WO2019244278A1 - 非水電解液二次電池用正極および非水電解液二次電池 - Google Patents

非水電解液二次電池用正極および非水電解液二次電池 Download PDF

Info

Publication number
WO2019244278A1
WO2019244278A1 PCT/JP2018/023460 JP2018023460W WO2019244278A1 WO 2019244278 A1 WO2019244278 A1 WO 2019244278A1 JP 2018023460 W JP2018023460 W JP 2018023460W WO 2019244278 A1 WO2019244278 A1 WO 2019244278A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
water
electrolyte secondary
Prior art date
Application number
PCT/JP2018/023460
Other languages
English (en)
French (fr)
Inventor
光央 近藤
中村 仁
理樹 片岡
田渕 光春
Original Assignee
ヤマハ発動機株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社, 国立研究開発法人産業技術総合研究所 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2018/023460 priority Critical patent/WO2019244278A1/ja
Publication of WO2019244278A1 publication Critical patent/WO2019244278A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using a positive electrode active material containing lithium and nickel.
  • a positive electrode active material containing lithium (Li) is used for the positive electrode of the existing non-aqueous electrolyte secondary battery.
  • a positive electrode active material containing lithium and nickel (Ni) has attracted attention (for example, see Patent Document 1).
  • the positive electrode active material containing nickel By using the positive electrode active material containing nickel, the charge / discharge capacity of the nonaqueous electrolyte secondary battery is increased.
  • the non-aqueous electrolyte secondary battery using a positive electrode active material containing lithium and nickel should have higher battery characteristics and higher durability.
  • the battery characteristics are, for example, charge and discharge efficiency.
  • the present invention improves the battery characteristics and improves the durability of the battery as compared with a conventional positive electrode for a non-aqueous electrolyte secondary battery using a positive electrode active material containing lithium and nickel. It is an object to provide a positive electrode for a non-aqueous electrolyte secondary battery using a positive electrode active material containing the same.
  • the positive electrode for a non-aqueous electrolyte secondary battery of Patent Document 1 uses an organic solvent-based binder.
  • the inventors of the present application have studied using a water-soluble or water-dispersible binder instead of an organic solvent-based binder for a positive electrode using a positive electrode active material containing lithium and nickel.
  • an organic solvent-based binder is used for the positive electrode, it is known that the organic solvent-based binder covers the entire surface of the positive electrode active material aggregate formed by aggregating primary particles of the positive electrode active material. Therefore, when an organic solvent-based binder is used for the positive electrode, the electrolytic solution in the positive electrode does not contact the positive electrode active material aggregate.
  • the present inventors have found that even when a water-soluble or water-dispersible binder is used for the positive electrode, the non-aqueous electrolyte secondary battery It was found that durability could be improved in some cases.
  • a composite oxide of lithium (Li) and nickel (Ni) used as a positive electrode active material is unstable to water. It is known that a composite oxide of lithium and nickel tends to deteriorate when mixed with water. Further, when the composite oxide of lithium and nickel is exposed to the air, the composite oxide of lithium and nickel is altered by water in the air.
  • the positive electrode active material composite oxide was still altered in the positive electrode active material aggregate. Material remains. The presence of a substance in which the positive electrode active material is altered by water increases the electric resistance of the positive electrode.
  • the presence of a substance in which the positive electrode active material is altered by water inhibits the movement of lithium ions (Li + ) from the positive electrode active material aggregate and the movement of lithium ions to the positive electrode active material aggregate.
  • the inhibition of the movement of lithium ions is one of the factors that lower the charge / discharge efficiency of the nonaqueous electrolyte secondary battery.
  • the present inventors when using a water-soluble or water-dispersible binder for the positive electrode, in the vicinity of the surface of the positive electrode active material agglomerate, the positive electrode active material having lithium and nickel is altered from a state altered by water. Not noticed that it may be possible to return to normal.
  • the positive electrode active material is in a normal state near the surface of the positive electrode active material aggregate, it is possible to suppress an increase in the electrical resistance of the positive electrode due to the presence of a substance in which the positive electrode active material has been altered. By suppressing an increase in electric resistance, Joule heat generated during charging and discharging of the nonaqueous electrolyte secondary battery can be reduced.
  • the organic solvent-based binder is used for the positive electrode by suppressing the deterioration of the positive electrode active material by water near the surface of the positive electrode active material aggregate. It has been found that the durability of the battery can be improved while improving the battery characteristics as compared with the case of.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode active material containing lithium and nickel, a water-soluble or water-dispersible binder, a conductive material, the positive electrode active material and the conductive material.
  • the substance that can be generated by the reaction between the positive electrode active material and water is a positive electrode active material. It can be determined that it does not exist near the surface of the aggregate at a level detectable by Fourier transform infrared spectroscopy.
  • the substance that can be produced by the reaction between the positive electrode active material and water is at least one of a substance produced from these reactants when the positive electrode active material and water are used as a reactant, and a substance derived from the substance. It is.
  • the reaction between the positive electrode active material and water changes the quality of the positive electrode active material.
  • the positive electrode active material when it is determined that there is a substance that can be generated by the reaction between the positive electrode active material and water, the positive electrode active material is located at a location where the substance that can be generated by the reaction between the positive electrode active material and water exists and / or in the vicinity thereof. It is thought that it has been altered by water.
  • the positive electrode active material when it is determined that there is no substance that can be generated by the reaction between the positive electrode active material and water, in a place where the substance that can be generated by the reaction between the positive electrode active material and water does not exist and the vicinity thereof, It is considered that deterioration due to water is suppressed.
  • the non-aqueous electrolyte secondary battery using the positive electrode for a non-aqueous electrolyte secondary battery of the present invention is a conventional non-aqueous electrolyte secondary battery positive electrode using a positive electrode active material containing lithium and nickel. In comparison, the durability of the battery can be improved while improving the battery characteristics.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention preferably has the following configuration.
  • the substance that can be produced by the reaction between the positive electrode active material and water is lithium hydroxide hydrate
  • no peak derived from lithium hydroxide hydrate appears in the Fourier transform infrared spectroscopy spectrum.
  • lithium hydroxide When a positive electrode active material containing lithium and nickel reacts with water, lithium hydroxide (LiOH) is generated.
  • Lithium hydroxide generated by the reaction between the positive electrode active material and water is a substance generated when the positive electrode active material is altered by the reaction with water.
  • Lithium hydroxide is easily changed to lithium hydroxide hydrate (LiOH.H 2 O) by water contained in the atmosphere or the like.
  • lithium hydroxide hydrate is derived from lithium hydroxide.
  • lithium hydroxide exists as lithium hydroxide hydrate (LiOH.H 2 O), not as lithium hydroxide anhydride (LiOH).
  • lithium hydroxide hydrate is present in and / or in the vicinity of the positive electrode active material aggregate where the positive electrode active material is altered by water. I do. Therefore, when it is determined that the lithium hydroxide hydrate is present, it is considered that the positive electrode active material is altered by water in the place where the lithium hydroxide hydrate exists and / or in the vicinity thereof.
  • the electric resistance of the positive electrode for a non-aqueous electrolyte secondary battery is increased by a substance in which the positive electrode active material is altered by water. In addition, a substance in which the positive electrode active material is altered by water inhibits the transfer of lithium ions.
  • lithium hydroxide hydrate when it is determined that lithium hydroxide hydrate does not exist, it is considered that the deterioration of the positive electrode active material by water is suppressed in a place where lithium hydroxide hydrate does not exist and in the vicinity thereof.
  • the Fourier transform infrared spectrum of the positive electrode for a nonaqueous electrolyte secondary battery when no peak derived from lithium hydroxide hydrate appears, lithium hydroxide hydrate is present near the surface of the positive electrode active material aggregate. , It can be determined that it does not exist at a detectable level of Fourier transform infrared spectroscopy.
  • the peak derived from lithium hydroxide hydrate does not appear in the Fourier transform infrared spectrum of the positive electrode for a nonaqueous electrolyte secondary battery. It can be determined that lithium hydrate is not present at a level detectable by Fourier transform infrared spectroscopy. Therefore, it is considered that the deterioration of the positive electrode active material due to water was suppressed in the vicinity of the surface of the positive electrode active material aggregate. Therefore, an increase in the electrical resistance of the positive electrode for a non-aqueous electrolyte secondary battery is suppressed. Thereby, deterioration of the positive electrode for a non-aqueous electrolyte secondary battery due to heat can be suppressed.
  • the movement of lithium ions from the cathode active material aggregate and the movement of lithium ions to the cathode active material aggregate become smooth. Therefore, it is possible to suppress a decrease in the charge / discharge efficiency of the nonaqueous electrolyte secondary battery. Therefore, compared with a conventional positive electrode for a non-aqueous electrolyte secondary battery using a positive electrode active material containing lithium and nickel, the battery characteristics can be improved and the durability of the battery can be improved.
  • Lithium hydroxide anhydride LiOH
  • LiOH Lithium hydroxide anhydride
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention preferably has the following configuration in addition to the above configuration (1) or (2). No peak appears in the region of 1500 to 1700 cm ⁇ 1 in the Fourier transform infrared spectrum.
  • the fact that no peak appears in the region of 1500 to 1700 cm ⁇ 1 in the Fourier transform infrared spectrum of the positive electrode for a nonaqueous electrolyte secondary battery means that lithium hydroxide hydrate is present near the surface of the positive electrode active material aggregate. Is not present at a detectable level in Fourier transform infrared spectroscopy. According to the above configuration, no peak appears in the region of 1500 to 1700 cm ⁇ 1 in the Fourier transform infrared spectroscopy spectrum of the positive electrode for a nonaqueous electrolyte secondary battery. It can be determined that the sum is not present at a level detectable by Fourier transform infrared spectroscopy.
  • the battery characteristics can be improved and the durability of the battery can be improved.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention preferably has the following configuration.
  • the substance that can be generated by the reaction between the positive electrode active material and water is lithium carbonate, no peak derived from lithium carbonate appears in the Fourier transform infrared spectrum.
  • Lithium carbonate and lithium hydrogen carbonate generated by the reaction of the positive electrode active material with carbon dioxide gas and water are substances generated by the positive electrode active material being transformed by reaction with water.
  • Lithium hydrogen carbonate is an unstable substance. Therefore, the generated lithium hydrogen carbonate is immediately changed to lithium carbonate (Li 2 CO 3 ), water (H 2 O), and carbon dioxide (CO 2 ). In other words, lithium carbonate is derived from lithium hydrogen carbonate.
  • lithium hydrogen carbonate is generated by the reaction of the positive electrode active material with carbon dioxide gas and water contained in the atmosphere or the like
  • the hydrogen carbonate is formed in a portion of the positive electrode active material aggregate where the positive electrode active material is altered by water and in the vicinity thereof.
  • Lithium does not exist, and lithium carbonate exists in a portion of the positive electrode active material aggregate that has been altered by water and / or in the vicinity thereof.
  • a portion of the positive electrode active material aggregate where the positive electrode active material has been altered by water and / or the vicinity thereof has carbonic acid. Lithium is present.
  • the positive electrode active material is altered by water at and / or in the vicinity of the location where lithium carbonate is present.
  • the electric resistance of the positive electrode for a non-aqueous electrolyte secondary battery increases due to the substance in which the positive electrode active material is altered by water.
  • a substance in which the positive electrode active material is altered by water inhibits the transfer of lithium ions.
  • it is considered that the deterioration of the positive electrode active material by water is suppressed in a place where lithium carbonate does not exist and in the vicinity thereof.
  • the positive electrode for a nonaqueous electrolyte secondary battery of the present invention preferably has the following configuration in addition to the configuration of (1) or (4). In the Fourier transform infrared spectrum, no peak appears in the region of 1350 to 1600 cm -1 .
  • the fact that no peak appears in the region of 1350 to 1600 cm ⁇ 1 in the Fourier transform infrared spectrum of the positive electrode for a nonaqueous electrolyte secondary battery means that lithium carbonate is formed near the surface of the positive electrode active material aggregate by Fourier transform. Absent at detectable levels of infrared spectroscopy. According to the above configuration, since no peak appears in the region of 1350 to 1600 cm ⁇ 1 in the Fourier transform infrared spectrum of the positive electrode for a nonaqueous electrolyte secondary battery, lithium carbonate is formed near the surface of the positive electrode active material aggregate. It can be determined that it does not exist at a detectable level of Fourier transform infrared spectroscopy.
  • the battery characteristics can be improved and the durability of the battery can be improved.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention preferably has the following configuration.
  • the substance that can be produced by the reaction between the positive electrode active material and water is lithium hydroxide hydrate and lithium carbonate
  • a peak derived from lithium hydroxide hydrate and lithium carbonate in a Fourier transform infrared spectroscopy spectrum Does not appear.
  • lithium hydroxide hydrate and lithium carbonate do not appear in the Fourier transform infrared spectrum of the positive electrode for a nonaqueous electrolyte secondary battery.
  • lithium hydroxide hydrate and lithium carbonate it can be determined that there is no near-surface of the positive electrode active material aggregate at a level detectable by Fourier transform infrared spectroscopy. According to the above configuration, the peak derived from lithium hydroxide hydrate and the peak derived from lithium carbonate do not appear in the Fourier transform infrared spectrum of the positive electrode for a nonaqueous electrolyte secondary battery.
  • the substance and lithium carbonate do not exist near the surface of the positive electrode active material aggregate at a level detectable by Fourier transform infrared spectroscopy.
  • lithium hydroxide is generated by the reaction of the positive electrode active material with water
  • lithium hydroxide hydrate is formed in a portion of the positive electrode active material aggregate where the positive electrode active material is altered and / or in the vicinity thereof.
  • lithium hydrogen carbonate is generated by the reaction of the positive electrode active material with water
  • lithium carbonate is present in a portion of the positive electrode active material aggregate where the positive electrode active material is altered and / or in the vicinity thereof.
  • the lithium carbonate When lithium carbonate is generated by the reaction of the positive electrode active material with water, the lithium carbonate is present in a portion of the positive electrode active material aggregate where the positive electrode active material is altered and / or in the vicinity thereof. Therefore, when it is determined that lithium hydroxide hydrate and lithium carbonate are present, at the place where lithium hydroxide hydrate exists and / or its vicinity, and at the place where lithium carbonate exists and / or its vicinity, It is considered that the positive electrode active material was altered by water. On the other hand, when it is determined that lithium hydroxide hydrate and lithium carbonate do not exist, the positive electrode active material is obtained in a place where lithium hydroxide hydrate does not exist and in the vicinity thereof and a place where lithium carbonate does not exist and in the vicinity thereof.
  • the movement of lithium ions from the cathode active material aggregate and the movement of lithium ions to the cathode active material aggregate become smooth. Therefore, it is possible to suppress a decrease in the charge / discharge efficiency of the nonaqueous electrolyte secondary battery. Therefore, compared with a conventional positive electrode for a non-aqueous electrolyte secondary battery using a positive electrode active material containing lithium and nickel, the battery characteristics can be improved and the durability of the battery can be improved.
  • the positive electrode for a nonaqueous electrolyte secondary battery of the present invention preferably has the following configuration in addition to the configuration of (1) or (6).
  • the Fourier transform infrared spectrum no peak appears in the region of 1350 ⁇ 1600 cm -1 region and 1500 ⁇ 1700 cm -1.
  • lithium hydroxide hydrate is analyzed by Fourier transform infrared spectroscopy
  • a peak appears in the region of 1500 to 1700 cm ⁇ 1 in the Fourier transform infrared spectroscopy.
  • lithium carbonate is analyzed by Fourier transform infrared spectroscopy
  • a peak appears in the region of 1350 to 1600 cm ⁇ 1 in the Fourier transform infrared spectroscopy.
  • the non-aqueous to peak in the region of the region and 1500 ⁇ 1700 cm -1 of the electrolyte 1350 in the Fourier transform infrared spectrum of the positive electrode for a secondary battery ⁇ 1600 cm -1 does not appear, the non-aqueous electrolyte solution for a secondary battery This means that peaks derived from lithium hydroxide hydrate and lithium carbonate do not appear in the Fourier transform infrared spectrum of the positive electrode.
  • the positive electrode active material agglomerates It can be determined that lithium hydroxide hydrate and lithium carbonate are not present near the surface at levels detectable by Fourier transform infrared spectroscopy. Therefore, it is considered that the deterioration of the positive electrode active material by water is suppressed near the surface of the positive electrode active material aggregate. Therefore, compared with a conventional positive electrode for a non-aqueous electrolyte secondary battery using a positive electrode active material containing lithium and nickel, the battery characteristics can be improved and the durability of the battery can be improved.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention preferably has the following configuration.
  • a discharge capacity of 0.1 C per weight of the positive electrode active material at 25 ⁇ 2 ° C. of the half cell is equal to the material of the positive electrode active material. It is 90% or more of the maximum discharge capacity depending on the diameter of the particles containing the positive electrode active material.
  • the 0.1 C discharge capacity of a half cell manufactured using the positive electrode for a non-aqueous electrolyte secondary battery is a level that can sufficiently withstand practical use.
  • the positive electrode for a nonaqueous electrolyte secondary battery of the present invention preferably has the following configuration.
  • the proportion of nickel in the metal element contained in the positive electrode active material is 50 mol% or more.
  • the charge / discharge capacity of the nonaqueous electrolyte secondary battery using the positive electrode for a nonaqueous electrolyte secondary battery can be further increased.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention preferably has the following configuration.
  • the ratio of nickel to the metal element contained in the positive electrode active material is 80 mol% or more.
  • the charge / discharge capacity of the non-aqueous electrolyte secondary battery using the positive electrode for a non-aqueous electrolyte secondary battery can be further increased.
  • the positive electrode for a nonaqueous electrolyte secondary battery of the present invention preferably has the following configuration.
  • the positive electrode has a sheet shape.
  • the positive electrode active material and the conductive material are connected so that the positive electrode active material and the conductive material are not separated from the current collector.
  • a substance and the conductive material are connected to the current collector.
  • the positive electrode active material and the conductive material are less likely to be separated from the current collector during the manufacturing process and use of the nonaqueous electrolyte secondary battery.
  • the durability of the non-aqueous electrolyte secondary battery increases.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention preferably has the following configuration.
  • the current collector includes aluminum.
  • the non-aqueous electrolyte secondary battery of the present invention includes the positive electrode for a non-aqueous electrolyte secondary battery according to any of the above (1) to (12), a negative electrode, and a non-aqueous electrolyte. It is characterized by.
  • the “water-soluble binder” is a binder that can be dissolved in water.
  • the “water-dispersible binder” is a binder that can be dispersed in water.
  • the “non-aqueous electrolyte” is an electrolyte obtained by dissolving an electrolyte in a non-aqueous solvent (a solvent not containing water).
  • a “secondary battery” is a battery that can be repeatedly charged and discharged.
  • the “non-aqueous electrolyte secondary battery” is a secondary battery provided with a non-aqueous electrolyte.
  • “Fourier transform infrared spectroscopy” is an infrared absorption spectrum obtained by Fourier transform infrared spectroscopy. “Fourier transform infrared spectroscopy” spectrum is sometimes referred to as FTIR spectrum. Fourier transform infrared spectroscopy is sometimes referred to as FTIR.
  • a substance that can be produced by the reaction between the positive electrode active material and water is a product produced from these reactants when at least the positive electrode active material and water are used as a reactant, and It is at least one of the derived substances.
  • At least the positive electrode active material and water as the reactant means that only the positive electrode active material and water may be the reactant, and the positive electrode active material, water, and the positive electrode active material and a substance other than water as the reactant. Is also good.
  • the “substance derived from the product” is, for example, a first product produced from the first reactant when at least the cathode active material and water are used as the first reactant. 2 The second product produced from the reactants.
  • the second reactant may be only the first product, or may include the first product and a substance other than the first product.
  • the “substance derived from the product” includes the third product.
  • the third reactant may be only the second product, or may include the second product and a substance other than the second product.
  • the case where the fourth product and the subsequent product are generated, and the case where the fourth product and the subsequent product are generated are also included in the “substance derived from the relevant product”. In this case, the fourth reactant and the subsequent reactants have the same meaning as the second reactant and the third reactant.
  • a substance that can be generated by the reaction between a positive electrode active material and water is described using a first reactant, a first product, a second reactant, and a second product
  • a positive electrode active material and water “A substance which can be produced by the reaction with the first active material” is a first product generated from the first reactive material when the positive electrode active material and water are used as the first reactive material, and a second reactive material
  • it is at least one of the second product generated from the second reactant.
  • a substance that can be generated by a reaction between a positive electrode active material and water may be any of the following three cases.
  • the first case is a case where the “substance that can be produced by the reaction between the positive electrode active material and water” is a product produced from these reactive materials when at least the positive electrode active material and water are used as the reactants.
  • the “substance that can be produced by the reaction between the positive electrode active material and water” is a substance derived from a product produced from these reactants when at least the positive electrode active material and water are used as the reactants. Is the case.
  • the “substance that can be produced by the reaction between the positive electrode active material and water” is a product produced from these reactants at least when the positive electrode active material and water are used as the reactants, and a product derived from the product. This is the case with both substances.
  • the positive electrode active material and water is described using, for example, a first reactant, a first reactant, a second reactant, and a second reactant
  • the positive electrode active material and water The substance that can be produced by the reaction with the compound may be any of the following three cases.
  • the “substance that can be generated by the reaction between the positive electrode active material and water” is a first generation product generated from these first reactants when at least the positive electrode active material and water are used as the first reactant. If it is a substance.
  • the “substance that can be generated by the reaction between the positive electrode active material and water” is the first product generated from these first reactants when at least the positive electrode active material and water are used as the first reactants. This is the case where the substance is the second reaction substance when the substance is the second reaction substance.
  • the “substance that can be generated by the reaction between the positive electrode active material and water” is the first generation that is generated from these first reactants when at least the positive electrode active material and water are used as the first reactants. This is the case where both the substance and the second product generated from the second reactant when the first product is used as the second reactant.
  • the product produced from these reactants is a substance produced by the positive electrode active material being transformed by reaction with water.
  • At least the product produced from these reactants when the cathode active material and water are used as the reactants, and the material derived from the product, are transformed by the reaction of the cathode active material with water in the positive electrode active material aggregate. And / or in the vicinity thereof.
  • the above will be described using, for example, a first reactant, a first product, and a second product, as follows.
  • the first product produced from the first reactants is a substance produced by the cathode active material being transformed by reaction with water.
  • the first product produced from these first reactants is a portion of the positive electrode active material aggregate in which the positive electrode active material is altered by the reaction with water and / or Or it exists near it.
  • the second product and the subsequent product derived from the first product generated from the first reactant are the same as the first reactant. It is present in and / or in the vicinity of the part altered by the reaction.
  • the “substance that can be generated by the reaction between the positive electrode active material and water” is present in and / or in the vicinity of the positive electrode active material aggregate where the positive electrode active material is altered by the reaction with water.
  • the positive electrode active material when the “substance that can be generated by the reaction between the positive electrode active material and water” is present, the positive electrode active material is located at and / or in the vicinity of where the “substance that can be generated by the reaction between the positive electrode active material and water” exists. Has been altered by the reaction with water.
  • the deterioration of the positive electrode active material occurs in a place where the "material that can be generated by the reaction between the positive electrode active material and water” does not exist and in the vicinity thereof. Is considered to be suppressed.
  • Lithium hydroxide (LiOH) is generated by the reaction between the positive electrode active material containing lithium and water.
  • Lithium hydroxide hydrate (LiOH.H 2 O) is generated by the coordinate bonding of water contained in the atmosphere and the like to lithium hydroxide.
  • lithium hydroxide is a first product generated from the first reactant when the positive electrode active material and water are used as the first reactant.
  • Lithium hydroxide hydrate is a second product produced from the first product, when lithium hydroxide and water are used as the second reactant.
  • Lithium hydroxide is easily changed to lithium hydroxide hydrate by atmospheric water or the like.
  • lithium hydroxide exists not as an anhydride (LiOH) of lithium hydroxide but as a lithium hydroxide hydrate (LiOH.H 2 O).
  • the generation of lithium hydroxide hydrate as the second product causes the absence of lithium hydroxide as the first product. Therefore, when lithium hydroxide is generated by the reaction between the positive electrode active material and water, the “material that can be generated by the reaction between the positive electrode active material and water” does not include lithium hydroxide that is the first generation material. Therefore, when lithium hydroxide is generated by the reaction between the positive electrode active material and water, the “material that can be generated by the reaction between the positive electrode active material and water” is lithium hydroxide hydrate, which is the second product. .
  • lithium hydroxide hydrate is formed in a portion of the positive electrode active material aggregate where the positive electrode active material is altered by water and / or in the vicinity thereof. Exists. When the lithium hydroxide hydrate is present, it is considered that the positive electrode active material is altered at the place where the lithium hydroxide hydrate exists and / or in the vicinity thereof.
  • lithium hydrogen carbonate LiHCO 3
  • lithium carbonate Li 2 CO 3
  • lithium hydrogen carbonate is generated by the reaction of a positive electrode active material containing lithium with water and carbon dioxide gas
  • the lithium hydrogen carbonate undergoes a decomposition reaction to generate lithium carbonate.
  • lithium hydrogen carbonate is a first product generated from the first reactant when the positive electrode active material, water, and carbon dioxide are used as the first reactant.
  • Lithium carbonate is a second product generated from the second reactant when lithium hydrogen carbonate as the first product is used as the second reactant.
  • lithium hydrogen carbonate is an unstable substance, lithium hydrogen carbonate is immediately changed to lithium carbonate (Li 2 CO 3 ). That is, since the lithium carbonate as the second product is generated, the lithium hydrogen carbonate as the first product does not exist. Therefore, when lithium hydrogen carbonate is generated by the reaction between the positive electrode active material and water, the “material that can be generated by the reaction between the positive electrode active material and water” does not include lithium hydrogen carbonate as the first generation material. Therefore, when lithium hydrogen carbonate is generated by the reaction between the positive electrode active material and water, the “material that can be generated by the reaction between the positive electrode active material and water” is lithium carbonate, which is the second generation material.
