WO2019244358A1 - 電気泳動装置 - Google Patents

電気泳動装置 Download PDF

Info

Publication number
WO2019244358A1
WO2019244358A1 PCT/JP2018/023894 JP2018023894W WO2019244358A1 WO 2019244358 A1 WO2019244358 A1 WO 2019244358A1 JP 2018023894 W JP2018023894 W JP 2018023894W WO 2019244358 A1 WO2019244358 A1 WO 2019244358A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
capillary
array
measurement light
Prior art date
Application number
PCT/JP2018/023894
Other languages
English (en)
French (fr)
Inventor
高橋 智
伊名波 良仁
穴沢 隆
友幸 坂井
佑介 後藤
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US17/253,805 priority Critical patent/US11733205B2/en
Priority to CN201880094508.9A priority patent/CN112262308A/zh
Priority to PCT/JP2018/023894 priority patent/WO2019244358A1/ja
Priority to JP2020525214A priority patent/JP7023358B2/ja
Priority to EP18923401.6A priority patent/EP3812741A4/en
Publication of WO2019244358A1 publication Critical patent/WO2019244358A1/ja
Priority to JP2022017630A priority patent/JP7228060B2/ja
Priority to US18/341,078 priority patent/US20230333056A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means
    • G01N27/44726Arrangements for investigating the separated zones, e.g. localising zones by optical means using specific dyes, markers or binding molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Definitions

