WO2019244509A1 - 酸化物焼結体およびスパッタリングターゲット - Google Patents

酸化物焼結体およびスパッタリングターゲット Download PDF

Info

Publication number
WO2019244509A1
WO2019244509A1 PCT/JP2019/018992 JP2019018992W WO2019244509A1 WO 2019244509 A1 WO2019244509 A1 WO 2019244509A1 JP 2019018992 W JP2019018992 W JP 2019018992W WO 2019244509 A1 WO2019244509 A1 WO 2019244509A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide sintered
structure compound
body according
less
Prior art date
Application number
PCT/JP2019/018992
Other languages
English (en)
French (fr)
Inventor
亮 白仁田
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2020525347A priority Critical patent/JP7282766B2/ja
Priority to CN201980039424.XA priority patent/CN112262114B/zh
Priority to KR1020207035420A priority patent/KR102563627B1/ko
Publication of WO2019244509A1 publication Critical patent/WO2019244509A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the disclosed embodiment relates to an oxide sintered body and a sputtering target.
  • An oxide sintered body used for such a sputtering target includes a homologous structure compound represented by InGaO 3 (ZnO) m (m is an integer of 1 to 20) and a spinel structure compound represented by ZnGa 2 O 4. (For example, see Patent Document 1).
  • the oxide sintered body used for the conventional sputtering target has a transverse rupture strength of about 50 MPa, when producing a sputtering target using such an oxide sintered body, or performing sputtering with such a sputtering target. When performing, there was a problem that the oxide sintered body was easily damaged.
  • One embodiment of the present invention has been made in view of the above, and has as its object to provide an oxide sintered body and a sputtering target capable of suppressing damage.
  • the oxide sintered body according to one embodiment of the embodiment is an oxide sintered body containing indium, gallium, and zinc, and a homologous structure compound represented by InGaZnO 4 or InGaZn 2 O 5 and ZnGa 2 O 4 And a bending strength of 180 MPa or more.
  • damage to the oxide sintered body can be suppressed.
  • FIG. 1 is an SEM image of the oxide sintered body in Example 1.
  • the oxide sintered body of the embodiment contains indium (In), gallium (Ga), and zinc (Zn).
  • the oxide sintered body of the embodiment includes indium, gallium, zinc, and oxygen (O), and can be used as a sputtering target.
  • homologous structural compound represented by InGaO 3 (ZnO) m (m is an integer) if the homologous structural compound represented by m is 3 or more (for example, InGaZn 3 O 6 ), the homologous structural compound Mean diameter of the circle equivalent to the average area becomes large, and the bending strength tends to decrease. Therefore, among the homologous structure compounds represented by InGaO 3 (ZnO) m (m is an integer), it is preferable that the homologous structure compound represented by m not less than 3 is not included.
  • the oxide sintered body of the embodiment preferably has a transverse rupture strength of 190 MPa or more, and more preferably 200 MPa or more.
  • the upper limit of the transverse rupture strength is not particularly defined, but is usually 500 MPa or less.
  • the atomic ratio of each element preferably satisfies the following formulas (1) to (3). 0.08 ⁇ In / (In + Ga + Zn) ⁇ 0.31 (1) 0.35 ⁇ Ga / (In + Ga + Zn) ⁇ 0.58 (2) 0.23 ⁇ Zn / (In + Ga + Zn) ⁇ 0.46 (3)
  • the specific resistance of the oxide sintered body can be reduced. Therefore, according to the embodiment, when such an oxide sintered body is used as a sputtering target, sputtering can be performed using an inexpensive DC power supply, and the film formation rate can be improved.
  • the atomic ratio of each element preferably satisfies the following formulas (4) to (6). 0.08 ⁇ In / (In + Ga + Zn) ⁇ 0.20 (4) 0.40 ⁇ Ga / (In + Ga + Zn) ⁇ 0.58 (5) 0.25 ⁇ Zn / (In + Ga + Zn) ⁇ 0.46 (6) More preferably, the atomic ratio of each element satisfies the following formulas (7) to (9), 0.13 ⁇ In / (In + Ga + Zn) ⁇ 0.19 (7) 0.40 ⁇ Ga / (In + Ga + Zn) ⁇ 0.55 (8) 0.27 ⁇ Zn / (In + Ga + Zn) ⁇ 0.46 (9) More preferably, the atomic ratio of each element satisfies the following formulas (10) to (12), 0.14 ⁇ In / (In + Ga + Zn) ⁇ 0.19 (10) 0.41 ⁇ Ga / (In + Ga + Zn) ⁇ 0.53 (11) 0.
  • the oxide sintered body of the embodiment may contain unavoidable impurities derived from raw materials and the like.
  • Inevitable impurities in the oxide sintered body of the embodiment include Fe, Cr, Ni, Si, W, Cu, Al and the like, and their contents are usually 100 ppm or less.
  • the average equivalent circle diameter of the homologous structure compound is preferably 10 ⁇ m or less, and the average aspect ratio of the homologous structure compound is 2.0 or less. It is preferable that Thereby, since the crystal structure in the oxide sintered body can be refined, the transverse rupture strength of the oxide sintered body can be improved.
  • the average equivalent circle diameter of the homologous structure compound is more preferably 8.0 ⁇ m or less, further preferably 7.0 ⁇ m or less, and more preferably 6.0 ⁇ m or less. More preferably, it is even more preferably 5.0 ⁇ m or less.
  • the lower limit of the average area circle equivalent diameter of the homologous structure compound is not particularly limited, but is usually 2.0 ⁇ m or more.
  • the average aspect ratio of the homologous structure compound is more preferably 1.9 or less, further preferably 1.8 or less, and more preferably 1.75 or less. More preferred.
  • the lower limit of the average aspect ratio of the homologous structure compound is not particularly limited, but is usually 1.0 or more.
  • the average area equivalent circle diameter of the spinel structure compound is preferably 5.0 ⁇ m or less, and the average aspect ratio of the spinel structure compound is 2. It is preferably 0 or less.
  • the average equivalent circle diameter of the spinel structure compound is more preferably 4.5 ⁇ m or less, further preferably 4.0 ⁇ m or less, and more preferably 3.8 ⁇ m or less. Is more preferable.
  • the lower limit value of the average area circle equivalent diameter of the spinel structure compound is not particularly limited, but is usually 2.0 ⁇ m or more.
  • the average aspect ratio of the spinel structure compound is more preferably 1.8 or less, further preferably 1.7 or less, and more preferably 1.6 or less. More preferred.
  • the lower limit of the average aspect ratio of the spinel structure compound is not particularly limited, but is usually 1.0 or more.
  • the area ratio of the spinel structure compound is preferably 15% or more in the cross-sectional observation of the sintered body.
  • the area ratio of the spinel structure compound is more preferably 25% or more, still more preferably 35% or more, even more preferably 40% or more. % Is still more preferred.
  • the area ratio of the spinel structure compound is preferably 80% or less. Thereby, the specific resistance of the oxide sintered body can be reduced.
  • the area ratio of the spinel structure compound is more preferably 70% or less, further preferably 65% or less, further preferably 60% or less, and 55% or less. % Is still more preferred.
  • the oxide sintered body of the embodiment preferably has a relative density of 99.5% or more.
  • the discharge state of DC sputtering can be stabilized.
  • the relative density is 99.5% or more
  • voids can be reduced in the sputtering target and gas components in the atmosphere can be easily prevented from being taken up. Also, during sputtering, abnormal discharge or cracking of the sputtering target or the like starting from the voids is less likely to occur.
  • the oxide sintered body of the embodiment has a relative density of preferably 99.8% or more, more preferably 100.0% or more, and still more preferably 100.5% or more. And more preferably 101.0% or more.
  • the upper limit of the relative density is not particularly defined, but is usually 105%.
  • the oxide sintered body of the embodiment preferably has a specific resistance of 5.0 ⁇ 10 ⁇ 1 ⁇ ⁇ cm or less.
  • the oxide sintered body of the embodiment preferably has a specific resistance of 5.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less, and a specific resistance of 4.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less. Is more preferably 3.5 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less. Although the lower limit of the specific resistance is not particularly defined, it is usually 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or more.
  • the specific resistance of the oxide sintered body of the embodiment can be measured according to JIS K7194.
  • the oxide sputtering target of the embodiment can be manufactured by, for example, a method as described below. First, raw material powders are mixed.
  • the raw material powder is usually In 2 O 3 powder, Ga 2 O 3 powder and ZnO powder.
  • the mixing ratio of each raw material powder is appropriately determined so as to obtain a desired constituent element ratio in the oxide sintered body.
  • Each raw material powder may be dry-mixed in advance.
  • the dry mixing method is not particularly limited, and for example, ball mill mixing in which each raw material powder and zirconia balls are put into a pot and mixed can be used.
  • Examples of a method for producing a molded body from the mixed powder thus mixed include a slip casting method and a cold isostatic pressing (CIP) method. Subsequently, two types of methods will be described as specific examples of the molding method.
  • a slurry containing a mixed powder and an organic additive is prepared using a dispersion medium, and the slurry is poured into a mold to remove the dispersion medium, thereby performing molding.
  • Organic additives that can be used here include known binders and dispersants.
  • the dispersion medium used in preparing the slurry is not particularly limited, and can be appropriately selected from water, alcohol, and the like according to the purpose.
  • the method for preparing the slurry is not particularly limited. For example, ball mill mixing in which a mixed powder, an organic additive, and a dispersion medium are placed in a pot and mixed can be used. The slurry thus obtained is poured into a mold, and the dispersion medium is removed to produce a molded body.
  • the molds that can be used here include a metal mold and a plaster mold, and a resin mold that removes the dispersion medium by applying pressure.
  • CIP method In the CIP method described here, a slurry containing a mixed powder and an organic additive is prepared using a dispersion medium, and the slurry is spray-dried, and the resulting dry powder is filled in a mold and pressed. I do.