  • lithium carbonate When lithium carbonate is generated by the reaction of the positive electrode active material containing lithium with water and carbon dioxide gas, the generated lithium carbonate becomes the first reactant when the positive electrode active material, water, and carbon dioxide gas are used as the first reactant. It is a first product produced from one reactant.
  • the “material that can be generated by the reaction between the positive electrode active material and water” is lithium carbonate, which is the first generated material.
  • lithium carbonate when lithium hydrogen carbonate and / or lithium carbonate is generated by the reaction between the positive electrode active material and water, the “substance that can be generated by the reaction between the positive electrode active material and water” is lithium carbonate.
  • lithium hydrogen carbonate is generated by the reaction between the positive electrode active material and water
  • lithium carbonate is present in a portion of the positive electrode active material aggregate where the positive electrode active material is altered by water and / or in the vicinity thereof.
  • lithium carbonate is generated by the reaction between the positive electrode active material and water
  • lithium carbonate is present in a portion of the positive electrode active material aggregate that has been altered by water and / or in the vicinity thereof.
  • lithium carbonate is present in a portion of the positive electrode active material aggregate where the positive electrode active material is altered by water and / or in the vicinity thereof. .
  • lithium carbonate it is considered that the positive electrode active material has been altered in a place where lithium carbonate is present and / or in the vicinity thereof.
  • the “material that can be generated by the reaction between the positive electrode active material and water” is lithium hydroxide hydrate and lithium carbonate.
  • the “substance that can be generated by the reaction between the positive electrode active material and water” is lithium hydrate and lithium carbonate.
  • the “material that can be generated by the reaction between the positive electrode active material and water” is lithium hydroxide hydrate and carbonate. Lithium.
  • the positive electrode active material is deteriorated both at the location where the lithium hydroxide hydrate is present and / or in the vicinity thereof and at the location where the lithium carbonate is present and / or in the vicinity thereof. it seems to do.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the invention may include the substance.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention does not include a substance generated by the reaction between the positive electrode active material and water, and the Fourier transform infrared spectrum of the positive electrode indicates that the positive electrode active material A peak derived from a substance having the same composition as "a substance that can be generated by the reaction between water and water” may appear.
  • lithium hydroxide when lithium hydroxide is used to synthesize a positive electrode active material, part of the lithium hydroxide may remain in the positive electrode active material aggregate without being used for synthesizing the positive electrode active material.
  • the remaining lithium hydroxide is not a substance generated by a reaction between the positive electrode active material and water.
  • a part of the remaining lithium hydroxide may become lithium hydroxide hydrate in some cases. In this case, the generated lithium hydroxide hydrate is not generated by the reaction between the positive electrode active material and water.
  • lithium hydroxide when lithium hydroxide is used for synthesizing the positive electrode active material of the present invention, in the Fourier transform infrared spectrum of the positive electrode, a peak derived from the remaining lithium hydroxide may appear, and from the remaining lithium hydroxide, A peak derived from the generated lithium hydroxide hydrate may appear.
  • lithium carbonate when lithium carbonate is used to synthesize the positive electrode active material, part of the lithium carbonate may remain in the positive electrode active material aggregate without being used for synthesizing the positive electrode active material. The remaining lithium carbonate is not generated by the reaction between the positive electrode active material and water.
  • a peak derived from the remaining lithium carbonate may appear in the Fourier transform infrared spectrum of the positive electrode.
  • the “reaction between the positive electrode active material and water” may be, for example, a reaction between the positive electrode active material and water contained in the air, or a reaction between the positive electrode active material and water contained in air.
  • the atmosphere is a gas covering the surface layer of the earth, and its components, humidity, temperature, and the like are not artificially adjusted.
  • the component is, for example, a ratio of nitrogen, oxygen, or the like.
  • the air may be one in which at least one of elements such as atmospheric components, humidity, and temperature is artificially adjusted, or may not be artificially adjusted.
  • the atmosphere is a type of air.
  • ⁇ in the Fourier transform infrared spectroscopy spectrum there is no peak derived from a substance that can be generated by the reaction between the positive electrode active material and water '' means that the positive electrode is analyzed by Fourier transform infrared spectroscopy
  • Another problem is that a peak derived from a substance that can be generated by a reaction between the positive electrode active material and water does not appear.
  • the peak in the Fourier transform infrared spectroscopy spectrum is a peak that appears when a substance constituting a substance is irradiated with infrared rays, by absorbing light energy corresponding to a vibration mode inherent to the molecule.
  • the peak in the Fourier transform infrared spectrum that is derived from the substance that can be generated by the reaction between the positive electrode active material and water is “Does not appear” means that no peak derived from water molecules (H 2 O) contained in lithium hydroxide hydrate (LiOH ⁇ H 2 O) appears when the positive electrode is analyzed by Fourier transform infrared spectroscopy. That is. Note that the peak derived from lithium hydroxide hydrate includes a peak other than the peak derived from water molecules (H 2 O) contained in lithium hydroxide hydrate (LiOH ⁇ H 2 O).
  • the transmittance of the peak derived from water molecules (H 2 O) contained in lithium hydroxide hydrate (LiOH ⁇ H 2 O) is the smallest.
  • the absorption rate of the peak derived from water molecules (H 2 O) contained in lithium hydroxide hydrate (LiOH ⁇ H 2 O) is the largest. . Therefore, by judging the presence or absence of a peak derived from a water molecule (H 2 O) contained in lithium hydroxide hydrate (LiOH ⁇ H 2 O), lithium hydroxide hydrate (LiOH ⁇ H 2 O) can be determined.
  • ⁇ No peak derived from the substance that can be generated by the reaction between the positive electrode active material and water in the Fourier transform infrared spectroscopy appears '' Is that when a positive electrode is analyzed by Fourier transform infrared spectroscopy, a peak derived from a bond between a carbon atom (C) and an oxygen atom (O) of lithium carbonate does not appear.
  • a peak derived from a bond between a carbon atom (C) and an oxygen atom (O) of lithium carbonate appears in a region of 1350 to 1600 cm ⁇ 1 .
  • the peak derived from the bond between the carbon atom (C) and the oxygen atom (O) of lithium carbonate, which appears in the region of 1350 to 1600 cm ⁇ 1 may be one or plural. Therefore, when the substance that can be generated by the reaction between the positive electrode active material and water is lithium carbonate, “the peak derived from the substance that can be generated by the reaction between the positive electrode active material and water in the Fourier transform infrared spectroscopy does not appear. "" Means that when a positive electrode is analyzed by Fourier transform infrared spectroscopy, no peak derived from a bond between a carbon atom (C) and an oxygen atom (O) of lithium carbonate appears.
  • the term “derived from the substance that can be generated by the reaction between the positive electrode active material and water in the Fourier transform infrared spectroscopy spectrum” "A peak that does not appear” means that a peak derived from a water molecule (H 2 O) contained in lithium hydroxide hydrate (LiOH ⁇ H 2 O) when the positive electrode is analyzed by Fourier transform infrared spectroscopy. Does not appear, and no peak derived from the bond between the carbon atom (C) and the oxygen atom (O) of lithium carbonate does not appear.
  • the peak in the Fourier transform infrared spectrum is a region between the region where the transmittance decreases and the region where the transmittance increases, among the regions where the transmittance changes from decreasing to increasing.
  • the peak in the Fourier transform infrared spectrum is a region between the region where the absorption increases and the region where the absorption decreases, among the regions where the absorption changes from increase to decrease.
  • the peak in the Fourier transform infrared spectrum does not include any of the region where the transmittance decreases and the region where the transmittance increases. That is, the peak in the Fourier transform infrared spectrum does not include any of the region where the absorptance increases and the region where the transmittance increases.
  • particles containing the positive electrode active material are secondary particles formed by aggregating primary particles of the positive electrode active material.
  • the secondary particles are connected by a binder and a conductive material.
  • a particle containing a positive electrode active material may be referred to as a positive electrode active material aggregate.
  • 0.1 C discharge capacity per weight of the positive electrode active material at 25 ⁇ 2 ° C.” refers to performing constant current constant voltage charging (CCCV) of 0.1 C under an environment of 25 ⁇ 2 ° C.
  • the constant-current / constant-voltage charging of 0.1 C means charging at a constant current of 0.1 C up to the charging end voltage and then charging at a charging end voltage up to the charging end current.
  • the 0.1 C constant current discharge is to discharge to a discharge end voltage at a constant current of 0.1 C.
  • the end-of-charge voltage is a maximum value of a charging voltage at which charging can be performed before the function of the secondary battery is deteriorated due to overcharging.
  • the charge termination current is the minimum charge current that terminates charging during constant voltage charging.
  • the discharge end voltage is a minimum value of a discharge voltage at which a discharge can be performed before the function of the secondary battery is deteriorated due to overdischarge.
  • the discharge capacity is the amount of electricity extracted from the battery. In this specification, a general term for a discharge capacity and a charge capacity is called a charge / discharge capacity.
  • the charging capacity is the amount of electricity that the battery can store. In this specification, the ratio of the discharge capacity divided by the charge capacity is referred to as charge / discharge efficiency.
  • the charge / discharge efficiency is represented by the following equation.
  • the unit of the charge / discharge efficiency is “%”.
  • Charge / discharge efficiency (discharge capacity / charge capacity) ⁇ 100
  • the initial charge / discharge efficiency is a ratio obtained by dividing the discharge capacity in the first charge / discharge by the charge capacity in the first charge / discharge.
  • the "half cell produced using the positive electrode for a non-aqueous electrolyte secondary battery” is a cell using a positive electrode for a non-aqueous electrolyte secondary battery as a positive electrode and using lithium as a negative electrode.
  • the “half cell produced using the positive electrode for a nonaqueous electrolyte secondary battery” may be referred to as a “positive electrode half cell” or a “positive electrode half cell”.
  • the 0.1 C discharge capacity per weight of the positive electrode active material at 25 ⁇ 2 ° C. is 90% or more of the maximum discharge capacity
  • the positive electrode active material at 25 ⁇ 2 ° C. Is greater than or equal to 90% of the theoretical maximum of 0.1 C discharge capacity per weight of the positive electrode active material at 25 ⁇ 2 ° C.
  • the theoretical maximum value of 0.1 C discharge capacity per weight of the positive electrode active material at 25 ⁇ 2 ° C. may be referred to as 0.1 maximum discharge capacity.
  • the maximum discharge capacity of 0.1 C per weight of the positive electrode active material of the nonaqueous electrolyte secondary battery is determined by the material of the positive electrode active material, the diameter of the primary particles containing the positive electrode active material, and the secondary particles containing the positive electrode active material (the positive electrode active material). Substance aggregate). For example, when the positive electrode active material contains nickel, cobalt, and manganese, the larger the ratio of nickel, the larger the 0.1 C maximum discharge capacity per weight of the positive electrode active material tends to be. Further, as at least one of the diameter of the primary particles of the positive electrode active material and the diameter of the secondary particles (positive electrode active material aggregate) containing the positive electrode active material is smaller, the 0.1 C maximum discharge capacity tends to be larger.
  • the discharge capacity at a discharge rate other than 0.1 C also depends on the material of the positive electrode active material, the diameter of primary particles containing the positive electrode active material, and the diameter of secondary particles (positive electrode active material aggregate) containing the positive electrode active material. .
  • Table 1 shows the maximum discharge capacity at 0.1 C for each type (material) of the positive electrode active material.
  • the 0.1C maximum discharge capacity shown in Table 1 is constant current constant voltage charging at a current of 0.1 C, a charge end voltage of 4.3 V, and a charge end current of 0.02 C in an environment of 25 ⁇ 2 ° C. This is the discharge capacity per positive electrode active material particle weight when constant current discharge is performed at a current of 0.1 C and a discharge end voltage of 3.0 V.
  • the 0.1 C maximum discharge capacity shown in Table 1 was calculated without specifying the diameter of the primary particles of the positive electrode active material and the diameter of the secondary particles (positive electrode active material aggregate) of the positive electrode active material.
  • the 0.1 C maximum discharge capacity shown in Table 1 is a typical value in which the diameter of the primary particles of the positive electrode active material and the diameter of the secondary particles (positive electrode active material aggregate) of the positive electrode active material depend on the material of the positive electrode active material. This is the value if it is a range.
  • the 0.1 C maximum discharge capacity shown in Table 1 is a 0.1 C discharge capacity measured using a positive half cell.
  • NCM is an abbreviation for lithium nickel cobalt manganate.
  • NCM111 contains nickel, cobalt and manganese in a ratio of 1: 1: 1.
  • NCM523 contains nickel, cobalt and manganese in a ratio of 5: 2: 3.
  • NCM622 contains nickel, cobalt and manganese in a ratio of 6: 2: 2.
  • NCM811 contains nickel, cobalt and manganese in a ratio of 8: 1: 1.
  • NCA is an abbreviation for lithium nickel cobalt aluminum oxide.
  • NCA in Table 1 contains nickel, cobalt and aluminum at 80: 15: 5.
  • the positive electrode active material is “NCM111” and the 0.1 C discharge capacity is 144 mAh / g, the diameter of the primary particles of the positive electrode active material and the diameter of the secondary particles (positive electrode active material aggregate) of the positive electrode active material , It can be said that the 0.1 C discharge capacity is 90% or more of the theoretical maximum value.
  • NCM7, 1.5, 1.5 contains nickel, cobalt and manganese in a ratio of 7: 1.5: 1.5. Theoretically, if “NCM622” is mixed with 50 wt% and “NCM811” is mixed with 50 wt%, “NCM7, 1.5, 1.5” is obtained.
  • 0.1 C maximum discharge capacity of “NCM7, 1.5, 1.5” can be obtained from the following equation.
  • a positive electrode active material having an arbitrary composition is such that “NCM111” is a1 [wt%], “NCM523” is a2 [wt%], “NCM622” is a3 [wt%], and “NCM811” is a4 [wt%].
  • wt%] and NCA mixed with a5 [wt%] the positive electrode active material having an arbitrary composition can be obtained from the following formula.
  • 0.1C maximum discharge capacity of arbitrary composition 155 (intermediate value of 0.1C maximum discharge capacity of NCM111) ⁇ (a1 / 100) +165 (intermediate value of 0.1 C maximum discharge capacity of NCM523) ⁇ (a2 / 100) +175 (intermediate value of 0.1 C maximum discharge capacity of NCM622) ⁇ (a3 / 100) +195 (intermediate value of 0.1 C maximum discharge capacity of NCM811) ⁇ (a4 / 100) +195 (intermediate value of NCA 0.1C maximum discharge capacity) x (a5 / 100)
  • 0 ⁇ a1 ⁇ 100 0 ⁇ a2 ⁇ 100 0 ⁇ a3 ⁇ 100 0 ⁇ a4 ⁇ 100 0 ⁇ a5 ⁇ 100 a1 + a2 + a3 + a4 + a5 100
  • the "bending resistance test in accordance with JIS K5600-5-1" is a kind of testing method for mechanical properties of a coating film, and is a bending resistance test by a cylindrical mandrel method.
  • At least one (one) of a plurality of options includes all possible combinations of the plurality of options. At least one (one) of the plurality of options may be any one of the plurality of options, or may be all of the plurality of options. For example, at least one of A, B, and C may be only A, may be only B, may be only C, may be A and B, and may be A and C. Or B and C, or A, B and C.
  • Positive electrode and non-aqueous electrolyte secondary battery for non-aqueous electrolyte secondary battery of the present invention the number is not specified in the claims, elements that are singularly displayed when translated into English, You may have more than one.
  • Positive electrode and non-aqueous electrolyte secondary battery for non-aqueous electrolyte secondary battery of the present invention the number is not specified in the claims, elements that are singularly displayed when translated into English, Only one may be provided.
  • the terms mounted, connected, coupled, and supported are used broadly. Specifically, it includes not only direct attachment, connection, connection and support, but also indirect attachment, connection, connection and support. Further, connected and coupled are not limited to physical or mechanical connections / couplings. They also include direct or indirect electrical connections / couplings.
  • the term "preferred” is non-exclusive. “Preferred” means “preferred but not limited to”. In this specification, a configuration described as “preferred” has at least the above-described effects obtained by the above-described configuration (1). Also, in this specification, the term “may” is non-exclusive. “May be” means “may be, but not limited to.” In the present specification, the configuration described as “may” has at least the above-described effect obtained by the configuration (1).
  • the positive electrode for a non-aqueous electrolyte secondary battery using the positive electrode active material containing lithium and nickel of the present invention is a conventional non-aqueous electrolyte secondary battery containing a positive electrode active material containing lithium and nickel and an organic solvent-based binder. Compared with the positive electrode, the durability of the battery can be improved while improving the battery characteristics.
  • FIG. 1 is a perspective view, a partially enlarged view, and a diagram showing a Fourier transform infrared spectrum of a positive electrode for a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view and a partially enlarged view of a positive electrode for a non-aqueous electrolyte secondary battery according to a specific example of the embodiment of the present invention.
  • 1 is a schematic cross-sectional view of a nonaqueous electrolyte secondary battery to which a positive electrode for a nonaqueous electrolyte secondary battery according to a specific example of an embodiment of the present invention is applied.
  • 3 is an electron micrograph of Example 1 of the present invention and Comparative Examples 1 and 2.
  • FIG. 4 is a Fourier transform infrared spectrum of Example 1 and Comparative Examples 1 and 2 of the present invention.
  • FIG. 2 is a partially enlarged view of the Fourier transform infrared spectrum of Example 1 of the present invention and Comparative Examples 1 and 2.
  • 3 is an XPS spectrum of Example 1 of the present invention.
  • 5 is an XPS spectrum of Comparative Example 1.
  • 7 is an XPS spectrum of Comparative Example 2.
  • the positive electrode 1 for a non-aqueous electrolyte secondary battery may be simply referred to as the positive electrode 1 in some cases.
  • the positive electrode 1 for a nonaqueous electrolyte secondary battery has a positive electrode active material 2, a binder 3, a conductive material 4, and a current collector 5.
  • the positive electrode active material 2 contains lithium and nickel.
  • the binder 3 is water-soluble or water-dispersible.
  • the positive electrode active material 2 and the conductive material 4 are connected to a current collector 5 by a binder 3.
  • FIG. 1 shows a schematic diagram of the Fourier transform infrared spectrum X of the positive electrode 1 for a non-aqueous electrolyte secondary battery in addition to the configuration diagram of the positive electrode 1 for a non-aqueous electrolyte secondary battery.
  • the Fourier transform infrared spectroscopy spectrum X of the positive electrode 1 for a non-aqueous electrolyte secondary battery is obtained by analyzing the positive electrode 1 for a non-aqueous electrolyte secondary battery by Fourier transform infrared spectroscopy.
  • the horizontal axis of the graph of the Fourier transform infrared spectrum shows the wave number
  • the vertical axis shows the transmittance or the absorptance.
  • the graph of the Fourier transform infrared spectroscopy spectrum of FIG. 1 also shows a schematic diagram of the Fourier transform infrared spectroscopy spectrum Y of a substance that can be generated by the reaction between the positive electrode active material 2 and water.
  • the Fourier transform infrared spectrum X of the positive electrode 1 for a nonaqueous electrolyte secondary battery if a peak appears in the same wave number region as the wave number region in the Fourier transform infrared spectrum of a certain composition It can be determined that the positive electrode 1 for a nonaqueous electrolyte secondary battery contains this composition.
  • the positive electrode 1 for a nonaqueous electrolyte secondary battery is analyzed by Fourier transform infrared spectroscopy, no substance that can be generated by the reaction between the positive electrode active material 2 and water is detected.
  • the positive electrode 1 for a nonaqueous electrolyte secondary battery is analyzed by Fourier transform infrared spectroscopy, it is possible to analyze the vicinity of the surface of the positive electrode active material aggregate formed by aggregating the primary particles of the positive electrode active material 2.
  • the substance that can be generated by the reaction between the positive electrode active material 2 and water is a positive electrode. It can be determined that it does not exist near the surface of the active material aggregate 2 at a level detectable by Fourier transform infrared spectroscopy.
  • Substances that can be produced by the reaction between the positive electrode active material 2 and water include at least a product produced from these reactants when the positive electrode active material 2 and water are used as reactants, and a substance derived from the product. At least one.
  • a product generated from these reactants is a substance generated by the positive electrode active material 2 being transformed by reaction with water.
  • a product produced from these reactants, and a substance derived from the product react the positive electrode active material 2 with water in the positive electrode active material aggregate.
  • the substance that can be generated by the reaction between the positive electrode active material 2 and water exists in a portion of the positive electrode active material aggregate where the positive electrode active material 2 is altered by the reaction with water and / or in the vicinity thereof. From the above, when it is determined that there is a substance that can be generated by the reaction between the positive electrode active material 2 and water, the location where the substance that can be generated by the reaction between the positive electrode active material 2 and water exists and / or in the vicinity thereof It is considered that there is a substance in which the positive electrode active material has been altered by the reaction with water.
  • the positive electrode active substance when it is determined that there is a substance that can be generated by the reaction between the positive electrode active material 2 and water, the positive electrode active substance is located in a place where the substance that can be generated by the reaction between the positive electrode active material 2 and water exists and / or in the vicinity thereof. It is considered that the substance has been altered by water.
  • the positive electrode active substance when it is determined that there is no substance that can be generated by the reaction between the positive electrode active material 2 and water, the positive electrode active substance is generated in a place where the substance that can be generated by the reaction between the positive electrode active material 2 and water does not exist and in the vicinity thereof. It is considered that the alteration of the substance 2 by water is suppressed.
  • the non-aqueous electrolyte secondary battery using the positive electrode 1 for a non-aqueous electrolyte secondary battery is compared with a conventional positive electrode for a non-aqueous electrolyte secondary battery using a positive electrode active material containing lithium and nickel.
  • the durability of the battery can be increased while improving the battery characteristics.
  • the positive electrode 1 for a non-aqueous electrolyte secondary battery has a sheet shape.
  • the positive electrode 1 for a non-aqueous electrolyte secondary battery has a positive electrode active material aggregate 2p, a binder 3, a conductive material 4, and a current collector 5.
  • the positive electrode 1 for a non-aqueous electrolyte secondary battery is configured to be able to occlude and release lithium ions.
  • the binder 3 connects the positive electrode active material aggregates 2p to each other.
  • the binder 3 connects the conductive members 4 to each other.
  • the binder 3 connects the positive electrode active material aggregate 2p and the conductive material 4.
  • the binder 3 connects the positive electrode active material aggregate 2p and the conductive material 4 to the current collector 5.
  • the binder 3 is a water-soluble binder or a water-dispersible binder.
  • the binder 3 is, for example, an acrylic binder mainly containing an acrylic resin.
  • the positive electrode active material aggregate 2p is a secondary particle formed by agglomeration of the positive electrode active material 2 as a primary particle.
  • the positive electrode active material 2 and the positive electrode active material aggregate 2p are in the form of particles.
  • the positive electrode active material 2 contains a composite oxide containing lithium and nickel.
  • the positive electrode active material 2 may include another metal in addition to lithium and nickel. That is, the positive electrode active material 2 may include a composite oxide containing lithium, nickel, and another metal.
  • the nickel content of the positive electrode active material aggregate 2p is 30 mol% or more.
  • the nickel content of the positive electrode active material aggregate 2p may be 30 mol%, 50 mol%, or 80 mol%.
  • the nickel content of the positive electrode active material aggregate 2p is the same as the nickel content of the positive electrode active material 2.
  • the nickel content of the positive electrode active material aggregate 2p is a ratio of nickel to a metal element included in the positive electrode active material 2.
  • the conductive material 4 is a conductive carbon material such as natural graphite, artificial graphite, acetylene black, carbon black, graphite, and the like.
  • the current collector 5 preferably contains aluminum.
  • the current collector 5 may be, for example, an aluminum foil.
  • the current collector 5 may be, for example, a metal foil of an aluminum alloy containing aluminum.
  • the current collector 5 may not contain aluminum.
  • the positive electrode active material 2 is altered by the reaction of the positive electrode active material 2 with water.
  • a substance that can be generated by the reaction between the positive electrode active material 2 and water exists in and / or in the vicinity of the altered portion of the positive electrode active material 2 in the positive electrode active material aggregate.
  • lithium hydroxide When the positive electrode active material 2 reacts with water, at least one of lithium hydroxide, lithium carbonate, and lithium hydrogen carbonate is generated. Lithium hydroxide is changed to lithium hydroxide hydrate by water contained in the atmosphere or the like. Typically, lithium hydroxide exists as lithium hydroxide hydrate (LiOH.H 2 O), not as lithium hydroxide anhydride (LiOH). Therefore, when lithium hydroxide is generated by the reaction of the positive electrode active material 2 with water, the substance that can be generated by the reaction between the positive electrode active material 2 and water is lithium hydroxide hydrate.
  • lithium hydroxide hydrate exists in a portion of the positive electrode active material aggregate where the positive electrode active material 2 is altered and / or in the vicinity thereof.
  • the positive electrode 1 is analyzed by Fourier transform infrared spectroscopy, no peak derived from lithium hydroxide hydrate appears in the Fourier transform infrared spectroscopic spectrum of the positive electrode 1. That is, lithium hydroxide hydrate does not exist near the surface of the positive electrode active material aggregate at a level detectable by Fourier transform infrared spectroscopy.
  • the peak appearing in the range of 1500 to 1700 cm -1 is a peak derived from the binding of water molecules contained in lithium hydroxide hydrate.
  • the characteristic absorption band attributed to the binding of water molecules contained in lithium hydroxide hydrate is in the range of 1500 to 1700 cm ⁇ 1 .
  • the peak derived from lithium hydroxide hydrate includes a peak other than the peak derived from a water molecule (H 2 O) contained in lithium hydroxide hydrate (LiOH ⁇ H 2 O).
  • the transmittance of the peak derived from water molecules (H 2 O) contained in lithium hydroxide hydrate (LiOH ⁇ H 2 O) is the smallest.
  • the absorption rate of the peak derived from water molecules (H 2 O) contained in lithium hydroxide hydrate (LiOH ⁇ H 2 O) is the largest. . Therefore, by judging the presence or absence of a peak derived from a water molecule (H 2 O) contained in lithium hydroxide hydrate (LiOH ⁇ H 2 O), lithium hydroxide hydrate (LiOH ⁇ H 2 O) can be determined.
  • the fact that no peak derived from lithium hydroxide hydrate appears in the Fourier transform infrared spectroscopy spectrum of the positive electrode 1 means that the wave number is in the range of 1500 to 1700 cm ⁇ 1 in the Fourier transform infrared spectroscopy spectrum of the positive electrode 1. It can be said that no peak appears.
  • the fact that no peak derived from lithium hydroxide hydrate appears in the Fourier transform infrared spectrum of the positive electrode 1 means that a peak appears in a characteristic absorption band belonging to a water molecule contained in lithium hydroxide hydrate. It can be said that there is no.
  • lithium bicarbonate When lithium bicarbonate is generated by the reaction of the positive electrode active material 2 with water, lithium bicarbonate is an unstable substance, so that the generated lithium bicarbonate is immediately changed to lithium carbonate. Therefore, when lithium hydrogen carbonate is generated by the reaction of the positive electrode active material 2 with water, a substance that can be generated by the reaction between the positive electrode active material 2 and water is lithium carbonate. When lithium hydrogen carbonate is generated by the reaction of the positive electrode active material 2 with water, lithium carbonate is present in a portion of the positive electrode active material aggregate where the positive electrode active material 2 is altered and / or in the vicinity thereof. Further, when lithium carbonate is generated by the reaction of the positive electrode active material 2 with water, a substance that can be generated by the reaction between the positive electrode active material 2 and water is lithium carbonate.
  • lithium carbonate When lithium carbonate is generated by the reaction of the positive electrode active material 2 with water, lithium carbonate is present in a portion of the positive electrode active material aggregate where the positive electrode active material 2 is altered and / or in the vicinity thereof.
  • the positive electrode active material 2 reacts with water to generate lithium hydrogen carbonate and lithium carbonate, a substance that can be generated by the reaction between the positive electrode active material 2 and water is lithium carbonate.
  • lithium hydrogen carbonate and lithium carbonate are generated by the reaction of the positive electrode active material 2 with water, lithium carbonate is present in a portion of the positive electrode active material aggregate where the positive electrode active material 2 is altered and / or in the vicinity thereof.