  • the present invention relates to an electrophoresis apparatus.
  • An object of the present invention is to provide an electrophoresis apparatus which can perform protein analysis at high throughput.
  • An electrophoresis apparatus includes a capillary array in which a plurality of capillaries are arranged, a measurement light irradiation unit that irradiates measurement light, and a plurality of first lenses arranged corresponding to the plurality of capillaries.
  • a light receiving unit for receiving the light through the second lens array.
  • protein analysis can be performed with high throughput.
  • FIG. 1 is a schematic diagram of an overall configuration of a capillary electrophoresis device according to a first embodiment.
  • FIG. 3 is a schematic diagram (plan view) illustrating a configuration example of a measurement light irradiation unit and a light receiving unit.
  • FIG. 3 is a schematic diagram (cross-sectional view) illustrating a configuration example of a measurement light irradiation unit and a light receiving unit. It is the schematic which shows the example of a structure of the measurement light irradiation part and the light receiving part of the capillary electrophoresis apparatus of 2nd Embodiment.
  • An example of the optical branch circuit according to the second embodiment is shown.
  • An example of the optical branch circuit according to the second embodiment is shown.
  • FIG. 1 shows a schematic diagram of the overall configuration of a capillary electrophoresis apparatus 1 according to the first embodiment.
  • the capillary electrophoresis apparatus 1 includes a plurality of sample containers 11 for storing a sample to be measured, a sample tray 12 for holding the sample containers 11, a capillary array 13 including a plurality of capillaries 14, and a high voltage.
  • the apparatus includes an electrode tank 21, a measurement light irradiation unit 16, a light receiving unit 17, a pump unit 19 for injecting the electrophoretic medium 18 into the capillary 14, and a thermostat 20 for keeping the inside of the capillary 14 at a constant temperature.
  • the capillary electrophoresis apparatus 1 includes a control unit for controlling operation, a data processing unit, a display unit, a recording unit, and the like.
  • the capillary array 13 is configured by arranging a plurality of (for example, 4, 8, 12, 16, 16, 24, etc.) quartz capillaries 14, which are tubular members, and a part thereof is irradiated with the light irradiation portion 8. Having. Although the capillary 14 is usually coated with polyimide or the like, the coating is removed at the light-irradiated portion 8, and the light-irradiated portion 8 is formed by aligning the coating-removed portions.
  • the measuring light irradiation unit 16 has a light source and a light projecting optical system such as an optical fiber and a lens for irradiating the light irradiation part 8 provided on the capillary array 13 with measuring light.
  • the light receiving section 17 includes a light receiving element for receiving measurement light transmitted through the light irradiation portion 8 of the capillary array 13 and fluorescence from a fluorescent substance added to a component in the sample, an optical fiber, a lens, and a spectroscope. And the like.
  • the pump unit 19 that injects the electrophoretic medium 18 (for example, a polymer aqueous solution) into the capillary 14 has a gel block 23, a syringe 24, a valve 22, and a connection part 25 of the capillary array 13.
  • the capillary array 13 is connected to the connection unit 25, and for example, by closing the valve 22 and pushing the syringe 24 by a control unit (not shown),
  • the aqueous polymer solution in 24 is injected into the capillary 14.
  • the migration path from the valve 22 to the electrode tank 21 is also filled with the polymer aqueous solution by operating the valve.
  • FIG. 1 shows an example in which the valve 22 is an opening / closing valve, the valve 22 may be configured by a three-way valve or the like.
  • the sample can be introduced into the capillary 14 by electric means, pressure applying means, or the like.
  • a sample is introduced by an electric means
  • the capillary 14 and the electrode are inserted into the sample solution in the sample container 11, and a voltage is applied between the capillary 14 and the electrode tank 21.
  • the sample container 11 is replaced with the common electrode tank 10.
  • a voltage is applied by the high-voltage power supply 15
  • components in the sample move toward the electrode tank 21 in the capillary 14 while being separated according to properties such as molecular weight by electrophoresis.
  • the moved component is irradiated with the measuring light by the measuring light irradiating section 16 at the light irradiating portion 8 provided in the capillary 14, and the light receiving section 17 detects the fluorescence given to the component and the transmitted light passing through the component.
  • the capillaries 14 of the capillary array 13 are adjusted to have the same length. In addition, in order to improve the heat radiation characteristics, it is desirable that the capillaries 14 be uniformly separated from each other except for the light irradiation site.
  • FIGS. 2 and 3 show configuration examples of the measurement light irradiation unit 16 and the light receiving unit 17 according to the first embodiment.
  • FIG. 2 is a plan view
  • FIG. 3 is a cross-sectional view. 2 has a configuration suitable for uniformly irradiating a plurality of capillaries 14 arranged in a line in the capillary array 13 with measurement light.
  • the present apparatus is configured to be able to perform the fluorescence measurement and the absorbance measurement of the protein using the same capillary. According to the present apparatus, it is possible to measure the fluorescence measurement and the absorbance measurement without exchanging the capillary array 13.
  • the 2 includes a light source 101, a condenser lens 102, a light source side fiber 103, a collimating lens 104, a rectangular mask 105, a wavelength selection filter 106, and a cylindrical beam expander 107. , A rectangular mask 108, mirrors 109 and 110, and a toroidal lens array 111.
  • the condenser lens 102 is configured to collect the light from the light source 101 on the incident end face of the light source side fiber 103.
  • the collimator lens 104 converts the light emitted from the emission end face of the light source side fiber 103 into parallel light.
  • the rectangular mask 105 is a mask that narrows parallel light emitted from the collimator lens 104 to rectangular light.
  • the wavelength selection filter 106 has a function of selecting a wavelength to be passed according to the type of measurement (absorbance measurement, fluorescence measurement).
  • the cylindrical beam expander 107 is an optical system including a cylindrical lens, and is configured to expand a rectangular beam passed through the rectangular mask 105 in a direction along the array of the capillary array 13.
  • the light that has passed through the cylindrical beam expander 107 passes through the rectangular opening of the rectangular mask 108, and enters the toroidal lens array 111 via mirrors 109 and 110.
  • the toroidal lens array 111 has a plurality of toroidal lenses arranged with the longitudinal direction being the same as the longitudinal direction of the light irradiation portion of the capillary 14 in the capillary array 13. Note that, depending on the arrangement intervals of the capillary array 13 and other conditions, a lens array in which ordinary lenses are arranged may be used instead of the toroidal lens.
  • the light emitted from the light source 101 is formed into a rectangular shape by the cylindrical beam expander 107 and the rectangular masks 105 and 108 according to the arrangement of the capillary array 13. Since the beam is expanded by the cylindrical beam expander 107, the brightness of the beam is made uniform in its cross section, and the variation in the intensity in the arrangement direction of the capillary array 13 is suppressed. Further, the light having the uniform brightness is incident on the corresponding capillary 14 in the capillary array 13 by the toroidal lens in the toroidal lens array 111. By making the brightness of the beam cross section uniform, the amount of light incident on each of the capillaries 14 is also made uniform. That is, since the amount of incident light can be made substantially equal among the plurality of capillaries 14, even when a plurality of capillaries 14 are used, the measurement conditions are made uniform and the plurality of capillaries 14 In contrast, measurements can be performed simultaneously.
  • the light receiving unit 17 includes a lens array 201 and an optical fiber array 202.
  • the lens array 201 is configured to collect the measurement light that has passed through the capillary array 13 and collect the measurement light on the incident end face of the optical fiber in the optical fiber array 202.
  • the lens array 201 is configured by arranging a number of lenses corresponding to the number of toroidal lenses in the toroidal lens array 111.
  • the optical fiber array 202 is configured by arranging a plurality of optical fibers corresponding to the number of lenses of the lens array 201, guides light incident from the lens array 201, makes the light incident on a spectroscope not shown, and not shown. Light is detected by a photodetector.
  • a fluorescent dichroic mirror 203 is arranged between the mirror 110 and the toroidal lens array 111.
  • the fluorescent dichroic mirror 203 has a function of transmitting the measurement light reflected from the light source 101 and arriving at the mirrors 109 and 110 and reflecting the fluorescent light emitted from the capillary array 13 when performing fluorescence measurement in the present apparatus. .
  • the fluorescence reflected by the fluorescence dichroic mirror 203 enters a spectroscope via an optical system (not shown) and is detected.
  • the brightness of light incident between the capillaries 14 can be made uniform, and the absorbance of the protein can be measured at high throughput.
  • the light emitted from the light source 101 is formed into a rectangular shape by the cylindrical beam expander 107 and the rectangular masks 105 and 108 according to the arrangement of the capillary array 13.
  • the brightness of the beam is made uniform in its cross section.
  • the light having the uniform brightness is incident on the corresponding capillary in the capillary array 13 by the toroidal lens in the toroidal lens array 111.
  • the amount of light incident on each of the capillaries 14 is also made uniform. That is, since the amount of incident light can be made substantially equal among the plurality of capillaries 14, the measurement conditions can be made uniform even when the plurality of capillaries 14 are used.
  • the shape of the openings of the rectangular masks 105 and 108 can be a rectangle whose opposing sides are parallel to each other. Instead, as shown in the upper right of FIG.
  • the thread winding type opening 108N may be enlarged.
  • the luminance of the received measurement light tends to be smaller than that of the capillaries 14 in the center. According to the thread-wound opening, such variation in luminance can be corrected.
  • the lens array is used in the example, an image may be formed using a single lens.
  • FIG. 1 The overall structure of the capillary electrophoresis device of the second embodiment is the same as that of the first embodiment (FIG. 1).
  • the second embodiment is different from the first embodiment in the configuration of the measurement light irradiation unit 16. Note that the same components as those of the measurement light irradiation unit 16 according to the first embodiment are denoted by the same reference numerals as those in FIGS. 2 and 3, and thus redundant description will be omitted below.
  • the measurement light irradiation unit 16 includes a light source 101, a condenser lens 102, a light branching circuit 114, and a toroidal lens array 111.
  • the light branch circuit 114 is provided between the condenser lens 102 and the toroidal lens array 111 and has a function of branching light from the light source 101 into a plurality of paths.
  • the second embodiment can also include a fluorescence measurement light receiving optical system including a fluorescence dichroic mirror 203 for fluorescence measurement.
  • the light from the light source 101 is expanded in the arrangement direction of the capillary array 13 by the cylindrical beam expander 107, and the number corresponding to the number of the capillaries 14 in the capillary array 13 in the toroidal lens array 111.
  • the light branching circuit 114 has a role of splitting light, and the measurement light is transmitted to the capillary in the capillary array 13 before the light enters the toroidal lens array 111.
  • the light beam is split into a number of light beams corresponding to the number.
  • the optical branch circuit 114 may be an optical waveguide as shown in FIG. 5 or a prism array 115 as shown in FIG. According to the second embodiment, the same effect as that of the first embodiment can be obtained.
  • FIG. 1 The overall structure of the capillary electrophoresis device of the third embodiment is the same as that of the first embodiment (FIG. 1).
  • the third embodiment is different from the first embodiment in the configuration of the measurement light irradiation unit 16 and the light receiving unit 17.
  • the measurement light irradiation unit 16 includes the light source 101, the condenser lens 102 ', the optical fiber array 116, and the condenser optical system 117.
  • the measurement light irradiation unit 16 divides light into a plurality of lights by an optical fiber array 116 in which a plurality of optical fibers are arranged.
  • the optical fiber array 116 is configured by arranging a plurality of optical fibers according to the arrangement of the capillaries 14 and the number of capillaries 14.
  • the optical fibers in the optical fiber array 116 only need to be arranged on the exit end side in correspondence with the arrangement of the capillaries 14 in the capillary array 13, and on the incident end side, the incident light from the condenser lens 102 ' It is only necessary that the arrangement is such that light can be incident with high efficiency, and it is not necessary to correspond to the arrangement in the capillary array 13.
  • one or a plurality of optical fibers among the plurality of optical fibers in the optical fiber array 116 can be used as optical fibers for guiding the reference light.
  • Each of the plurality of optical fibers in the optical fiber array 116 may be a bundle fiber which is a set of a plurality of optical fibers.
  • the plurality of optical fibers in one bundle fiber may be arranged in a round shape or a matrix (a plurality of rows ⁇ a plurality of columns) at the input end, but may be arranged in a single row at the output end. .
  • the condenser lens 102 ′ may include a plurality of lenses, or may further include a light diffusing element for uniformly dispersing light.
  • the light receiving unit 17 includes a condensing optical system 211, an optical fiber array 212, a fluorescence beam splitter array 213, a condensing lens array 214, and an optical fiber array 215. ing.
  • the condensing optical system 211 is configured to condense the measurement light that has passed through the capillary array 13 and make it incident on the incident end face of the optical fiber array 212.
  • the optical fiber array 212 has a function of guiding the light condensed by the condensing optical system 211 toward the spectroscope 216. The light that has passed through the optical fiber array 212 enters the spectroscope 216 as light for measuring absorbance.