  • Organic additives that can be used here include known binders and dispersants.
  • the dispersion medium used in preparing the slurry is not particularly limited, and can be appropriately selected from water, alcohol, and the like according to the purpose.
  • the method for preparing the slurry is not particularly limited. For example, ball mill mixing in which a mixed powder, an organic additive, and a dispersion medium are placed in a pot and mixed can be used.
  • the slurry thus obtained is spray-dried to prepare a dry powder having a water content of 1% or less, and the dried powder is filled in a mold and subjected to pressure molding by a CIP method to produce a molded body. .
  • the firing furnace for producing such a sintered body is not particularly limited, and a firing furnace that can be used for manufacturing a ceramic sintered body can be used. Such baking is preferably performed in an atmosphere in which oxygen is present.
  • the firing temperature needs to be 1450 ° C. or higher, and is preferably 1480 ° C. or higher.
  • the firing temperature is preferably 1600 ° C. or less, more preferably 1550 ° C. or less, from the viewpoint of preventing the structure of the sintered body from being enlarged and preventing cracking.
  • the obtained sintered body is cut.
  • Such cutting is performed using a surface grinder or the like.
  • the surface roughness Ra after the cutting can be appropriately controlled by selecting the size of the abrasive grains of the grindstone used for the cutting.
  • a sputtering target is produced by joining the cut sintered body to a substrate.
  • the material of the base material stainless steel, copper, titanium or the like can be appropriately selected.
  • a low melting point solder such as indium can be used as the bonding material.
  • Example 1 Zirconia balls in a pot containing an In 2 O 3 powder having an average particle diameter of 0.6 ⁇ m, a Ga 2 O 3 powder having an average particle diameter of 1.5 ⁇ m, and a ZnO powder having an average particle diameter of 0.8 ⁇ m. And dry mixed with a ball mill to prepare a mixed powder.
  • the average particle size of the raw material powder was measured using a particle size distribution analyzer HRA manufactured by Nikkiso Co., Ltd. In this measurement, water was used as a solvent, and the measurement was performed at a refractive index of the measured substance of 2.20. The same measurement conditions were used for the average particle size of the raw material powder described below.
  • the average particle diameter of the raw material powder is the volume cumulative particle diameter D 50 in the cumulative volume 50% by volume by laser diffraction scattering particle size distribution measuring method.
  • the prepared slurry was poured into a metal mold sandwiching a filter, and drained to obtain a molded body.
  • this molded body was fired to produce a sintered body. This firing was performed in an atmosphere having an oxygen concentration of 20%, at a firing temperature of 1500 ° C., for a firing time of 8 hours, at a heating rate of 50 ° C./h, and at a cooling rate of 50 ° C./h.
  • the obtained sintered body was cut to obtain an oxide sintered body having a width of 210 mm, a length of 710 mm and a thickness of 6 mm having a surface roughness Ra of 1.0 ⁇ m. Note that a # 170 grindstone was used for such cutting.
  • Example 2 and 3 An oxide sintered body was obtained in the same manner as in Example 1. In Examples 2 and 3, when preparing the mixed powder, the raw material powders were blended so that the atomic ratio of the metal elements contained in all the raw material powders became the atomic ratio shown in Table 1.
  • Comparative Examples 1 to 4 An oxide sintered body was obtained in the same manner as in Example 1. In Comparative Examples 1 to 4, when preparing the mixed powder, the raw material powders were blended so that the atomic ratios of the metal elements contained in all the raw material powders were as shown in Table 1.
  • the mass in the air of the oxide sintered body is divided by the volume (mass in water of the sintered body / water specific gravity at the measurement temperature), and the value of the percentage relative to the theoretical density ⁇ (g / cm 3 ) is calculated as the relative density ( (Unit:%).
  • the theoretical density ⁇ (g / cm 3 ) was calculated from the mass% and the density of the raw material powder used for manufacturing the oxide sintered body. Specifically, it was calculated by the following equation (7).
  • ⁇ (C 1/100 ) / ⁇ 1 + (C 2/100) / ⁇ 2 + (C 3/100) / ⁇ 3 ⁇ -1 ⁇ (7)
  • C 1 to C 3 and ⁇ 1 to ⁇ 3 in the above formula have the following values, respectively.
  • C 1 : mass% of In 2 O 3 powder used for manufacturing the oxide sintered body ⁇ 1 density of In 2 O 3 (7.18 g / cm 3 )
  • C 3 mass% of ZnO powder used for producing the oxide sintered body ⁇ 3 : density of ZnO (5.60 g / cm 3 )
  • a probe is applied to the surface of the processed oxide sintered body using Loresta (registered trademark) HP @ MCP-T410 (series four-probe probe @ TYPE @ ESP) manufactured by Mitsubishi Chemical Corporation, and AUTO @ RANGE Mode.
  • the measurement was made at a total of five places near the center and four corners of the oxide sintered body, and the average value of the measured values was taken as the bulk resistance value of the sintered body.
  • the flexural strength was measured by using a sample piece (length: 36 mm or more, width: 4.0 mm, thickness: 3.0 mm) cut out from the oxide sintered body by wire electric discharge machining, according to JIS-R-1601 (bending strength of fine ceramics). (Test method)).
  • the cut surface obtained by cutting the oxide sintered body is polished stepwise using emery paper # 180, # 400, # 800, # 1000, and # 2000, and finally buffed. And finished to a mirror surface.
  • etching solution nitric acid (60-61% aqueous solution, manufactured by Kanto Chemical Co., Ltd.)
  • hydrochloric acid 35.0-37.0% aqueous solution, manufactured by Kanto Chemical Co., Ltd.
  • pure water 40 ° C. and pure water are mixed at a volume ratio.
  • HCl: H 2 O: HNO 3 1: 1: 0.08) for 2 minutes to perform etching.
  • FIG. 1 is an SEM image of the oxide sintered body in Example 1.
  • the light-colored crystal is a homologous structure compound
  • the dark-colored crystal is a spinel structure compound.
  • ImageJ 1.51k http://imageJ.nih.gov/ij/) provided by the National Institutes of Health (NIH) was used.
  • the BSE-COMP image obtained above is drawn along the grain boundaries of the homologous structure compound, and after all drawing is completed, image correction (Image ⁇ Adjust ⁇ Threshold) is performed, and the spinel structure compound is drawn. Was removed. Noise remaining after image correction was removed (Process ⁇ Noise ⁇ Despeckle) as necessary.
  • the BSE-COMP image obtained above is drawn along the grain boundaries of the spinel structure compound, and after all drawing is completed, image correction (Image ⁇ Adjust ⁇ Threshold) is performed to obtain a homologous structure. Compound was removed. Noise remaining after image correction was removed (Process ⁇ Noise ⁇ Despeckle) as necessary.
  • the atomic ratio of each element contained in the mixed powder, the relative density of the oxide sintered body, the specific resistance (bulk resistance), and the bending resistance Table 1 shows the strength, constituent phases, average area circle equivalent diameter and average aspect ratio of the homologous structure compound (IGZO phase) and spinel structure compound (GZO phase), and the area ratio of the spinel structure compound (GZO phase). Show.
  • the oxide sintered bodies of Examples 1 to 3 all have a specific resistance of 5.0 ⁇ 10 ⁇ 1 ⁇ cm or less. Therefore, according to the embodiment, when an oxide sintered body is used as a sputtering target, sputtering using an inexpensive DC power supply becomes possible, and the film formation rate can be improved.
  • all of the oxide sintered bodies of Examples 1 to 3 have a bending strength of 180 MPa or more. Therefore, according to the embodiment, when manufacturing a sputtering target using such an oxide sintered body, or when performing sputtering with such a sputtering target, it is possible to prevent the oxide sintered body from being damaged. .
  • the oxide sintered bodies of Examples 1 to 3 contain a homologous structure compound represented by InGaZnO 4 or InGaZn 2 O 5 and a spinel structure compound represented by ZnGa 2 O 4. . Therefore, according to the embodiment, an IGZO oxide sintered body having high bending strength can be realized.
  • Examples 1 to 3 containing a homologous structure compound represented by InGaZnO 4 or InGaZn 2 O 5 and containing In, Ga, and Zn in the ranges shown in the above formulas (1) to (3), In comparison with Comparative Example 4 which does not contain In, Ga or Zn in such a range, the specific resistance is reduced to 5.0 ⁇ 10 -1 ⁇ cm or less by containing In, Ga and Zn in such a range. You can see that.
  • the average equivalent circle of the homologous structure compound is 10 ⁇ m or less, and the average aspect ratio of the homologous structure compound is 2.0 or less. . Thereby, since the crystal structure in the oxide sintered body can be refined, the transverse rupture strength of the oxide sintered body can be improved.
  • the average area equivalent circle diameter of the spinel structure compound is 5 ⁇ m or less, and the average aspect ratio of the spinel structure compound is 2.0 or less. . Thereby, since the crystal structure in the oxide sintered body can be refined, the transverse rupture strength of the oxide sintered body can be improved.
  • the oxide sintered bodies of Examples 1 to 3 all have an area ratio of the spinel structure compound of 15% or more. Thereby, the bending strength of the oxide sintered body can be improved.
  • the oxide sintered bodies of Comparative Examples 1 and 4 had high specific resistance and could not be subjected to DC sputtering.
  • Example 1 in which the atomic ratio of each element satisfies Expressions (13) to (15) with Example 2 in which the atomic ratio of each element does not satisfy Expressions (13) to (15), It can be seen that the occurrence of arcing is further reduced by satisfying the atomic ratios of the expressions (13) to (15).
  • the present invention is not limited to the above-described embodiments, and various changes can be made without departing from the gist of the present invention.
  • the shape of the oxide sintered body is not limited to the plate shape, and may be any shape such as a cylindrical shape. It may be shaped.