  • lithium hydrogen carbonate and lithium carbonate when at least one of lithium hydrogen carbonate and lithium carbonate is generated by the reaction of the positive electrode active material 2 with water, the substance that can be generated by the reaction between the positive electrode active material 2 and water is lithium carbonate.
  • lithium carbonate is present in a portion of the positive electrode active material aggregate where the positive electrode active material 2 is altered and / or in the vicinity thereof. I do.
  • the positive electrode 1 is analyzed by Fourier transform infrared spectroscopy, no peak derived from lithium carbonate appears in the Fourier transform infrared spectroscopic spectrum of the positive electrode 1. That is, lithium carbonate does not exist near the surface of the positive electrode active material aggregate at a level detectable by Fourier transform infrared spectroscopy.
  • a peak derived from lithium carbonate does not appear in the Fourier transform infrared spectroscopy spectrum of the positive electrode 1
  • the fact that no peak derived from lithium carbonate appears in the Fourier transform infrared spectroscopy spectrum of the positive electrode 1 means that the characteristic absorption band attributed to the bond between the carbon atom (C) and the oxygen atom (O) of lithium carbonate has a peak. It does not appear.
  • lithium hydroxide and at least one of lithium hydrogen carbonate and lithium carbonate are generated by the reaction of the positive electrode active material 2 with water
  • the substance that can be generated by the reaction between the positive electrode active material 2 and water is water. Lithium oxide hydrate and lithium carbonate.
  • the positive electrode 1 When the positive electrode 1 is analyzed by Fourier transform infrared spectroscopy, in the Fourier transform infrared spectroscopic spectrum of the positive electrode 1, a peak derived from lithium hydroxide hydrate and a peak derived from lithium carbonate do not appear. That is, lithium hydroxide hydrate and lithium carbonate do not exist near the surface of the positive electrode active material aggregate at a level that can be detected by Fourier transform infrared spectroscopy. A peak derived from lithium hydroxide hydrate and a peak derived from lithium carbonate do not appear in the Fourier transform infrared spectrum of the positive electrode 1, which means that the wave number is 1350 to 1600 cm ⁇ in the Fourier transform infrared spectrum of the positive electrode 1.
  • the entire positive electrode active material aggregate 2p that is, the vicinity of the surface of the positive electrode active material aggregate 2p and the positive electrode active material aggregate 2p Can be analyzed inside.
  • the XPS spectrum of the positive electrode 1 is obtained by analyzing the positive electrode 1 by the XPS method.
  • the XPS spectrum is displayed with the binding energy of photoelectrons as the horizontal axis and the count number of photoelectrons as the vertical axis (see FIG. 6).
  • the positive electrode 1 contains this composition. .
  • a peak derived from a substance that can be generated by a reaction between the positive electrode active material 2 and water does not appear.
  • a peak derived from a substance that can be generated by a reaction between the positive electrode active material 2 and water may appear.
  • the case where no peak derived from a substance that can be generated by the reaction between the positive electrode active material 2 and water does not appear is due to the reaction between the positive electrode active material 2 and water.
  • the substance that can be generated does not exist in the entire positive electrode active material aggregate 2p, and the substance that can be generated by the reaction between the positive electrode active material 2 and water is in at least one of the vicinity and inside of the positive electrode active material aggregate 2p, When present at levels below the detectable level of the XPS method.
  • the peak can be generated by a reaction between the positive electrode active material 2 and water.
  • the substance is present at at least one of near and inside the surface of the positive electrode active material aggregate 2p at a detectable level of the XPS method.
  • the substance that can be generated by the reaction between the positive electrode active material 2 and water does not exist near the surface of the positive electrode active material aggregate 2p or the positive electrode active material It is present near the surface of the aggregate 2p at a level lower than the detectable level of Fourier transform infrared spectroscopy. Therefore, in the XPS spectrum of the positive electrode 1 for a nonaqueous electrolyte secondary battery, when a peak derived from a substance that can be generated by the reaction between the positive electrode active material 2 and water appears, the reaction between the positive electrode active material 2 and water It is considered that a substance that can be generated exists inside the positive electrode active material aggregate 2p.
  • the positive electrode 1 for a non-aqueous electrolyte secondary battery is manufactured, for example, by the following method.
  • the positive electrode active material aggregate 2p, the water-soluble or water-dispersible binder 3, the conductive material 4, and a solvent or dispersion medium containing water are mixed to prepare a slurry.
  • the binder 3 is water-soluble, it is preferable that 50 wt% or more is water with respect to 100 wt% of the solvent.
  • the prepared slurry is applied to the current collector 5. Thereafter, the slurry is dried.
  • the drying temperature of the slurry is, for example, about 50 ° C. to 130 ° C.
  • the positive electrode 1 for a non-aqueous electrolyte secondary battery is obtained.
  • the slurry may contain various additives such as a thickener and a pH adjuster.
  • a thickener for example, a cellulose derivative, an acrylic resin, or the like can be used.
  • a pH adjuster for example, one or more acids such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, succinic acid, and phthalic acid can be used.
  • the pH adjuster is preferably a pH adjuster that does not thermally decompose at the slurry drying temperature.
  • the thickener and the pH adjuster are not limited to the thickener and the pH adjuster exemplified above.
  • FIG. 3 is a schematic cross-sectional view of a nonaqueous electrolyte secondary battery 11 manufactured using the positive electrode 1 for a nonaqueous electrolyte secondary battery according to a specific example of the embodiment of the present invention.
  • the non-aqueous electrolyte secondary battery 11 shown in FIG. 3 is an example of a non-aqueous electrolyte secondary battery manufactured using the non-aqueous electrolyte secondary battery positive electrode 1 of the above embodiment.
  • the non-aqueous electrolyte secondary battery 11 includes the positive electrode 1 for a non-aqueous electrolyte secondary battery, the negative electrode 12, two separators 13, a container 14, a lid 15, and a non-aqueous electrolyte not shown.
  • the positive electrode 1, the negative electrode 12 and the two separators 13 are housed in a rectangular cylindrical container 14.
  • the positive electrode 1, the negative electrode 12, and the two separators 13 are wound in a prismatic shape.
  • the separator 13 is impregnated with a non-aqueous electrolyte.
  • the opening of the container 14 is closed by a lid 15.
  • the negative electrode 12 is configured to be able to occlude and release lithium ions.
  • the negative electrode 12 includes a negative electrode active material.
  • the negative electrode active material for example, one or more selected from a carbon material, an alloy, and a metal oxide can be used.
  • the separator 13 insulates the positive electrode 1 and the negative electrode 12.
  • the separator 13 is configured to be able to hold an electrolytic solution.
  • the non-aqueous electrolyte contains a non-aqueous solvent (a solvent not containing water) and an electrolyte. The electrolyte is dissolved in a solvent that does not contain water.
  • the negative electrode 12, the separator 13, the container 14, the lid 15, the non-aqueous electrolyte, and the like those used in general non-aqueous electrolyte secondary batteries can be used.
  • the 0.1 C discharge capacity per weight of the positive electrode active material at 25 ⁇ 2 ° C. of the nonaqueous electrolyte secondary battery 11 is determined by the material of the positive electrode active material 2, the diameter of primary particles of the positive electrode active material, and the positive electrode active material aggregate. It is 90% or more of the maximum discharge capacity depending on the diameter of 2p. When the 0.1 C discharge capacity is 90% or more of the maximum discharge capacity, the nonaqueous electrolyte secondary battery 11 is at a level that can sufficiently withstand practical use.
  • the positive electrode active material 2 and the conductive material 4 were used. Is not separated from the current collector 5. That is, in the positive electrode 1 for a non-aqueous electrolyte secondary battery, the positive electrode active material 2 and the conductive material 4 are connected to the current collector 5 with such a connection strength that they are not peeled off in the bending resistance test.
  • the positive electrode active material 2 and the conductive material 4 are collected. It is difficult to peel off from the conductor 5. Further, corrosion of the current collector 5 which causes peeling does not occur. Since the current collector 5 does not corrode, the durability of the nonaqueous electrolyte secondary battery 11 is high.
  • the non-aqueous electrolyte secondary battery 11 is manufactured by, for example, the following method.
  • the positive electrode 1, the negative electrode 12, and the two separators are wound so that the separator 13 is interposed between the positive electrode 1 and the negative electrode 12. Then, the wound product is stored in the container 14.
  • the separator 13 is impregnated with the non-aqueous electrolyte.
  • the opening of the container 14 is closed by the lid 15.
  • the non-aqueous electrolyte secondary battery 11 using the positive electrode 1 for a non-aqueous electrolyte secondary battery compared to a conventional positive electrode for a non-aqueous electrolyte secondary battery using a positive electrode active material containing lithium and nickel,
  • the battery durability can be improved while improving the battery characteristics.
  • the positive electrode for a non-aqueous electrolyte secondary battery according to the embodiment of the present invention and its specific example is in a sheet shape.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention may have a shape other than a sheet shape.
  • the non-aqueous electrolyte secondary battery of the present invention may have a configuration in which a plurality of non-aqueous electrolyte secondary battery positive electrodes and a plurality of negative electrodes are stacked with a separator interposed therebetween.
  • the container 14 of the nonaqueous electrolyte secondary battery 11 of the specific example of the embodiment of the present invention has a rectangular cylindrical shape
  • the shape of the container of the nonaqueous electrolyte secondary battery of the present invention does not have to be a rectangular cylindrical shape.
  • the container of the non-aqueous electrolyte secondary battery may be cylindrical.
  • Example 1 is an example of the positive electrode 1 for a non-aqueous electrolyte secondary battery shown in FIG.
  • Example 1 The same positive electrode active material was used in Example 1 and Comparative Example 1.
  • the positive electrode active material nickel cobalt lithium aluminum oxide (NCA) having a nickel content of 80 mol% was used.
  • NCA nickel cobalt lithium aluminum oxide
  • this positive electrode active material was left in the air for one day.
  • the slurry was prepared by mixing a positive electrode active material, an acrylic binder, acetylene black and graphite as a conductive material, water as a solvent or a dispersion medium, and additives such as a thickener and a pH adjuster. was prepared. Thereafter, the slurry was applied to a current collector (aluminum foil).
  • Example 1 By drying the slurry, a positive electrode for a non-aqueous electrolyte secondary battery was obtained.
  • Example 1 and Comparative Example 1 the type and amount of the pH adjuster mixed in the slurry were changed. Other materials and procedures were the same in Example 1 and Comparative Example 1.
  • NCA nickel cobalt lithium aluminum oxide
  • a positive electrode active material, polyvinylidene fluoride (PVDF), acetylene black and graphite as a conductive material, and NMP (N-methyl-2-pyrrolidone) as a solvent or a dispersion medium were mixed to prepare a slurry. Thereafter, the slurry was applied to a current collector (aluminum foil). By drying the slurry, a positive electrode for a non-aqueous electrolyte secondary battery was obtained.
  • PVDF polyvinylidene fluoride
  • acetylene black and graphite as a conductive material
  • NMP N-methyl-2-pyrrolidone
  • the production of the positive electrode of Comparative Example 2 was performed in a low-humidity environment, unlike the environment in which a conventional positive electrode containing an organic solvent-based binder was produced.
  • the positive electrode active material hardly came into contact with the atmosphere before and during the preparation of the electrode including the preparation of the slurry.
  • Example 1 Comparative Example 1 and Comparative Example 2 may be referred to as aqueous system A, aqueous system B, and organic system, respectively.
  • Non-aqueous electrolyte secondary batteries were manufactured using the positive electrodes for non-aqueous electrolyte secondary batteries of Example 1, Comparative Examples 1 and 2.
  • the manufacturing method is the same as the method described in the specific example of the embodiment of the present invention.
  • Comparative Example 1 and Comparative Example 2 the types of the negative electrode, the separator, and the nonaqueous electrolyte were all the same.
  • a half-cell (single-electrode) CR2032 type coin battery was produced using the positive electrodes for non-aqueous electrolyte secondary batteries of Example 1, Comparative Examples 1 and 2. Lithium was used in place of the negative electrode as in a general positive electrode half cell (positive electrode single electrode).
  • FIG. 4 is a scanning electron micrograph of the surface of the positive electrode for a non-aqueous electrolyte secondary battery of Example 1 (aqueous A), Comparative Example 1 (aqueous B), and Comparative Example 2 (organic).
  • Example 1 aqueous A
  • Comparative Example 1 aqueous B
  • Comparative Example 2 organic
  • FIG. 5A shows Fourier transform infrared spectroscopy spectra of Example 1 (aqueous A), Comparative Example 1 (aqueous B), and Comparative Example 2 (organic).
  • lithium hydroxide hydrate LiOH.H 2 O
  • carbonic acid Li 2 CO 3
  • Example 1 aqueous A
  • Comparative Example 1 aqueous B
  • Comparative Example 2 organic
  • FIG. 5A shows a Fourier transform infrared spectrum of lithium hydroxide hydrate (LiOH ⁇ H 2 O) as Reference Example 1, and a Fourier transform infrared spectrum of lithium carbonate (Li 2 CO 3 ) as Reference Example 2. Is shown.
  • FIG. 5B is an enlarged view of a region having a wave number of 1200 to 1800 cm ⁇ 1 in the Fourier transform infrared spectrum shown in FIG. 5A.
  • lithium hydroxide hydrate (LiOH ⁇ H 2 O) depends on whether a peak appears in the region where the wave number is 1500 to 1700 cm ⁇ 1.
  • the presence or absence of lithium hydroxide hydrate is determined based on whether a peak appears in a region where the wave number is 1500 to 1700 cm ⁇ 1 . Further, in the Fourier transform infrared spectroscopy spectrum of the lithium hydroxide hydrate (LiOH.H 2 O) of Reference Example 1, a plurality of peaks also appear in a region where the wave number is 500 to 1300 cm ⁇ 1 . However, the region where the wave number is 500 to 1300 cm -1 is a fingerprint region. In the fingerprint area, peaks derived from each material appear.
  • Example 1 In the Fourier transform infrared spectrum of Example 1 (water-based A), no peak appeared in the same region at 1500 to 1700 cm ⁇ 1 as the peak appeared in the Fourier transform infrared spectrum of Reference Example 1. As a precautionary measure, the same region where another peak appeared in the Fourier transform infrared spectroscopy spectrum of Reference Example 1 at 3500 to 3700 cm ⁇ 1 was also confirmed. In the spectrum, no peak appeared in the region of 3500 to 3700 cm ⁇ 1 . In the Fourier transform infrared spectrum of Example 1 (aqueous system A), no peak appeared in the same region of 1350 to 1600 cm ⁇ 1 as the peak appeared in the Fourier transform infrared spectrum of Reference Example 2. Therefore, in the positive electrode of Example 1 (water-based A), it was found that lithium hydroxide hydrate and lithium carbonate were not present near the surface of the positive electrode active material aggregate at a detectable level by Fourier transform infrared spectroscopy. .
  • Lithium hydroxide hydrate and lithium carbonate should be present near the surface of the positive electrode active material aggregate of the conventional positive electrode containing an organic solvent-based binder at a level detectable by Fourier transform infrared spectroscopy. This is because the positive electrode active material is in contact with the atmosphere when a positive electrode containing a conventional organic solvent-based binder is produced.
  • the production of the positive electrode of Comparative Example 2 (organic) was performed in a low-humidity environment, unlike the conventional environment for producing a positive electrode containing an organic solvent-based binder.
  • the low humidity environment is an environment in which low humidity air exists. In a low humidity environment, the positive electrode active material hardly comes into contact with water in the air.
  • the positive electrode active material of Comparative Example 2 is considered to have hardly reacted with water in the air.
  • the positive electrode active material of Comparative Example 2 is considered to have hardly been altered by water.
  • the positive electrode containing the organic solvent-based binder of Comparative Example 2 (organic type) it was found that a small amount of lithium carbonate was present near the surface of the positive electrode active material aggregate. Since the positive electrode of Comparative Example 2 (organic) was prepared in a low humidity environment, the positive electrode active material hardly touched water in the air. However, even in the low-humidity environment, it is considered that lithium carbonate and lithium hydrogen carbonate were generated because the positive electrode active material slightly touched water in the air.
  • the positive electrodes for non-aqueous electrolyte secondary batteries of Example 1 (aqueous A) and Comparative Example 1 (aqueous B) were each manufactured using a positive electrode active material left in the air for one day. Therefore, it is considered that the positive electrode active material reacted with water in the air, and thus the positive electrode active material was altered by water. It is considered that lithium hydroxide was generated by the reaction of the positive electrode active material with atmospheric water. It is considered that lithium hydroxide was changed to lithium hydroxide hydrate. It is also considered that the positive electrode active material reacted with carbon dioxide gas and water in the air to generate lithium carbonate and lithium hydrogen carbonate.
  • Example 1 water-based A
  • lithium hydroxide hydrate was detected near the surface of the positive electrode active material aggregate at a detectable level by Fourier transform infrared spectroscopy. And no lithium carbonate was present.
  • the positive electrode active material of Example 1 water-based A
  • the vicinity of the surface of the positive electrode active material aggregate deteriorated. It is presumed that it returned to a normal state.
  • Example 1 aqueous A
  • Comparative Example 1 aqueous B
  • Comparative Example 2 organic
  • FIG. 6 shows an XPS spectrum of Example 1 (water-based A).
  • FIG. 7 shows an XPS spectrum of Comparative Example 1 (water-based B).
  • FIG. 8 shows an XPS spectrum of Comparative Example 2 (organic). The XPS spectra shown in FIGS.
  • 6, 7 and 8 are a C1s spectrum, an O1s spectrum, and a Li1s spectrum.
  • the horizontal axis of the XPS spectrum graph shows the binding energy of photoelectrons, and the vertical axis shows the count number of photoelectrons.
  • a C1s_4 peak appeared in the C1s spectrum of Example 1 (aqueous system A).
  • the C1s_4 peak is a peak derived from CO 3 . Therefore, the positive electrode active material of Example 1 (water-based A) includes a substance containing carbonate ions.
  • a Li1s_1 peak, a Li1s_2 peak, and a Li1s_3 peak appeared in the Li1s spectrum of Example 1 (aqueous system A).
  • the Li1s_1 peak, the Li1s_2 peak, and the Li1s_3 peak include a peak derived from lithium carbonate. Therefore, the C1s_4 peak derived from CO 3 is assumed to be a peak derived from lithium carbonate.
  • Example 1 water-based A
  • Example 1 water-based A
  • lithium carbonate was present near at least one of the surface of the positive electrode active material aggregate and the inside of the positive electrode active material aggregate.
  • lithium carbonate was not detected near the surface of the positive electrode active material aggregate of Example 1 (aqueous A) by analysis by Fourier transform infrared spectroscopy, lithium carbonate was almost present near the surface of the positive electrode active material aggregate. It is presumed that they do not exist inside the positive electrode active material aggregate.
  • a C1s_4 peak derived from CO 3 also appeared in the C1s spectrum of Comparative Example 1 (aqueous B).
  • a Li1s_1 peak, a Li1s_2 peak, and a Li1s_3 peak appeared in the Li1s spectrum of Comparative Example 1 (aqueous B).
  • These peaks are peaks derived from lithium carbonate. Therefore, the C1s_4 peak is assumed to be a peak derived from lithium carbonate.
  • the C1s_4 peak derived from CO 3 did not appear in the C1s spectrum of Comparative Example 2 (organic system). Therefore, when the positive electrode for a non-aqueous electrolyte secondary battery of Comparative Example 2 (organic system) was analyzed by the XPS method, lithium carbonate was not detected. However, in the analysis by Fourier transform infrared spectroscopy, lithium carbonate was slightly detected near the surface of the positive electrode active material aggregate of Comparative Example 2 (organic), so that lithium carbonate was present near the surface of the positive electrode active material aggregate. It is speculated. Note that a C1s_5 peak appeared in the C1s spectrum of Comparative Example 2 (organic system).
  • the C1s_5 peak is a peak derived from CH 2 —CF 2 contained in polyvinylidene fluoride (PVDF). Therefore, it was confirmed that Comparative Example 2 (organic system) used polyvinylidene fluoride (PVDF).
  • 0.1 C discharge capacity ratio (0.1C discharge capacity / 0.1C maximum discharge capacity) ⁇ 100
  • ⁇ 3-4> 3C / 0.2C discharge capacity ratio Using a CR2032 type battery, 0.2 C of the positive electrode half cell of Example 1 (aqueous A), Comparative Example 1 (aqueous B), and Comparative Example 2 (organic) was used. The discharge capacity and the 3C discharge capacity were measured in the voltage range of 4.3 to 3.0 V, respectively. After performing a constant current constant voltage charge in an environment of 25 ⁇ 2 ° C., the battery was discharged to a discharge end voltage of 3.0 V, and a 3C discharge capacity and a 0.2C discharge capacity were measured, respectively.
  • the constant-current constant-voltage charging was performed under the conditions of a current of 0.2 C, a charging end voltage of 4.3 V, and a charging end current of 0.02 C.
  • the 3C discharge capacity is an amount of electricity extracted when the battery is discharged to a discharge end voltage with a current of 3C.
  • 3C is a current value at which the discharge ends in 1/3 hour when the constant current discharge is performed.
  • the 0.2 C discharge capacity is an amount of electricity extracted when the battery is discharged to a discharge end voltage with a current of 0.2 C.
  • Table 2 shows the following.
  • the 0.1 C discharge capacity ratio of Example 1 (aqueous A) and the 0.1 C discharge capacity ratio of Comparative Example 2 (organic) were 90% or more, which is a practical level.
  • the 0.1 C discharge capacity ratio of Comparative Example 1 (water-based B) was less than 90%, and did not reach a practical level.
  • the 0.1C first charge / discharge efficiency of Example 1 (aqueous A) was higher than the 0.1C first charge / discharge efficiency of Comparative Example 1 (aqueous B) and the 0.1C first charge / discharge efficiency of Comparative Example 2 (organic).
  • the 0.2C charge / discharge efficiency of Example 1 (aqueous A) was higher than the 0.2C charge / discharge efficiency of Comparative Example 1 (aqueous B) and the 0.2C charge / discharge efficiency of Comparative Example 2 (organic).
  • the 0.1 C initial charge / discharge efficiency of Comparative Example 1 (aqueous B) was lower than the 0.1 C initial charge / discharge efficiency of Comparative Example 2 (organic).
  • the 0.2C charge / discharge efficiency of Comparative Example 1 (aqueous B) was lower than the 0.2C charge / discharge efficiency of Comparative Example 2 (organic).
  • the 3C / 0.2C discharge capacity ratio of Example 1 (water-based A) was higher than the 3C / 0.2C discharge capacity ratio of Comparative Example 1 (water-based B). Therefore, the resistance value of the positive electrode of Example 1 (water-based A) is estimated to be lower than the resistance value of the positive electrode of Comparative Example 1 (water-based B). Therefore, it is considered that the amount of Joule heat generated during charging and discharging of the battery of Example 1 (water-based A) is smaller than the amount of Joule heat generated during charging and discharging of the battery of Comparative Example 1 (water-based B).
  • Example 1 water-based A
  • Comparative Example 1 water-based B
  • the 3C / 0.2C discharge capacity ratio of Example 1 (aqueous A) was the same as the 3C / 0.2C discharge capacity ratio of Comparative Example 2 (organic). Therefore, it is assumed that the resistance value of the positive electrode of Example 1 (aqueous A) is equivalent to the resistance value of the positive electrode of Comparative Example 2 (organic). Since the resistance value of the positive electrode of Comparative Example 2 (organic type) using an organic binder is low, the positive electrode of Comparative Example 2 (organic type) does not easily deteriorate.
  • the resistance value of the positive electrode of Example 1 (water-based A) was equivalent to this low resistance value. Therefore, the amount of Joule heat generated during charging and discharging of the battery of Example 1 (water-based A) is equivalent to the amount of Joule heat generated during charging and discharging of the battery of Comparative Example 2 (organic). it is conceivable that. Therefore, it is considered that the positive electrode of Example 1 (water-based A) is almost equal to the positive electrode of Comparative Example 2 (organic-based) in deterioration due to heat during charging and discharging.
  • the 3C / 0.2C discharge capacity ratio of Comparative Example 1 (aqueous B) was lower than the 3C / 0.2C discharge capacity ratio of Comparative Example 2 (organic).
  • the capacity retention of the 20th single-pole cycle of Example 1 was higher than the capacity retention of the 20th single-pole cycle of Comparative Example 1 (aqueous B).
  • the positive electrode of Example 1 had higher durability than the positive electrode of Comparative Example 1 (water-based B).
  • the capacity retention of the 20th single electrode cycle of Example 1 was higher than the capacity retention of the 20th single electrode cycle of Comparative Example 2 (organic).
  • the positive electrode of Example 1 had higher durability than the positive electrode of Comparative Example 2 (organic-based).
  • Example 1 water-based A
  • Comparative Example 1 water-based B
  • Comparative Example 2 organic-based
  • the peel strength of Example 1 (water-based A), Comparative Example 1 (water-based B) and Comparative Example 2 (organic-based) exceeded 6 [N / m]. From the results of the bending peel test and the peel test, it can be determined that the current collector is not corroded because the connection strength between the positive electrode active material and the conductive material and the current collector is high.
  • Example 1 (aqueous A) was higher than the charge and discharge efficiency of Comparative Example 1 (aqueous B) and the charge and discharge efficiency of Comparative Example 2 (organic).
  • the durability of the battery of Example 1 (water-based A) was higher than the durability of the battery of Comparative Example 1 (water-based B) and the durability of the battery of Comparative Example 2 (organic-based). Therefore, it was found that Example 1 (water-based A) had higher battery characteristics and higher durability than Comparative Example 1 (water-based B) and Comparative Example 2 (organic-based).
  • Comparative Example 1 aqueous B
  • Comparative Example 2 organic
  • the positive electrode of Comparative Example 2 was prepared in a low humidity environment in which the positive electrode active material hardly touched water in the air, unlike the environment in which a conventional positive electrode containing an organic solvent-based binder was prepared. Therefore, the positive electrode active material of Comparative Example 2 (organic type) hardly changes in quality due to water, unlike the positive electrode active material of the positive electrode containing the conventional organic solvent-based binder. Therefore, it is considered that the battery of Comparative Example 2 (organic system) can suppress a decrease in charge / discharge efficiency as compared with a battery manufactured using a positive electrode containing a conventional organic solvent-based binder.
  • the durability of the battery of Comparative Example 2 (organic) is considered to be higher than the durability of a battery manufactured using a positive electrode containing a conventional organic solvent-based binder.
  • Example 1 aqueous A
  • Comparative Example 2 organic solvent-based binder
  • the charge and discharge efficiency of the battery of Example 1 (water-based A) is higher than the charge and discharge efficiency of a battery manufactured using a positive electrode containing a conventional organic solvent-based binder.
  • the battery of Example 1 (water-based A) had higher durability than the battery of Comparative Example 2 (organic-based). Therefore, naturally, the durability of the battery of Example 1 (water-based A) is higher than the durability of a battery manufactured using a positive electrode containing a conventional organic solvent-based binder.
  • Example 1 (water-based A) and Comparative Example 1 (water-based B) are deteriorated by water in the air while being left in the air for one day. Therefore, the charge / discharge efficiency and durability of the batteries of Example 1 (aqueous A) and Comparative Example 1 (aqueous B) are the same as those of the battery of Comparative Example 2 (organic) in which the positive electrode active material is hardly altered. And should be less durable. However, the charge / discharge efficiency and durability of the battery of Example 1 (aqueous A) were higher than the charge / discharge efficiency and durability of the battery of Comparative Example 2 (organic) in which the positive electrode active material was hardly altered. On the other hand, the charge / discharge efficiency and durability of the battery of Comparative Example 1 (aqueous B) were lower than the charge / discharge efficiency and durability of the battery of Comparative Example 2 (organic) in which the positive electrode active material was hardly altered.
  • the charge / discharge efficiency and durability of the battery are influenced by whether or not the vicinity of the surface of the positive electrode active material aggregate is altered by water. Even if the vicinity of the surface of the positive electrode active material aggregate is deteriorated by water, when the state returns to a normal state without deterioration, it is estimated that the charge and discharge efficiency and durability of the battery are high. On the other hand, when the vicinity of the surface of the positive electrode active material aggregate remains altered by water, it is estimated that the charge / discharge efficiency and durability of the battery are low.
  • Example 1 When the positive electrode of Example 1 (water-based A) was analyzed by the XPS method, lithium carbonate was detected inside the positive electrode active material aggregate of Example 1 (water-based A). However, the charge / discharge efficiency and durability of Example 1 (water-based A) were high. From this, the following two items are presumed. First, the lithium carbonate detected inside the positive electrode active material aggregate of Example 1 (water-based A) was not generated due to the deterioration of the positive electrode active material, but was used for synthesizing the positive electrode active material. It is considered that when lithium carbonate was used, part of the added lithium carbonate remained inside the positive electrode active material aggregate without being used for synthesizing the positive electrode active material aggregate.
  • Example 1 aqueous A
  • Example 1 aqueous system A
  • the positive electrode active material of Example 1 water-based A was left in the air for one day. It is considered that the positive electrode active material existing inside and near the surface of the positive electrode active material aggregate was altered by water during this standing.
  • Example 1 aqueous A
  • the positive electrode active material inside the positive electrode active material aggregate is deteriorated by water. Even so, it is assumed that the charge / discharge efficiency and durability of the battery are high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解液二次電池用正極(1)は、リチウムとニッケルを含む正極活物質(2)と、水溶性又は水分散性のバインダー(3)と、導電材(4)と、正極活物質(2)および導電材(4)が水溶性又は水分散性バインダー(3)によって接続された集電体(5)とを有する。非水電解液二次電池用正極(1)のフーリエ変換赤外分光スペクトルにおいて、正極活物質(2)と水との反応によって生成しうる物質に由来するピークが現れない。