  • fluorescence excitation light for fluorescence measurement
  • fluorescence beam splitter arrays 213 has a function of reflecting this fluorescence.
  • the fluorescence beam splitter array 213 is configured to transmit measurement light for fluorescence measurement.
  • the light reflected by the fluorescence beam splitter array 213 is condensed by each of the condensing lens arrays 214, enters the incident end faces of the optical fibers of the optical fiber array 215, and is guided to the spectroscope 216.
  • the light source image of the light source 101 is formed on the incident end face of the optical fiber array 116 by the condenser lens 102 ′.
  • the brightness of the light incident on the fiber can be made substantially uniform. Therefore, it is possible to irradiate the plurality of capillaries 14 of the capillary array 13 with light of uniform luminance, and it is possible to perform accurate measurement with high throughput even when a plurality of capillaries are used.
  • FIG. 1 The overall structure of the capillary electrophoresis apparatus of the fourth embodiment is the same as that of the first embodiment (FIG. 1).
  • the fourth embodiment is different from the first embodiment in the configuration of the measurement light irradiation unit 16.
  • the measurement light irradiator 16 of the fourth embodiment includes a light source 101, a condenser lens 102, a light source side fiber 103, a collimator lens 104, a rectangular mask 105, a wavelength selection filter 106, a mirror 118, , A polygon mirror 119, an f ⁇ lens 120, and a toroidal lens array 111.
  • the light source 101 to the wavelength selection filter 106 may be the same as those in the first embodiment.
  • the measurement light emitted from the light source 101 and shaped by the rectangular mask 105 and reflected by the mirror 118 is scanned at a predetermined rotation angle by a polygon mirror 119 that rotates at a predetermined speed about a rotation axis.
  • the scanned light beam is converted by the f ⁇ lens 120 into light parallel to the optical axis.
  • the measurement light sequentially enters the plurality of toroidal lenses of the toroidal lens array 111.
  • the measurement light is simultaneously incident on the plurality of toroidal lenses in the toroidal lens array 111.
  • the measurement light is not simultaneous but is sequentially transmitted to one of the plurality of toroidal lenses. Incident on.
  • the projection timing of the measurement light is different among a plurality of capillaries, the rotation speed of the polygon mirror 119 is increased to measure the plurality of capillaries 14 under substantially the same conditions without being affected by a difference in projection time. Becomes possible. For this reason, also in the fourth embodiment, it is possible to measure the absorbance of a protein using a plurality of capillaries with high throughput.
  • FIG. 9 shows a modification of the fourth embodiment.
  • a condenser lens 125 is further provided between the mirror 118 and the polygon mirror 119.
  • the condenser lens 125 has a role of adjusting the light emitted from the f ⁇ lens 120 to be parallel light along the optical axis.
  • the light emitted from the f ⁇ lens 120 becomes parallel light, so that the measurement light can be made incident on the light irradiation portions of the toroidal lens array 111 and the capillary array 13 with high efficiency.
  • FIG. 5 The overall structure of the capillary electrophoresis apparatus according to the fifth embodiment is the same as that of the first embodiment (FIG. 1).
  • the fifth embodiment is different from the above-described embodiment in the configuration of the measurement light irradiation unit 16.
  • the measurement light irradiation unit 16 of the fifth embodiment includes a light source 101, a condenser lens 102, a dichroic mirror 121, an optical branch circuit 114, a toroidal lens array 111, a dichroic mirror 122, an excitation wavelength monochromatic filter 123, and a An optical lens 124 is provided.
  • the light source 101, the condenser lens 102, and the light branching circuit 114 may be the same as in the second embodiment (FIG. 4).
  • the measurement light for the absorbance measurement and the measurement light for the fluorescence measurement are projected onto the capillary array 13 along the same projection optical path.
  • the measurement light for fluorescence measurement is projected along a different projection optical path from the measurement light for absorbance measurement. That is, in the measurement light irradiation unit 16 of the fifth embodiment, first, the measurement light for fluorescence measurement is transmitted through the dichroic mirror 121 while the measurement light for absorbance measurement is reflected. The measurement light for measuring the absorbance is split into a plurality of light beams by the light splitting circuit 114 as in the second embodiment, and is incident on the toroidal lens array 111.
  • the measurement light of the fluorescence measurement passes through the dichroic mirror 121 and is reflected by the dichroic mirror 122, and the excitation wavelength monochromatic filter 124 passes only the light of the wavelength component used for the fluorescence measurement.
  • One luminous flux of the measurement light for fluorescence measurement that has passed through the excitation wavelength monochromating filter 124 does not pass through the toroidal lens array 111, and as shown in FIG. Light is incident from the array direction.
  • the dichroic mirror 122 may have a wavelength characteristic that transmits near-infrared light unnecessary for fluorescence measurement.
  • the fluorescence When the protein to which the fluorescent substance is added passes through the capillary 14 and emits fluorescence by being irradiated with the measurement light for fluorescence measurement, the fluorescence enters the lens array 201 and is separated by the optical fiber array 202 into a spectroscope (not shown). The light is guided to the vessel. Since the measurement light for fluorescence measurement is guided in a direction parallel to the main plane of the lens array 201 (the arrangement direction of the plurality of capillaries 14 of the capillary array 13), the measurement light hardly enters the lens array 201. . Therefore, according to the fifth embodiment, the fluorescence measurement can be performed at a high S / N ratio.
  • the absorbance measurement can be performed in the same manner as in the above-described embodiment, and the absorbance measurement can be simultaneously performed on a plurality of capillaries under the same conditions, so that high throughput can be achieved.
  • FIG. 11 shows a modification of the fifth embodiment.
  • the positions of the plurality of capillaries irradiated by the measurement light for fluorescence measurement are different from the positions of the plurality of capillaries irradiated by the measurement light for absorbance measurement.
  • the light receiving section 17 guides the optical fiber array 212 for guiding the transmitted light of the measurement light of the absorbance measurement, and guides the fluorescence generated by the capillary 14 by the fluorescence measurement.
  • the migration path of the capillary 14 is arranged so as to form a so-called Z-shape. That is, the opaque insulator block is provided with a hollow portion having both ends opened, both open ends are sealed with a transparent window material, and a plurality of flow paths having holes at both ends of the hollow portion are formed to communicate with the outside of the insulator.
  • the mold flow path array unit 300 is provided, and the capillary 14 is connected to a plurality of holes to form an electrophoresis path.
  • the capillary array 13 includes a capillary 13R serving as a sample migration path, and a dummy capillary 13D appropriately disposed between them. It can be done.
  • the measurement light for fluorescence measurement passes through the capillary 13R and the dummy capillary 13D.
  • the capillaries 13R are arranged at predetermined intervals, but in this case, when the measurement light for fluorescence measurement is made incident as shown in FIG. 10, the measurement light is difficult to propagate.
  • the dummy capillary 13D between the capillaries 13R, the measurement light can be easily propagated.
  • a capillary having the same cross-sectional shape in which the inside is filled with a polymer, a glass rod, or the like can be used.
  • FIG. 1 The overall structure of the capillary electrophoresis apparatus according to the sixth embodiment is the same as that of the first embodiment (FIG. 1).
  • the sixth embodiment is different from the above-described embodiment in the configuration of the measurement light irradiation unit 16.
  • the sixth embodiment has a configuration in which the measurement light for measuring the absorbance and the projection path of the measurement light for measuring the fluorescence are different from each other.
  • the sixth embodiment is common to the fifth embodiment. .
  • the configuration is such that measurement light (excitation light) for fluorescence measurement is incident on the main plane of the toroidal lens array 111 from an oblique direction.
  • the measurement light irradiation unit 16 of the capillary electrophoresis apparatus includes a light source 101, a condenser lens 102, a dichroic mirror 131, a shutter 132, an optical filter 133 for absorbance measurement light, a mirror 134, and a cylindrical beam expander 135. , And a toroidal lens array 111.
  • the measurement light irradiation unit 16 includes a shutter 141, an optical filter 142 for fluorescence excitation, a mirror 143, and a cylindrical beam expander 144.
  • the light source 101 to the cylindrical beam expander 135 is an optical system for irradiating measurement light for absorbance measurement, and the light source 101 to the cylindrical beam expander 144 is for irradiating measurement light for fluorescence measurement.
  • Optical system is an optical system for irradiating measurement light for absorbance measurement, and the light source 101 to the cylindrical beam expander 144 is for irradiating measurement light for fluorescence measurement.
  • the shutter 132 is retracted from the optical path when performing the absorbance measurement, and inserted into the optical path when performing the fluorescence measurement.
  • the optical filter 133 for measuring absorbance has a function of passing only light in a wavelength band for measuring absorbance.
  • the cylindrical beam expander 135 may be the same as the cylindrical beam expander 107 according to the first embodiment. Note that a beam splitter 136, a condenser lens 137, and a photodetector 138 are provided between the optical filter 133 for measuring absorbance and the mirror 134 to monitor the measuring light for measuring the absorbance.
  • the shutter 141 is retracted from the optical path when performing the fluorescence measurement, and inserted into the optical path when performing the absorbance measurement. That is, one of the shutters 132 and 141 is selectively inserted into the corresponding optical path, and the other is retracted.
  • the fluorescence measurement optical filter 142 has a function of passing only light in a wavelength band used for fluorescence measurement.
  • the cylindrical beam expander 144 may be the same as the cylindrical beam expander 107 of the first embodiment.
  • the cylindrical beam expander 135 for measuring the absorbance is configured to project the measurement light substantially perpendicularly to the main plane of the toroidal lens of the toroidal lens array 111.
  • the cylindrical beam expander 144 for fluorescence measurement is configured to project the measurement light obliquely to the main plane of the toroidal lens of the toroidal lens array 111. That is, in this embodiment, the measurement light for measuring the absorbance and the measurement light for measuring the fluorescence are projected at different angles to the toroidal lens array 111.
  • the former is incident perpendicularly to the main plane of the toroidal lens of the toroidal lens array 111, and the latter is incident obliquely, but the present invention is not limited to this.
  • the latter may be incident from an oblique direction, and the former may have an incident angle different from that of the latter.
  • the shutter 132 When performing absorbance measurement, the shutter 132 is retracted outside the optical path as described above, and the shutter 141 is inserted into the optical path.
  • the measurement light for measuring the absorbance passes through the light source 101 to the mirror 134 and is expanded by the cylindrical beam expander 135 in the arrangement direction of the plurality of capillaries 14 of the capillary array 13, and as shown in FIG.
  • the light is incident substantially perpendicular to the plane, and uniformly irradiates the plurality of capillaries 14 of the capillary array 13.
  • the absorbance can be measured in the same manner as in the above-described embodiment.
  • the shutter 141 when performing the fluorescence measurement, the shutter 141 is retracted outside the optical path as described above, and the shutter 132 is inserted into the optical path.
  • the measurement light for fluorescence measurement passes through the light source 101 to the mirror 143 and is expanded by the cylindrical beam expander 144 in the arrangement direction of the plurality of capillaries of the capillary array 13, and as shown in FIG. Light is incident on the plane obliquely. Thereby, the plurality of capillaries in the capillary array 13 are uniformly irradiated from the oblique direction with the measurement light for fluorescence measurement.
  • the fluorescence emitted from a protein or the like migrating in the capillary by the irradiation of the measurement light enters the lens array 201 and is guided by the optical fiber array 202 to a spectroscope (not shown). Since the measurement light for fluorescence measurement is obliquely incident on the main lens plane of the toroidal lens array 111, it is avoided that the measurement light is incident on the lens array 201 and the optical fiber array 202. Thereby, the S / N ratio of the fluorescence measurement can be improved. Note that the measurement light for the fluorescence measurement may be incident from an oblique direction opposite to that of FIG. 14 (a left oblique direction as viewed from the toroidal lens array 111), or as shown in FIG. The light may be incident from both sides.
  • the capillary of the capillary array 13 is a cylindrical glass tube as shown in the upper right of FIG. 16, and has a circular cross section. Note that portions other than the light irradiation portion are covered with polyimide or the like. Instead, as shown in the lower right of FIG. 16, the cross section of the capillary is rectangular, and the measuring light irradiating section 16 is set so that the measuring light hits substantially perpendicularly to one side of the rectangular shape and the incident efficiency increases. Can be adjusted.
  • the outer shape may be circular and the inner shape may be rectangular, or vice versa. The shape may be different only in the vicinity of the light irradiation site in addition to the entire capillary.
  • condenser lens # 103: light source side fiber, # 104: collimating lens, # 105: rectangular mask, # 106: wavelength Selection filter, # 107: cylindrical beam expander, # 108: rectangular mask, # 109, 110: mirror, # 111: toroidal lens array, # 114: optical branching circuit, # 116: optical fiber array, # 117: condensing optical system, # 118: mirror, 119 ...
  • Polygon mirror, 20 f ⁇ lens, # 121, 122: dichroic mirror, # 123: excitation wavelength monochromatic filter, # 124: condenser lens, 125: condenser lens, # 131: dichroic mirror, # 132: shutter, # 133: optical filter for measuring absorbance, # 134 ...