Abstract

実施形態の一様態に係る酸化物焼結体は、インジウム、ガリウムおよび亜鉛を含む酸化物焼結体であって、InGaZnOまたはInGaZnで表されるホモロガス構造化合物と、ZnGaで表されるスピネル構造化合物とを含み、抗折強度が180MPa以上である。

Description

酸化物焼結体およびスパッタリングターゲット
 開示の実施形態は、酸化物焼結体およびスパッタリングターゲットに関する。
 従来、IGZO(Indium Gallium Zinc Oxide)などの酸化物半導体薄膜を成膜するためのスパッタリングターゲットが知られている。かかるスパッタリングターゲットに用いられる酸化物焼結体は、InGaO(ZnO)(mは1~20の整数)で表されるホモロガス構造化合物と、ZnGaで表されるスピネル構造化合物とを含む(たとえば、特許文献1参照)。
特開2008-163441号公報
 しかしながら、従来のスパッタリングターゲットに用いられる酸化物焼結体は、抗折強度が50MPa程度であることから、かかる酸化物焼結体を用いてスパッタリングターゲットを製造する際や、かかるスパッタリングターゲットでスパッタリングを行う際に、酸化物焼結体が破損しやすいという課題があった。
 実施形態の一態様は、上記に鑑みてなされたものであって、破損を抑制することができる酸化物焼結体およびスパッタリングターゲットを提供することを目的とする。
 実施形態の一態様に係る酸化物焼結体は、インジウム、ガリウムおよび亜鉛を含む酸化物焼結体であって、InGaZnOまたはInGaZnで表されるホモロガス構造化合物と、ZnGaで表されるスピネル構造化合物とを含み、抗折強度が180MPa以上である。
 実施形態の一態様によれば、酸化物焼結体の破損を抑制することができる。
図1は、実施例1における酸化物焼結体のSEM画像である。
 以下、添付図面を参照して、本願の開示する酸化物焼結体およびスパッタリングターゲットの実施形態について説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
 実施形態の酸化物焼結体は、インジウム(In)、ガリウム(Ga)および亜鉛(Zn)を含む。たとえば、実施形態の酸化物焼結体は、インジウムと、ガリウムと、亜鉛と、酸素(O)とからなり、スパッタリングターゲットとして用いることができる。
 そして、実施形態の酸化物焼結体は、InGaO(ZnO)(mは整数)で表されるホモロガス構造化合物のうち、InGaZnO(すなわち、m=1)またはInGaZn(すなわち、m=2)で表されるホモロガス構造化合物と、ZnGaで表されるスピネル構造化合物とを含み、抗折強度が180MPa以上である。
 これにより、かかる酸化物焼結体を用いてスパッタリングターゲットを製造する際や、かかるスパッタリングターゲットでスパッタリングを行う際に、酸化物焼結体が破損することを抑制することができる。
 また、実施形態の酸化物焼結体は、InGaO(ZnO)(mは整数)で表されるホモロガス構造化合物のうち、InGaZnO(すなわち、m=1)またはInGaZn(すなわち、m=2)で表されるホモロガス構造化合物と、ZnGaで表されるスピネル構造化合物からなり、抗折強度が180MPa以上であることが好ましい。
 なお、InGaO(ZnO)(mは整数)で表されるホモロガス構造化合物のうち、mが3以上(たとえば、InGaZn)で表されるホモロガス構造化合物が含まれると、ホモロガス構造化合物の平均面積円相当径が大きくなり抗折強度が低くなる傾向にある。そのため、InGaO(ZnO)(mは整数)で表されるホモロガス構造化合物のうち、mが3以上で表されるホモロガス構造化合物は含まれない方が好ましい。
 なお、実施形態の酸化物焼結体は、抗折強度が190MPa以上であることがより好ましく、200MPa以上であることがさらに好ましい。抗折強度の上限値は特に定めるものではないが、通常500MPa以下である。
 また、実施形態の酸化物焼結体は、各元素の原子比が、以下の式(1)~(3)を満たすことが好ましい。
 0.08<In/(In+Ga+Zn)<0.31 ・・(1)
 0.35<Ga/(In+Ga+Zn)<0.58 ・・(2)
 0.23<Zn/(In+Ga+Zn)<0.46 ・・(3)
 これにより、酸化物焼結体の比抵抗を低減することができる。したがって、実施形態によれば、かかる酸化物焼結体をスパッタリングターゲットとして用いた場合に、安価なDC電源を用いたスパッタリングが可能となり、成膜レートを向上させることができる。
 また、実施形態の酸化物焼結体は、各元素の原子比が、以下の式(4)~(6)を満たすことが好ましく、
 0.08<In/(In+Ga+Zn)≦0.20 ・・(4)
 0.40≦Ga/(In+Ga+Zn)<0.58 ・・(5)
 0.25≦Zn/(In+Ga+Zn)<0.46 ・・(6)
各元素の原子比の原子比が、以下の式(7)~(9)を満たすことがより好ましく、
 0.13<In/(In+Ga+Zn)≦0.19 ・・(7)
 0.40≦Ga/(In+Ga+Zn)≦0.55 ・・(8)
 0.27≦Zn/(In+Ga+Zn)<0.46 ・・(9)
各元素の原子比の原子比が、以下の式(10)~(12)を満たすことがより好ましく、
 0.14≦In/(In+Ga+Zn)≦0.19 ・・(10)
 0.41≦Ga/(In+Ga+Zn)≦0.53 ・・(11)
 0.30≦Zn/(In+Ga+Zn)≦0.45 ・・(12)
各元素の原子比の原子比が、以下の式(13)~(15)を満たすことがさらに好ましい。
 0.14<In/(In+Ga+Zn)≦0.18 ・・(13)
 0.41≦Ga/(In+Ga+Zn)≦0.52 ・・(14)
 0.31≦Zn/(In+Ga+Zn)≦0.45 ・・(15)
 これにより、かかる酸化物焼結体をスパッタリングターゲットとして用いた場合に、アーキングの発生を低減させることができる。
 また、実施形態の酸化物焼結体は、原料等に由来する不可避不純物が含まれ得る。実施形態の酸化物焼結体における不可避不純物としてはFe、Cr、Ni、Si、W、Cu、Al等があげられ、それらの含有量は各々通常100ppm以下である。
 また、実施形態の酸化物焼結体は、焼結体の断面観察において、ホモロガス構造化合物の平均面積円相当径が10μm以下であることが好ましく、ホモロガス構造化合物の平均アスペクト比が2.0以下であることが好ましい。これにより、酸化物焼結体内の結晶組織を微細化することができることから、酸化物焼結体の抗折強度を向上させることができる。
 なお、実施形態の酸化物焼結体は、ホモロガス構造化合物の平均面積円相当径が8.0μm以下であることがより好ましく、7.0μm以下であることがさらに好ましく、6.0μm以下であることが一層好ましく、5.0μm以下であることがより一層好ましい。ホモロガス構造化合物の平均面積円相当径の下限値は特に定めるものではないが、通常2.0μm以上である。
 また、実施形態の酸化物焼結体は、ホモロガス構造化合物の平均アスペクト比が1.9以下であることがより好ましく、1.8以下であることがさらに好ましく、1.75以下であることが一層好ましい。ホモロガス構造化合物の平均アスペクト比の下限値は特に定めるものではないが、通常1.0以上である。
