶奈米帶的凸緣定向磊晶及方法
US10727050B1 (en) Wafer-scale catalytic deposition of black phosphorus
WO2019244548A1 (ja) 2次元材料デバイスおよびその作製方法
KR102422422B1 (ko) 그래핀을 포함하는 반도체 소자 및 그 제조방법
JP2012204602A (ja) 立方晶炭化珪素膜の製造方法
CN115719708A (zh) Ga2O3薄膜材料及其柔性器件的制备方法
GB2514268A (en) Silicon carbide epitaxy
Lin et al. Synthesis and Properties of 2D Semiconductors
JP5763597B2 (ja) グラフェンの製造方法
JP6773615B2 (ja) ナノワイヤトランジスタの製造方法
CN107919400A (zh) 一种InSe晶体管及其制备方法
JP6958041B2 (ja) 単結晶基板、単結晶基板の製造方法および炭化ケイ素基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822629

Country of ref document: EP

Kind code of ref document: A1