Abstract

本発明は、蛋白質の解析を高スループットで実行することを可能にした電気泳動装置を提供することを目的とする。本発明に係る電気泳動装置は、複数のキャピラリを配列してなるキャピラリアレイと、測定光を照射する測定光照射部と、前記複数のキャピラリに対応して配列される複数の第1レンズを含む第1レンズアレイと、前記複数のキャピラリに対応して配列される複数の第2レンズを含む第2レンズアレイと、前記測定光照射部から前記第1レンズアレイを介して前記キャピラリに入射する光を前記第2レンズアレイを介して受光する受光部とを備える。

Description

電気泳動装置
 本発明は、電気泳動装置に関する。
 蛋白質の解析等を目的としたキャピラリを用いた電気泳動装置が知られている(例えば特許文献1参照)。従来、市場に提供されている、蛋白質の解析用のキャピラリ電気泳動装置においては、蛋白質の解析のためのキャピラリが1本であり、スループットの向上が難しい。蛋白質の蛍光強度測定と、蛋白質の吸光度測定とを、1つの装置において高スループットで実行可能な装置が望まれている。
国際公開第2015/005048号
 本発明は、蛋白質の解析を高スループットで実行することを可能にした電気泳動装置を提供することを目的とする。
 本発明に係る電気泳動装置は、複数のキャピラリを配列してなるキャピラリアレイと、測定光を照射する測定光照射部と、前記複数のキャピラリに対応して配列される複数の第1レンズを含む第1レンズアレイと、前記複数のキャピラリに対応して配列される複数の第2レンズを含む第2レンズアレイと、前記測定光照射部から前記第1レンズアレイを介して前記キャピラリに入射する光を前記第2レンズアレイを介して受光する受光部とを備える。
 本発明によれば、蛋白質の解析を高スループットで実行することが可能になる。
第1の実施の形態のキャピラリ電気泳動装置の全体構成の概略図である。 測定光照射部及び受光部の構成例を示す概略図(平面図)である。 測定光照射部及び受光部の構成例を示す概略図(断面図)である。 第2の実施の形態のキャピラリ電気泳動装置の測定光照射部及び受光部の構成例を示す概略図である。 第2の実施の形態の光分岐回路の一例を示す。 第2の実施の形態の光分岐回路の一例を示す。 第3の実施の形態のキャピラリ電気泳動装置の測定光照射部及び受光部の構成例を示す概略図である。 第4の実施の形態のキャピラリ電気泳動装置の測定光照射部及び受光部の構成例を示す概略図である。 第4の実施の形態の変形例を示す。 第5の実施の形態のキャピラリ電気泳動装置の測定光照射部の構成例を示す概略図である。 第5の実施の形態の変形例を示す。 第6の実施の形態のキャピラリ電気泳動装置の測定光照射部及び受光部の構成例を示す概略図である。 第6の実施の形態の動作を説明する。 第6の実施の形態の動作を説明する。 第6の実施の形態の動作を説明する。 キャピラリの構造に関する変形例を示す。
 以下、添付図面を参照して本実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
[第1の実施の形態]
 図1に、第1の実施の形態のキャピラリ電気泳動装置1の全体構成の概略図を示す。
 キャピラリ電気泳動装置1は、測定対象物であるサンプルを収納する複数のサンプル容器11と、サンプル容器11を保持するサンプルトレイ12と、複数のキャピラリ14から構成されるキャピラリアレイ13と、高電圧をキャピラリ14に印加する高圧電源15と、電気泳動分離時にサンプル注入側のキャピラリアレイ13及び電極が浸されるバッファー液を保持する電極槽10と、サンプル注入側とは反対側のバッファー液を保持する電極槽21と、測定光照射部16と、受光部17と、キャピラリ14内に電気泳動媒体18を注入するポンプユニット19と、キャピラリ14内を一定の温度に保つ恒温槽20とを備える。
 サンプル容器11と電極槽10は移動台(図示せず)に保持され、サンプルを導入する際にはサンプル容器11が、泳動分離時には電極槽10が、キャピラリアレイ14の端部に移動する。また、図示していないが、このキャピラリ電気泳動装置1は、動作制御するための制御部、データ処理部、表示部、記録部などを備える。
 キャピラリアレイ13は、管状部材である石英製キャピラリ14を複数本(例えば、4本、8本、12本、16本、24本など)配列させて構成され、それらの一部に光照射部位8を有する。キャピラリ14は通常ポリイミドなどで被覆されているが、光照射部位8ではその被覆が除去され、被覆除去部分が整列されて光照射部位8が構成される。
 測定光照射部16は、キャピラリアレイ13に設けられた光照射部位8に測定光を照射するため、光源と、光ファイバやレンズなどの投光光学系を有する。また、受光部17は、キャピラリアレイ13の光照射部位8を透過した測定光やサンプル中の成分に付与された蛍光体からの蛍光を受光するための受光素子と、光ファイバやレンズや分光器などの受光光学系を備える。
 電気泳動媒体18(例えば、ポリマー水溶液)をキャピラリ14内に注入するポンプユニット19は、ゲルブロック23と、シリンジ24と、バルブ22と、キャピラリアレイ13との接続部25を有する。各キャピラリ14内に泳動媒体であるポリマー水溶液を充填する際には、キャピラリアレイ13を接続部25に連結し、例えば、図示しない制御部によって、バルブ22を閉じ、シリンジ24を押し込むことによって、シリンジ24内のポリマー水溶液がキャピラリ14内に注入される。バルブ22から電極槽21までの泳動路にも、バルブ操作によりポリマー水溶液を充填する。なお、図1は、バルブ22が開閉バルブである例を示しているが、バルブ22を三方バルブなどで構築することも可能である。
 キャピラリ14へのサンプル導入は、周知のとおり、電気的な手段、圧力印加手段などにより行うことができる。電気的な手段によりサンプルを導入する場合は、サンプル容器11内のサンプル溶液内にキャピラリ14および電極を挿入し、電極槽21との間に電圧を印加することで行う。その後、サンプル容器11から共通の電極槽10に入れ替える。
 高圧電源15により電圧が印加されると、サンプル内の成分は、電気泳動により分子量等の性質に従って分離しながらキャピラリ14内を電極槽21に向けて移動する。移動した成分は、キャピラリ14に設けられた光照射部位8で測定光照射部16により測定光が照射され、受光部17にて成分に付与された蛍光や成分を通過した透過光などが検出される。なお、キャピラリアレイ13の各キャピラリ14は、同じ長さになるように調整される。また、放熱特性向上のため、光照射部位以外は、各キャピラリ14は均等に分離して配置させるのが望ましい。
 図2及び図3は、第1の実施の形態の測定光照射部16及び受光部17の構成例を示している。図2は平面図であり、図3は断面図である。この図2の測定光照射部16は、キャピラリアレイ13において一列に並べられた複数のキャピラリ14に対し均一に測定光を照射するのに好適な構成を有している。また、本装置は、同じキャピラリにより、蛋白質の蛍光測定と吸光度測定を実行可能に構成されている。本装置によれば、キャピラリアレイ13の交換をすることなく、蛍光測定及び吸光度測定を測定することができる。
 この図2の例の測定光照射部16は、光源101と、集光レンズ102と、光源側ファイバ103と、コリメートレンズ104と、矩形マスク105と、波長選択フィルタ106と、シリンドリカルビームエキスパンダ107と、矩形マスク108と、ミラー109、110と、トロイダルレンズアレイ111とを備えている。集光レンズ102は、光源側ファイバ103の入射端面に光源101からの光を集光させるよう構成されている。コリメートレンズ104は、光源側ファイバ103の出射端面から射出された光を平行光に変換する。矩形マスク105は、コリメートレンズ104から射出された平行光を、矩形状の光に絞るマスクである。波長選択フィルタ106は、測定の種類(吸光度測定、蛍光測定)に応じて、通過される波長を選択する機能を有する。
 シリンドリカルビームエキスパンダ107は、シリンドリカルレンズを含む光学系であり、矩形マスク105を通過させた矩形のビームをキャピラリアレイ13の配列に沿った方向に拡大するよう構成されている。シリンドリカルビームエキスパンダ107を通過した光は、矩形マスク108の矩形状の開口を通過し、ミラー109、110を介してトロイダルレンズアレイ111に入射する。トロイダルレンズアレイ111は、キャピラリアレイ13中のキャピラリ14の光照射部分の長手方向と同一の方向を長手方向として配列される複数のトロイダルレンズを有する。なお、キャピラリアレイ13の配列間隔やその他の状況によっては、トロイダルレンズに代えて通常のレンズを配列したレンズアレイを採用することも可能である。
 この測定光照射部16の構成によれば、光源101から発せられた光を、キャピラリアレイ13の配列に従ってシリンドリカルビームエキスパンダ107及び矩形マスク105、108により矩形状に成形する。シリンドリカルビームエキスパンダ107によりビームが拡大されることでビームの輝度はその断面において均一化され、キャピラリアレイ13の配列方向の強度のバラツキが抑えられる。更に、その輝度が均一化された光がトロイダルレンズアレイ111中のトロイダルレンズにより、対応するキャピラリアレイ13中のキャピラリ14に入射する。ビーム断面の輝度が均一化されることで、キャピラリ14の各々に入射する光の光量も均一化される。すなわち、複数のキャピラリ14の間で、入射される光の光量を略等しくすることができるので、複数のキャピラリ14を用いた場合においても、測定条件が均一化されるとともに、複数のキャピラリ14に対し同時に測定を実行することができる。
 また、受光部17は、レンズアレイ201と、光ファイバアレイ202とを備える。レンズアレイ201は、キャピラリアレイ13を通過した測定光を集光させて光ファイバアレイ202中の光ファイバの入射端面に集光させるよう構成される。レンズアレイ201は、トロイダルレンズアレイ111中のトロイダルレンズの数に対応する数のレンズを配列して構成されている。光ファイバアレイ202は、レンズアレイ201のレンズの数に対応する複数本の光ファイバを配列してなり、レンズアレイ201から入射した光を導光して、図示しない分光器に入射させ、図示しない光検出器にて光検出される。
 また、ミラー110とトロイダルレンズアレイ111との間には、蛍光用ダイクロイックミラー203が配置されている。この蛍光用ダイクロイックミラー203は、本装置において蛍光測定を行う場合において、光源101からミラー109及び110で反射して到達した測定光を通過させる一方、キャピラリアレイ13から発する蛍光を反射させる機能を有する。蛍光用ダイクロイックミラー203で反射した蛍光は、図示しない光学系を介して分光器に入射し、検出される。