 また、実施形態の酸化物焼結体は、焼結体の断面観察において、スピネル構造化合物の平均面積円相当径が5.0μm以下であることが好ましく、スピネル構造化合物の平均アスペクト比が2.0以下であることが好ましい。これにより、酸化物焼結体内の結晶組織を微細化することができることから、酸化物焼結体の抗折強度を向上させることができる。
 なお、実施形態の酸化物焼結体は、スピネル構造化合物の平均面積円相当径が4.5μm以下であることがより好ましく、4.0μm以下であることがさらに好ましく、3.8μm以下であることが一層好ましい。スピネル構造化合物の平均面積円相当径の下限値は特に定めるものではないが、通常2.0μm以上である。
 また、実施形態の酸化物焼結体は、スピネル構造化合物の平均アスペクト比が1.8以下であることがより好ましく、1.7以下であることがさらに好ましく、1.6以下であることが一層好ましい。スピネル構造化合物の平均アスペクト比の下限値は特に定めるものではないが、通常1.0以上である。
 また、実施形態の酸化物焼結体は、焼結体の断面観察において、スピネル構造化合物の面積率が15%以上であることが好ましい。これにより、酸化物焼結体の相対密度が高くなり、また抗折強度を向上させることができる。
 なお、実施形態の酸化物焼結体は、スピネル構造化合物の面積率が25%以上であることがより好ましく、35%以上であることがさらに好ましく、40%以上であることが一層好ましく、45%以上であることがさらに一層好ましい。
 また、実施形態の酸化物焼結体は、スピネル構造化合物の面積率が80%以下であることが好ましい。これにより、酸化物焼結体の比抵抗を低減させることができる。
 なお、実施形態の酸化物焼結体は、スピネル構造化合物の面積率が70%以下であることがより好ましく、65%以下であることがさらに好ましく、60%以下であることが一層好ましく、55%以下であることがさらに一層好ましい。
 また、実施形態の酸化物焼結体は、相対密度が99.5%以上であることが好ましい。これにより、かかる酸化物焼結体をスパッタリングターゲットとして用いた場合に、DCスパッタリングの放電状態を安定させることができる。
 相対密度が99.5%以上であると、かかる酸化物焼結体をスパッタリングターゲットとして用いた場合に、スパッタリングターゲット中に空隙を少なくでき、大気中のガス成分の取り込みを防止しやすい。また、スパッタリング中に、かかる空隙を起点とした異常放電やスパッタリングターゲットの割れ等が生じにくくなる。
 なお、実施形態の酸化物焼結体は、相対密度が99.8%以上であることがより好ましく、100.0%以上であることがさらに好ましく、100.5%以上であることが一層好ましく、101.0%以上であることがさらに一層好ましい。相対密度の上限値は特に定めるものではないが、通常105%である。
 また、実施形態の酸化物焼結体は、比抵抗が5.0×10-1Ω・cm以下であることが好ましい。これにより、かかる酸化物焼結体をスパッタリングターゲットとして用いた場合に、安価なDC電源を用いたスパッタリングが可能となり、成膜レートを向上させることができる。
 なお、実施形態の酸化物焼結体は、比抵抗が5.0×10-2Ω・cm以下であることがより好ましく、比抵抗が4.0×10-2Ω・cm以下であることがさらに好ましく、3.5×10-2Ω・cm以下であることが一層好ましい。比抵抗の下限値は特に定めるものではないが、通常1.0×10-4Ω・cm以上である。なお、実施形態の酸化物焼結体の比抵抗はJIS K 7194にしたがって測定することができる。
<酸化物スパッタリングターゲットの各製造工程>
 実施形態の酸化物スパッタリングターゲットは、たとえば以下に示すような方法により製造することができる。まず、原料粉末を混合する。原料粉末としては、通常In粉末、Ga粉末およびZnO粉末である。
 各原料粉末の混合比率は、酸化物焼結体における所望の構成元素比になるように適宜決定される。
 各原料粉末は、事前に乾式混合してもよい。かかる乾式混合の方法には特に制限はなく、たとえば、各原料粉末およびジルコニアボールをポットに入れて混合するボールミル混合を用いることができる。このように混合された混合粉末から成形体を作製する方法としては、たとえばスリップキャスト法や、CIP(Cold Isostatic Pressing:冷間等方圧加圧法)などが挙げられる。つづいて、成形方法の具体例として、2種類の方法についてそれぞれ説明する。
(スリップキャスト法)
 ここで説明するスリップキャスト法では、混合粉末と有機添加物とを含有するスラリーを、分散媒を用いて調製し、かかるスラリーを型に流し込んで分散媒を除去することにより成形を行う。ここで用いることができる有機添加物は、公知のバインダーや分散剤などである。
 また、スラリーを調製する際に用いる分散媒には特に制限はなく、目的に応じて、水やアルコールなどから適宜選択して用いることができる。また、スラリーを調製する方法にも特に制限はなく、たとえば、混合粉末と、有機添加物と、分散媒とをポットに入れて混合するボールミル混合を用いることができる。このようにして得られたスラリーを型に流し込み、分散媒を除去して成形体を作製する。ここで用いることができる型は、金属型や石膏型、加圧して分散媒除去を行う樹脂型などである。
(CIP法)
 ここで説明するCIP法では、混合粉末と有機添加物とを含有するスラリーを、分散媒を用いて調製し、かかるスラリーを噴霧乾燥して得られた乾燥粉末を型に充填して加圧成形を行う。ここで用いることができる有機添加物は、公知のバインダーや分散剤などである。
 また、スラリーを調製する際に用いる分散媒には特に制限はなく、目的に応じて、水やアルコールなどから適宜選択して用いることができる。また、スラリーを調製する方法にも特に制限はなく、たとえば、混合粉末と、有機添加物と分散媒とをポットに入れて混合するボールミル混合を用いることができる。
 このようにして得られたスラリーを噴霧乾燥して、含水率が1%以下の乾燥粉末を作製し、かかる乾燥粉末を型に充填してCIP法により加圧成形して、成形体を作製する。
 次に得られた成形体を焼成し、焼結体を作製する。かかる焼結体を作製する焼成炉には特に制限はなく、セラミックス焼結体の製造に使用可能である焼成炉を用いることができる。かかる焼成は、酸素が存在する雰囲気下で行うとよい。
 本発明において、焼成温度は1450℃以上が必要であり、1480℃以上であることが好ましい。焼成温度を1450℃以上とすることで本発明の高密度、高強度の焼結体を得ることができる。一方、焼結体の組織の肥大化を抑制して割れを防止する観点から、焼成温度は1600℃以下であることが好ましく、1550℃以下であることがさらに好ましい。
 次に得られた焼結体を切削加工する。かかる切削加工は、平面研削盤などを用いて行う。また、切削加工後の表面粗さRaは、切削加工に用いる砥石の砥粒の大きさを選定することにより、適宜制御することができる。