Description

非水電解液二次電池用正極および非水電解液二次電池
 本発明は、リチウムとニッケルを含む正極活物質を使用した非水電解液二次電池用正極および非水電解液二次電池に関する。
 既存の非水電解液二次電池の正極には、リチウム(Li)を含む正極活物質が使用されている。近年、正極活物質として、リチウムとニッケル(Ni)を含む正極活物質が注目されている(例えば特許文献1参照)。ニッケルを含む正極活物質を使用することによって、非水電解液二次電池の充放電容量が高くなる。
特開2012-169166号公報
 リチウムとニッケルを含む正極活物質を使用した非水電解液二次電池の電池特性をさらに高めつつ、耐久性も高めたいという要望がある。電池特性とは、例えば、充放電効率である。
 本発明は、リチウムとニッケルを含む正極活物質を使用した従来の非水電解液二次電池用正極に比べて、電池特性を高めつつ、電池の耐久性を高めることができる、リチウムとニッケルを含む正極活物質を使用した非水電解液二次電池用正極を提供することを目的とする。
 特許文献1の非水電解液二次電池用正極は、有機溶媒系バインダーが使用されている。本願発明者らは、リチウムとニッケルを含む正極活物質を使用した正極に、有機溶媒系バインダーでなく、水溶性又は水分散性のバインダーを使うことを検討した。正極に有機溶媒系バインダーを使用した場合、有機溶媒系バインダーが、正極活物質の一次粒子が凝集してなる正極活物質凝集体の表面の全体を覆うことが知られている。そのため、正極に有機溶媒系バインダーを使用した場合、正極中の電解液が正極活物質凝集体に接しない。一方、正極に水溶性又は水分散性のバインダーを使用した場合、水溶性又は水分散性のバインダーは正極活物質凝集体の表面の一部のみを覆うと考えられる。そのため、正極に水溶性又は水分散性のバインダーを使用した場合、正極活物質凝集体の水溶性又は水分散性のバインダーによって覆われていない部分に電解液が接する。
 従来、正極中の電解液が正極活物質凝集体に接すると、電解液が電気分解しやすくなるため、非水電解液二次電池が劣化しやすいと考えられている。正極に水溶性又は水分散性のバインダーを使用した場合、有機溶媒系バインダーを使った場合に比べて、電解液が正極活物質凝集体により多く接する。したがって、従来のこの考え方を採用すると、正極に水溶性又は水分散性のバインダーを使用した非水電解液二次電池は、正極に有機溶媒系バインダーを使用した非水電解液二次電池に比べて、劣化しやすいと考えられる。よって、非水電解液二次電池の耐久性を高めたい場合、当業者は正極に水溶性又は水分散性のバインダーを使用することは考えないはずである。
 しかし、本願発明者らは、研究の結果、正極に水溶性又は水分散性のバインダーを使用しても、正極に有機溶媒系バインダーを用いた場合に比べて、非水電解液二次電池の耐久性を向上できる場合があることがわかった。
 正極活物質として用いられるリチウム(Li)とニッケル(Ni)の複合酸化物は、水に対して不安定であることが知られている。リチウムとニッケルの複合酸化物は、水と混合することで変質しやすい傾向があることが知られている。また、リチウムとニッケルの複合酸化物を大気に曝すと、リチウムとニッケルの複合酸化物は大気中の水によって変質する。大気中の水により一部が変質した正極活物質凝集体と有機溶媒系バインダーを用いて正極を製造した場合、正極活物質凝集体中には、依然として正極活物質(複合酸化物)が変質した物質が残っている。正極活物質が水により変質した物質が存在することで、正極の電気抵抗は高くなる。また、正極活物質が水により変質した物質が存在することで、正極活物質凝集体からのリチウムイオン(Li)の移動および正極活物質凝集体へのリチウムイオンの移動が阻害されると考えられている。リチウムイオンの移動が阻害されることは、非水電解液二次電池の充放電効率が低下する要因の1つと考えられている。
 本願発明者らは、正極に水溶性又は水分散性のバインダーを使用した場合に、正極活物質凝集体の表面付近において、リチウムとニッケルを有する正極活物質を、水によって変質した状態から変質していない正常な状態へ戻すことができる場合があることに気付いた。正極活物質凝集体の表面付近において、正極活物質が正常な状態になると、正極活物質が変質した物質が存在することに起因する正極の電気抵抗の上昇を抑制できる。電気抵抗の上昇を抑えることで、非水電解液二次電池の充電時と放電時に発生するジュール熱を低減できる。ジュール熱の発生が抑えられると、非水電解液二次電池の熱による劣化を抑制できる。そのため、従来、正極に水溶性又は水分散性のバインダーを使用した場合、非水電解液二次電池が劣化しやすいと考えられていたが、本願発明者らの研究から、正極に水溶性又は水分散性のバインダーを使用した場合であっても、正極の劣化を抑えることができることがわかった。
 また、正極活物質凝集体の表面付近において、リチウムとニッケルを有する正極活物質が水によって変質していない正常な状態に戻ると、リチウムイオンの移動が阻害されなくなるため、非水電解液二次電池の充放電効率の低下を抑制できる。
 よって、正極に水溶性又は水分散性のバインダーを使用しても、正極活物質凝集体の表面付近における正極活物質の水による変質を抑制することで、正極に有機溶媒系バインダーを用いた場合に比べて、電池特性を高めつつ、電池の耐久性を向上できることがわかった。
 (1)本発明の非水電解液二次電池用正極は、リチウムとニッケルを含む正極活物質と、水溶性又は水分散性のバインダーと、導電材と、前記正極活物質および前記導電材が前記バインダーによって接続された集電体とを有し、フーリエ変換赤外分光スペクトルにおいて、前記正極活物質と水との反応によって生成しうる物質に由来するピークが現れない、ことを特徴とする。
 この構成によると、非水電解液二次電池用正極をフーリエ変換赤外分光法によって分析して得られるフーリエ変換赤外分光スペクトルにおいて、正極活物質と水との反応によって生成しうる物質に由来するピークが現れない。つまり、非水電解液二次電池用正極をフーリエ変換赤外分光法によって分析したとき、正極活物質と水との反応によって生成しうる物質が検出されない。非水電解液二次電池用正極をフーリエ変換赤外分光法によって分析すると、正極活物質の一次粒子が凝集してなる正極活物質凝集体の表面付近を分析することができる。したがって、フーリエ変換赤外分光スペクトルにおいて、正極活物質と水との反応によって生成しうる物質に由来するピークが現れない場合、正極活物質と水との反応によって生成しうる物質が、正極活物質凝集体の表面付近に、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。
 正極活物質と水との反応によって生成しうる物質は、少なくとも正極活物質と水を反応物質としたときにこれらの反応物質から生成する生成物質、および、当該生成物質から派生する物質の少なくとも一方である。正極活物質と水が反応することにより、正極活物質が変質する。少なくとも正極活物質と水を反応物質としたときにこれらの反応物質から生成する生成物質、および、当該生成物質から派生した物質は、正極活物質凝集体において正極活物質が水との反応によって変質した部分および/またはその近傍に存在する。したがって、正極活物質と水との反応によって生成しうる物質は、正極活物質凝集体において正極活物質が水との反応によって変質した部分および/またはその近傍に存在する。
 上記より、正極活物質と水との反応によって生成しうる物質が存在すると判断された場合、正極活物質と水との反応によって生成しうる物質が存在する場所および/またはその近傍に、正極活物質が水との反応によって変質した物質が存在すると考えられる。つまり、正極活物質と水との反応によって生成しうる物質が存在すると判断された場合、正極活物質と水との反応によって生成しうる物質が存在する場所および/またはその近傍で正極活物質が水によって変質していると考えられる。
 一方、正極活物質と水との反応によって生成しうる物質が存在しないと判断された場合、正極活物質と水との反応によって生成しうる物質が存在しない場所およびその近傍において、正極活物質の水による変質が抑制されていると考えられる。
 上記構成によると、フーリエ変換赤外分光スペクトルにおいて、正極活物質と水との反応によって生成しうる物質に由来するピークが現れないため、正極活物質と水との反応によって生成しうる物質が、正極活物質凝集体の表面付近に、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。したがって、正極活物質凝集体の表面付近において、正極活物質の水による変質が抑制されたと考えられる。
 正極活物質凝集体の表面付近において正極活物質の水による変質を抑制したことにより、正極の電気抵抗の上昇を抑制できる。非水電解液二次電池用正極の電気抵抗の上昇を抑制したことにより、非水電解液二次電池の充電時および放電時に発生するジュール熱を抑制できる。そのため、非水電解液二次電池用正極の熱劣化を抑制できる。さらに、非水電解液二次電池の正極以外の部分の熱劣化も抑制できる。その結果、非水電解液二次電池の熱劣化を抑制できる。
 また、正極活物質凝集体の表面付近において正極活物質の水による変質を抑制したことにより、正極活物質凝集体からのリチウムイオン(Li)の移動および正極活物質凝集体へのリチウムイオンの移動がスムーズになる。その結果、非水電解液二次電池の充放電効率の低下を抑制できる。
 よって、本発明の非水電解液二次電池用正極が用いられた非水電解液二次電池は、リチウムとニッケルを含む正極活物質を使用した従来の非水電解液二次電池用正極に比べて、電池特性を高めつつ、電池の耐久性を高めることができる。
 (2)本発明の1つの観点によると、本発明の非水電解液二次電池用正極は、以下の構成を有することが好ましい。前記正極活物質と水との反応によって生成しうる前記物質が水酸化リチウム水和物である場合に、フーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークが現れない。
 リチウムとニッケルを含む正極活物質が水と反応した場合、水酸化リチウム(LiOH)が生成する。正極活物質と水との反応によって生成する水酸化リチウムは、正極活物質が水との反応によって変質することにより生成する物質である。水酸化リチウムは、大気等に含まれる水により水酸化リチウム水和物(LiOH・HO)に変化しやすい。言い換えると、水酸化リチウムから水酸化リチウム水和物が派生する。通常、水酸化リチウムは、水酸化リチウムの無水物(LiOH)としてでなく、水酸化リチウム水和物(LiOH・HO)として存在する。そのため、正極活物質が水と反応することにより水酸化リチウムが生成した場合、正極活物質凝集体において正極活物質が水により変質した部分および/またはその近傍に、水酸化リチウム水和物が存在する。したがって、水酸化リチウム水和物が存在すると判断された場合、水酸化リチウム水和物が存在する場所および/またはその近傍において、正極活物質が水により変質していると考えられる。正極活物質が水により変質した物質により非水電解液二次電池用正極の電気抵抗が高くなる。また、正極活物質が水により変質した物質は、リチウムイオンの移動を阻害する。
 一方、水酸化リチウム水和物が存在しないと判断された場合、水酸化リチウム水和物が存在しない場所およびその近傍において、正極活物質の水による変質が抑制されていると考えられる。
 非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて、水酸化リチウム水和物に由来するピークが現れない場合、正極活物質凝集体の表面付近に、水酸化リチウム水和物が、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。上記構成によると、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて、水酸化リチウム水和物に由来するピークが現れないため、正極活物質凝集体の表面付近に、水酸化リチウム水和物が、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。したがって、正極活物質凝集体の表面付近において、正極活物質の水による変質が抑制されたと考えられる。そのため、非水電解液二次電池用正極の電気抵抗の上昇が抑制される。これにより、非水電解液二次電池用正極の熱による劣化を抑制できる。さらに、正極活物質凝集体からのリチウムイオンの移動および正極活物質凝集体へのリチウムイオンの移動がスムーズになる。そのため、非水電解液二次電池の充放電効率の低下を抑制できる。よって、リチウムとニッケルを含む正極活物質を使用した従来の非水電解液二次電池用正極に比べて、電池特性を高めつつ、電池の耐久性を高めることができる。
 なお、正極活物質が水と反応することにより水酸化リチウムが生成した場合、正極活物質凝集体において正極活物質が変質した部分および/またはその近傍に、水酸化リチウム水和物だけでなく、水酸化リチウムの無水物(LiOH)がわずかに存在する場合がある。しかし、フーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークが現れない場合、水酸化リチウムに由来するピークも現れないといえる。したがって、フーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークが現れない場合、正極活物質凝集体の表面付近に、水酸化リチウム水和物と水酸化リチウムの無水物のいずれも、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。
 (3)本発明の1つの観点によると、本発明の非水電解液二次電池用正極は、上記(1)又は(2)の構成に加えて以下の構成を有することが好ましい。フーリエ変換赤外分光スペクトルにおいて、1500~1700cm-1の領域にピークが現れない。
 水酸化リチウム水和物をフーリエ変換赤外分光法で分析した場合、フーリエ変換赤外分光スペクトルにおいて、1500~1700cm-1の領域にピークが現れる。したがって、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて1500~1700cm-1の領域にピークが現れないことは、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークが現れないことを意味する。つまり、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて1500~1700cm-1の領域にピークが現れないことは、正極活物質凝集体の表面付近に、水酸化リチウム水和物が、フーリエ変換赤外分光法の検出可能レベルで存在しないことを意味する。
 上記構成によると、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて1500~1700cm-1の領域にピークが現れないため、正極活物質凝集体の表面付近に、水酸化リチウム水和物が、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。したがって、正極活物質凝集体の表面付近において、正極活物質の水による変質が抑制されていると考えられる。よって、リチウムとニッケルを含む正極活物質を使用した従来の非水電解液二次電池用正極に比べて、電池特性を高めつつ、電池の耐久性を高めることができる。
 (4)本発明の1つの観点によると、本発明の非水電解液二次電池用正極は、以下の構成を有することが好ましい。前記正極活物質と水との反応によって生成しうる前記物質が炭酸リチウムである場合に、フーリエ変換赤外分光スペクトルにおいて炭酸リチウムに由来するピークが現れない。
 リチウムとニッケルを含む正極活物質が大気等に含まれる炭酸ガスおよび水と反応した場合、炭酸リチウム(LiCO)および炭酸水素リチウム(LiHCO)の少なくとも一方が生成する。正極活物質と炭酸ガスおよび水との反応によって生成する炭酸リチウムおよび炭酸水素リチウムは、正極活物質が水との反応によって変質することにより生成する物質である。炭酸水素リチウムは不安定な物質である。そのため、生成した炭酸水素リチウムはすぐに炭酸リチウム(LiCO)、水(HO)および二酸化炭素(CO)に変わる。言い換えると、炭酸水素リチウムから炭酸リチウムが派生する。したがって、正極活物質が大気等に含まれる炭酸ガスおよび水と反応することにより炭酸水素リチウムが生成した場合、正極活物質凝集体において正極活物質が水により変質した部分およびその近傍に、炭酸水素リチウムは存在せず、正極活物質凝集体において正極活物質が水により変質した部分および/またはその近傍に炭酸リチウムが存在する。
 また、正極活物質が大気等に含まれる炭酸ガスおよび水と反応することによって炭酸リチウムが生成した場合、正極活物質凝集体において正極活物質が水により変質した部分および/またはその近傍に、炭酸リチウムが存在する。
 上記より、炭酸リチウムが存在すると判断された場合、炭酸リチウムが存在する場所および/またはその近傍において、正極活物質が水により変質していると考えられる。正極活物質が水により変質した物質により、非水電解液二次電池用正極の電気抵抗が高くなる。また、正極活物質が水により変質した物質は、リチウムイオンの移動を阻害する。
 一方、炭酸リチウムが存在しないと判断された場合、炭酸リチウムが存在しない場所およびその近傍において、正極活物質の水による変質が抑制されていると考えられる。
 非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて、炭酸リチウムに由来するピークが現れない場合、正極活物質凝集体の表面付近に、炭酸リチウムが、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。上記構成によると、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて、炭酸リチウムに由来するピークが現れないため、正極活物質凝集体の表面付近に、炭酸リチウムが、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。したがって、正極活物質凝集体の表面付近において、正極活物質の水による変質が抑制されたと判断できる。そのため、非水電解液二次電池用正極の電気抵抗の上昇が抑制される。これにより、非水電解液二次電池用正極の熱による劣化を抑制できる。さらに、正極活物質凝集体からのリチウムイオンの移動および正極活物質凝集体へのリチウムイオンの移動がスムーズになる。そのため、非水電解液二次電池の充放電効率の低下を抑制できる。よって、リチウムとニッケルを含む正極活物質を使用した従来の非水電解液二次電池用正極に比べて、電池特性を高めつつ、電池の耐久性を高めることができる。
 (5)本発明の1つの観点によると、本発明の非水電解液二次電池用正極は、上記(1)又は(4)の構成に加えて以下の構成を有することが好ましい。フーリエ変換赤外分光スペクトルにおいて、1350~1600cm-1の領域にピークが現れない。
 炭酸リチウムをフーリエ変換赤外分光法で分析した場合、フーリエ変換赤外分光スペクトルにおいて、1350~1600cm-1の領域にピークが現れる。したがって、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて1350~1600cm-1の領域にピークが現れないことは、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて炭酸リチウムに由来するピークが現れないことを意味する。つまり、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて1350~1600cm-1の領域にピークが現れないことは、正極活物質凝集体の表面付近に、炭酸リチウムが、フーリエ変換赤外分光法の検出可能レベルで存在しないことを意味する。
 上記構成によると、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて1350~1600cm-1の領域にピークが現れないため、正極活物質凝集体の表面付近に、炭酸リチウムが、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。したがって、正極活物質凝集体の表面付近において、正極活物質の水による変質が抑制されていると判断できる。よって、リチウムとニッケルを含む正極活物質を使用した従来の非水電解液二次電池用正極に比べて、電池特性を高めつつ、電池の耐久性を高めることができる。
 (6)本発明の1つの観点によると、本発明の非水電解液二次電池用正極は、以下の構成を有することが好ましい。前記正極活物質と水との反応によって生成しうる前記物質が水酸化リチウム水和物および炭酸リチウムである場合に、フーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークおよび炭酸リチウムに由来するピークが現れない。
 非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて、水酸化リチウム水和物に由来するピークおよび炭酸リチウムに由来するピークが現れない場合、水酸化リチウム水和物および炭酸リチウムが、正極活物質凝集体の表面付近に、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。
 上記構成によると、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて、水酸化リチウム水和物に由来するピークおよび炭酸リチウムに由来するピークが現れないため、水酸化リチウム水和物および炭酸リチウムが、正極活物質凝集体の表面付近に、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。
 上述したように、正極活物質が水と反応することにより水酸化リチウムが生成した場合、正極活物質凝集体において正極活物質が変質した部分および/またはその近傍に、水酸化リチウム水和物が存在する。正極活物質が水と反応することにより炭酸水素リチウムが生成した場合、正極活物質凝集体において正極活物質が変質した部分および/またはその近傍に、炭酸リチウムが存在する。正極活物質が水と反応することにより炭酸リチウムが生成した場合、正極活物質凝集体において正極活物質が変質した部分および/またはその近傍に、炭酸リチウムが存在する。
 したがって、水酸化リチウム水和物および炭酸リチウムが存在すると判断された場合、水酸化リチウム水和物が存在する場所および/またはその近傍と、炭酸リチウムが存在する場所および/またはその近傍とにおいて、正極活物質が水により変質していると考えられる。
 一方、水酸化リチウム水和物および炭酸リチウムが存在しないと判断された場合、水酸化リチウム水和物が存在しない場所およびその近傍と、炭酸リチウムが存在しない場所およびその近傍とにおいて、正極活物質の水による変質が抑制されていると考えられる。
 上記構成によると、水酸化リチウム水和物および炭酸リチウムが、正極活物質凝集体の表面付近に、フーリエ変換赤外分光法の検出可能レベルで存在しない。したがって、正極活物質凝集体の表面付近において、正極活物質の水による変質が抑制されたと判断できる。そのため、非水電解液二次電池用正極の電気抵抗の上昇が抑制される。これにより非水電解液二次電池用正極の熱による劣化を抑制できる。また、正極活物質凝集体からのリチウムイオンの移動および正極活物質凝集体へのリチウムイオンの移動がスムーズになる。そのため、非水電解液二次電池の充放電効率の低下を抑制できる。よって、リチウムとニッケルを含む正極活物質を使用した従来の非水電解液二次電池用正極に比べて、電池特性を高めつつ、電池の耐久性を高めることができる。
 (7)本発明の1つの観点によると、本発明の非水電解液二次電池用正極は、上記(1)又は(6)の構成に加えて以下の構成を有することが好ましい。フーリエ変換赤外分光スペクトルにおいて、1350~1600cm-1の領域および1500~1700cm-1の領域にピークが現れない。
 水酸化リチウム水和物をフーリエ変換赤外分光法で分析した場合、フーリエ変換赤外分光スペクトルにおいて、1500~1700cm-1の領域にピークが現れる。炭酸リチウムをフーリエ変換赤外分光法で分析した場合、フーリエ変換赤外分光スペクトルにおいて、1350~1600cm-1の領域にピークが現れる。したがって、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて1350~1600cm-1の領域および1500~1700cm-1の領域にピークが現れないことは、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物および炭酸リチウムに由来するピークが現れないことを意味する。つまり、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて1350~1600cm-1の領域および1500~1700cm-1の領域にピークが現れないことは、正極活物質凝集体の表面付近に、水酸化リチウム水和物および炭酸リチウムが、フーリエ変換赤外分光法の検出可能レベルで存在しないことを意味する。
 上記構成によると、非水電解液二次電池用正極のフーリエ変換赤外分光スペクトルにおいて1350~1600cm-1の領域および1500~1700cm-1の領域にピークが現れないため、正極活物質凝集体の表面付近に、水酸化リチウム水和物および炭酸リチウムが、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。したがって、正極活物質凝集体の表面付近において、正極活物質の水による変質が抑制されていると考えられる。よって、リチウムとニッケルを含む正極活物質を使用した従来の非水電解液二次電池用正極に比べて、電池特性を高めつつ、電池の耐久性を高めることができる。
 (8)本発明の1つの観点によると、本発明の非水電解液二次電池用正極は、以下の構成を有することが好ましい。前記非水電解液二次電池用正極を用いてハーフセルを作製した場合に、前記ハーフセルの25±2℃での正極活物質の重量当たりの0.1C放電容量が、前記正極活物質の材質と前記正極活物質を含む粒子の径に依存する最大放電容量の90%以上である。
 この構成によると、非水電解液二次電池用正極を用いて作製されたハーフセルの0.1C放電容量は、実用化に十分に耐えることができるレベルである。
 (9)本発明の1つの観点によると、本発明の非水電解液二次電池用正極は、以下の構成を有することが好ましい。前記正極活物質に含まれる金属元素に占めるニッケルの割合が、50モル%以上である。
 この構成によると、非水電解液二次電池用正極を用いた非水電解液二次電池の充放電容量をより高めることができる。
 (10)本発明の1つの観点によると、本発明の非水電解液二次電池用正極は、以下の構成を有することが好ましい。前記正極活物質に含まれる金属元素に占めるニッケルの割合が、80モル%以上である。
 この構成によると、非水電解液二次電池用正極を用いた非水電解液二次電池の充放電容量をより一層高めることができる。
 (11)本発明の1つの観点によると、本発明の非水電解液二次電池用正極は、以下の構成を有することが好ましい。前記正極がシート状である。直径3mmの円筒形マンドレルを使用し、JIS K5600-5-1に準拠した耐屈曲性試験において、前記正極活物質および前記導電材が前記集電体から剥離されないような接続強度で、前記正極活物質および前記導電材が前記集電体に接続されている。
 この構成によると、非水電解液二次電池の製造過程および使用時に、正極活物質および導電材が集電体から剥離しにくい。また、剥離の要因となる集電体の腐食が生じていない。これらにより、非水電解液二次電池用正極を用いた非水電解液二次電池の充放電効率の低下を抑制できる。また、非水電解液二次電池の耐久性が高くなる。
 (12)本発明の1つの観点によると、本発明の非水電解液二次電池用正極は、以下の構成を有することが好ましい。前記集電体がアルミニウムを含む。
 (13)本発明の非水電解液二次電池は、上述の(1)~(12)のいずれかの非水電解液二次電池用正極と、負極と、非水電解液とを備えることを特徴とする。
 <用語の定義>
 本発明において、「水溶性のバインダー」とは、水に溶解可能なバインダーである。本発明において、「水分散性のバインダー」とは、水に分散可能なバインダーである。
 本発明において、「非水電解液」とは、非水溶媒(水を含まない溶媒)に電解質を溶解させた電解液である。本発明において、「二次電池」とは、充電および放電を繰り返し可能な電池である。本発明において、「非水電解液二次電池」とは、非水電解液を備えた二次電池である。
 本発明において、「フーリエ変換赤外分光スペクトル」とは、フーリエ変換赤外分光法によって得られた赤外線吸収スペクトルである。「フーリエ変換赤外分光(Fourier Transform Infrared Spectroscopy)スペクトル」は、FTIRスペクトと称されることがある。フーリエ変換赤外分光法は、FTIR法と称されることがある。