 第1の実施の形態のキャピラリ電気泳動装置によれば、複数のキャピラリ14の間で入射する光の輝度を均一にすることができ、蛋白質の吸光度を高スループットで測定することができる。光源101から発せられた光を、キャピラリアレイ13の配列に従ってシリンドリカルビームエキスパンダ107及び矩形マスク105、108により矩形状に成形する。シリンドリカルビームエキスパンダ107によりビームが拡大されることでビームの輝度はその断面において均一化される。更に、その輝度が均一化された光がトロイダルレンズアレイ111中のトロイダルレンズにより、対応するキャピラリアレイ13中のキャピラリに入射する。ビーム断面の輝度が均一化されることで、キャピラリ14の各々に入射する光の光量も均一化される。すなわち、複数のキャピラリ14の間で、入射される光の光量を略等しくすることができるので、複数のキャピラリ14を用いた場合においても、測定条件が均一化される。
 なお、矩形マスク105及び108の開口部の形状は、対向する辺が平行な矩形とすることができるが、これに代えて、図2の右上に示すような、端部に向かうほどその幅が大きくなる糸巻き型の開口部108Nにしてもよい。キャピラリアレイ13の端部に位置するキャピラリでは、受光される測定光の輝度が中央部のキャピラリ14に比べ小さくなる傾向にある。この糸巻き型の開口部によれば、このような輝度のバラつきを補正することができる。なお、例ではレンズアレイを用いたが、単一レンズを使って結像させてもよい。
 [第2の実施の形態]
 次に、本発明の第2の実施の形態に係るキャピラリ電気泳動装置を、図4を参照して説明する。第2の実施の形態のキャピラリ電気泳動装置の全体構造は、第1の実施の形態(図1)と同様である。この第2の実施の形態は、測定光照射部16の構成が第1の実施の形態とは異なっている。なお、第1の実施の形態の測定光照射部16の構成要素と共通の構成要素については図2及び図3と同一の符号を付しているので、以下では重複する説明は省略する。
 この第2の実施の形態の測定光照射部16は、光源101、集光レンズ102、光分岐回路114、及びトロイダルレンズアレイ111を備えている。光分岐回路114は、集光レンズ102とトロイダルレンズアレイ111との間に設けられ、光源101からの光を複数の経路に分岐させる機能を有する。なお、図4では、図示は省略しているが、この第2の実施の形態においても、蛍光測定のための蛍光用ダイクロイックミラー203を含む蛍光測定用の受光光学系を備えることができる。
 前述した第1の実施の形態では、光源101からの光がシリンドリカルビームエキスパンダ107によりキャピラリアレイ13の配列方向に拡大され、トロイダルレンズアレイ111においてキャピラリアレイ13内のキャピラリ14の本数に対応した数の光束に分割される。これに対し、第2の実施の形態では、光分岐回路114が光を分割する役割を有し、トロイダルレンズアレイ111に光が入射するよりも前に、測定光がキャピラリアレイ13中のキャピラリの本数に対応した数の光束に分割される。
 光分岐回路114は、図5に示すような光導波路であってもよいし、図6に示すようなプリズムアレイ115であってもよい。この第2の実施の形態によっても、第1の実施の形態と同一の効果を奏することができる。
 [第3の実施の形態]
 次に、本発明の第3の実施の形態に係るキャピラリ電気泳動装置を、図7を参照して説明する。この第3の実施の形態のキャピラリ電気泳動装置の全体構造は、第1の実施の形態(図1)と同様である。この第3の実施の形態は、測定光照射部16及び受光部17の構成が第1の実施の形態とは異なっている。
 第3の実施の形態のキャピラリ電気泳動装置は、測定光照射部16が、光源101、集光レンズ102’、光ファイバアレイ116、及び集光光学系117を備えている。この測定光照射部16は、複数の光ファイバを配列してなる光ファイバアレイ116により光を複数の光に分割している。光ファイバアレイ116は、キャピラリ14の配列、及びキャピラリ14の数に合わせて複数の光ファイバを配列させて構成されている。ただし、光ファイバアレイ116中の光ファイバは、その出射端側でキャピラリアレイ13中のキャピラリ14の配列と対応して配列されていればよく、入射端側では、集光レンズ102’からの入射光が高効率に入射可能な配列とされていればよく、キャピラリアレイ13での配列と対応させる必要はない。なお、光ファイバアレイ116中の複数の光ファイバのうち、1本または複数の光ファイバを、参照光の導光用の光ファイバとして用いることもできる。光ファイバアレイ116の入射端側では、溶融末端方法により処理し、接着剤をなくし、損失を抑える光ファイバアレイとすることも有効である。
 また、光ファイバアレイ116中の複数の光ファイバの各々は、更に複数の光ファイバの集合であるバンドルファイバとされてもよい。なお、1本のバンドルファイバ中の複数の光ファイバは、入射端では丸形又はマトリクス状(複数行×複数列)に配列される一方で、出射端側では、一列に配置されていてもよい。出射端側の光ファイバがキャピラリ14の長手方向に一列に配置されることで、キャピラリ14に対し光を簡便に、高効率で入射させることが可能になる。
 光源101からの光は、集光レンズ102’により集光され、集光レンズ102’は光ファイバアレイ116の入射端側において光源101の像を結像させる。なお、図示は省略しているが、集光レンズ102’は、複数のレンズを備えていてもよく、また、光を均一に分散せるための光拡散素子を更に備えてもよい。
 また、この第3の実施の形態の受光部17は、集光光学系211と、光ファイバアレイ212と、蛍光用ビームスプリッタアレイ213と、集光レンズアレイ214と、光ファイバアレイ215とを備えている。集光光学系211は、キャピラリアレイ13を通過した測定光を集光させて光ファイバアレイ212の入射端面に入射させるよう構成されている。光ファイバアレイ212は、集光光学系211により集光された光を分光器216に向けて導光する機能を有する。光ファイバアレイ212を通過した光は、吸光度測定のための光として分光器216に入射する。
 一方、光源101から蛍光測定用の測定光(蛍光励起光)が出射されてキャピラリアレイ13に入射すると、キャピラリ14内を通る蛋白質に付加された蛍光体から蛍光が発生する。蛍光用ビームスプリッタアレイ213の各々は、この蛍光を反射させる機能を有する。蛍光用ビームスプリッタアレイ213は、蛍光測定用の測定光は透過させるよう構成されている。
 蛍光用ビームスプリッタアレイ213で反射した光は、集光レンズアレイ214の各々で集光されて光ファイバアレイ215の光ファイバの入射端面に入射し、分光器216まで導光される。
 この第3の実施の形態のキャピラリ電気泳動装置によれば、光源101の光源像が集光レンズ102’で光ファイバアレイ116の入射端面に結像されるので、光ファイバアレイ116の複数の光ファイバへの入射光の輝度を略均一にすることができる。
 このため、キャピラリアレイ13の複数のキャピラリ14に均一な輝度の光を照射することができ、複数のキャピラリを用いた場合でも、高いスループットで且つ正確な測定を行うことが可能となる。
 [第4の実施の形態]
 次に、本発明の第4の実施の形態に係るキャピラリ電気泳動装置を、図8を参照して説明する。この第4の実施の形態のキャピラリ電気泳動装置の全体構造は、第1の実施の形態(図1)と同様である。この第4の実施の形態は、測定光照射部16の構成が第1の実施の形態とは異なっている。
 この第4の実施の形態の測定光照射部16は、光源101と、集光レンズ102と、光源側ファイバ103と、コリメートレンズ104と、矩形マスク105と、波長選択フィルタ106と、ミラー118と、ポリゴンミラー119と、fθレンズ120と、トロイダルレンズアレイ111とを備えている。
 光源101~波長選択フィルタ106は、第1の実施の形態のものと同様のものであってよい。光源101から出て矩形マスク105でビーム成形されてミラー118で反射した測定光は、回転軸を中心に所定の速度で回転するポリゴンミラー119により所定の回転角で走査される。走査された光線は、fθレンズ120により光軸に平行な光に変換される。ポリゴンミラー119とfθレンズ120とにより構成される光走査部により測定光が走査がされることにより、測定光はトロイダルレンズアレイ111の複数のトロイダルレンズに順次入射する。前述の実施の形態では、トロイダルレンズアレイ111中の複数のトロイダルレンズに同時に測定光が入射するが、この第4の実施の形態では、同時ではなく、測定光が順次複数のトロイダルレンズのいずれかに入射する。複数のキャピラリにおいて、測定光の投影タイミングが異なるが、ポリゴンミラー119の回転速度を高速にすることにより、投影時間差の影響を受けずに、複数のキャピラリ14について略同一条件下で測定をすることが可能となる。このため、この第4の実施の形態でも、高スループットで複数のキャピラリを用いた蛋白質の吸光度測定を行うことが可能になる。
 図9は、第4の実施の形態の変形例を示している。この変形例では、図8の構成に加え、更にミラー118とポリゴンミラー119との間に集光レンズ125を備えている。この集光レンズ125は、fθレンズ120から出た光が光軸に沿った平行光となるよう調整する役割を有する。fθレンズ120から出た光が平行光となることにより、トロイダルレンズアレイ111及びキャピラリアレイ13の光照射部位に対し高効率で測定光を入射させることが可能になる。
[第5の実施の形態]
 次に、本発明の第5の実施の形態に係るキャピラリ電気泳動装置を、図10を参照して説明する。この第5の実施の形態のキャピラリ電気泳動装置の全体構造は、第1の実施の形態(図1)と同様である。この第5の実施の形態は、測定光照射部16の構成が前述の実施の形態とは異なっている。
 この第5の実施の形態の測定光照射部16は、光源101、集光レンズ102、ダイクロイックミラー121、光分岐回路114、トロイダルレンズアレイ111、ダイクロイックミラー122、励起波長単色化フィルタ123、及び集光レンズ124を備えている。光源101、集光レンズ102、光分岐回路114は、第2の実施の形態(図4)と同様のものであってよい。
 前述の実施の形態では、吸光度測定の測定光と、蛍光測定の測定光とが同一の投影光路に沿ってキャピラリアレイ13に投影される構成を採用している。これに対し、この第5の実施の形態では、蛍光測定用の測定光は、吸光度測定の測定光とは異なる投影光路に沿って投影される。すなわち、この第5の実施の形態の測定光照射部16は、まずダイクロイックミラー121において、蛍光測定用の測定光は透過させる一方で、吸光度測定の測定光は反射させる。吸光度測定用の測定光は、第2の実施の形態と同様に、光分岐回路114で複数の光束に分岐され、トロイダルレンズアレイ111に入射する。