 切削加工した焼結体を基材に接合することによってスパッタリングターゲットを作製する。基材の材質にはステンレスや銅、チタンなどを適宜選択することができる。接合材にはインジウムなどの低融点半田を使用することができる。
[実施例1]
 平均粒径が0.6μmであるIn粉末と、平均粒径が1.5μmであるGa粉末と、平均粒径が0.8μmであるZnO粉末とをポット中でジルコニアボールによりボールミル乾式混合して、混合粉末を調製した。
 なお、原料粉末の平均粒径は、日機装株式会社製の粒度分布測定装置HRAを用いて測定した。かかる測定の際、溶媒には水を使用し、測定物質の屈折率2.20で測定した。また、以下に記載の原料粉末の平均粒径についても同様の測定条件とした。なお、原料粉末の平均粒径は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50である。
 なお、かかる混合粉末の調製の際、すべての原料粉末に含まれる金属元素の原子比が、In:Ga:Zn=0.17:0.50:0.33となるように各原料粉末を配合した。
 次に、混合粉末が調製されたポットに、混合粉末に対して0.2質量%のバインダーと、混合粉末に対して0.6質量%の分散剤と、分散媒として混合粉末に対して20質量%の水とを加え、ボールミル混合してスラリーを調製した。
 次に、調製されたスラリーを、フィルターを挟んだ金属製の型に流し込み、排水して成形体を得た。次に、この成形体を焼成して焼結体を作製した。かかる焼成は酸素濃度が20%である雰囲気中、焼成温度1500℃、焼成時間8時間、昇温速度50℃/h、降温速度50℃/hで行った。
 次に、得られた焼結体を切削加工し、表面粗さRaが1.0μmである幅210mm×長さ710mm×厚さ6mmの酸化物焼結体を得た。なお、かかる切削加工には#170の砥石を使用した。
[実施例2、3]
 実施例1と同様な方法を用いて、酸化物焼結体を得た。なお、実施例2、3では、混合粉末の調製の際、すべての原料粉末に含まれる金属元素の原子比が、表1に記載の原子比となるように各原料粉末を配合した。
[比較例1~4]
 実施例1と同様な方法を用いて、酸化物焼結体を得た。なお、比較例1~4では、混合粉末の調製の際、すべての原料粉末に含まれる金属元素の原子比が、表1に記載の原子比となるように各原料粉末を配合した。
 なお、実施例1~3および比較例1~4において、各原料粉末を調製する際に計量した各元素の比率が、得られた酸化物焼結体における各元素の比率と等しいことをICP-AES(Inductively Coupled Plasma Atomic Emission Spectroscopy:誘導結合プラズマ発光分光法)により測定した。
 つづいて、上記にて得られた実施例1~3および比較例1~4の酸化物焼結体について、相対密度の測定を行った。かかる相対密度は、アルキメデス法に基づき測定した。
 具体的には、酸化物焼結体の空中質量を体積(焼結体の水中質量/計測温度における水比重)で除し、理論密度ρ(g/cm)に対する百分率の値を相対密度(単位:%)とした。
 また、かかる理論密度ρ(g/cm)は、酸化物焼結体の製造に用いた原料粉末の質量%および密度から算出した。具体的には、下記の式(7)により算出した。
 ρ={(C/100)/ρ+(C/100)/ρ+(C3/100)/ρ-1 ・・(7)
 なお、上記式中のC~Cおよびρ~ρは、それぞれ以下の値を示している。
・C:酸化物焼結体の製造に用いたIn粉末の質量%
・ρ:Inの密度(7.18g/cm
・C:酸化物焼結体の製造に用いたGa粉末の質量%
・ρ:Gaの密度(5.95g/cm
・C:酸化物焼結体の製造に用いたZnO粉末の質量%
・ρ:ZnOの密度(5.60g/cm
 つづいて、上記にて得られた実施例1~3および比較例1~4のスパッタリングターゲット用酸化物焼結体について、それぞれ比抵抗(バルク抵抗)の測定を行った。
 具体的には、三菱化学株式会社製ロレスタ(登録商標)HP MCP-T410(直列4探針プローブ TYPE ESP)を用いて、加工後の酸化物焼結体の表面にプローブをあてて、AUTO RANGEモードで測定した。測定箇所は酸化物焼結体の中央付近および4隅の計5か所とし、各測定値の平均値をその焼結体のバルク抵抗値とした。
 つづいて、上記にて得られた実施例1~3および比較例1~4のスパッタリングターゲット用酸化物焼結体について、それぞれ抗折強度の測定を行った。かかる抗折強度は、ワイヤー放電加工により酸化物焼結体から切り出した試料片(全長36mm以上、幅4.0mm、厚さ3.0mm)を用い、JIS-R-1601(ファインセラミックスの曲げ強度試験方法)の3点曲げ強さの測定方法にしたがって測定した。
 つづいて、上記にて得られた実施例1~3および比較例1~4の酸化物焼結体について、それぞれX線回折(X-Ray Diffraction:XRD)測定を行い、X線回折チャートを得た。そして、得られたX線回折チャートにより、酸化物焼結体に含まれる構成相を同定した。
 なお、かかるX線回折測定の具体的な測定条件は以下の通りであった。
・装置:SmartLab(株式会社リガク製、登録商標)
・線源:CuKα線
・管電圧:40kV
・管電流:30mA
・スキャン速度:5deg/min
・ステップ:0.02deg
・スキャン範囲:2θ=20度~80度
 つづいて、上記にて得られた実施例1~3および比較例1~4のスパッタリングターゲット用酸化物焼結体の表面を、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて観察するとともに、結晶の構成相や結晶形状の評価を行った。
 具体的には、酸化物焼結体を切断して得られた切断面を、エメリー紙#180、#400、#800、#1000、#2000を用いて段階的に研磨し、最後にバフ研磨して鏡面に仕上げた。
 その後、40℃のエッチング液(硝酸(60~61%水溶液、関東化学(株)製)、塩酸(35.0~37.0%水溶液、関東化学(株)製)および純水を体積比でHCl:HO:HNO=1:1:0.08の割合で混合)に2分間浸漬してエッチングを行った。
 そして、現れた面を走査型電子顕微鏡(SU3500、(株)日立ハイテクノロジーズ製)を用いて観察した。なお、結晶形状の評価では、倍率500倍、175μm×250μmの範囲のBSE-COMP像を無作為に10視野撮影し、図1に示すような組織のSEM画像を得た。
 図1は、実施例1における酸化物焼結体のSEM画像である。なお、図1において、色が薄い結晶がホモロガス構造化合物であり、色が濃い結晶がスピネル構造化合物である。
 また、粒子解析には、アメリカ国立衛生研究所(NIH:National Institutes of Health)が提供する画像処理ソフトウェアImageJ 1.51k(http://imageJ.nih.gov/ij/)を用いた。
 まず、上記にて得られたBSE-COMP像を、ホモロガス構造化合物の粒界に沿って描画を行い、全ての描画が完了した後、画像補正(Image→Adjust→Threshold)を行い、スピネル構造化合物を除去した。画像補正後に残ったノイズは、必要に応じて除去(Process→Noise→Despeckle)を行った。