 本発明において、「正極活物質と水との反応によって生成しうる物質」は、少なくとも正極活物質と水を反応物質としたときにこれらの反応物質から生成する生成物質、および、当該生成物質から派生する物質の少なくとも一方である。「少なくとも正極活物質と水を反応物質とする」とは、正極活物質と水だけを反応物質としてもよく、正極活物質と、水と、正極活物質および水以外の物質とを反応物質としてもよい。「当該生成物質から派生する物質」は、例えば、少なくとも正極活物質と水を第1反応物質としたときに第1反応物質から生成する第1生成物質を第2反応物質とした場合に、第2反応物質から生成する第2生成物質である。第2反応物質は、第1生成物質だけである場合もあり、第1生成物質と第1生成物質以外の物質とを含む場合もある。また、第2生成物質を第3反応物質としたときに、第3反応物質から第3生成物質が生成する場合、「当該生成物質から派生する物質」は、第3生成物質を含む。第3反応物質は、第2生成物質だけである場合もあり、第2生成物質と第2生成物質以外の物質を含む場合もある。第4生成物質およびそれ以降に生成する生成物質が生成する場合、第4生成物質およびそれ以降に生成する生成物質が生成する場合も、「当該生成物質から派生する物質」に含まれる。この場合の第4反応物質およびそれ以降の反応物質は、上記第2反応物質および第3反応物質と同様の意味である。
 例えば、「正極活物質と水との反応によって生成しうる物質」を第1反応物質、第1生成物質、第2反応物質および第2生成物質を用いて説明する場合、「正極活物質と水との反応によって生成しうる物質」は、正極活物質と水を第1反応物質としたときにこれらの第1反応物質から生成する第1生成物質、および、当該第1生成物質を第2反応物質とした場合に第2反応物質から生成する第2生成物質の少なくとも一方である。
 なお、第1生成物質を第2反応物質として第2反応物質から第2生成物質が生成する場合において第1生成物質が存在しなくなるとき、第1生成物質は「正極活物質と水との反応によって生成しうる物質」に含まれない。また、第2生成物質を第3反応物質として第3反応物質から第3生成物質が生成する場合において第2生成物質が存在しなくなるとき、第2生成物質は「正極活物質と水との反応によって生成しうる物質」に含まれない。第3生成物質およびそれ以降の生成物質も同様である。
 上記より、本発明において、「正極活物質と水との反応によって生成しうる物質」は、以下の3つのケースのいずれであってもよい。第1のケースは、「正極活物質と水との反応によって生成しうる物質」が少なくとも正極活物質と水を反応物質としたときにこれらの反応物質から生成する生成物質である場合である。第2のケースは、「正極活物質と水との反応によって生成しうる物質」が少なくとも正極活物質と水を反応物質としたときにこれらの反応物質から生成する生成物質から派生する物質である場合である。第3のケースは、「正極活物質と水との反応によって生成しうる物質」が少なくとも正極活物質と水を反応物質としたときにこれらの反応物質から生成する生成物質および当該生成物質から派生する物質の両方である場合である。上記「正極活物質と水との反応によって生成しうる物質」を例えば第1反応物質、第1生成物質、第2反応物質および第2生成物質を用いて説明する場合、「正極活物質と水との反応によって生成しうる物質」は以下の3つのケースのいずれであってもよい。第1のケースは、「正極活物質と水との反応によって生成しうる物質」が、少なくとも正極活物質と水を第1反応物質としたときにこれらの第1反応物質から生成する第1生成物質である場合である。第2のケースは、「正極活物質と水との反応によって生成しうる物質」が、少なくとも正極活物質と水を第1反応物質としたときにこれらの第1反応物質から生成する第1生成物質を第2反応物質とした場合に、第2反応物質から生成する第2生成物質である場合である。第3のケースは、「正極活物質と水との反応によって生成しうる物質」が、少なくとも正極活物質と水を第1反応物質としたときにこれらの第1反応物質から生成する第1生成物質、および、当該第1生成物質を第2反応物質とした場合に第2反応物質から生成する第2生成物質の両方である場合である。
 少なくとも正極活物質と水を反応物質としたときにこれらの反応物質から生成する生成物質は、正極活物質が水との反応によって変質することにより生成する物質である。少なくとも正極活物質と水を反応物質としたときにこれらの反応物質から生成する生成物質、および、当該生成物質から派生した物質は、正極活物質凝集体において正極活物質が水との反応によって変質した部分および/またはその近傍に存在する。
 上記を例えば第1反応物質、第1生成物質および第2生成物質を用いて説明すると、以下となる。少なくとも正極活物質と水を第1反応物質としたときにこれらの第1反応物質から生成する第1生成物質は、正極活物質が水との反応によって変質することにより生成する物質である。少なくとも正極活物質と水を第1反応物質としたときにこれらの第1反応物質から生成する第1生成物質は、正極活物質凝集体において正極活物質が水との反応によって変質した部分および/またはその近傍に存在する。少なくとも正極活物質と水を第1反応物質としたときにこれらの第1反応物質から生成する第1生成物質から派生した第2生成物質およびそれ以降の生成物質は、正極活物質が水との反応によって変質した部分および/またはその近傍に存在する。
 上記より、「正極活物質と水との反応によって生成しうる物質」は、正極活物質凝集体において正極活物質が水との反応によって変質した部分および/またはその近傍に存在する。したがって、「正極活物質と水との反応によって生成しうる物質」が存在する場合、正極活物質と水との反応によって生成しうる物質」が存在する場所および/またはその近傍において、正極活物質が水との反応によって変質している。
 一方、「正極活物質と水との反応によって生成しうる物質」が存在しない場合、正極活物質と水との反応によって生成しうる物質」が存在しない場所およびその近傍において、正極活物質の変質が抑制されていると考えられる。
 リチウムを含む正極活物質と水が反応することによって、水酸化リチウム(LiOH)が生成する。水酸化リチウムに大気等に含まれる水が配位結合することによって、水酸化リチウム水和物(LiOH・HO)が生成する。この場合、水酸化リチウムは、正極活物質と水を第1反応物質としたときにこれらの第1反応物質から生成する第1生成物質である。また、水酸化リチウム水和物は、第1生成物質である水酸化リチウムと水とを第2反応物質とした場合に、これらの第2反応物質から生成する第2生成物質である。水酸化リチウムは、大気中の水等によって、水酸化リチウム水和物に変化しやすい。そのため、通常、水酸化リチウムは、水酸化リチウムの無水物(LiOH)としてでなく、水酸化リチウム水和物(LiOH・HO)として存在する。第2生成物質である水酸化リチウム水和物が生成することにより、第1生成物質である水酸化リチウムは存在しなくなる。したがって、正極活物質と水が反応することによって水酸化リチウムが生成した場合、「正極活物質と水の反応によって生成しうる物質」に、第1生成物質である水酸化リチウムは含まれない。そのため、正極活物質と水が反応することによって水酸化リチウムが生成した場合、「正極活物質と水の反応によって生成しうる物質」は、第2生成物質である水酸化リチウム水和物である。正極活物質と大気中の水とが反応することによって水酸化リチウムが生成した場合、正極活物質凝集体において正極活物質が水により変質した部分および/またはその近傍に、水酸化リチウム水和物が存在する。水酸化リチウム水和物が存在する場合、水酸化リチウム水和物が存在する場所および/またはその近傍において、正極活物質が変質していると考えられる。
 リチウムを含む正極活物質が水および炭酸ガスと反応することによって、炭酸水素リチウム(LiHCO)および炭酸リチウム(LiCO)の少なくとも一方が生成する。
 リチウムを含む正極活物質が水および炭酸ガスと反応することによって、炭酸水素リチウムが生成した場合、炭酸水素リチウムが分解反応することにより、炭酸リチウムが生成する。この場合、炭酸水素リチウムは、正極活物質と水と炭酸ガスを第1反応物質としたときにこれらの第1反応物質から生成する第1生成物質である。また、炭酸リチウムは、第1生成物質である炭酸水素リチウムを第2反応物質とした場合に、第2反応物質から生成する第2生成物質である。
 炭酸水素リチウムは不安定な物質であるため、炭酸水素リチウムはすぐに炭酸リチウム(LiCO)に変わる。つまり、第2生成物質である炭酸リチウムが生成することにより、第1生成物質である炭酸水素リチウムは存在しなくなる。したがって、正極活物質と水が反応することによって炭酸水素リチウムが生成した場合、「正極活物質と水の反応によって生成しうる物質」に、第1生成物質である炭酸水素リチウムは含まれない。したがって、正極活物質と水が反応することによって炭酸水素リチウムが生成した場合、「正極活物質と水の反応によって生成しうる物質」は、第2生成物質である炭酸リチウムである。
 リチウムを含む正極活物質が水および炭酸ガスと反応することによって、炭酸リチウムが生成した場合、生成した炭酸リチウムは、正極活物質と水と炭酸ガスを第1反応物質としたときにこれらの第1反応物質から生成する第1生成物質である。リチウムを含む正極活物質が水および炭酸ガスと反応することによって、炭酸リチウムが生成した場合、炭酸リチウムから別の物質は派生しない。したがって、正極活物質と水が反応することによって炭酸リチウムが生成した場合、「正極活物質と水の反応によって生成しうる物質」は、第1生成物質である炭酸リチウムである。
 上記より、正極活物質と水が反応することによって炭酸水素リチウムおよび/または炭酸リチウムが生成した場合、「正極活物質と水の反応によって生成しうる物質」は、炭酸リチウムである。
 正極活物質と水が反応することによって炭酸水素リチウムが生成した場合、正極活物質凝集体において正極活物質が水により変質した部分および/またはその近傍に、炭酸リチウムが存在する。正極活物質と水が反応することによって炭酸リチウムが生成した場合、正極活物質凝集体において正極活物質が水により変質した部分および/またはその近傍に、炭酸リチウムが存在する。正極活物質と水が反応することによって炭酸水素リチウムおよび/または炭酸リチウムが生成した場合、正極活物質凝集体において正極活物質が水により変質した部分および/またはその近傍に、炭酸リチウムが存在する。炭酸リチウムが存在する場合、炭酸リチウムが存在する場所および/またはその近傍において、正極活物質が変質していると考えられる。
 正極活物質と水が反応することによって、水酸化リチウムと炭酸水素リチウムが生成した場合、「正極活物質と水の反応によって生成しうる物質」は、水酸化リチウム水和物と炭酸リチウムである。正極活物質と水が反応することによって、水酸化リチウムと炭酸リチウムが生成した場合、「正極活物質と水の反応によって生成しうる物質」は、水酸化リチウム水和物と炭酸リチウムである。正極活物質と水が反応することによって、水酸化リチウムと炭酸水素リチウムと炭酸リチウムが生成した場合、「正極活物質と水の反応によって生成しうる物質」は、水酸化リチウム水和物と炭酸リチウムである。
 水酸化リチウム水和物と炭酸リチウムが存在する場合、水酸化リチウム水和物が存在する場所および/またはその近傍と炭酸リチウムが存在する場所および/またはその近傍の両方において、正極活物質が変質していると考えられる。
 「正極活物質と水との反応によって生成しうる物質」と同じ組成の物質であっても、その物質が生成された経緯に、正極活物質と水との反応が含まれていなければ、本発明の非水電解液二次電池用正極は、その物質を含んでいてもよい。つまり、本発明の非水電解液二次電池用正極は、正極活物質と水との反応によって生成された物質を含んでいなければ、正極のフーリエ変換赤外分光スペクトルにおいて、「正極活物質と水との反応によって生成しうる物質」と同じ組成の物質に由来するピークが現れてもよい。
 例えば、正極活物質を合成するために水酸化リチウムを用いた場合、水酸化リチウムの一部が、正極活物質の合成に用いられることなく、正極活物質凝集体に残存することがある。残存した水酸化リチウムは、正極活物質と水との反応によって生成した物質ではない。また、この残存した水酸化リチウムの一部が、水酸化リチウム水和物となる場合がある。この場合、生成された水酸化リチウム水和物は、正極活物質と水との反応によって生成されていない。本発明の正極活物質を合成するために水酸化リチウムを用いた場合、正極のフーリエ変換赤外分光スペクトルにおいて、残存した水酸化リチウムに由来するピークが現れてもよく、残存した水酸化リチウムから生成した水酸化リチウム水和物に由来するピークが現れてもよい。
 また、正極活物質を合成するために炭酸リチウムを用いた場合、炭酸リチウムの一部が、正極活物質の合成に用いられることなく、正極活物質凝集体に残存することがある。残存した炭酸リチウムは、正極活物質と水との反応によって生成されていない。本発明の正極活物質を合成するために炭酸リチウムを用いた場合、正極のフーリエ変換赤外分光スペクトルにおいて、残存した炭酸リチウムに由来するピークが現れてもよい。
 「正極活物質と水との反応」は、例えば、正極活物質と大気に含まれる水との反応でもよく、正極活物質と空気に含まれる水との反応でもよい。本明細書において、大気は、地球の表層をおおう気体であり、且つ、成分、湿度および温度などが人為的に調整されていないものとする。ここで、成分とは、例えば、窒素や酸素等の比率である。本明細書において、空気は、大気の成分、湿度および温度などの要素の少なくとも1つが人為的に調整されたものでもよく、人為的に調整されていないものでもよい。大気は、空気の一種である。
 本発明において、「フーリエ変換赤外分光スペクトルにおいて、正極活物質と水との反応によって生成しうる物質に由来するピークが現れない」とは、フーリエ変換赤外分光法によって正極を分析した場合に、正極活物質と水との反応によって生成しうる物質に由来するピークが現れないことである。正極活物質と水との反応によって生成しうる物質が2つ以上ある場合、「フーリエ変換赤外分光スペクトルにおいて、正極活物質と水との反応によって生成しうる物質に由来するピークが現れない」とは、フーリエ変換赤外分光法によって正極を分析した場合に、正極活物質と水との反応によって生成しうる全ての物質に由来するピーク現れないことを意味する。フーリエ変換赤外分光スペクトルにおけるピークとは、フーリエ変換赤外分光スペクトルにおける吸収のピークである。フーリエ変換赤外分光スペクトルにおけるピークは、物質に赤外線を照射したとき、物質を構成している分子に、その分子固有の振動モードに相当する光のエネルギーを吸収されることによって現れるピークである。
 正極活物質と水との反応によって生成しうる物質が水酸化リチウム水和物である場合、「フーリエ変換赤外分光スペクトルにおける正極活物質と水との反応によって生成しうる物質に由来するピークが現れない」とは、フーリエ変換赤外分光法によって正極を分析した場合に、水酸化リチウム水和物(LiOH・HO)に含まれる水分子(HO)に由来するピークが現れないことである。なお、水酸化リチウム水和物に由来するピークは、水酸化リチウム水和物(LiOH・HO)に含まれる水分子(HO)に由来するピーク以外のピークを含む。しかし、水酸化リチウム水和物に由来するピークのなかで、水酸化リチウム水和物(LiOH・HO)に含まれる水分子(HO)に由来するピークの透過率が最も小さい。言い換えると、水酸化リチウム水和物に由来するピークのなかで、水酸化リチウム水和物(LiOH・HO)に含まれる水分子(HO)に由来するピークの吸収率が最も大きい。したがって、水酸化リチウム水和物(LiOH・HO)に含まれる水分子(HO)に由来するピークの有無を判断することにより、高感度に水酸化リチウム水和物(LiOH・HO)の有無を判断できる。
 水酸化リチウム水和物(LiOH・HO)に含まれる水分子(HO)に由来するピークは、1500~1700cm-1の領域に現れる。したがって、正極活物質と水との反応によって生成しうる物質が水酸化リチウムである場合、「フーリエ変換赤外分光スペクトルにおける正極活物質と水との反応によって生成しうる物質に由来するピークが現れない」とは、フーリエ変換赤外分光法によって正極を分析した場合に、フーリエ変換赤外分光スペクトルにおいて、1500~1700cm-1の領域にピークが現れないことである。
 正極活物質と水との反応によって生成しうる物質が炭酸リチウムである場合、「フーリエ変換赤外分光スペクトルにおける正極活物質と水との反応によって生成しうる物質に由来するピークが現れない」とは、フーリエ変換赤外分光法によって正極を分析した場合に、炭酸リチウムの炭素原子(C)と酸素原子(O)の結合に由来するピークが現れないことである。炭酸リチウムの炭素原子(C)と酸素原子(O)の結合に由来するピークは、1350~1600cm-1の領域に現れる。1350~1600cm-1の領域に現れる、炭酸リチウムの炭素原子(C)と酸素原子(O)の結合に由来するピークは、1つである場合もあり、複数である場合もある。したがって、正極活物質と水との反応によって生成しうる物質が炭酸リチウムである場合、「フーリエ変換赤外分光スペクトルにおける正極活物質と水との反応によって生成しうる物質に由来するピークが現れない」とは、フーリエ変換赤外分光法によって正極を分析した場合に、炭酸リチウムの炭素原子(C)と酸素原子(O)の結合に由来するピークが1つも現れないことである。言い換えると、正極活物質と水との反応によって生成しうる物質が炭酸リチウムである場合、「フーリエ変換赤外分光スペクトルにおける正極活物質と水との反応によって生成しうる物質に由来するピークが現れない」とは、フーリエ変換赤外分光法によって正極を分析した場合に、フーリエ変換赤外分光スペクトルにおいて、1350~1600cm-1の領域に1つのピークも現れないことである。
 正極活物質と水との反応によって生成しうる物質が水酸化リチウム水和物および炭酸リチウムである場合、「フーリエ変換赤外分光スペクトルにおける正極活物質と水との反応によって生成しうる物質に由来するピークが現れない」とは、フーリエ変換赤外分光法によって正極を分析した場合に、水酸化リチウム水和物(LiOH・HO)に含まれる水分子(HO)に由来するピークが現れず、且つ、炭酸リチウムの炭素原子(C)と酸素原子(O)の結合に由来するピークが1つも現れないことである。
 本発明において、フーリエ変換赤外分光スペクトルにおけるピークとは、透過率が減少から増加に変化する領域のうち、透過率が減少する領域と増加する領域との間にある領域である。言い換えると、フーリエ変換赤外分光スペクトルにおけるピークとは、吸収率が増加から減少に変化する領域のうち、吸収率が増加する領域と減少する領域との間にある領域である。本発明において、フーリエ変換赤外分光スペクトルにおけるピークは、透過率が減少する領域、および、透過率が増加する領域のいずれも含まない。つまり、フーリエ変換赤外分光スペクトルにおけるピークは、吸収率が増加する領域、および、透過率が増加する領域のいずれも含まない。
 本発明において、「正極活物質を含む粒子」とは、正極活物質の一次粒子が凝集して形成された二次粒子である。二次粒子同士は、バインダーおよび導電材で接続される。本明細書において、正極活物質を含む粒子を、正極活物質凝集体と称する場合がある。
 本発明において、「25±2℃での正極活物質の重量当たりの0.1C放電容量」とは、25±2℃の環境下で、0.1Cの定電流定電圧充電(CCCV)を行った後、0.1Cの定電流放電を行った場合の正極活物質重量当たりの放電容量である。ここでの0.1Cの定電流定電圧充電とは、0.1Cの定電流で充電終止電圧まで充電してから、充電終止電圧で充電終止電流まで充電することである。0.1Cの定電流放電とは、0.1Cの定電流で放電終止電圧まで放電することである。0.1Cは、定電流放電した場合に10(=1/0.1)時間で放電終了となる電流値である。充電終止電圧とは、過充電による二次電池の機能低下に至る前の充電を行える充電電圧の最高値である。充電終止電流は、定電圧充電時に充電を終了する最小の充電電流である。放電終止電圧とは、過放電による二次電池の機能低下に至る前の放電を行える放電電圧の最低値である。放電容量とは、電池から取り出された電気量である。本明細書において、放電容量と充電容量の総称を、充放電容量という。充電容量は、電池が蓄えることができる電気量である。本明細書において、放電容量を充電容量により除算した割合を充放電効率という。充放電効率は、下記式によって示される。充放電効率の単位は、「%」である。
 充放電効率=(放電容量÷充電容量)×100
 電池の充放電効率が高い場合、電池の充放電容量を高いまま維持できる。電池の充放電効率が高い場合、電池の充放電容量も高い傾向にあるといえる。
 本明細書において、初回充放電効率とは、初回の充放電における放電容量を、初回の充放電における充電容量により除算した割合である。電池の初回充放電効率が高い場合、電池の充放電容量も高い傾向にあるといえる。
 本発明において、「非水電解液二次電池用正極を用いて作製されたハーフセル」とは、正極として非水電解液二次電池用正極を用い、負極としてリチウムを使用したセルである。以下において、「非水電解液二次電池用正極を用いて作製されたハーフセル」を「正極のハーフセル」又は「正極ハーフセル」と称することがある。
 本発明において、「25±2℃での正極活物質の重量当たりの0.1C放電容量が、最大放電容量の90%以上である」とは、25±2℃での正極活物質の重量当たりの0.1C放電容量が、25±2℃での正極活物質の重量当たりの0.1C放電容量の理論上の最大値の90%以上であることを意味する。本明細書において、25±2℃での正極活物質の重量当たりの0.1C放電容量の理論上の最大値を、0.1最大放電容量と称する場合がある。非水電解液二次電池の正極活物質の重量当たりの0.1C最大放電容量は、正極活物質の材質、正極活物質を含む一次粒子の径および正極活物質を含む二次粒子(正極活物質凝集体)の径に依存する。例えば、正極活物質がニッケルとコバルトとマンガンを含む場合、ニッケルの比率が大きいほど、正極活物質の重量当たりの0.1C最大放電容量は大きくなる傾向がある。また、正極活物質の一次粒子の径および正極活物質を含む二次粒子(正極活物質凝集体)の径の少なくとも一方が小さいほど、0.1C最大放電容量は大きくなる傾向がある。なお、0.1C以外の放電レートの放電容量も、正極活物質の材質、正極活物質を含む一次粒子の径および正極活物質を含む二次粒子(正極活物質凝集体)の径に依存する。
 下記の表1に、正極活物質の種類(材質)ごとの0.1C最大放電容量を示す。表1に示す0.1C最大放電容量は、25±2℃の環境下で、電流0.1C、充電終止電圧4.3V、充電終止電流0.02Cで定電流定電圧充電を行った後、電流0.1C、放電終止電圧3.0Vで定電流放電を行った場合の正極活物質粒子重量当たりの放電容量である。表1に示す0.1C最大放電容量は、正極活物質の一次粒子の径および正極活物質の二次粒子(正極活物質凝集体)の径を特定せずに算出したものである。表1に示す0.1C最大放電容量は、正極活物質の一次粒子の径および正極活物質の二次粒子(正極活物質凝集体)の径が、正極活物質の材質に応じた一般的な範囲である場合の値である。表1に示す0.1C最大放電容量は、正極のハーフセルを用いて測定された0.1C放電容量である。
Figure JPOXMLDOC01-appb-T000001
 ここで、「NCM」は、ニッケルコバルトマンガン酸リチウムの略称である。「NCM111」は、ニッケルとコバルトとマンガンを1:1:1の比率で含む。「NCM523」は、ニッケルとコバルトとマンガンを5:2:3の比率で含む。「NCM622」は、ニッケルとコバルトとマンガンを6:2:2の比率で含む。「NCM811」は、ニッケルとコバルトとマンガンを8:1:1の比率で含む。「NCA」は、ニッケルコバルトアルミニウム酸リチウムの略称である。表1の「NCA」は、ニッケルとコバルトとアルミニウムを80:15:5で含む。例えば、正極活物質が「NCM111」であって、0.1C放電容量が144mAh/gの場合、正極活物質の一次粒子の径および正極活物質の二次粒子(正極活物質凝集体)の径を特定しなくても、0.1C放電容量が理論上の最大値の90%以上であるといえる。
 正極が表1に示す正極活物質以外の正極活物質を用いて作製された場合、その正極を用いて作製された電池の0.1C最大放電容量を、表1に示す0.1C最大放電容量を用いて求めることができる。
 例えば、「NCM7,1.5,1.5」の0.1C最大放電容量を算出する場合を例に挙げて説明する。「NCM7,1.5,1.5」は、ニッケルとコバルトとマンガンを7:1.5:1.5の比率で含む。理論上、「NCM622」を50wt%と「NCM811」を50wt%とを混合すると、「NCM7,1.5,1.5」が得られる。そのため、以下の式から「NCM7,1.5,1.5」の0.1C最大放電容量を求めることができる。
  「NCM7,1.5,1.5」の0.1C最大放電容量
 =175(NCM622の0.1C最大放電容量の中間値)×0.5+195(NCM811の0.1C最大放電容量の中間値)×0.5
 =185[mAh/g]
 また、任意組成の0.1C最大放電容量を算出する場合について説明する。理論上、任意組成の正極活物質が、「NCM111」をa1[wt%]と、「NCM523」をa2[wt%]と、「NCM622」をa3[wt%]と、「NCM811」をa4[wt%]と、NCAをa5[wt%]とを混合することによって得られる場合、任意組成の正極活物質は以下の式から求められる。
  任意組成の0.1C最大放電容量
 =155(NCM111の0.1C最大放電容量の中間値)×(a1/100)
  +165(NCM523の0.1C最大放電容量の中間値)×(a2/100)
  +175(NCM622の0.1C最大放電容量の中間値)×(a3/100)
  +195(NCM811の0.1C最大放電容量の中間値)×(a4/100)
  +195(NCAの0.1C最大放電容量の中間値)×(a5/100)
 但し、0≦a1<100
    0≦a2<100
    0≦a3<100
    0≦a4<100
    0≦a5<100
    a1+a2+a3+a4+a5=100
 本発明において、「JIS K5600-5-1に準拠した耐屈曲性試験」とは、塗膜の機械的性質に関する試験方法の一種であって、円筒形マンドレル法による耐屈曲性試験である。
 本明細書において、複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢から考えられる全ての組み合わせを含む。複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢のいずれか1つであってもよく、複数の選択肢の全てであってもよい。例えば、AとBとCの少なくとも1つとは、Aのみであってもよく、Bのみであってもよく、Cのみであってもよく、AとBであってもよく、AとCであってもよく、BとCであってもよく、AとBとCであってもよい。
 本発明の非水電解液二次電池用正極および非水電解液二次電池は、特許請求の範囲において数を特定しておらず、英語に翻訳された場合に単数で表示される要素を、複数有していてもよい。本発明の非水電解液二次電池用正極および非水電解液二次電池は、特許請求の範囲において数を特定しておらず、英語に翻訳された場合に単数で表示される要素を、1つだけ有していてもよい。
 本発明において、含む(including)、有する(comprising)、備える(having)およびこれらの派生語は、列挙されたアイテムおよびその等価物に加えて追加的アイテムをも包含することが意図されて用いられている。
 本発明において、取り付けられた(mounted)、接続された(connected)、結合された(coupled)、支持された(supported)という用語は、広義に用いられている。具体的には、直接的な取付、接続、結合、支持だけでなく、間接的な取付、接続、結合および支持も含む。さらに、接続された(connected)および結合された(coupled)は、物理的又は機械的な接続/結合に限られない。それらは、直接的なまたは間接的な電気的接続/結合も含む。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。
 本明細書において、「好ましい」という用語は非排他的なものである。「好ましい」は、「好ましいがこれに限定されるものではない」ということを意味する。本明細書において、「好ましい」と記載された構成は、少なくとも、上記(1)の構成により得られる上記効果を奏する。また、本明細書において、「してもよい」という用語は非排他的なものである。「してもよい」は、「してもよいがこれに限定されるものではない」という意味である。本明細書において、「してもよい」と記載された構成は、少なくとも、上記(1)の構成により得られる上記効果を奏する。