 一方、蛍光測定の測定光は、ダイクロイックミラー121を通過した後、ダイクロイックミラー122で反射し、励起波長単色化フィルタ124において、蛍光測定に用いられる波長成分の光のみが通過する。励起波長単色化フィルタ124を通過した蛍光測定用の測定光の1本の光束は、トロイダルレンズアレイ111を通過せず、図10に示すように、キャピラリアレイ13中の複数のキャピラリ14に、その配列方向から入射する。なお、ダイクロイックミラー122は、蛍光測定に不要な近赤外光を透過させるような波長特性を有したものとすることができる。
 蛍光体を付加された蛋白質がキャピラリ14内を通過し、蛍光測定用の測定光を照射されることにより蛍光を発すると、その蛍光はレンズアレイ201に入射し、光ファイバアレイ202により図示しない分光器まで導光される。蛍光測定用の測定光は、レンズアレイ201の主平面とは平行の方向(キャピラリアレイ13の複数のキャピラリ14の配列方向)に導光されるので、測定光は殆どレンズアレイ201には入射されない。このため、この第5の実施の形態によれば、高いS/N比で蛍光測定を実行することができる。
 この第5の実施の形態によっても、吸光度測定は前述の実施の形態と同様に実施することができ、複数のキャピラリに対し同時に、同一の条件で吸光度測定を実行することができるので、高スループットでの吸光度測定が可能になる。また、蛍光測定に関しては、1本の蛍光測定用の測定光を、1列に配列された複数のキャピラリ14に対し、その配列方向から照射する構成としているので、複数のキャピラリ14に対し同時に測定を行うことが可能になる。
 図11は、第5の実施の形態の変形例を示している。変形例では、蛍光測定用の測定光が照射する複数のキャピラリの位置が、吸光度測定用の測定光が照射する複数のキャピラリの位置と異なる。このように、吸光度測定の測定光と蛍光測定用の測定光の照射位置(通過位置)を異ならせることにより、異なる測定を、互いに干渉することなく実行することができ、測定のスループットを更に向上させることができる。なお、照射位置が異なることに対応して、受光部17は、吸光度測定の測定光の透過光を導光するための光ファイバアレイ212と、蛍光測定によりキャピラ14リで発生した蛍光を導光するための光ファイバアレイ215とを有している。また、図11では、吸光度測定において、キャピラリ14の泳動路をいわゆるZ型になるように配置している。すなわち、不透明な絶縁体ブロックに両端が開口した中空部を設け、両開口端を透明窓材でシールし、また中空部の両端部に絶縁体外に通じる孔を設けた流路を複数配置したZ型流路アレイユニット300を設け、複数の孔にキャピラリ14を接続し、電気泳動路とする。中空部の径を十分小さくすることで、吸光度測定のための光路長を、蛍光測定のための光路長に比べ長くすることができる。中空部の内面は反射コーティング処理することで感度向上できる。
 なお、この第5の実施の形態及び変形例においては、図11の左上に示すように、キャピラリアレイ13は、サンプルの泳動路となるキャピラリ13Rに加え、それらの間に適宜ダミーキャピラリ13Dを配置したものとすることができる。この場合、蛍光測定用の測定光は、キャピラリ13Rとダミーキャピラリ13Dとを通過する。キャピラリ13Rは、所定間隔だけ間隔を空けて配置されるが、その場合、図10のように蛍光測定用の測定光を入射させると、測定光の伝搬がしにくくなる。ダミーキャピラリ13Dをキャピラリ13Rの間に配置することで、測定光が伝搬しやすくなる。なお、ダミーキャピラリとしては、内部をポリマーで満たした同じ断面形状のキャピラリのほか、ガラスロッドなどを使うことができる。
[第6の実施の形態]
 次に、本発明の第6の実施の形態に係るキャピラリ電気泳動装置を、図12を参照して説明する。この第6の実施の形態のキャピラリ電気泳動装置の全体構造は、第1の実施の形態(図1)と同様である。この第6の実施の形態は、測定光照射部16の構成が前述の実施の形態とは異なっている。この第6の実施の形態は、吸光度測定用の測定光と、蛍光測定用の測定光の投影経路が互いに異なる構成を有しており、この点、第5の実施の形態と共通している。ただし、この第6の実施の形態では、トロイダルレンズアレイ111の主平面に対し斜め方向から蛍光測定用の測定光(励起光)が入射される構成としている。
 第6の実施の形態のキャピラリ電気泳動装置の測定光照射部16は、光源101、集光レンズ102、ダイクロイックミラー131、シャッタ132、吸光度測定光用光学フィルタ133、ミラー134、シリンドリカルビームエキスパンダ135、及びトロイダルレンズアレイ111を備えている。また、測定光照射部16は、シャッタ141、蛍光励起用光学フィルタ142、ミラー143、シリンドリカルビームエキスパンダ144を備えている。光源101~シリンドリカルビームエキスパンダ135は、吸光度測定のための測定光を照射するための光学系であり、また、光源101~シリンドリカルビームエキスパンダ144は、蛍光測定のための測定光を照射するための光学系である。
 シャッタ132は、吸光度測定を行う場合には、その光路から退避され、蛍光測定を行う場合には光路に挿入される。吸光度測定用光学フィルタ133は、吸光度測定のための波長帯の光のみを通過させる機能を有する。シリンドリカルビームエキスパンダ135は、第1の実施の形態のシリンドリカルビームエキスパンダ107と同一のものであってよい。なお、吸光度測定用光学フィルタ133とミラー134との間には、吸光度測定用の測定光のモニタのため、ビームスプリッタ136、集光レンズ137、及び光検出器138が設けられる。
 シャッタ141は、蛍光測定を行う場合には、その光路から退避され、吸光度測定を行う場合には光路に挿入される。すなわち、シャッタ132と141は、いずれか一方が選択的に対応する光路に挿入され、他方は退避される関係にある。蛍光測定用光学フィルタ142は、蛍光測定のために用いる波長帯の光のみを通過させる機能を有する。シリンドリカルビームエキスパンダ144は、第1の実施の形態のシリンドリカルビームエキスパンダ107と同一のものであってよい。
 吸光度測定用のシリンドリカルビームエキスパンダ135は、トロイダルレンズアレイ111のトロイダルレンズの主平面に対し略垂直に測定光を投影するよう構成されている。一方、蛍光測定用のシリンドリカルビームエキスパンダ144は、トロイダルレンズアレイ111のトロイダルレンズの主平面に対し斜めに測定光を投影するように構成されている。すなわち、この実施の形態では、吸光度測定用の測定光と、蛍光測定用の測定光とが、トロイダルレンズアレイ111に対し異なる角度で投影される。図示の例では、前者がトロイダルレンズアレイ111のトロイダルレンズの主平面に対し垂直に、後者が斜め方向に入射されるが、これに限定されるものではない。後者が斜め方向から入射され、前者が後者とは異なる入射角度とされていればよい。
 この第6の実施の形態の動作を、図13~図15を参照して説明する。吸光度測定を行う場合には、前述のようにシャッタ132が光路外に退避され、シャッタ141は光路に挿入される。吸光度測定用の測定光は、光源101~ミラー134を通ってシリンドリカルビームエキスパンダ135によりキャピラリアレイ13の複数のキャピラリ14の配列方向に拡大され、図13に示すように、トロイダルレンズアレイ111の主平面に対し略垂直に入射し、キャピラリアレイ13の複数のキャピラリ14を均一に照射する。これにより、前述の実施の形態と同様にして吸光度の測定を行うことができる。
 一方、蛍光測定を行う場合には、前述のようにシャッタ141が光路外に退避され、シャッタ132は光路に挿入される。蛍光測定用の測定光は、光源101~ミラー143を通ってシリンドリカルビームエキスパンダ144によりキャピラリアレイ13の複数のキャピラリの配列方向に拡大され、図14に示すように、トロイダルレンズアレイ111のレンズ主平面に対し斜め方向から入射する。これにより、キャピラリアレイ13中の複数のキャピラリが、蛍光測定用の測定光により、斜め方向から均一に照射される。この測定光の照射によりキャピラリ内を泳動する蛋白質などから発せられた蛍光は、レンズアレイ201に入射し、光ファイバアレイ202により図示しない分光器まで導光される。蛍光測定用の測定光は、トロイダルレンズアレイ111のレンズ主平面に対し斜め方向から入射されるため、レンズアレイ201及び光ファイバアレイ202には入射することが回避される。これにより、蛍光測定のS/N比を向上させることができる。
 なお、蛍光測定の測定光は、図14とは反対の斜め方向(トロイダルレンズアレイ111から見て斜め左方向)から入射させてもよいし、図15に示す様に、トロイダルレンズ例111の左右両側から入射させてもよい。
[その他]
 上述の実施形態の各々において、キャピラリアレイ13のキャピラリは、図16右上に示すように、円筒状のガラス管であり、断面は円形となっている。なお、光照射部位以外は、ポリイミドなどで被覆されている。これに代えて、図16の右下に示すように、キャピラリの断面を矩形形状とし、その矩形形状の一辺に対し略垂直に測定光が当たり、入射効率が上がるように測定光照射部16を調整することができる。外形が円形、内形が矩形形状であっても、その逆でもよい。形状はキャピラリ全体のほか、光照射部位近傍のみ異なっていてもよい。
 以上、本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…キャピラリ電気泳動装置、 11…サンプル容器、 12…サンプルトレイ、 13…キャピラリアレイ、 14…キャピラリ、 15…高圧電源、 16…測定光照射部、 17…受光部、 18…電気泳動媒体、 19…ポンプユニット、 20…恒温槽、 21:電極槽、 22:バルブ、 101…光源、 102、102’…集光レンズ、 103…光源側ファイバ、 104…コリメートレンズ、 105…矩形マスク、 106…波長選択フィルタ、 107…シリンドリカルビームエキスパンダ、 108…矩形マスク、 109、110…ミラー、 111…トロイダルレンズアレイ、 114…光分岐回路、 116…光ファイバアレイ、 117…集光光学系、 118…ミラー、 119…ポリゴンミラー、 120…fθレンズ、 121、122…ダイクロイックミラー、 123…励起波長単色化フィルタ、 124…集光レンズ、125…集光レンズ、 131…ダイクロイックミラー、 132…シャッタ、 133…吸光度測定用光学フィルタ、 134…ミラー、 135…シリンドリカルビームエキスパンダ、 136…ビームスプリッタ、 137…集光レンズ、 138…光検出器、 141…シャッタ、 142…蛍光励起用光学フィルタ、 143…ミラー、 144…シリンドリカルビームエキスパンダ、 201…レンズアレイ、 202…光ファイバアレイ、 211…集光光学系、 212、215…光ファイバアレイ、 213…蛍光用ビームスプリッタアレイ、 214…集光レンズアレイ、 215…光ファイバアレイ、 216…分光器。