 その後、粒子解析を実施(Analyze→Analyze Particles)して、各粒子における面積、アスペクト比を得た。その後、得られた各粒子における面積から、面積円相当径を算出した。10視野において算出された全粒子のそれらの平均値を、本発明におけるホモロガス構造化合物(なお、表1ではIGZO相と記載する。)の平均面積円相当径、平均アスペクト比とした。
 次に、上記にて得られたBSE-COMP像を、スピネル構造化合物の粒界に沿って描画を行い、全ての描画が完了した後、画像補正(Image→Adjust→Threshold)を行い、ホモロガス構造化合物を除去した。画像補正後に残ったノイズは、必要に応じて除去(Process→Noise→Despeckle)を行った。
 その後、粒子解析を実施(Analyze→Analyze Particles)して、各粒子における面積、アスペクト比を得た。その後、得られた各粒子における面積から、面積円相当径を算出した。10視野において算出された全粒子のそれらの平均値を、本発明におけるスピネル構造化合物(なお、表1ではGZO相と記載する。)の平均面積円相当径、平均アスペクト比とした。
 ここで、上述の実施例1~3および比較例1~4について、混合粉末の際に含有する各元素の原子比と、酸化物焼結体の相対密度、比抵抗(バルク抵抗)、抗折強度、構成相、ホモロガス構造化合物(IGZO相)およびスピネル構造化合物(GZO相)の平均面積円相当径および平均アスペクト比、およびスピネル構造化合物(GZO相)の面積率の測定結果とを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3の酸化物焼結体は、相対密度がすべて99.5%以上であることがわかる。したがって、実施形態によれば、かかる酸化物焼結体をスパッタリングターゲットとして用いた場合に、DCスパッタリングの放電状態を安定させることができる。
 また、実施例1~3の酸化物焼結体は、比抵抗がすべて5.0×10-1Ωcm以下であることがわかる。したがって、実施形態によれば、酸化物焼結体をスパッタリングターゲットとして用いた場合に、安価なDC電源を用いたスパッタリングが可能となり、成膜レートを向上させることができる。
 また、実施例1~3の酸化物焼結体は、抗折強度がすべて180MPa以上であることがわかる。したがって、実施形態によれば、かかる酸化物焼結体を用いてスパッタリングターゲットを製造する際や、かかるスパッタリングターゲットでスパッタリングを行う際に、酸化物焼結体が破損することを抑制することができる。
 また、実施例1~3の酸化物焼結体は、InGaZnOまたはInGaZnで表されるホモロガス構造化合物と、ZnGaで表されるスピネル構造化合物とを含んでいることがわかる。したがって、実施形態によれば、抗折強度が高いIGZO酸化物焼結体を実現することができる。
 また、実施例1~3と比較例2、3との比較により、InGaO(ZnO)(mは整数)で表されるホモロガス構造化合物のうち、mが3以上で表されるホモロガス構造化合物が含まれることによって、抗折強度が低下していることがわかる。
 また、InGaZnOまたはInGaZnで表されるホモロガス構造化合物を含むとともに、上記の式(1)~(3)に示した範囲でIn、GaおよびZnを含有する実施例1~3と、かかる範囲でIn、GaまたはZnを含有しない比較例4との比較により、かかる範囲でIn、GaおよびZnを含有することによって、比抵抗が5.0×10-1Ωcm以下に低減していることがわかる。
 また、スピネル構造化合物の面積率が80%以下である実施例1~3と、スピネル構造化合物の面積率が80%より大きい比較例4との比較により、スピネル構造化合物の面積率を80%以下にすることによって、比抵抗が低減していることがわかる。
 また、実施例1~3の酸化物焼結体は、ホモロガス構造化合物の平均面積円相当径がすべて10μm以下であり、また、ホモロガス構造化合物の平均アスペクト比が2.0以下であることがわかる。これにより、酸化物焼結体内の結晶組織を微細化することができることから、酸化物焼結体の抗折強度を向上させることができる。
 また、実施例1~3の酸化物焼結体は、スピネル構造化合物の平均面積円相当径がすべて5μm以下であり、また、スピネル構造化合物の平均アスペクト比が2.0以下であることがわかる。これにより、酸化物焼結体内の結晶組織を微細化することができることから、酸化物焼結体の抗折強度を向上させることができる。
 また、実施例1~3の酸化物焼結体は、スピネル構造化合物の面積率がすべて15%以上であることがわかる。これにより、酸化物焼結体の抗折強度を向上させることができる。
 次に、上述の実施例1~3および比較例1~4の酸化物焼結体各10枚について、基材にIn半田を用いて接合を行った。その結果、実施例1~3および比較例1の酸化物焼結体に割れは見られなかった。一方、比較例2~4の酸化物焼結体にはそれぞれ3枚、4枚、2枚の割れが見られた。
 次に、上述の実施例1~3および比較例2、3の酸化物焼結体を用いてスパッタリングを行い、アーキングの発生量からターゲットの評価を行った。なお、比較例1、4の酸化物焼結体は比抵抗が高くDCスパッタリングができなかった。
(スパッタリング条件)
 装置:DCマグネトロンスパッタ装置、排気系クライオポンプ、ロータリーポンプ
 到達真空度:3×10-6Pa
 スパッタ圧力:0.4Pa
 酸素分圧:1×10-3Pa
 投入電力量時間:2W/cm
 時間:10時間
(アーキングカウンター)
 型式:μArc Moniter MAM Genesis MAM データコレクター Ver.2.02
      (LANDMARK TECHNOLOGY社製)
(アーキング評価)
 A:20回以下
 B:21~50回
 C:51~100回
 D:101回以上
 また、スパッタリング後に酸化物焼結体の割れの確認も行った。上記評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 各元素の原子比が式(7)~(9)を満たす実施例1、2と、各元素の原子比の原子比が式(7)~(9)を満たさない比較例2、3との比較により、各元素の原子比が式(7)~(9)を満たすことによって、アーキングおよび酸化物焼結体の割れの発生が低減していることがわかる。
 また、各元素の原子比が式(13)~(15)を満たす実施例1と、各元素の原子比が式(13)~(15)を満たさない実施例2との比較により、各元素の原子比が式(13)~(15)を満たすことによって、アーキングの発生がさらに低減していることがわかる。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、実施形態では、板状の酸化物焼結体を用いてスパッタリングターゲットが作製された例について示したが、酸化物焼結体の形状は板状に限られず、円筒状など、どのような形状であってもよい。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。

Claims (16)

  1.  インジウム、ガリウムおよび亜鉛を含む酸化物焼結体であって、
     InGaZnOまたはInGaZnで表されるホモロガス構造化合物と、ZnGaで表されるスピネル構造化合物とを含み、
     抗折強度が180MPa以上である酸化物焼結体。
  2.  各元素の原子比が下記式を満たす請求項1に記載の酸化物焼結体。
     0.08<In/(In+Ga+Zn)<0.31
     0.35<Ga/(In+Ga+Zn)<0.58
     0.23<Zn/(In+Ga+Zn)<0.46
  3.  各元素の原子比が下記式を満たす請求項1または2に記載の酸化物焼結体。
     0.08<In/(In+Ga+Zn)≦0.20
     0.40≦Ga/(In+Ga+Zn)<0.58
     0.25≦Zn/(In+Ga+Zn)<0.46
  4.  各元素の原子比が下記式を満たす請求項1~3のいずれか一つに記載の酸化物焼結体。
     0.13<In/(In+Ga+Zn)≦0.19
     0.40≦Ga/(In+Ga+Zn)≦0.55
     0.27≦Zn/(In+Ga+Zn)<0.46
  5.  各元素の原子比が下記式を満たす請求項1~4のいずれか一つに記載の酸化物焼結体。
     0.14≦In/(In+Ga+Zn)≦0.19
     0.41≦Ga/(In+Ga+Zn)≦0.53
     0.30≦Zn/(In+Ga+Zn)≦0.45
  6.  各元素の原子比が下記式を満たす請求項1~5のいずれか一つに記載の酸化物焼結体。
     0.14<In/(In+Ga+Zn)≦0.18
     0.41≦Ga/(In+Ga+Zn)≦0.52
     0.31≦Zn/(In+Ga+Zn)≦0.45
  7.  前記ホモロガス構造化合物の平均面積円相当径が10μm以下である
     請求項1~6のいずれか一つに記載の酸化物焼結体。
  8.  前記ホモロガス構造化合物の平均アスペクト比が2.0以下である
     請求項1~7のいずれか一つに記載の酸化物焼結体。
  9.  前記スピネル構造化合物の平均面積円相当径が5μm以下である
     請求項1~8のいずれか一つに記載の酸化物焼結体。
  10.  前記スピネル構造化合物の平均アスペクト比が2.0以下である
     請求項1~9のいずれか一つに記載の酸化物焼結体。
  11.  前記スピネル構造化合物の面積率が15%以上である
     請求項1~10のいずれか一つに記載の酸化物焼結体。
  12.  前記スピネル構造化合物の面積率が80%以下である
     請求項1~11のいずれか一つに記載の酸化物焼結体。
  13.  相対密度が99.5%以上である
     請求項1~12のいずれか一つに記載の酸化物焼結体。
  14.  比抵抗が5.0×10-1Ωcm以下である
     請求項1~13のいずれか一つに記載の酸化物焼結体。
  15.  InGaZnOまたはInGaZnで表されるホモロガス構造化合物と、ZnGaで表されるスピネル構造化合物からなる請求項1~14のいずれか一つに記載の酸化物焼結体。
  16.  請求項1~15のいずれか一つに記載の酸化物焼結体をターゲット材として用いる
     スパッタリングターゲット。
PCT/JP2019/018992 2018-06-19 2019-05-13 酸化物焼結体およびスパッタリングターゲット WO2019244509A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020525347A JP7282766B2 (ja) 2018-06-19 2019-05-13 酸化物焼結体およびスパッタリングターゲット
CN201980039424.XA CN112262114B (zh) 2018-06-19 2019-05-13 氧化物烧结体和溅射靶
KR1020207035420A KR102563627B1 (ko) 2018-06-19 2019-05-13 산화물 소결체 및 스퍼터링 타깃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018116291 2018-06-19
JP2018-116291 2018-06-19