 本発明では、上述した好ましい構成を互いに組み合わせることを制限しない。本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成および配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。また、本発明は、後述する変形例を適宜組み合わせて実施することができる。
 本発明のリチウムとニッケルを含む正極活物質を使用した非水電解液二次電池用正極は、リチウムとニッケルを含む正極活物質と有機溶媒系バインダーを含む従来の非水電解液二次電池用正極に比べて、電池特性を高めつつ、電池の耐久性を高めることができる。
本発明の実施形態の非水電解液二次電池用正極の斜視図と一部拡大図とフーリエ変換赤外分光スペクトルを示す図である。 本発明の実施形態の具体例の非水電解液二次電池用正極の斜視図と一部拡大図である。 本発明の実施形態の具体例の非水電解液二次電池用正極が適用された非水電解液二次電池の断面模式図である。 本発明の実施例1および比較例1、2の電子顕微鏡写真である。 本発明の実施例1および比較例1、2のフーリエ変換赤外分光スペクトルである。 本発明の実施例1および比較例1、2のフーリエ変換赤外分光スペクトルの一部拡大図である。 本発明の実施例1のXPSスペクトルである。 比較例1のXPSスペクトルである。 比較例2のXPSスペクトルである。
(本発明の実施形態)
 以下、本発明の実施形態の非水電解液二次電池用正極について、図1を参照しつつ説明する。以下、非水電解液二次電池用正極1を、単に、正極1と称する場合がある。非水電解液二次電池用正極1は、正極活物質2と、バインダー3と、導電材4と、集電体5とを有する。正極活物質2は、リチウムとニッケルを含む。バインダー3は、水溶性又は水分散性である。正極活物質2および導電材4は、バインダー3によって集電体5に接続されている。
 図1には、非水電解液二次電池用正極1の構成図に加えて、非水電解液二次電池用正極1のフーリエ変換赤外分光スペクトルXの模式図が表示されている。非水電解液二次電池用正極1のフーリエ変換赤外分光スペクトルXは、非水電解液二次電池用正極1をフーリエ変換赤外分光法によって分析することによって得られる。一般的に、フーリエ変換赤外分光スペクトルのグラフの横軸は波数を示し、縦軸は透過率または吸収率を示す。図1のグラフの縦軸は透過率を示している。図1のフーリエ変換赤外分光スペクトルのグラフには、正極活物質2と水との反応によって生成しうる物質のフーリエ変換赤外分光スペクトルYの模式図も表示されている。非水電解液二次電池用正極1のフーリエ変換赤外分光スペクトルXにおいて、ある組成物のフーリエ変換赤外分光スペクトルにおいてピークが現れた波数の領域と同じ波数の領域にピークが現れていれば、非水電解液二次電池用正極1はこの組成物を含んでいると判断できる。
 非水電解液二次電池用正極1のフーリエ変換赤外分光スペクトルXにおいて、正極活物質2と水との反応によって生成しうる物質のスペクトルYにおいてピークが現れた波数の領域と同じ波数の領域にピークが現れない。したがって、非水電解液二次電池用正極1のフーリエ変換赤外分光スペクトルXにおいて、正極活物質2と水との反応によって生成しうる物質に由来するピークが現れていない。つまり、非水電解液二次電池用正極1をフーリエ変換赤外分光法によって分析したとき、正極活物質2と水との反応によって生成しうる物質が検出されない。非水電解液二次電池用正極1をフーリエ変換赤外分光法によって分析すると、正極活物質2の一次粒子が凝集してなる正極活物質凝集体の表面付近を分析することができる。したがって、フーリエ変換赤外分光スペクトルにおいて、正極活物質2と水との反応によって生成しうる物質に由来するピークが現れない場合、正極活物質2と水との反応によって生成しうる物質が、正極活物質凝集体2の表面付近に、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。
 正極活物質2と水との反応によって生成しうる物質は、少なくとも正極活物質2と水を反応物質としたときにこれらの反応物質から生成する生成物質、および、当該生成物質から派生する物質の少なくとも一方である。少なくとも正極活物質2と水を反応物質としたときにこれらの反応物質から生成する生成物質は、正極活物質2が水との反応によって変質することにより生成する物質である。少なくとも正極活物質2と水を反応物質としたときにこれらの反応物質から生成する生成物質、および、当該生成物質から派生した物質は、正極活物質凝集体において正極活物質2が水との反応によって変質した部分および/またはその近傍に存在することが多い。したがって、正極活物質2と水との反応によって生成しうる物質は、正極活物質凝集体において正極活物質2が水との反応によって変質した部分および/またはその近傍に存在する。
 上記より、正極活物質2と水との反応によって生成しうる物質が存在すると判断された場合、正極活物質2と水との反応によって生成しうる物質が存在する場所および/またはその近傍に、正極活物質が水との反応によって変質した物質が存在すると考えられる。つまり、正極活物質2と水との反応によって生成しうる物質が存在すると判断された場合、正極活物質2と水との反応によって生成しうる物質が存在する場所および/またはその近傍で正極活物質が水によって変質していると考えられる。
 一方、正極活物質2と水との反応によって生成しうる物質が存在しないと判断された場合、正極活物質2と水との反応によって生成しうる物質が存在しない場所およびその近傍において、正極活物質2の水による変質が抑制されていると考えられる。
 非水電解液二次電池用正極1のフーリエ変換赤外分光スペクトルXにおいて、正極活物質2と水との反応によって生成しうる物質に由来するピークが現れないため、正極活物質凝集体の表面付近に、正極活物質2と水との反応によって生成しうる物質が、フーリエ変換赤外分光法の検出可能レベルで存在しないと判断できる。したがって、非水電解液二次電池用正極1の正極活物質凝集体の表面付近において、正極活物質2の水による変質が抑制されたと判断できる。
 なお、非水電解液二次電池用正極1をフーリエ変換赤外分光法によって分析すると、正極活物質凝集体だけでなく、バインダー等も分析される。
 正極活物質凝集体の表面付近において正極活物質2の水による変質を抑制したことにより、正極の電気抵抗の上昇を抑制できる。非水電解液二次電池用正極1の電気抵抗の上昇を抑制したことにより、非水電解液二次電池の充電時および放電時に発生するジュール熱を抑制できる。そのため、非水電解液二次電池用正極1の熱劣化を抑制できる。さらに、非水電解液二次電池の正極以外の部分の熱劣化も抑制できる。その結果、非水電解液二次電池の熱劣化を抑制できる。
 また、正極活物質凝集体の表面付近において正極活物質2の水による変質を抑制したことにより、正極活物質凝集体からのリチウムイオンおよび正極活物質凝集体へのリチウムイオンの移動がスムーズになる。その結果、非水電解液二次電池の充放電効率の低下を抑制できる。
 よって、非水電解液二次電池用正極1が用いられた非水電解液二次電池は、リチウムとニッケルを含む正極活物質を使用した従来の非水電解液二次電池用正極に比べて、電池特性を高めつつ、電池の耐久性を高めることができる。
(本発明の実施形態の具体例)
 次に、本発明の実施形態の具体例の非水電解液二次電池用正極1について、図2~図4を参照しつつ説明する。基本的に、本発明の実施形態の具体例は、上述した本発明の実施形態の特徴を全て有している。
 図2に示すように、非水電解液二次電池用正極1は、シート状である。非水電解液二次電池用正極1は、正極活物質凝集体2pと、バインダー3と、導電材4と、集電体5とを有する。非水電解液二次電池用正極1は、リチウムイオンを吸蔵可能および放出可能に構成されている。
 バインダー3は、正極活物質凝集体2p同士を接続している。バインダー3は、導電材4同士を接続している。バインダー3は、正極活物質凝集体2pと導電材4を接続している。バインダー3は、正極活物質凝集体2pおよび導電材4を集電体5に接続している。バインダー3は、水に溶解可能なバインダー又は水に分散可能なバインダーである。バインダー3は、例えば、アクリル系樹脂を主成分とするアクリル系バインダーである。
 正極活物質凝集体2pは、一次粒子である正極活物質2が凝集して形成された二次粒子である。正極活物質2および正極活物質凝集体2pは、粒子状である。正極活物質2は、リチウムとニッケルを含む複合酸化物を含んでいる。正極活物質2は、リチウムとニッケルに加えて、他の金属を含んでいてもよい。つまり、正極活物質2は、リチウムとニッケルと他の金属を含む複合酸化物を含んでいてもよい。
 正極活物質凝集体2pのニッケル含有量は、30mol%以上である。正極活物質凝集体2pのニッケル含有量は、30mol%でもよく、50mol%でもよく、80mol%でもよい。正極活物質凝集体2pのニッケル含有量は、正極活物質2のニッケル含有量と同じである。正極活物質凝集体2pのニッケル含有量とは、正極活物質2に含まれる金属元素に占めるニッケルの割合である。
 導電材4は、例えば、天然黒鉛、人造黒鉛、アセチレンブラック、カーボンブラック、グラファイト等の導電性炭素材料である。
 集電体5は、アルミニウムを含んでいることが好ましい。集電体5は、例えば、アルミニウム箔であってもよい。集電体5は、例えば、アルミニウムを含むアルミニウム合金の金属箔であってもよい。集電体5は、アルミニウムを含んでいなくてもよい。
 正極1のフーリエ変換赤外分光スペクトルにおいて、正極活物質2と水との反応によって生成しうる物質に由来するピークが現れない。したがって、正極活物質2と水との反応によって生成しうる物質が、正極活物質凝集体の表面付近に、フーリエ変換赤外分光法の検出可能レベルで存在しない。正極1のフーリエ変換赤外分光スペクトルにおいて、正極活物質凝集体2pと水との反応によって生成しうる物質に由来するピークが現れない場合とは、正極活物質2と水との反応によって生成しうる物質が正極活物質凝集体2pの表面付近に全く存在しない場合と、正極活物質2と水との反応によって生成しうる物質が正極活物質凝集体2pの表面付近にフーリエ変換赤外分光法の検出可能レベルを下回るレベルで存在する場合とを含む。
 正極活物質2が水と反応することにより、正極活物質2が変質する。正極活物質2が変質した場合、正極活物質凝集体において正極活物質2が変質した部分および/またはその近傍に、正極活物質2と水との反応によって生成しうる物質が存在する。
 正極活物質2が水と反応することにより、水酸化リチウム、炭酸リチウムおよび炭酸水素リチウムの少なくとも1つが生成される。
 水酸化リチウムは、大気等に含まれる水により水酸化リチウム水和物に変化する。通常、水酸化リチウムは、水酸化リチウムの無水物(LiOH)としてでなく、水酸化リチウム水和物(LiOH・HO)として存在する。そのため、正極活物質2が水と反応することにより水酸化リチウムが生成した場合、正極活物質2と水との反応によって生成しうる物質は水酸化リチウム水和物である。正極活物質2が水と反応することにより水酸化リチウムが生成した場合、正極活物質凝集体において正極活物質2が変質した部分および/またはその近傍に、水酸化リチウム水和物が存在する。フーリエ変換赤外分光法によって正極1を分析した場合、正極1のフーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークが現れない。つまり、正極活物質凝集体の表面付近に、水酸化リチウム水和物がフーリエ変換赤外分光法の検出可能レベルで存在しない。
 水酸化リチウム水和物をフーリエ変換赤外分光法で分析した場合、フーリエ変換赤外分光スペクトルにおいて、1500~1700cm-1の領域にピークが現れる。1500~1700cm-1の領域に現れるピークは、水酸化リチウム水和物に含まれる水分子の結合に由来するピークである。水酸化リチウム水和物に含まれる水分子の結合に帰属する特性吸収帯は、1500~1700cm-1の領域にある。
 水酸化リチウム水和物に由来するピークは、水酸化リチウム水和物(LiOH・HO)に含まれる水分子(HO)に由来するピーク以外のピークを含む。しかし、水酸化リチウム水和物に由来するピークのなかで、水酸化リチウム水和物(LiOH・HO)に含まれる水分子(HO)に由来するピークの透過率が最も小さい。言い換えると、水酸化リチウム水和物に由来するピークのなかで、水酸化リチウム水和物(LiOH・HO)に含まれる水分子(HO)に由来するピークの吸収率が最も大きい。したがって、水酸化リチウム水和物(LiOH・HO)に含まれる水分子(HO)に由来するピークの有無を判断することにより、高感度に水酸化リチウム水和物(LiOH・HO)の有無を判断できる。
 上記より、正極1のフーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークが現れないとは、正極1のフーリエ変換赤外分光スペクトルにおいて、波数が1500~1700cm-1の領域にピークが現れないことであるといえる。言い換えると、正極1のフーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークが現れないとは、水酸化リチウム水和物に含まれる水分子に帰属する特性吸収帯にピークが現れないことであるといえる。
 正極活物質2が水と反応することにより炭酸水素リチウムが生成した場合、炭酸水素リチウムは不安定な物質であるため、生成した炭酸水素リチウムはすぐに炭酸リチウムに変わる。そのため、正極活物質2が水と反応することにより炭酸水素リチウムが生成した場合、正極活物質2と水との反応によって生成しうる物質は炭酸リチウムである。正極活物質2が水と反応することにより炭酸水素リチウムが生成した場合、正極活物質凝集体において正極活物質2が変質した部分および/またはその近傍に、炭酸リチウムが存在する。
 また、正極活物質2が水と反応することにより炭酸リチウムが生成した場合、正極活物質2と水との反応によって生成しうる物質は炭酸リチウムである。正極活物質2が水と反応することにより炭酸リチウムが生成した場合、正極活物質凝集体において正極活物質2が変質した部分および/またはその近傍に、炭酸リチウムが存在する。
 正極活物質2が水と反応することにより炭酸水素リチウムおよび炭酸リチウムが生成した場合、正極活物質2と水との反応によって生成しうる物質は炭酸リチウムである。正極活物質2が水と反応することにより炭酸水素リチウムおよび炭酸リチウムが生成した場合、正極活物質凝集体において正極活物質2が変質した部分および/またはその近傍に、炭酸リチウムが存在する。
 上記より、正極活物質2が水と反応することにより炭酸水素リチウムおよび炭酸リチウムの少なくとも一方が生成した場合、正極活物質2と水との反応によって生成しうる物質は炭酸リチウムである。正極活物質2が水と反応することにより炭酸水素リチウムおよび炭酸リチウムの少なくとも一方が生成した場合、正極活物質凝集体において正極活物質2が変質した部分および/またはその近傍に、炭酸リチウムが存在する。
 フーリエ変換赤外分光法によって正極1を分析した場合、正極1のフーリエ変換赤外分光スペクトルにおいて炭酸リチウムに由来するピークが現れない。つまり、正極活物質凝集体の表面付近に、炭酸リチウムがフーリエ変換赤外分光法の検出可能レベルで存在しない。
 炭酸リチウムをフーリエ変換赤外分光法で分析した場合、フーリエ変換赤外分光スペクトルにおいて、1350~1600cm-1の領域にピークが現れる。1350~1600cm-1の領域に現れるピークは、炭酸リチウムが有する炭素原子(C)と酸素原子(O)の結合に由来するピークである。炭酸リチウムの炭素原子(C)と酸素原子(O)の結合に帰属する特性吸収帯は、1350~1600cm-1の領域にある。したがって、正極1のフーリエ変換赤外分光スペクトルにおいて炭酸リチウムに由来するピークが現れないとは、正極1のフーリエ変換赤外分光スペクトルにおいて、波数が1350~1600cm-1の領域にピークが現れないことである。言い換えると、正極1のフーリエ変換赤外分光スペクトルにおいて炭酸リチウムに由来するピークが現れないとは、炭酸リチウムの炭素原子(C)と酸素原子(O)の結合に帰属する特性吸収帯にピークが現れないことである。
 正極活物質2が水と反応することにより、水酸化リチウムと、炭酸水素リチウムおよび炭酸リチウムの少なくとも一方が生成した場合、正極活物質凝集体において、正極活物質2が変質した部分および/またはその近傍に、水酸化リチウム水和物および炭酸リチウムが存在する。したがって、正極活物質2が水と反応することにより、水酸化リチウムと、炭酸水素リチウムおよび炭酸リチウムの少なくとも一方が生成した場合、正極活物質2と水との反応によって生成しうる物質は、水酸化リチウム水和物および炭酸リチウムである。フーリエ変換赤外分光法によって正極1を分析した場合、正極1のフーリエ変換赤外分光スペクトルにおいて、水酸化リチウム水和物に由来するピークおよび炭酸リチウムに由来するピークが現れない。つまり、正極活物質凝集体の表面付近に、水酸化リチウム水和物および炭酸リチウムが、フーリエ変換赤外分光法の検出可能レベルで存在しない。正極1のフーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークおよび炭酸リチウムに由来するピークが現れないとは、正極1のフーリエ変換赤外分光スペクトルにおいて、波数が1350~1600cm-1の領域および波数が1500~1700cm-1の領域にピークが現れないことである。言い換えると、正極1のフーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークおよび炭酸リチウムに由来するピークが現れないとは、正極1のフーリエ変換赤外分光スペクトルにおいて、水酸化リチウム水和物(LiOH・HO)が有する水分子(HO)に帰属する特性吸収帯および炭酸リチウムの炭素原子(C)と酸素原子(O)の結合に帰属する特性吸収帯にピークが現れないことである。
 正極1をXPS(X―ray Photoelectron Spectroscopy)法(X線光電分光法)によって分析すると、正極活物質凝集体2pの全体、即ち、正極活物質凝集体2pの表面付近および正極活物質凝集体2pの内部を分析することができる。正極1をXPS法によって分析することで、正極1のXPSスペクトルが得られる。XPSスペクトルは、光電子の結合エネルギーを横軸、光電子のカウント数を縦軸として表示される(図6参照)。正極1のXPSスペクトルが、ある組成物のXPSスペクトルにピークが現れた結合エネルギーの領域と同じ結合エネルギーの領域にピークを有していれば、正極1はこの組成物を含んでいると判断できる。正極1のXPSスペクトルにおいて、正極活物質2と水との反応によって生成しうる物質に由来するピークが現れないことが好ましい。しかし、正極1のXPSスペクトルにおいて、正極活物質2と水との反応によって生成しうる物質に由来するピークが現れてもよい。
 非水電解液二次電池用正極1のXPSスペクトルにおいて、正極活物質2と水との反応によって生成しうる物質に由来するピークが現れない場合とは、正極活物質2と水との反応によって生成しうる物質が正極活物質凝集体2p全体に存在しない場合と、正極活物質2と水との反応によって生成しうる物質が、正極活物質凝集体2pの表面付近と内部の少なくとも一方に、XPS法の検出可能レベルを下回るレベルで存在する場合とを含む。
 非水電解液二次電池用正極1のXPSスペクトルにおいて、正極活物質2と水との反応によって生成しうる物質に由来するピークが現れる場合、正極活物質2と水との反応によって生成しうる物質が、XPS法の検出可能レベルで、正極活物質凝集体2pの表面付近と内部の少なくとも一方に存在している。上述したように、非水電解液二次電池用正極1において、正極活物質2と水との反応によって生成しうる物質は、正極活物質凝集体2pの表面付近に存在しないか、正極活物質凝集体2pの表面付近にフーリエ変換赤外分光法の検出可能レベルを下回るレベルで存在する。したがって、非水電解液二次電池用正極1のXPSスペクトルにおいて、正極活物質2と水との反応によって生成しうる物質に由来するピークが現れた場合、正極活物質2と水との反応によって生成しうる物質が、正極活物質凝集体2pの内部に存在すると考えられる。
 非水電解液二次電池用正極1は、例えば、以下の方法で製造される。
 正極活物質凝集体2pと、水溶性または水分散性のバインダー3と、導電材4と、水を含む溶媒又は分散媒とを混合し、スラリーを作製する。バインダー3が水溶性の場合、溶媒100wt%に対して50wt%以上が水であることが好ましい。作製したスラリーを集電体5に塗布する。その後、スラリーを乾燥させる。スラリーの乾燥温度は、例えば50℃~130℃程度である。これにより、非水電解液二次電池用正極1が得られる。スラリーは、増粘剤、pH調整剤等の種々の添加剤を含んでいてもよい。増粘剤として、例えば、セルロース誘導体、アクリル樹脂などを用いることができる。pH調整剤として、例えば、塩酸、硝酸、硫酸、酢酸、琥珀酸、およびフタル酸等の酸を、一つ以上用いることができる。pH調整剤は、スラリー乾燥温度で熱分解しないpH調整剤が好ましい。なお、増粘剤およびpH調整剤は上記に例示した増粘剤およびpH調整剤に限定されない。
 図3は、本発明の実施形態の具体例の非水電解液二次電池用正極1を用いて作製される非水電解液二次電池11の断面模式図である。図3に示す非水電解液二次電池11は、上記実施形態の非水電解液二次電池用正極1を用いて作製される非水電解液二次電池の一例である。
 非水電解液二次電池11は、非水電解液二次電池用正極1と、負極12と、2枚のセパレータ13、容器14と、蓋15と、図示しない非水電解液とを備える。正極1、負極12および2枚のセパレータ13は、角筒状の容器14に収容されている。正極1、負極12および2枚のセパレータ13は、角柱状に巻回されている。セパレータ13には非水電解液が含浸されている。容器14の開口は、蓋15によって閉じられている。
 負極12は、リチウムイオンを吸蔵可能および放出可能に構成されている。負極12は、負極活物質を含む。負極活物質に、例えば、炭素材料、合金および金属酸化物から選択される1つ又は2つ以上を用いることができる。セパレータ13は、正極1と負極12とを絶縁する。セパレータ13は、電解液を保持可能に構成されている。非水電解液は、非水溶媒(水を含まない溶媒)と電解質とを含む。電解質は水を含まない溶媒に溶解している。負極12、セパレータ13、容器14、蓋15および非水電解液等には、一般的な非水電解液二次電池に用いられているものを使用することができる。
 非水電解液二次電池11の25±2℃での正極活物質の重量当たりの0.1C放電容量は、正極活物質2の材質、正極活物質の一次粒子の径および正極活物質凝集体2pの径に依存する最大放電容量の90%以上である。0.1C放電容量が最大放電容量の90%以上である場合、非水電解液二次電池11は実用化に十分に耐えることができるレベルである。
 非水電解液二次電池用正極1を用いて、JIS K5600-5-1に準拠し、直径3mmの円筒形マンドレルを使用した耐屈曲性試験を行った場合、正極活物質2および導電材4は集電体5から剥離されない。つまり、非水電解液二次電池用正極1において、正極活物質2および導電材4は、この耐屈曲性試験で剥離されないような接続強度で、集電体5に接続されている。そのため、非水電解液二次電池用正極1を用いて非水電解液二次電池11を製造する過程および非水電解液二次電池11の使用時に、正極活物質2および導電材4が集電体5から剥離しにくい。また、剥離の要因となる集電体5の腐食が生じていない。集電体5の腐食がないため、非水電解液二次電池11の耐久性が高い。
 非水電解液二次電池11は、例えば、以下の方法で製造される。
 正極1と負極12の間にセパレータ13が介在するように、正極1、負極12、および2枚のセパレータを巻回する。そして、巻回したものを容器14に収容する。容器14に非水電解液を注入することにより、セパレータ13に非水電解液を含浸させる。容器14の開口を蓋15により閉じる。
 非水電解液二次電池用正極1が用いられた非水電解液二次電池11は、リチウムとニッケルを含む正極活物質を使用した従来の非水電解液二次電池用正極に比べて、電池特性を高めつつ、電池の耐久性を高めることができる。
 本発明は、上述した実施形態およびその具体例に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。以下、本発明の実施形態の変更例について説明する。なお、上述した構成と同じ構成を有するものについては、同じ符号を用いて適宜その説明を省略する。後述する変更例は、適宜組み合わせて実施可能である。
 本発明の実施形態およびその具体例の非水電解液二次電池用正極はシート状である。しかし、本発明の非水電解液二次電池用正極は、シート状以外の形状であってもよい。
 本発明の非水電解液二次電池は、複数の非水電解液二次電池用正極と複数の負極が、セパレータを介して積層された構成であってもよい。
 本発明の実施形態の具体例の非水電解液二次電池11の容器14は角筒状であるが、本発明の非水電解液二次電池の容器の形状は角筒状でなくてもよい。例えば、非水電解液二次電池用正極と負極と2枚のセパレータを円柱状に巻回した場合、非水電解液二次電池の容器は円筒状でもよい。
 次に、本発明の実施例1、比較例1および比較例2の非水電解液二次電池用正極について説明する。実施例1は、図2に示す非水電解液二次電池用正極1の一例である。
 先ず、実施例1の非水電解液二次電池用正極と比較例1の非水電解液二次電池用正極の製造方法について説明する。
 実施例1と比較例1において、同じ正極活物質を用いた。正極活物質として、ニッケル含有量が80mol%のニッケルコバルトアルミニウム酸リチウム(NCA)を用いた。実施例1と比較例1ともに、この正極活物質を大気中に1日放置した。その後、正極活物質と、アクリル系バインダーと、導電材としてのアセチレンブラックおよびグラファイトと、溶媒または分散媒としての水と、増粘剤、pH調整剤等の添加剤とを混合することにより、スラリーを作製した。その後、スラリーを集電体(アルミニウム箔)に塗布した。スラリーを乾燥することにより、非水電解液二次電池用正極が得られた。実施例1と比較例1において、スラリーに混合したpH調整剤の種類や量を変えた。それ以外の材質や手順については、実施例1と比較例1を同じとした。
 次に、比較例2の非水電解液二次電池用正極の作製方法について説明する。
 正極活物質凝集体として、ニッケル含有量が80mol%のニッケルコバルトアルミニウム酸リチウム(NCA)を用いた。正極活物質と、ポリフッ化ビニリデン(PVDF)と、導電材としてのアセチレンブラックおよびグラファイトと、溶媒または分散媒としてのNMP(N-メチルー2-ピロリドン)とを混合し、スラリーを作製した。その後、スラリーを集電体(アルミニウム箔)に塗布した。スラリーを乾燥させることにより、非水電解液二次電池用正極が得られた。比較例2の正極の作製は、従来の有機溶媒系バインダーを含む正極を作製する環境とは異なり、低湿度環境において行われた。それにより、従来の有機溶媒系バインダーを含む正極の作製時とは異なり、スラリー作製前と、スラリー作製中を含む電極作製時に、正極活物質が大気とほぼ触れなかった。
 以下の説明において、上記実施例1、比較例1および比較例2を、それぞれ、水系A、水系Bおよび有機系と呼ぶことがある。
 実施例1、比較例1および比較例2の非水電解液二次電池用正極を用いて非水電解液二次電池を作製した。作製方法は、本発明の実施形態の具体例で述べた方法と同じである。実施例1、比較例1および比較例2において、負極、セパレータ、および非水電解液の種類は全て同じとした。
 実施例1、比較例1および比較例2の非水電解液二次電池用正極を用いてハーフセル(単極)のCR2032型コイン電池を作製した。一般的な正極ハーフセル(正極単極)と同じく、負極の代わりに、リチウムを使用した。
 図4は、実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の非水電解液二次電池用正極の表面の走査型電子顕微鏡写真である。
 <1>フーリエ変換赤外分光法による分析
 実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の非水電解液二次電池用正極の成分を、フーリエ変換赤外分光法によって分析した。実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の非水電解液二次電池用正極の成分の分析に、同じ測定機器を用いた。図5Aは、実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)のフーリエ変換赤外分光スペクトルを示す。これらのフーリエ変換赤外分光スペクトルに正極活物質と水との反応によって生成しうる物質に由来するピークが現れているかを確認するため、水酸化リチウム水和物(LiOH・HO)と炭酸リチウム(LiCO)をそれぞれフーリエ変換赤外分光法によって分析した。水酸化リチウム水和物(LiOH・HO)と炭酸リチウム(LiCO)の分析に、実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の非水電解液二次電池用正極の成分の分析に用いた測定機器と同じ測定機器を用いた。図5Aには、参考例1として水酸化リチウム水和物(LiOH・HO)のフーリエ変換赤外分光スペクトルと、参考例2として炭酸リチウム(LiCO)のフーリエ変換赤外分光スペクトルを示している。図5Bは、図5Aに示すフーリエ変換赤外分光スペクトルにおいて波数が1200~1800cm-1の領域を拡大したものを示している。