Claims (10)

  1.  複数のキャピラリを配列してなるキャピラリアレイと、
     測定光を照射する測定光照射部と、
     前記複数のキャピラリに対応して配列される複数の第1レンズを含む第1レンズアレイと、
     前記複数のキャピラリに対応して配列される複数の第2レンズを含む第2レンズアレイと、
     前記測定光照射部から前記第1レンズアレイを介して前記キャピラリに入射する光を前記第2レンズアレイを介して受光する受光部と
    を備えたことを特徴とする電気泳動装置。
  2.  前記測定光照射部は、前記測定光を複数の分岐光に分割し、前記複数の分岐光の各々を前記キャピラリに入射させる光分岐部をさらに備える、請求項1に記載の電気泳動装置。
  3.  前記測定光照射部は、蛍光測定用の測定光を照射可能に構成され、
     前記受光部は、前記蛍光測定用の測定光を透過させ、前記キャピラリからの光を透過させるダイクロイックミラーを更に備えた、請求項1に記載の電気泳動装置。
  4.  前記測定光照射部は、光源からの光を矩形状のビームに成形する矩形マスクと、
     前記矩形状のビームを前記キャピラリアレイにおけるキャピラリの配列方向に拡大するシリンドリカルビームエキスパンダと
     を備えたことを特徴とする、請求項1に記載の電気泳動装置。
  5.  前記測定光照射部は、前記測定光を走査して前記第1レンズアレイに順次前記測定光を入射させる光走査部を備える、請求項1に記載の電気泳動装置。
  6.  前記測定光照射部は、
     吸光度測定のための第1測定光を前記第1レンズアレイを介して前記キャピラリアレイに照射する第1照射部と、
     蛍光測定のための第2測定光の1本の光束を、前記第1レンズアレイを介さず、前記キャピラリアレイの複数のキャピラリに入射させる第2照射部と
     を備える、請求項1に記載の電気泳動装置。
  7.  前記第1照射部による前記キャピラリアレイの照射部分と、
     前記第2照射部による前記キャピラリアレイの照射部分とは、互いに位置が異なる、請求項6に記載の電気泳動装置。
  8.  前記測定光照射部は、
     吸光度測定のための第1測定光を前記第1レンズアレイに第1の角度で入射させる第1照射部と、
     蛍光測定のための第2測定光を前記第1レンズアレイに前記第1の角度とは異なる第2の角度で入射させる第2照射部と
     を備える、請求項1に記載の電気泳動装置。
  9.  前記キャピラリアレイ中のキャピラリは、少なくともその外形の一部が矩形状である通路を備える、請求項1~8のいずれか1項に記載の電気泳動装置。
  10.  複数のキャピラリを配列してなるキャピラリアレイと、
     吸光度測定のための第1の光照射部と、
     蛍光測定のための第2の光照射部と、
     前記キャピラリアレイからの光を受光する受光部と、
     を備え、
     前記第1照射部による前記キャピラリアレイの照射部分と、前記第2照射部による前記キャピラリアレイの照射部分とは、互いに位置が異なり、キャピラリ内の光路長が互いに異なることを特徴とする電気泳動装置。
PCT/JP2018/023894 2018-06-22 2018-06-22 電気泳動装置 WO2019244358A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US17/253,805 US11733205B2 (en) 2018-06-22 2018-06-22 Electrophoresis apparatus
CN201880094508.9A CN112262308A (zh) 2018-06-22 2018-06-22 电泳装置
PCT/JP2018/023894 WO2019244358A1 (ja) 2018-06-22 2018-06-22 電気泳動装置
JP2020525214A JP7023358B2 (ja) 2018-06-22 2018-06-22 電気泳動装置
EP18923401.6A EP3812741A4 (en) 2018-06-22 2018-06-22 ELECTROPHORESIS DEVICE
JP2022017630A JP7228060B2 (ja) 2018-06-22 2022-02-08 電気泳動装置
US18/341,078 US20230333056A1 (en) 2018-06-22 2023-06-26 Electrophoresis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023894 WO2019244358A1 (ja) 2018-06-22 2018-06-22 電気泳動装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/253,805 A-371-Of-International US11733205B2 (en) 2018-06-22 2018-06-22 Electrophoresis apparatus
US18/341,078 Continuation US20230333056A1 (en) 2018-06-22 2023-06-26 Electrophoresis apparatus

Publications (1)

Publication Number Publication Date
WO2019244358A1 true WO2019244358A1 (ja) 2019-12-26

Family

ID=68983501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023894 WO2019244358A1 (ja) 2018-06-22 2018-06-22 電気泳動装置

Country Status (5)