Publications (1)

Publication Number Publication Date
WO2019244509A1 true WO2019244509A1 (ja) 2019-12-26

Family

ID=68983588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018992 WO2019244509A1 (ja) 2018-06-19 2019-05-13 酸化物焼結体およびスパッタリングターゲット

Country Status (5)

Country Link
JP (1) JP7282766B2 (ja)
KR (1) KR102563627B1 (ja)
CN (1) CN112262114B (ja)
TW (1) TWI804628B (ja)
WO (1) WO2019244509A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163441A (ja) * 2007-01-05 2008-07-17 Idemitsu Kosan Co Ltd スパッタリングターゲット及びその製造方法
JP2009275272A (ja) * 2008-05-16 2009-11-26 Idemitsu Kosan Co Ltd インジウム、ガリウム及び亜鉛を含む酸化物
JP2011003856A (ja) * 2009-06-22 2011-01-06 Fujifilm Corp 薄膜トランジスタ及び薄膜トランジスタの製造方法
WO2014021334A1 (ja) * 2012-07-30 2014-02-06 東ソー株式会社 酸化物焼結体、及びスパッタリングターゲット
WO2015068564A1 (ja) * 2013-11-06 2015-05-14 三井金属鉱業株式会社 スパッタリングターゲット

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072486A1 (ja) * 2006-12-13 2008-06-19 Idemitsu Kosan Co., Ltd. スパッタリングターゲット及び酸化物半導体膜
WO2009157535A1 (ja) * 2008-06-27 2009-12-30 出光興産株式会社 InGaO3(ZnO)結晶相からなる酸化物半導体用スパッタリングターゲット及びその製造方法
JPWO2010070832A1 (ja) 2008-12-15 2012-05-24 出光興産株式会社 複合酸化物焼結体及びそれからなるスパッタリングターゲット
JP2010238770A (ja) 2009-03-30 2010-10-21 Nippon Mining & Metals Co Ltd 酸化物薄膜及びその製造方法
JP5501306B2 (ja) 2011-08-18 2014-05-21 出光興産株式会社 In−Ga−Zn−O系スパッタリングターゲット
JP5677341B2 (ja) 2012-03-01 2015-02-25 三菱電機株式会社 光電変換装置とその製造方法、および光電変換モジュール
JP2013239531A (ja) 2012-05-14 2013-11-28 Fujifilm Corp 薄膜トランジスタ及びその製造方法、表示装置、イメージセンサー、x線センサー並びにx線デジタル撮影装置
JP5654648B2 (ja) 2012-08-10 2015-01-14 株式会社半導体エネルギー研究所 金属酸化物膜
JP5883367B2 (ja) * 2012-09-14 2016-03-15 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP2014111818A (ja) * 2012-11-09 2014-06-19 Idemitsu Kosan Co Ltd スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP2014105124A (ja) 2012-11-27 2014-06-09 Sumitomo Electric Ind Ltd 導電性酸化物ならびに半導体酸化物膜およびその製造方法
JP6511209B1 (ja) * 2018-04-18 2019-05-15 三井金属鉱業株式会社 酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163441A (ja) * 2007-01-05 2008-07-17 Idemitsu Kosan Co Ltd スパッタリングターゲット及びその製造方法
JP2009275272A (ja) * 2008-05-16 2009-11-26 Idemitsu Kosan Co Ltd インジウム、ガリウム及び亜鉛を含む酸化物
JP2011003856A (ja) * 2009-06-22 2011-01-06 Fujifilm Corp 薄膜トランジスタ及び薄膜トランジスタの製造方法
WO2014021334A1 (ja) * 2012-07-30 2014-02-06 東ソー株式会社 酸化物焼結体、及びスパッタリングターゲット
WO2015068564A1 (ja) * 2013-11-06 2015-05-14 三井金属鉱業株式会社 スパッタリングターゲット

Also Published As

Publication number Publication date
KR20210005731A (ko) 2021-01-14
JP7282766B2 (ja) 2023-05-29
CN112262114B (zh) 2022-06-28
TWI804628B (zh) 2023-06-11
TW202000951A (zh) 2020-01-01
JPWO2019244509A1 (ja) 2021-06-24
CN112262114A (zh) 2021-01-22
KR102563627B1 (ko) 2023-08-07

Similar Documents

Publication Publication Date Title
JP5883368B2 (ja) 酸化物焼結体およびスパッタリングターゲット
WO2014021334A1 (ja) 酸化物焼結体、及びスパッタリングターゲット
TWI669283B (zh) 氧化物燒結體及濺鍍靶材以及它們的製造方法
JP5998712B2 (ja) Igzo焼結体、及びスパッタリングターゲット並びに酸化物膜
JP6511209B1 (ja) 酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜の製造方法
JP2010202896A (ja) スパッタリングターゲット及びその製造方法
JP6392776B2 (ja) スパッタリングターゲット
JP7282766B2 (ja) 酸化物焼結体およびスパッタリングターゲット
CN109072417B (zh) 溅镀靶及其制造方法
JP6661041B2 (ja) 酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜の製造方法
WO2013065785A1 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
CN111448336B (zh) 氧化物烧结体、溅射靶及氧化物薄膜
JP6883431B2 (ja) LiCoO2焼結体およびその製造方法
WO2015068535A1 (ja) スパッタリングターゲットおよびその製造方法
JPWO2019187269A1 (ja) 酸化物焼結体、スパッタリングターゲットおよび透明導電膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525347

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207035420

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823357

Country of ref document: EP

Kind code of ref document: A1