 参考例1の水酸化リチウム水和物(LiOH・HO)のフーリエ変換赤外分光スペクトルにおいて、波数が1500~1700cm-1の領域に、水酸化リチウム水和物(LiOH・HO)が有する水分子(HO)に由来するピークが現れた。この分析結果から、フーリエ変換赤外分光スペクトルにおいて、波数が1500~1700cm-1の領域にピークが現れた場合、水酸化リチウム水和物(LiOH・HO)が正極活物質凝集体の表面付近に存在すると判断できる。
 なお、参考例1の水酸化リチウムの水和物(LiOH・HO)のフーリエ変換赤外分光スペクトルにおいて、波数が3500~3700cm-1の領域にも、ピークが現れた。そのため、波数が3500~3700cm-1の領域におけるピークの存在の有無によっても、水酸化リチウムの水和物(LiOH・HO)の存在の有無を判断することができると考えられる。ここで、波数が1500~1700cm-1の領域のピークの透過率は、波数が3500~3700cm-1の領域のピークの透過率より小さい。言い換えると、波数が1500~1700cm-1の領域のピークの吸収率は、波数が3500~3700cm-1の領域のピークの吸収率より大きい。そのため、波数が3500~3700cm-1の領域にピークが現れたかによって判断するよりも、波数が1500~1700cm-1の領域にピークが現れたかによって水酸化リチウム水和物(LiOH・HO)の有無を判断する方が、高感度で水酸化リチウム水和物(LiOH・HO)の有無を判断できる。したがって、波数が1500~1700cm-1の領域にピークが現れるかによって、水酸化リチウム水和物(LiOH・HO)の存在の有無を判断することとする。
 また、参考例1の水酸化リチウム水和物(LiOH・HO)のフーリエ変換赤外分光スペクトルにおいて、波数が500~1300cm-1の領域にも、複数のピークが現れている。しかし、波数が500~1300cm-1の領域は、指紋領域である。指紋領域には、各材料に由来するピークが表れる。したがって、正極の成分をフーリエ変換赤外分光法によって分析した場合、指紋領域に、正極に含まれる添加剤およびバインダー等に由来する複数のピークも現れる。指紋領域ではこれらの複数のピークが重なり合うため、各ピークがどの物質に由来するピークであるかを分析しにくい。そこで、水酸化リチウム水和物(LiOH・HO)が正極活物質凝集体の表面付近に存在するかの判断において、波数500~1300cm-1の領域を考慮しないこととする。
 参考例2の炭酸リチウム(LiCO)のフーリエ変換赤外分光スペクトルにおいて、波数が1350~1600cm-1の領域に、炭素原子(C)と酸素原子(O)の結合に由来するピークが現れた。この分析結果から、フーリエ変換赤外分光スペクトルにおいて、波数が1350~1600cm-1の領域にピークが現れた場合、炭酸リチウムが正極活物質凝集体の表面付近に存在すると判断できる。なお、参考例2の炭酸リチウム(LiCO)のフーリエ変換赤外分光スペクトルにおいて、波数が500~1300cm-1の領域にも、複数のピークが現れている。しかし、波数が500~1300cm-1の領域は、指紋領域である。そのため、炭酸リチウムが正極活物質凝集体の表面付近に存在するかの判断において、波数500~1300cm-1の領域を考慮しないこととする。
 実施例1(水系A)のフーリエ変換赤外分光スペクトルにおいて、参考例1のフーリエ変換赤外分光スペクトルにピークが現れた領域と同じ1500~1700cm-1の領域に、ピークが現れなかった。念のため、参考例1のフーリエ変換赤外分光スペクトルにおいてもう1つのピークが現れた領域と同じ3500~3700cm-1の領域も確認したところ、実施例1(水系A)のフーリエ変換赤外分光スペクトルにおいて、3500~3700cm-1の領域にも、ピークが現れなかった。実施例1(水系A)のフーリエ変換赤外分光スペクトルにおいて、参考例2のフーリエ変換赤外分光スペクトルにピークが現れた領域と同じ1350~1600cm-1の領域に、ピークが現れなかった。したがって、実施例1(水系A)の正極において、正極活物質凝集体の表面付近に、水酸化リチウム水和物および炭酸リチウムがフーリエ変換赤外分光法の検出可能レベルで存在しないことがわかった。
 比較例1(水系B)のフーリエ変換赤外分光スペクトルにおいて、参考例1のフーリエ変換赤外分光スペクトルにピークが現れた領域と同じ1500~1700cm-1の領域に、ピークが現れた。比較例1(水系B)のフーリエ変換赤外分光スペクトルにおいて、参考例2のフーリエ変換赤外分光スペクトルにピークが現れた領域と同じ1350~1600cm-1の領域に、ピークが現れた。したがって、比較例1(水系B)の正極において、正極活物質凝集体の表面付近に、水酸化リチウム水和物および炭酸リチウムが存在することがわかった。
 比較例2(有機系)のフーリエ変換赤外分光スペクトルにおいて、参考例1のフーリエ変換赤外分光スペクトルにピークが現れた領域と同じ1500~1700cm-1の領域に、ピークが現れなかった。しかし、比較例2(有機系)のフーリエ変換赤外分光スペクトルにおいて、参考例2のフーリエ変換赤外分光スペクトルにピークが現れた領域と同じ1350~1600cm-1の領域に、わずかにピークが現われた。したがって、比較例2(有機系)の正極において、正極活物質凝集体の表面付近に水酸化リチウム水和物がフーリエ変換赤外分光法の検出可能レベルで存在しないが、微量の炭酸リチウムが正極活物質凝集体の表面付近に存在することがわかった。
 従来の有機溶媒系バインダーを含む正極の正極活物質凝集体の表面付近には、水酸化リチウム水和物および炭酸リチウムがフーリエ変換赤外分光法の検出可能レベルで存在するはずである。この理由は、従来の有機溶媒系バインダーを含む正極の作製時に、正極活物質が大気と触れているためである。しかし、比較例2(有機系)の正極の作製は、上述したように、従来の有機溶媒系バインダーを含む正極を作製する環境と異なり、低湿度環境において行われた。低湿度環境は、湿度の低い空気が存在する環境である。低湿度環境において、正極活物質は空気中の水とほぼ触れない。そのため、比較例2(有機系)の正極活物質は、従来の有機溶媒系バインダーを含む正極の正極活物質と異なり大気中の水と殆ど反応していないと考えられる。言い換えると、比較例2(有機系)の正極活物質は、従来の有機溶媒系バインダーを含む正極の正極活物質と異なり、水による変質が殆ど生じていないと考えられる。しかし、その比較例2(有機系)の有機溶媒系バインダーを含む正極において、正極活物質凝集体の表面付近に、微量の炭酸リチウムが存在することがわかった。比較例2(有機系)の正極は、低湿度環境で作製されたため、正極活物質は空気中の水にほぼ触れていない。しかし、その低湿度環境でも、正極活物質が空気中の水とわずかに触れたことにより、炭酸リチウムおよび炭酸水素リチウムが生成したと考えられる。
 一方、実施例1(水系A)および比較例1(水系B)の非水電解液二次電池用正極は、それぞれ、大気中に1日放置された正極活物質を用いて作製されている。そのため、正極活物質が大気中の水と反応することにより、正極活物質が水により変質したと考えられる。正極活物質が大気中の水と反応することにより、水酸化リチウムが生成したと考えられる。水酸化リチウムは、水酸化リチウム水和物に変化したと考えられる。また、正極活物質が大気中の炭酸ガスおよび水と反応したことにより、炭酸リチウムおよび炭酸水素リチウムが生成したと考えられる。そのため、比較例1(水系B)の正極において、正極活物質凝集体の表面付近に、水酸化リチウム水和物および炭酸リチウムが存在した。しかし、実施例1(水系A)の正極において、正極活物質凝集体の表面付近に、フーリエ変換赤外分光法の検出可能レベルで、水酸化リチウム水和物および炭酸リチウムが存在しなかった。正極作製時に正極活物質が空気中の水とほぼ触れないようにした比較例2(有機系)の正極でも、正極活物質凝集体の表面付近に、フーリエ変換赤外分光法により、炭酸リチウムがわずかに存在することが確認されたが、実施例1(水系A)の正極において、正極活物質凝集体の表面付近に、フーリエ変換赤外分光法の検出可能レベルで、水酸化リチウム水和物および炭酸リチウムが存在しなかった。このことから、実施例1(水系A)の正極活物質は、大気中に1日放置された間に水によって変質したが、その後の正極作製過程で、正極活物質凝集体の表面付近は変質していない正常な状態へ戻ったと推測される。
 <2>XPS法による分析
 実施例1(水系A)、比較例1(水系B)および比較例2(有機系)の非水電解液二次電池用正極の成分をXPS法によって分析した。非水電解液二次電池用正極をXPS法によって分析することにより、非水電解液二次電池用正極の正極活物質凝集体全体を分析することができる。図6に、実施例1(水系A)のXPSスペクトルを示す。図7に、比較例1(水系B)のXPSスペクトルを示す。図8に、比較例2(有機系)のXPSスペクトルを示す。図6、図7および図8に示すXPSスペクトルは、C1sスペクトル、O1sスペクトル、およびLi1sスペクトルである。XPSスペクトルのグラフの横軸は光電子の結合エネルギーを示し、縦軸は光電子のカウント数を示す。
 図6に示すように、実施例1(水系A)のC1sスペクトルに、C1s_4ピークが現れた。C1s_4ピークはCOに由来するピークである。そのため、実施例1(水系A)の正極活物質は、炭酸イオンを含む物質を含む。実施例1(水系A)のLi1sスペクトルに、Li1s_1ピーク、Li1s_2ピークおよびLi1s_3ピークが現れた。Li1s_1ピーク、Li1s_2ピークおよびLi1s_3ピークは、炭酸リチウムに由来するピークを含む。したがって、COに由来するC1s_4ピークは、C1s_4ピークは炭酸リチウムに由来するピークと推測される。
 上記より、実施例1(水系A)の非水電解液二次電池用正極をXPS法によって分析すると、炭酸リチウムが検出された。このことから、実施例1(水系A)において正極活物質凝集体の表面付近および正極活物質凝集体の内部の少なくとも一方に、炭酸リチウムが存在することがわかった。しかし、フーリエ変換赤外分光法による分析で実施例1(水系A)の正極活物質凝集体の表面付近に炭酸リチウムが検出されなかったため、炭酸リチウムは正極活物質凝集体の表面付近にほぼ存在せず、正極活物質凝集体の内部に存在すると推測される。
 図7に示すように、比較例1(水系B)のC1sスペクトルにも、COに由来するC1s_4ピークが現れた。また、比較例1(水系B)のLi1sスペクトルに、Li1s_1ピーク、Li1s_2ピークおよびLi1s_3ピークが現れた。これらのピークは炭酸リチウムに由来するピークである。したがって、C1s_4ピークは炭酸リチウムに由来するピークと推測される。
 上記より、比較例1(水系B)の非水電解液二次電池用正極をXPS法によって分析すると、炭酸リチウムが検出された。このことから、比較例1(水系B)において正極活物質凝集体の表面付近および正極活物質凝集体の内部の少なくとも一方に、炭酸リチウムが存在することがわかった。フーリエ変換赤外分光法による分析で正極活物質凝集体の表面付近に炭酸リチウムが検出されたため、炭酸リチウムは、正極活物質凝集体の表面付近だけに存在するか、もしくは、正極活物質凝集体の表面付近と内部の両方に存在すると推測される。
 図8に示すように、比較例2(有機系)のC1sスペクトルに、COに由来するC1s_4ピークは現れなかった。したがって、比較例2(有機系)の非水電解液二次電池用正極をXPS法によって分析すると、炭酸リチウムが検出されなかった。しかし、フーリエ変換赤外分光法による分析で比較例2(有機系)の正極活物質凝集体の表面付近にわずかに炭酸リチウムが検出されたため、炭酸リチウムは正極活物質凝集体の表面付近に存在すると推測される。なお、比較例2(有機系)のC1sスペクトルに、C1s_5ピークが現れた。C1s_5ピークはポリフッ化ビニリデン(PVDF)に含まれるCH-CFに由来するピークである。したがって、比較例2(有機系)はポリフッ化ビニリデン(PVDF)を用いていることを確認できた。
 <3>電池性能の評価
 実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の非水電解液二次電池の性能を評価した。
 <3-1>0.1C放電容量比
 作製したCR2032型電池を用い、実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の正極ハーフセルの0.1C放電容量を電圧4.3~3.0Vの範囲でそれぞれ測定した。正極ハーフセルの0.1C放電容量は、正極活物質の重量当たりの0.1C放電容量である。それぞれの正極ハーフセルの0.1C放電容量は、25±2℃の環境下で測定した。有機溶媒系バインダーを使用した比較例2の正極ハーフセルの0.1C放電容量を、各材料における0.1C最大放電容量とした。測定された結果に基づいて下記式により0.1C放電容量比を算出した。その結果を表2に示す。
 0.1C放電容量比=(0.1C放電容量/0.1C最大放電容量)×100
 <3-2>0.1C初回充放電効率
 CR2032型電池を用い、実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の正極ハーフセルの初回の充放電における0.1C充電容量および0.1C放電容量をそれぞれ測定した。25±2℃の環境下で、電流0.1C、充電終止電圧4.3Vおよび充電終止電流0.02Cの条件で定電流定電圧充電を行い、0.1C充電容量を測定した。その後、0.1Cの定電流で放電終止電圧3.0Vまで放電させて0.1C放電容量を測定した。測定結果に基づいて下記の式により0.1C初回充放電効率を算出した。その結果を表2に示す。
 0.1C初回充放電効率=(0.1C放電容量÷0.1C充電容量)×100
 <3-3>0.2C充放電効率
 CR2032型電池を用い、実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の正極ハーフセルの充放電における0.2C充電容量および0.2C放電容量をそれぞれ測定した。25±2℃の環境下で、初回の0.1C充放電を行った後、電流0.2C、充電終止電圧4.3Vおよび充電終止電流0.02Cの条件で定電流定電圧充電を行い、0.2C充電容量を測定した。その後、0.2Cの定電流で放電終止電圧3.0Vまで放電させて0.2C放電容量を測定した。測定結果に基づいて下記の式により0.2C充放電効率を算出した。その結果を表2に示す。
 0.2C充放電効率=(0.2C放電容量÷0.2C充電容量)×100
 <3-4>3C/0.2C放電容量比
 CR2032型電池を用い、実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の正極ハーフセルの0.2C放電容量および3C放電容量を電圧4.3~3.0Vの範囲でそれぞれ測定した。25±2℃の環境下で定電流定電圧充電を行った後、放電終止電圧3.0Vまで放電させて3C放電容量および0.2C放電容量をそれぞれ測定した。定電流定電圧充電は、電流0.2C、充電終止電圧4.3Vおよび充電終止電流0.02Cの条件で行った。3C放電容量は、3Cの電流で放電終止電圧まで放電した場合に取り出された電気量である。3Cは、定電流放電した場合に1/3時間で放電終了となる電流値である。0.2C放電容量は、0.2Cの電流で放電終止電圧まで放電した場合に取り出された電気量である。0.2Cは、定電流放電した場合に5(=1/0.2)時間で放電終了となる電流値である。測定結果に基づいて下記の式により3C/0.2C放電容量比を算出した。その結果を表2に示す。
 3C/0.2C放電容量比=(3C放電容量比/0.2C放電容量比)×100
 3C/0.2C放電容量比が小さいほど、正極の抵抗が大きい。
 <3-5>単極20サイクル目の容量維持率
 CR2032型電池を用い、実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の正極ハーフセル(正極単極)を用いて、それぞれ、充電と放電を20サイクル行った。1回の充電と放電を1サイクルとカウントする。1サイクル目の放電時の放電容量と、20サイクル目の放電時の放電容量を測定した。測定結果に基づいて下記式により容量維持率を算出した。その結果を表2に示す。
 単極20サイクル目の容量維持率=(20サイクル目の放電容量/1サイクル目の放電容量)×100
 <3-6>屈曲剥離試験
 実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の正極の屈曲剥離試験を行った。屈曲剥離試験は、JIS K5600-5-1に準拠した耐屈曲性試験を採用した。この試験には、直径3mmの円筒形マンドレルを備えた屈曲試験装置を使用した。試験は以下のような手順で行った。まず、マンドレルが集電体に接するように正極の試料片を試験装置に配置した。その後、マンドレルに沿って正極の試料片を折り曲げた。そして、集電体の剥離の有無を目視で確認した。その結果を表2に示す。
 <3-7>剥離強度
 実施例1(水系A)、比較例1(水系B)、および比較例2(有機系)の正極を使って、剥離試験を行った。正極にテープを貼付けた後、テープを正極から引き剥がした。テープを正極から引き剥がすとき、正極に対するテープの角度が180°となるようにした。正極活物質凝集体および連結部が集電体から剥離したときの剥離強度を測定した。剥離強度が6[N/m]を超える場合、正極活物質および導電材と集電体の接続強度が高い。この場合、電極が腐食していないと判断できる。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、以下のことがわかった。
 実施例1(水系A)の0.1C放電容量比と比較例2(有機系)の0.1C放電容量比は90%以上であり、実用化レベルであることがわかった。比較例1(水系B)の0.1C放電容量比は90%未満であり、実用化レベルに至らなかった。
 実施例1(水系A)の0.1C初回充放電効率は、比較例1(水系B)の0.1C初回充放電効率および比較例2(有機系)の0.1C初回充放電効率より高かった。実施例1(水系A)の0.2C充放電効率は、比較例1(水系B)の0.2C充放電効率および比較例2(有機系)の0.2C充放電効率より高かった。
 比較例1(水系B)の0.1C初回充放電効率は、比較例2(有機系)の0.1C初回充放電効率より低かった。比較例1(水系B)の0.2C充放電効率は、比較例2(有機系)の0.2C充放電効率より低かった。
 実施例1(水系A)の3C/0.2C放電容量比は、比較例1(水系B)の3C/0.2C放電容量比より高かった。したがって、実施例1(水系A)の正極の抵抗値は、比較例1(水系B)の正極の抵抗値より低いと推測される。そのため、実施例1(水系A)の電池の充電時および放電時に発生するジュール熱の量は、比較例1(水系B)の電池の充電時および放電時に発生するジュール熱の量より少ないと考えられる。よって、実施例1(水系A)の正極は、比較例1(水系B)の正極より、充電時および放電時に、熱により劣化しにくいと考えられる。
 実施例1(水系A)の3C/0.2C放電容量比は、比較例2(有機系)の3C/0.2C放電容量比と同じであった。したがって、実施例1(水系A)の正極の抵抗値は、比較例2(有機系)の正極の抵抗値と同等であると推測される。有機系バインダーを用いた比較例2(有機系)の正極の抵抗値は低いため、比較例2(有機系)の正極は劣化しにくい。実施例1(水系A)の正極の抵抗値は、この低い抵抗値と同等であった。そのため、実施例1(水系A)の電池の充電時および放電時に発生するジュール熱の量は、比較例2(有機系)の電池の充電時および放電時に発生するジュール熱の量と同等であると考えられる。よって、実施例1(水系A)の正極は、比較例2(有機系)の正極と、充電時および放電時における、熱による劣化のしやすさが同等程度であると考えられる。
 比較例1(水系B)の3C/0.2C放電容量比は、比較例2(有機系)の3C/0.2C放電容量比より低かった。したがって、比較例1(水系B)の正極の抵抗値は、比較例2(有機系)の正極の抵抗値より高いと推測される。そのため、比較例1(水系B)の電池の充電時および放電時に発生するジュール熱の量は、比較例2(有機系)の電池の充電時および放電時に発生するジュール熱の量より大きいと考えられる。よって、比較例1(水系B)の正極は、比較例2(有機系)の正極より、充電時および放電時に、熱により劣化しやすいと考えられる。
 実施例1(水系A)の単極20サイクル目の容量維持率は、比較例1(水系B)の単極20サイクル目の容量維持率より高かった。上述した0.2C充放電効率の結果も考慮すると、実施例1(水系A)の正極は、比較例1(水系B)の正極より耐久性が高いことがわかった。
 実施例1(水系A)の単極20サイクル目の容量維持率は、比較例2(有機系)の単極20サイクル目の容量維持率より高かった。上述した0.2C充放電効率の結果も考慮すると、実施例1(水系A)の正極は、比較例2(有機系)の正極より耐久性が高いことがわかった。
 比較例1(水系B)の単極20サイクル目の容量維持率は、比較例2(有機系)の単極20サイクル目の容量維持率より低かった。上述した0.2C充放電効率の結果も考慮すると、比較例1(水系B)の正極は、比較例2(有機系)の正極より耐久性が低いことがわかった。
 屈曲剥離試験において、実施例1(水系A)、比較例1(水系B)および比較例2(有機系)の正極活物質および導電材は、集電体から剥離しなかった。このことから、実施例1(水系A)、比較例1(水系B)および比較例2(有機系)のいずれも、正極の加工性が高いことがわかった。さらに、剥離試験において、実施例1(水系A)、比較例1(水系B)および比較例2(有機系)の剥離強度は、6[N/m]を超えた。屈曲剥離試験と剥離試験の結果から、正極活物質および導電材と集電体の接続強度が高いため、集電体が腐食していないと判断できる。
 上述した電池特性の評価結果から、実施例1(水系A)の充放電効率は、比較例1(水系B)の充放電効率および比較例2(有機系)の充放電効率より高いことがわかった。また、実施例1(水系A)の電池の耐久性は、比較例1(水系B)の電池の耐久性および比較例2(有機系)の電池の耐久性より高いことがわかった。
 従って、実施例1(水系A)は、比較例1(水系B)および比較例2(有機系)と比較し、電池特性が高い上に、耐久性が高いことがわかった。
 また、比較例1(水系B)の充放電効率は、比較例2(有機系)の充放電効率より低いことがわかった。また、比較例1(水系B)の電池の耐久性は、比較例2(有機系)の電池の耐久性より低いことがわかった。
 比較例2(有機系)の正極は、従来の有機溶媒系バインダーを含む正極を作製する環境と異なり、正極活物質が空気中の水とほぼ触れないような低湿度環境において作製された。したがって、比較例2(有機系)の正極活物質は、従来の有機溶媒系バインダーを含む正極の正極活物質と異なり、水による変質が殆ど生じていない。そのため、比較例2(有機系)の電池は、従来の有機溶媒系バインダーを含む正極を用いて作製した電池に比べ、充放電効率の低下を抑制できると考えられる。また、比較例2(有機系)の電池の耐久性は、従来の有機溶媒系バインダーを含む正極を用いて作製した電池の耐久性より高いと考えられる。
 実施例1(水系A)の充放電効率は、この比較例2(有機系)の充放電効率より高いことがわかった。したがって、当然ながら、実施例1(水系A)の電池の充放電効率は、従来の有機溶媒系バインダーを含む正極を用いて作製した電池の充放電効率よりも高い。また、実施例1(水系A)の電池の耐久性は、この比較例2(有機系)の電池の耐久性よりも高いことがわかった。よって、当然ながら、実施例1(水系A)の電池の耐久性は、従来の有機溶媒系バインダーを含む正極を用いて作製した電池の耐久性よりも高い。
 一方、比較例1(水系B)の電池の充放電効率および耐久性は、この比較例2(有機系)の電池の充放電効率および耐久性よりも低いことがわかった。比較例1(水系B)の電池の充放電効率および耐久性は、従来の有機溶媒系バインダーを含む正極を用いて作製した充放電効率および電池の耐久性よりも低いかどうかは不明である。
 実施例1(水系A)および比較例1(水系B)の正極活物質は、大気中に1日放置された間に、大気中の水により変質している。したがって、実施例1(水系A)と比較例1(水系B)の電池の充放電効率および耐久性は、正極活物質が殆ど変質していない比較例2(有機系)の電池の充放電効率および耐久性より低いはずである。しかし、実施例1(水系A)の電池の充放電効率および耐久性は、正極活物質が殆ど変質していない比較例2(有機系)の電池の充放電効率および耐久性より高かった。一方、比較例1(水系B)の電池の充放電効率および耐久性は、正極活物質が殆ど変質していない比較例2(有機系)の電池の充放電効率および耐久性より低かった。
 この理由について検討した。正極活物質が大気中の水により変質している場合、フーリエ変換赤外分光法による分析によって、正極活物質凝集体の表面付近に、水酸化リチウム水和物および炭酸リチウムの少なくとも一方が検出されるはずである。しかし、フーリエ変換赤外分光法による分析によって、実施例1(水系A)の正極活物質凝集体の表面付近に、水酸化リチウム水和物および炭酸リチウムのいずれも検出されなかった。一方、フーリエ変換赤外分光法による分析によって、比較例1(水系B)の正極活物質凝集体の表面付近に、水酸化リチウム水和物および炭酸リチウムの両方が検出された。
 この理由として、実施例1(水系A)の正極活物質凝集体の表面付近は、大気中に1日放置された間に大気中の水により変質したが、正極作製過程で正極活物質凝集体の表面付近は変質していない正常な状態へ戻ったと推測される。一方、比較例1(水系B)の正極活物質凝集体の表面付近は、大気中の水により変質した状態のままであり、変質していない正常な状態へ戻らなかったと推測される。この相違が電池の充放電効率および耐久性に影響したと推測される。
 つまり、電池の充放電効率および耐久性には、正極活物質凝集体の表面付近が水により変質しているか否かが影響していると推測される。正極活物質凝集体の表面付近が水により変質しても、その後、変質していない正常な状態へ戻った場合、電池の充放電効率および耐久性が高いと推測される。一方、正極活物質凝集体の表面付近が水により変質したままである場合、電池の充放電効率および耐久性が低いと推測される。
 なお、XPS法により実施例1(水系A)の正極を分析したとき、実施例1(水系A)の正極活物質凝集体の内部に炭酸リチウムが検出された。しかし、実施例1(水系A)の充放電効率および耐久性は高かった。このことから、下記の2つの事項が推測される。
 一つ目は、実施例1(水系A)の正極活物質凝集体の内部に検出された炭酸リチウムは、正極活物質が変質することによって生成したものでなく、正極活物質を合成するために炭酸リチウムを用いたときに、添加された炭酸リチウムの一部が、正極活物質凝集体の合成に用いられることなく、正極活物質凝集体の内部に残存したものと考えられる。この場合、正極活物質凝集体の内部の正極活物質は変質していないと考えられる。そのため、正極活物質凝集体の内部に炭酸リチウムが検出されたが、正極活物質凝集体の実施例1(水系A)の充放電効率および耐久性は高かったと推測される。
 二つ目は、実施例1(水系A)の正極活物質凝集体の内部に検出された炭酸リチウムは、正極活物質が水により変質したことによって生成したものであると考えられる。実施例1(水系A)の正極活物質は大気中に1日放置された。この放置された間に、正極活物質凝集体の内部および表面付近に存在する正極活物質が水によって変質したと考えられる。しかし、上述した分析結果から、正極活物質凝集体の表面付近は、正極活物質が水により変質した状態から、変質していない正常な状態へ戻ったと考えられる。そのため、正極活物質凝集体の実施例1(水系A)の充放電効率および耐久性は高かったと推測される。このことから、正極活物質凝集体に含まれる正極活物質が水により変質しても、正極活物質凝集体の表面付近が、水により変質した状態から、水により変質していない正常な状態へ戻った場合、電池の充放電効率および耐久性は高いと推測される。また、正極活物質凝集体の表面付近が、水により変質した状態から、水により変質していない正常な状態へ戻った場合、正極活物質凝集体の内部の正極活物質が水によって変質していても、電池の充放電効率および耐久性は高いと推測される。
 なお、測定結果は省略するが、実施例1(水系A)の正極活物質のニッケル含有量を80mol%未満に変更した場合でも、フーリエ変換赤外分光スペクトルにおいて、正極活物質と水との反応によって生成しうる物質に由来するピークは現れないことがわかった。
 1   非水電解液二次電池用正極
 2   正極活物質
 2p  正極活物質凝集体
 3   バインダー
 4   導電材
 5   集電体
 11  非水電解液二次電池
 12  負極
 13  セパレータ
 14  容器
 15  蓋