Country Link
US (2) US11733205B2 (ja)
EP (1) EP3812741A4 (ja)
JP (1) JP7023358B2 (ja)
CN (1) CN112262308A (ja)
WO (1) WO2019244358A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024368A1 (ja) * 2020-07-31 2022-02-03 株式会社日立ハイテク キャピラリ電気泳動装置
WO2022034670A1 (ja) * 2020-08-13 2022-02-17 株式会社日立ハイテク キャピラリ電気泳動装置
JP2022063291A (ja) * 2018-06-22 2022-04-21 株式会社日立ハイテク 電気泳動装置
WO2022137959A1 (ja) * 2020-12-22 2022-06-30 国立大学法人大阪大学 光学モジュール、及び多焦点光学装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582705A (en) * 1995-05-19 1996-12-10 Iowa State University Research Foundation, Inc. Multiplexed capillary electrophoresis system
JPH09105738A (ja) * 1995-10-09 1997-04-22 Hitachi Ltd 蛍光検出型キャピラリーアレー電気泳動装置
JPH09243598A (ja) * 1996-03-08 1997-09-19 Shimadzu Corp マルチキャピラリーdna塩基配列決定装置
JPH10239278A (ja) * 1997-02-24 1998-09-11 Hitachi Ltd 電気泳動装置
JP2000346828A (ja) * 1999-06-02 2000-12-15 Hitachi Ltd 電気泳動装置
US6759662B1 (en) * 1998-07-28 2004-07-06 Ce Resources Pte. Ltd. Optical detection system
JP2004325396A (ja) * 2003-04-28 2004-11-18 Hitachi High-Technologies Corp 信号読取装置の感度評価方法
JP2005524051A (ja) * 2001-08-28 2005-08-11 ベイラー カレッジ オブ メディスン カラーブラインド蛍光のためのパルスマルチライン励起法
JP2005535895A (ja) * 2002-08-17 2005-11-24 パライテック エルティディ 光透過を検出するための光学アセンブリおよび方法
JP2010032513A (ja) * 2008-07-25 2010-02-12 F Hoffmann-La Roche Ag 蛍光検出のための励起および結像光学素子
JP2013524169A (ja) * 2010-03-25 2013-06-17 クァンタライフ・インコーポレーテッド 液滴によるアッセイ用の検出システム
WO2015005048A1 (ja) 2013-07-08 2015-01-15 株式会社 日立ハイテクノロジーズ キャピラリ電気泳動装置
WO2015151812A1 (ja) * 2014-04-03 2015-10-08 株式会社日立ハイテクノロジーズ 蛍光分析器
JP2016133373A (ja) * 2015-01-19 2016-07-25 株式会社島津製作所 キャピラリ電気泳動装置及びそれに用いるキャピラリカセット

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927265A (en) * 1988-04-29 1990-05-22 501 Microphoretic Systems, Inc. Detector for fluorescence and absorption spectroscopy
US5395502A (en) * 1988-11-14 1995-03-07 Anthony R. Torres Apparatus for performing and universally detecting capillary isoelectric focusing without mobilization using concentration gradient imaging systems
US5235409A (en) * 1991-08-13 1993-08-10 Varian Associates, Inc. Optical detection system for capillary separation columns
JPH05240774A (ja) * 1992-03-02 1993-09-17 Hitachi Ltd 光学セル及び光学検出装置とこれを用いる試料分離検出装置
DE69323060T2 (de) * 1993-03-18 1999-06-10 Novartis Ag Optische Detektorvorrichtung für die chemische Analyse von kleinen fluiden Probenvolumina
US5990934A (en) * 1995-04-28 1999-11-23 Lucent Technologies, Inc. Method and system for panoramic viewing
US5578179A (en) * 1995-07-12 1996-11-26 The Perkin-Elmer Corporation Method and silicate composition for conditioning silica surfaces
EP0821788B1 (en) * 1996-02-20 2006-02-01 Waters Investments Limited Capillary electrophoresis detector apparatus
JPH10227740A (ja) * 1997-02-18 1998-08-25 Hitachi Ltd 多色蛍光検出電気泳動分析装置
US6445448B1 (en) * 1997-03-12 2002-09-03 Corning Applied Technologies, Corp. System and method for molecular sample measurement
WO2002008742A1 (en) 2000-07-21 2002-01-31 Spectrumedix Corporation Extended pathlength detection in separations
US7419578B2 (en) * 2003-04-11 2008-09-02 Hitachi High-Technologies Corporation Capillary electrophoresis apparatus
EP2504448B1 (en) 2009-11-25 2016-10-19 Bio-Rad Laboratories, Inc. Methods and compositions for detecting genetic material
CN105973859B (zh) 2016-06-29 2019-01-29 山东科立森生物股份有限公司 一种毛细管电泳检测系统及检测方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582705A (en) * 1995-05-19 1996-12-10 Iowa State University Research Foundation, Inc. Multiplexed capillary electrophoresis system
JPH09105738A (ja) * 1995-10-09 1997-04-22 Hitachi Ltd 蛍光検出型キャピラリーアレー電気泳動装置
JPH09243598A (ja) * 1996-03-08 1997-09-19 Shimadzu Corp マルチキャピラリーdna塩基配列決定装置
JPH10239278A (ja) * 1997-02-24 1998-09-11 Hitachi Ltd 電気泳動装置
US6759662B1 (en) * 1998-07-28 2004-07-06 Ce Resources Pte. Ltd. Optical detection system
JP2000346828A (ja) * 1999-06-02 2000-12-15 Hitachi Ltd 電気泳動装置
JP2005524051A (ja) * 2001-08-28 2005-08-11 ベイラー カレッジ オブ メディスン カラーブラインド蛍光のためのパルスマルチライン励起法
JP2005535895A (ja) * 2002-08-17 2005-11-24 パライテック エルティディ 光透過を検出するための光学アセンブリおよび方法
JP2004325396A (ja) * 2003-04-28 2004-11-18 Hitachi High-Technologies Corp 信号読取装置の感度評価方法
JP2010032513A (ja) * 2008-07-25 2010-02-12 F Hoffmann-La Roche Ag 蛍光検出のための励起および結像光学素子
JP2013524169A (ja) * 2010-03-25 2013-06-17 クァンタライフ・インコーポレーテッド 液滴によるアッセイ用の検出システム
WO2015005048A1 (ja) 2013-07-08 2015-01-15 株式会社 日立ハイテクノロジーズ キャピラリ電気泳動装置
WO2015151812A1 (ja) * 2014-04-03 2015-10-08 株式会社日立ハイテクノロジーズ 蛍光分析器
JP2016133373A (ja) * 2015-01-19 2016-07-25 株式会社島津製作所 キャピラリ電気泳動装置及びそれに用いるキャピラリカセット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Pulsed multi-wavelength excitation using fiber-in- capillary light emitting diode induced fluorescence detection in capillary electrophoresis", TALANTA, vol. 83, 1 October 2010 (2010-10-01), pages 521 - 526, XP027524792 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022063291A (ja) * 2018-06-22 2022-04-21 株式会社日立ハイテク 電気泳動装置
JP7228060B2 (ja) 2018-06-22 2023-02-22 株式会社日立ハイテク 電気泳動装置
WO2022024368A1 (ja) * 2020-07-31 2022-02-03 株式会社日立ハイテク キャピラリ電気泳動装置
JP7364798B2 (ja) 2020-07-31 2023-10-18 株式会社日立ハイテク キャピラリ電気泳動装置
WO2022034670A1 (ja) * 2020-08-13 2022-02-17 株式会社日立ハイテク キャピラリ電気泳動装置
JP7426491B2 (ja) 2020-08-13 2024-02-01 株式会社日立ハイテク キャピラリ電気泳動装置
WO2022137959A1 (ja) * 2020-12-22 2022-06-30 国立大学法人大阪大学 光学モジュール、及び多焦点光学装置

Also Published As

Publication number Publication date
EP3812741A1 (en) 2021-04-28
JP7023358B2 (ja) 2022-02-21
US20230333056A1 (en) 2023-10-19
EP3812741A4 (en) 2022-06-22
CN112262308A (zh) 2021-01-22
JPWO2019244358A1 (ja) 2021-07-01
US11733205B2 (en) 2023-08-22
US20210262980A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
WO2019244358A1 (ja) 電気泳動装置
JP7369236B2 (ja) サンプル分離のための光学システムおよび方法
US8262888B2 (en) Capillary electrophoresis apparatus
JP6286028B2 (ja) 蛍光分析器
US6529275B2 (en) Optical detection in bio-separation device using a widened detection zone
JP3697007B2 (ja) マルチタイタープレート分析装置
JP7228060B2 (ja) 電気泳動装置
US6929779B2 (en) Optical detection in bio-separation device using axial radiation output
JP4616051B2 (ja) 電気泳動装置、及び電気泳動方法
JP4357399B2 (ja) 電気泳動装置
JP4951578B2 (ja) 電気泳動装置
JP2010072003A (ja) 電気泳動装置
WO2024028949A1 (ja) 電気泳動装置
US6932940B2 (en) Optical detection in bio-separation device using axial radiation input
JP2019002964A (ja) 光路切替装置および光路切替方法
JP4512465B2 (ja) 電気泳動装置
JP7364798B2 (ja) キャピラリ電気泳動装置
Imai et al. Multi-channel Deep-UV absorbance measurement setup for multi-capillary electrophoresis with two fiber arrays facing each other
RU2021104150A (ru) Устройство измерения потока вещества посредством поглощения света и соответствующий способ измерения
JPS62245143A (ja) 反射濃度測定ヘツド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018923401

Country of ref document: EP