Claims (13)

  1.  リチウムとニッケルを含む正極活物質と、水溶性又は水分散性のバインダーと、導電材と、前記正極活物質および前記導電材が前記バインダーによって接続された集電体とを有し、
     フーリエ変換赤外分光スペクトルにおいて、前記正極活物質と水との反応によって生成しうる物質に由来するピークが現れない、非水電解液二次電池用正極。
  2.  前記正極活物質と水との反応によって生成しうる前記物質が水酸化リチウム水和物である場合に、フーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークが現れないことを特徴とする請求項1に記載の非水電解液二次電池用正極。
  3.  フーリエ変換赤外分光スペクトルにおいて、1500~1700cm-1の領域にピークが現れないことを特徴とする請求項1又は2に記載の非水電解液二次電池用正極。
  4.  前記正極活物質と水との反応によって生成しうる前記物質が炭酸リチウムである場合に、フーリエ変換赤外分光スペクトルにおいて炭酸リチウムに由来するピークが現れないことを特徴とする請求項1に記載の非水電解液二次電池用正極。
  5.  フーリエ変換赤外分光スペクトルにおいて、1350~1600cm-1の領域にピークが現れないことを特徴とする請求項1又は4に記載の非水電解液二次電池用正極。
  6.  前記正極活物質と水との反応によって生成しうる前記物質が水酸化リチウム水和物および炭酸リチウムである場合に、フーリエ変換赤外分光スペクトルにおいて水酸化リチウム水和物に由来するピークおよび炭酸リチウムに由来するピークのいずれも現れないことを特徴とする請求項1に記載の非水電解液二次電池用正極。
  7.  フーリエ変換赤外分光スペクトルにおいて、1350~1600cm-1の領域および1500~1700cm-1の領域にピークが現れないことを特徴とする請求項1又は6に記載の非水電解液二次電池用正極。
  8.  前記非水電解液二次電池用正極を用いてハーフセルを作製した場合に、前記ハーフセルの25±2℃での正極活物質の重量当たりの0.1C放電容量が、前記正極活物質の材質と前記正極活物質を含む粒子の径に依存する最大放電容量の90%以上であることを特徴とする請求項1~7のいずれか1項に記載の非水電解液二次電池用正極。
  9.  前記正極活物質に含まれる金属元素に占めるニッケルの割合が、50モル%以上であることを特徴とする請求項1~8のいずれか1項に記載の非水電解液二次電池用正極。
  10.  前記正極活物質に含まれる金属元素に占めるニッケルの割合が、80モル%以上であることを特徴とする請求項1~9のいずれか1項に記載の非水電解液二次電池用正極。
  11.  前記非水電解液二次電池用正極がシート状であって、
     直径3mmの円筒形マンドレルを使用し、JIS K5600-5-1に準拠した耐屈曲性試験において、前記正極活物質および前記導電材が前記集電体から剥離されないような接続強度で、前記正極活物質および前記導電材が前記集電体に接続されていることを特徴とする請求項1~10のいずれか1項に記載の非水電解液二次電池用正極。
  12.  前記集電体がアルミニウムを含むことを特徴とする請求項1~11のいずれか1項に記載の非水電解液二次電池用正極。
  13.  請求項1~12のいずれか1項に記載の非水電解液二次電池用正極と、負極と、非水電解液とを備える非水電解液二次電池。
PCT/JP2018/023460 2018-06-20 2018-06-20 非水電解液二次電池用正極および非水電解液二次電池 WO2019244278A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023460 WO2019244278A1 (ja) 2018-06-20 2018-06-20 非水電解液二次電池用正極および非水電解液二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023460 WO2019244278A1 (ja) 2018-06-20 2018-06-20 非水電解液二次電池用正極および非水電解液二次電池

Publications (1)

Publication Number Publication Date
WO2019244278A1 true WO2019244278A1 (ja) 2019-12-26

Family

ID=68982816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023460 WO2019244278A1 (ja) 2018-06-20 2018-06-20 非水電解液二次電池用正極および非水電解液二次電池

Country Status (1)

Country Link
WO (1) WO2019244278A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289700A (ja) * 2004-03-31 2005-10-20 Mitsui Mining & Smelting Co Ltd リチウム電池用リチウム遷移金属酸化物
JP2009064564A (ja) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法、それに用いられるスラリー及び非水電解質電池
WO2010113583A1 (ja) * 2009-03-31 2010-10-07 日鉱金属株式会社 リチウムイオン電池用正極活物質
JP2011076981A (ja) * 2009-10-01 2011-04-14 Nippon Zeon Co Ltd 二次電池用正極の製造方法、二次電池正極用スラリー及び二次電池
JP2014063676A (ja) * 2012-09-24 2014-04-10 Unitika Ltd 二次電池正極用水系バインダー液、およびこれを用いてなる二次電池正極用水系ペースト、二次電池正極、二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289700A (ja) * 2004-03-31 2005-10-20 Mitsui Mining & Smelting Co Ltd リチウム電池用リチウム遷移金属酸化物
JP2009064564A (ja) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法、それに用いられるスラリー及び非水電解質電池
WO2010113583A1 (ja) * 2009-03-31 2010-10-07 日鉱金属株式会社 リチウムイオン電池用正極活物質
JP2011076981A (ja) * 2009-10-01 2011-04-14 Nippon Zeon Co Ltd 二次電池用正極の製造方法、二次電池正極用スラリー及び二次電池
JP2014063676A (ja) * 2012-09-24 2014-04-10 Unitika Ltd 二次電池正極用水系バインダー液、およびこれを用いてなる二次電池正極用水系ペースト、二次電池正極、二次電池

Similar Documents

Publication Publication Date Title
Zheng et al. The effects of AlF3 coating on the performance of Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 positive electrode material for lithium-ion battery
JP4346565B2 (ja) 非水電解質二次電池
KR101956971B1 (ko) 리튬 이온 배터리용 전도성 탄소
EP3336062A1 (en) Spherical or spherical-like cathode material for a lithium battery, a battery and preparation method and application thereof
EP3758108B1 (en) Thermally crosslinkable binder aqueous solution for lithium-ion battery, thermally crosslinkable slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery, lithium-ion battery negative electrode material, and lithium-ion battery and method for producing the same
EP3273517B1 (en) Nonaqueous electrolyte battery and battery pack
EP3598541A1 (en) Negative electrode material, method for producing said negative electrode material, and mixed negative electrode material
US10741832B2 (en) Positive electrode active material for lithium ion battery
US20100075227A1 (en) Nonaqueous electrolyte battery and negative electrode active material
JP5758701B2 (ja) 非水電解液二次電池用正極、それを用いた電池、及び非水電解液二次電池用正極の製造方法
WO2011161755A1 (ja) リチウム二次電池
KR20110094023A (ko) 리튬 복합 화합물 입자 분말 및 그의 제조 방법, 비수전해질 이차 전지
WO2007007542A1 (ja) リチウムイオン二次電池
JP5311861B2 (ja) リチウム二次電池
WO2007010915A1 (ja) 非水電解質二次電池及びその製造方法
CN113097433B (zh) 电化学装置及电子设备
EP3193395B1 (en) Non-aqueous electrolyte battery
WO2007072704A1 (ja) 非水電解質二次電池とその負極材料、負極材料の製造方法
Ryu et al. Effects of Co 3 (PO 4) 2 coatings on LiNi 0.8 Co 0.16 Al 0.04 O 2 cathodes during application of high current
Lin et al. Preparation and characterization of carbon-coated Li [Ni 1/3 Co 1/3 Mn 1/3] O 2 cathode material for lithium-ion batteries
Hofmann et al. Long-term cycling performance of aqueous processed Ni-rich LiNi0. 8Co0. 15Al0. 05O2 cathodes
CN115881917A (zh) 正极活性材料及其制备方法、钠离子电池和用电设备
US10897042B2 (en) Composite positive electrode active material for lithium secondary battery and lithium secondary battery comprising electrode including the composite positive electrode active material
US10050259B2 (en) Production method for negative electrode active material for lithium secondary battery, and lithium secondary battery
JP4224995B2 (ja) 二次電池および二次電池用集電体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP