WO2019244235A1 - タップ切換器用電動操作装置およびタップ切換方法 - Google Patents

タップ切換器用電動操作装置およびタップ切換方法 Download PDF

Info

Publication number
WO2019244235A1
WO2019244235A1 PCT/JP2018/023258 JP2018023258W WO2019244235A1 WO 2019244235 A1 WO2019244235 A1 WO 2019244235A1 JP 2018023258 W JP2018023258 W JP 2018023258W WO 2019244235 A1 WO2019244235 A1 WO 2019244235A1
Authority
WO
WIPO (PCT)
Prior art keywords
tap
control
rotation
motor
unit
Prior art date
Application number
PCT/JP2018/023258
Other languages
English (en)
French (fr)
Inventor
和美 富岡
拓 石川
江口 直紀
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to JP2020525114A priority Critical patent/JP6961821B2/ja
Priority to PCT/JP2018/023258 priority patent/WO2019244235A1/ja
Priority to EP18923344.8A priority patent/EP3813086A4/en
Priority to CN201880093559.XA priority patent/CN112136195B/zh
Publication of WO2019244235A1 publication Critical patent/WO2019244235A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0027Operating mechanisms
    • H01H9/0033Operating mechanisms with means for indicating the selected tap or limiting the number of selectable taps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0027Operating mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H2009/0061Monitoring tap change switching devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/36Driving mechanisms, i.e. for transmitting driving force to the contacts using belt, chain, or cord

Definitions

  • the embodiment of the present invention relates to an electric operating device for a tap changer and a tap changing method.
  • an electric operation device for switching the position of a tap of a load tap changer installed in a transformer.
  • the electric operation device switches a position of a tap by rotating a main driving shaft connected to a gear by a motor driving unit serving as power.
  • the operation control of the motor drive unit is executed by a step control mechanism composed of a relay sequence circuit using a motor switch for opening and closing the circuit in response to an on / off signal of a cam switch connected to the main drive shaft and a gear. Is done.
  • the electric operating device includes a dial switch connected to the main drive shaft by a gear. The dial switch outputs a tap position signal based on the rotational position of the driving shaft.
  • the conventional electric operation device has a mechanical structure in terms of the structure such as the step control mechanism and the dial switch as described above, the number of parts is large, and assembly and maintenance may take time. In addition, at the time of assembly and maintenance, the work of a person who is familiar with the mechanism is required, and repair or maintenance may not be easy due to lack of workability at the time of maintenance.
  • tap position information can be obtained by a dial switch, but this signal is used to grasp the tap limit (limit value) and is effectively used in operation control of the electric operation device. Had not been.
  • JP 54-129367 A Japanese Patent Publication No. 2010-502170
  • the problem to be solved by the present invention is to provide an electric operating device for a tap changer and a tap switching method that can simplify the adjustment at the time of assembling the electric operating device and can realize easy maintenance. .
  • the electric operating device for a tap changer includes a driving unit, a multi-rotation encoder, a monitoring unit, and a control unit.
  • the drive unit switches the taps of the tap changer by driving the main drive shaft with a motor.
  • the multi-rotation encoder has a member that rotates n times with respect to the main driving shaft, and detects the rotation position of the main driving shaft by detecting the rotation position of the member.
  • a monitoring unit monitors a state of the tap changer based on the rotational position detected by the multi-rotation encoder.
  • the control unit controls the driving unit based on a monitoring result by the monitoring unit.
  • FIG. 6 is a diagram for explaining tap switching control at the time of boosting.
  • FIG. 9 is a diagram for explaining tap switching control when boost control is further performed after boost control.
  • FIG. 4 is a diagram for explaining tap switching control when performing step-down control after step-up control.
  • FIG. 8 is a diagram for explaining a state of tap switching control at the time of boosting and stepping down using a tap switching control table.
  • 4 is a flowchart illustrating an example of a process of the electric operating device for a tap changer according to the embodiment.
  • 5 is a flowchart illustrating an example of a stop control process according to the embodiment.
  • 5 is a flowchart illustrating an example of an abnormal process during traffic congestion according to the embodiment.
  • 9 is a flowchart illustrating an example of an abnormal process during a runaway according to the embodiment.
  • a load tap changer is used as an example of the tap changer.
  • FIG. 1 is a diagram showing a configuration example of an electric operation device for a tap changer of the embodiment.
  • the electric operating device 1 for a tap changer includes, for example, an upper panel operating unit 10, a motor 20, a multi-rotation encoder 30, and an operation control unit 100.
  • the combination of the motor 20 and the motor drive control unit 130 is an example of a “drive unit”.
  • the upper panel operation unit 10 outputs a control signal to the operation control unit 100 by an operation from an administrator or the like on the operation unit provided in the upper device.
  • the control signal from the upper panel operation unit 10 includes, for example, a signal for higher-level control.
  • the higher-level control is, for example, tap switching control associated with step-up control or step-down control for the on-load tap changer LTC.
  • the motor 20 rotates the rotatable shaft portion (for example, a main driving shaft 21 described later) in a predetermined direction, and thereby the tap of the on-load tap changer LTC (the connection point along the winding from which a certain number of rotations can be selected). Switch the position of.
  • the motor 20 rotates the main driving shaft in the reverse direction by, for example, boost control and step-down control.
  • the electric operating device 1 for a tap changer changes the winding ratio of the transformer in which the load tap changer LTC is installed by switching the position of the tap of the load tap changer LTC by the motor 20 to change the winding ratio of the transformer. Adjust the voltage. Details of the component configuration of the motor 20 of the embodiment will be described later.
  • the multi-rotation encoder 30 is mounted, for example, directly below a main driving shaft that is rotated by driving the motor 20.
  • the multi-rotation encoder 30 has a member that rotates n times (n> 0) with respect to the main drive shaft, and detects the rotational position of the main shaft by detecting the rotational position of the member. Further, the multi-rotation encoder 30 outputs the detected rotation position information to the operation control unit 100.
  • the rotation position information is, for example, absolute position information (absolute value) including the rotation angle and the number of rotations in multiple rotations of the driving shaft.
  • the multi-rotation encoder 30 outputs rotation position information when the rotation position of the main drive shaft changes (when the rotation angle deviates by several degrees).
  • the operation control unit 100 includes, for example, an operation unit 110, a switching control unit 120, and a motor drive control unit 130.
  • the switching control unit 120 and the motor drive control unit 130 are each realized by a hardware processor such as a CPU (Central Processing Unit) executing a program (software).
  • a hardware processor such as a CPU (Central Processing Unit) executing a program (software).
  • Some or all of these constituent elements may include hardware (circuitry) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). (Including circuitry), or may be realized by cooperation of software and hardware.
  • the program may be stored in a storage unit (not shown) of the operation control unit 100 in advance, or may be stored in a removable storage medium such as a DVD or a CD-ROM. By doing so, it may be installed in an HDD (Hard Disk Drive) or flash memory of the operation control unit 100.
  • HDD
  • the operation unit 110 outputs the operation contents of the user's manual operation to the switching control unit 120.
  • the operation content by the manual operation is, for example, a step-up operation or a step-down operation obtained by manually operating an operation button for instructing a step-up or step-down of a voltage by a transformer mounted in advance as the operation unit 110. This is a signal to be controlled.
  • the switching control unit 120 includes, for example, an operation receiving unit 122, a monitoring unit 124, a command control unit 126, and an output unit 128.
  • the command control unit is an example of a “control unit”.
  • the operation receiving unit 122 receives, from the operating unit 110 or the upper panel operating unit 10, a control signal for instructing a tap change by boosting or stepping down the on-load tap changer LTC.
  • the monitoring unit 124 monitors the state of the on-load tap changer LTC based on the rotational position information detected by the multi-rotation encoder 30. Specifically, the monitoring unit 124 monitors the state of the on-load tap changer LTC based on the position and state of the motor 20 acquired based on the rotational position information.
  • the position of the motor 20 includes, for example, the rotation angle and the number of rotations of the main drive shaft rotated by the motor 20. Further, the monitoring unit 124 derives the position of the tap of the on-load tap changer LTC based on the rotation angle and the number of rotations.
  • the monitoring unit 124 determines the state of the on-load tap changer LTC (normal state) based on the state of the motor 20 itself (for example, whether the motor 20 is driven according to a command from the command control unit 126). Or abnormal state).
  • the abnormal state of the on-load tap changer LTC is, for example, a traffic jam state or a runaway state.
  • the congestion state is, for example, a state in which the motor 20 does not rotate within a predetermined time after outputting a rotation control command, or a state in which the time from when the motor 20 operates until the tap is switched exceeds a predetermined time. .
  • the runaway state is, for example, a state in which the switching of the taps by the on-load tap changer LTC has been completed and the drive of the motor 20 is continued despite the output of the stop control command to the motor 20.
  • the monitoring unit 124 stores and manages rotational position information obtained from the multi-rotation encoder 30 in a predetermined register using a counter value such as a binary counter.
  • the command control unit 126 outputs a command signal for rotation control or stop control for the motor 20 to the motor drive control unit 130 based on the control information received by the operation receiving unit 122.
  • the output unit 128 outputs a state of control by the operation control unit 100 (for example, a monitoring result by the monitoring unit 124) and the like.
  • the output unit 128 outputs a control signal such as an operating signal to the upper panel operation unit 10 at a predetermined timing as a signal of the higher order notification.
  • the in-operation signal is, for example, a signal expressed as 1 when the motor 20 is operating, and expressed as 0 when the motor 20 is stopped.
  • the output unit 128 includes, for example, a light emitting unit (for example, an LED (Light Emitting Diode)) for notifying a processing state and a display device for displaying an image. For example, when an error or an abnormality occurs in the tap switching control, the output unit 128 turns on an LED for abnormality detection or causes the display device to display that the abnormality has occurred.
  • the motor drive control unit 130 When the motor drive control unit 130 receives the rotation control signal from the switching control unit 120, the motor drive control unit 130 rotates the motor 20 in a predetermined direction and executes tap switching by step control. Further, upon receiving the stop control signal from the switching control unit 120, the motor drive control unit 130 executes drive control for stopping the rotation of the motor 20.
  • FIG. 2 is a diagram illustrating an example of a component configuration of the motor 20 according to the embodiment.
  • the motor 20 shown in FIG. 2 includes, for example, a driving shaft 21, a motor-side pulley 22, a driving shaft-side pulley 23, a tension pulley 24, a timing belt 25, a bevel gear 26, a handle shaft 27, and a handle shaft. And an interlock 28.
  • a multi-rotation encoder 30 is also shown.
  • the motor 20 has a motor-side pulley 22 attached to a rotating shaft, and is coupled to the driving shaft-side pulley 23 via a timing belt 25.
  • the main driving shaft 21 is mounted on the main driving shaft side pulley 23, and the multi-rotation encoder 30 is directly mounted directly below the main driving shaft 21 without using a speed reduction mechanism or the like. By attaching the multi-rotation encoder 30 to the main drive shaft 21 as in the configuration of FIG. 2, the rotational position information of the main drive shaft 21 can be detected more accurately.
  • the tension pulley 24 improves the interlocking property between the motor 20 and the main drive shaft 21 by applying a tension to the timing belt 25.
  • the main drive shaft 21 is connected to the handle shaft 27 by a bevel gear 26.
  • the handle shaft 27 is provided with a handle interlock 28.
  • the handle interlock 28 restricts the electric operation from being performed, for example, when the operator manually switches the tap using the handle at the time of maintenance or the like.
  • FIG. 3 is a diagram expressing the configuration of the electric operating device for a tap changer shown in FIG. 1 from the viewpoint of hardware.
  • the electric operating device 1 for a tap changer includes a motor 20, a multi-rotation encoder 30, a power receiving unit 200, an NFB (No Fuse Breaker) 210, a motor switch 220, and a power conversion unit. 230, an in-panel operation switch 240, a trip relay 250, a control board 260, a display device 270, and an upper board 280.
  • the in-panel operation switch 240 corresponds to the operation unit 110
  • the upper board 280 corresponds to the upper board operation unit 10.
  • the control board 260 corresponds to the operation control unit 100.
  • the power (for example, three-phase AC 210 [V]) supplied to the motor 20 passes through the power receiving unit 200, is output to the motor switch 220 via the NFB 210 which is a wiring breaker, and is output to the motor 20. Supplied.
  • the in-panel operation switch 240 also includes a boost switch for causing the control board 260 to execute a process based on the boost control, a buck switch for executing the buck control, and an execution switch for executing the stop control. Further, the in-panel operation switch 240 may include a remote switch for remotely controlling the step-up, step-down, or stop.
  • Control signals for example, step-up control or step-down control
  • the control board 260 operates the motor switch 220 by using the input control signal as a trigger, thereby executing control such as rotation of the motor 20 in the step-up direction or step-down direction, or a brake for stopping the rotation. I do.
  • the trip relay 250 is a circuit that, when a runaway state is detected on the control board 260, accepts a command from the control board 260 and trips the NFB 210 (power cutoff).
  • the trip relay 250 trips the NFB 210 when the stop switch is pressed by the in-panel operation switch 240.
  • the power cutoff control by the trip relay 250 for example, damage to the transformer due to runaway can be avoided.
  • the power conversion unit 230 converts the power supplied from the power receiving unit 200 via the NFB 210 to a DC voltage 24 [V] used by the control board 260.
  • the electric operating device 1 for a tap changer of the embodiment controls the motor 20 by electronic control based on information detected by the multi-rotation encoder 30 without having a mechanical configuration such as a step control mechanism or a dial switch. Therefore, the control current to the motor switch 220 can be reduced. Further, downsizing and capacity reduction of the motor switch 220 can be realized.
  • the power conversion unit 230 cannot perform control on the control board 260. Therefore, the power conversion unit 230 trips via the control board 260 before the power supply is completely lost. A command is output to relay 250. Thereby, trip relay 250 trips NFB 210 based on the command and shuts off the motor power.
  • the control board 260 includes, for example, an FPGA 262.
  • the FPGA 262 executes, for example, the function in each configuration of the switching control unit 120 described above. Further, the control board 260 performs counter control relating to tap switching by a binary counter in which rotational position information detected by the multi-rotation encoder 30 is stored in a register. For example, based on the binary counter, the control board 260 may control the tap switching position, the stop position, and the tap limit value of the on-load tap changer LTC (for example, the upper limit position of the tap when boosting, the lower limit position of the tap when decreasing the pressure). ) Or setting information including at least one of the intermediate tap positions is parameterized and stored in a resist or the like. Further, the control board 260 monitors the state of the on-load tap changer LTC based on the stored parameters. Further, the control board 260 performs display control on the display device 270 based on the monitoring result and the like.
  • the display device 270 is, for example, an LCD (Liquid Crystal Display) or an organic EL (Electro Luminescence) display device.
  • the display device 270 causes the information input and output by the control board 260, the monitoring result, the abnormal state, and the like to be displayed in a predetermined display mode.
  • FIG. 4 is a diagram for describing tap switching control at the time of boosting.
  • FIG. 4 shows the relationship between the tap switching at the time of boosting and the rotation speed of the driving shaft 21 obtained from the multi-rotation encoder 30.
  • the tap of the on-load tap changer LTC is switched by one tap by rotating the main drive shaft 21 33 times.
  • a schematic diagram is shown in which the normal start position in the tap switching at the time of boosting is 0 [degree] and the normal end position after the end of the switching is 180 [degree].
  • the operation control unit 100 controls the main drive shaft 21 to rotate in the first direction from an initial value (normal start position 0 [degree]) at the time of tap switching at the time of boosting, and a normal stop position 180 [after 33 rotations]. Control to stop the rotation in degrees. However, in actuality, an overstroke corresponding to two rotations from a normal stop position occurs between the time when the operation control unit 100 outputs a control signal for stopping the motor 20 and the time when the motor 20 actually stops.
  • the actual stop position is a position two rotations ahead of the normal stop position.
  • FIG. 5 is a diagram for explaining tap switching control when boosting control is further performed after boosting control.
  • the example of FIG. 5 shows the relationship between the tap switching and the rotation speed of the main drive shaft 21 obtained from the multi-rotation encoder 30 when the boost control is further performed after the boost control shown in FIG.
  • the operation control unit 100 rotates the main drive shaft 21 in the same direction (first direction) as the previous time, so that the motor 20 The tap is switched by rotating the shaft 21 33 times.
  • FIG. 6 is a diagram for explaining tap switching control when performing step-down control after step-up control.
  • the step-down control is performed after the step-up control shown in FIG.
  • the rotation direction of the main drive shaft 21 is opposite to the first direction (second direction). Therefore, if the rotation control is not performed in consideration of the overstroke, the stop timing is shifted, and the tap switching control may not be performed correctly. Therefore, when the control is switched from step-up to step-down, the operation control unit 100 rotates the main drive shaft 21 until the number of rotations obtained by adding the number of rotations due to the overstroke to the number of rotations required for switching the tap is 33. .
  • the operation control unit 100 includes two rotations for canceling the overstroke in the previous boost control and 33 rotations required for the tap change, and an overstroke for the pressure reduction control.
  • Four rotations, which are obtained by adding two rotations, are added, and control is performed to make a total of 37 rotations.
  • the case of switching from step-up to step-down is shown. However, when switching from step-down to step-up, the control of 37 rotations is similarly executed.
  • FIG. 7 is a diagram for explaining the tap switching control when the step-down control is further performed after the step-down control.
  • the relationship between the tap change and the rotation speed of the main drive shaft 21 obtained from the multi-rotation encoder 30 when the step-down control is further performed after the step-down control shown in FIG. 6 is shown.
  • the operation control unit 100 rotates the main drive shaft 21 in the same direction (second direction) as the last time, so that the motor 20 The tap is switched by rotating the shaft 21 33 times. Also in this case, an overstroke for two rotations occurs.
  • the operation control unit 100 when performing the rotation control in the same direction as the previous rotation control, such as the step-up to the step-up or the step-down to the step-down, the operation control unit 100 performs the rotation control for 33 rotations, When performing rotation control in the opposite direction to the previous rotation control, such as step-down or step-down to step-up, control for 37 rotations is performed. Thereby, the operation control unit 100 can realize appropriate tap switching control.
  • the operation control unit 100 stores a tap switching control table in association with information on the number of revolutions and tap switching at the time of boosting and stepping down, and based on the tap switching control table, at the time of boosting and stepping down. Rotation control may be performed.
  • FIG. 8 is a diagram for explaining a state of tap switching control at the time of step-up and step-down using the tap switching control table.
  • T1, T2,..., TN indicate identification information for identifying the switched tap, and the number of revolutions related to tap switching at the time of step-up and step-down.
  • control of 33 rotations is performed, and four times of overstroke are included at the timing of changing the operation direction from step-up to step-down or step-down to step-up. It is shown that rotation control of 37 rotations is executed.
  • the control for the overstroke is realized not by a mechanical configuration but by electronic control by the operation control unit 100. Can be.
  • the rotation speed of the main drive shaft 21 due to the actual tap switching and the rotation speed detected from the multi-rotation encoder 30 match.
  • An abnormal state (congestion) when the stop position is less than the stop position and an abnormal state (runaway) exceeding the normal stop position are acquired, and control such as terminating the process can be performed.
  • the congestion state can be grasped from the control time and the stop position, and the runaway state can be grasped from the number of rotations obtained from the multi-rotation encoder 30.
  • Drawing 9 is a flow chart which shows an example of processing of an electric operation device for tap changers of an embodiment.
  • the monitoring unit 124 inputs an encoder signal from the multi-rotation encoder 30 (step S100).
  • the output signal of the multi-rotation encoder 30 is output as an electric signal such as a 16-bit (bit) gray code. Therefore, the monitoring unit 124 converts the input gray code into an electronic signal such as a BCD (Binary Coded Decimal) code that can be recognized by the operation control unit 100 (step S102).
  • BCD Binary Coded Decimal
  • the monitoring unit 124 decomposes the converted electric signal into a signal for a single rotation angle and a signal for a multi-rotation count, and stores them in a register. Specifically, the monitoring unit 124 acquires the rotation angle, stores it in a 5-bit register (register A) (step S104), acquires the rotation speed and the tap position, and stores it in an 11-bit register (register B). It is stored (step S106).
  • the number of rotations can be stored, for example, up to 2048 rotations, but is not limited to this.
  • the operation receiving unit 122 receives a boost command or a step-down command to the on-load tap changer LTC by the operating unit 110 or the upper panel operating unit 10 (Step S108).
  • the command control unit 126 outputs a rotation control command to drive the motor 20 to the motor drive control unit 130 based on the content of the command to drive the motor (step S110).
  • the monitoring unit 124 detects a change in the rotational position information from the multi-rotation encoder 30 due to the driving of the motor 20 (Step S112).
  • the monitoring unit 124 monitors the time (first time) from when the rotation command is output to when the multi-rotation encoder 30 operates (step S114). Next, the monitoring unit 124 monitors the time (second time) from when the multi-rotation encoder 30 operates until the tap is switched (step S116). Next, the monitoring unit 124 determines whether the first time or the second time is over (Step S118). The determination as to whether or not the time is over is made, for example, when the first time exceeds the first threshold value Th1 or when the second time exceeds the second threshold value Th2.
  • the monitoring unit 124 monitors the change of the binary counter during the step-up or the step-down (step S120), and the control is normal based on the changed value of the binary counter. It is determined whether or not (step S122). For example, in the processing of steps S120 and S122, the monitoring unit 124 monitors whether the rotation direction of the motor 20 during the step-up control matches the rotation direction of the motor 20 during the step-down control. If the control is not normal, the output unit 128 outputs error information indicating that the control is not normal (step S124). When the control is normal, the monitoring unit 124 executes a stop control process (Step S200).
  • step S118 if the first time or the second time is over, it is determined that there is a traffic jam and an abnormal process is executed (step S300). Thus, the processing of this flowchart ends.
  • FIG. 10 is a flowchart illustrating an example of the stop control process according to the embodiment.
  • the monitoring unit 124 acquires information on a position where the brake should be applied to the motor 20 by the stop control (Step S202).
  • the position where the brake should be applied is, for example, a position set by the Xth rotation-the angle Y [degree] during the actual number of rotations (for example, 33 rotations). This is because, for example, if a stop control signal for stopping the motor 20 is output at the time when the rotation position is at the angle of 0 [deg.] At the 33rd rotation, the motor 20 is rotated by a few extra rotations due to inertia.
  • the monitoring unit 124 determines whether or not it is time to apply a brake to the motor 20 (hereinafter, referred to as brake timing) based on the information on the position to apply the brake (step S204). If it is not the brake timing, the monitoring unit 124 calculates the next stop position (step S206). In the process of step S206, a position register to be stopped next time is calculated based on the values of the registers A and B. More specifically, if the current pressure control is the boost control and the next time the pressure control is also performed, +33 is added to the current position register associated with the rotation speed, and the current pressure is reduced, but the voltage is increased next time. , +37 is added to the current position register.
  • -33 is added to the current position register. If the current step is a step-up but the step is a step-down next time, -37 is added to the current position register. to add.
  • the monitoring unit 124 determines whether the motor 20 has stopped (step S208). When the motor stops, the output unit 128 notifies the outside or the like that the motor has stopped (step S210), and ends the movement for one tap (step S212). If it is the brake timing in the process of step S204, the command control unit 126 outputs a stop control command to the motor drive control unit 130 (step S216). Next, the monitoring unit 124 starts a stop timer (Step S218).
  • step S220 After the process of step S218 is completed, or if the motor 20 is not stopped in the process of step S208, the monitoring unit 124 checks the stop timer (step S220). Next, it is determined whether or not the stop timer has timed out (step S222). The determination as to whether or not the stop timer is over is determined to be over, for example, when the count value (third time) of the stop timer exceeds the third threshold Th3. If the time is over, the monitoring unit 124 determines that a runaway has occurred and performs an abnormal process (step S400). If the time is not over in the process of step S222, the process returns to step S208. Thus, this flowchart ends.
  • FIG. 11 is a flowchart illustrating an example of abnormal processing during traffic congestion according to the embodiment.
  • the command control unit 126 outputs a stop control command to the motor drive control unit 130 (Step S302).
  • the output unit 128 performs an abnormal display indicating a traffic congestion state (step S304).
  • the abnormal display in the processing of step S304 may be, for example, a display such as turning on an LED for detecting an abnormality of traffic congestion, or a display indicating a congestion state on the display device 270.
  • the processing of this flowchart ends.
  • FIG. 12 is a flowchart illustrating an example of an abnormal process during runaway according to the embodiment.
  • the monitoring unit 124 performs a forced trip in the NFB 210 (Step S402).
  • the output unit 128 performs an abnormal display indicating a runaway state (step S404).
  • the abnormal display in the processing of step S404 may be, for example, a display such as turning on an LED for detecting a runaway abnormality, or a display indicating a runaway state on the display device 270.
  • the processing of this flowchart ends.
  • the electric operating device 1 for a tap changer includes a motor drive control unit 130 that switches the taps of the tap changer LTC by driving the main drive shaft 21 with the motor 20;
  • a mechanical configuration such as a step control mechanism or a dial switch of a conventional electric operating device is combined with a multi-rotation encoder 30 capable of acquiring multi-rotation absolute position information.
  • the multi-rotation encoder 30 is directly connected directly below the main drive shaft 21 without using a speed reduction mechanism, and the output absolute position information is taken into the operation control unit 100, so that the accurate rotation speed (tap position) of the main drive shaft is obtained. And the rotation speed of the driving shaft), and the rotation angle can be grasped more accurately.
  • an accurate stop accuracy by increasing the resolution, a tap traffic jam that stops halfway or becomes unresponsive due to a hard traffic of the main drive shaft, and an abnormal state of a runaway operation beyond the normal control position. can be detected.
  • the rotational position information can be detected with high accuracy by the multi-rotation encoder 30, and as a result, the motor stop accuracy can be improved.
  • by performing the position detection by the multi-rotation encoder 30 in a non-contact manner without using a dial switch the load on the motor 20 can be reduced and the durability can be improved.
  • the tap switching operation by the operation control unit 100 may be statistically learned, and the automatic adjustment of the brake timing at the time of tap switching and the calculation of the tap switching speed may be performed.
  • the operation control unit 100 can grasp the trouble of the motor 20, the trouble state of the load tap changer LTC main body, and the like.

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Mechanisms For Operating Contacts (AREA)

Abstract

実施形態のタップ切換器用電動操作装置は、駆動部と、多回転型エンコーダと、監視部と、制御部とを持つ。駆動部は、モータにより主動軸を駆動することによってタップ切換器のタップの切り換えを行う。多回転型エンコーダは、前記主動軸に対してn倍の回転をする部材を有し、前記部材の回転位置を検出することで、前記主動軸の回転位置を検出する。監視部は、前記多回転型エンコーダにより検出された回転位置に基づいて、前記タップ切換器の状態を監視する。制御部は、前記監視部による監視結果に基づいて前記駆動部を制御する。

Description

タップ切換器用電動操作装置およびタップ切換方法
 本発明の実施形態は、タップ切換器用電動操作装置およびタップ切換方法に関する。
 従来、変圧器に設置される負荷時タップ切換器のタップの位置を切り換える電動操作装置が知られている。電動操作装置は、動力となるモータ駆動部で、歯車に連結された主動軸を回転させることで、タップの位置を切り換える。このモータ駆動部の動作制御は、主動軸と歯車で連結されたカムスイッチのオン/オフ信号により、回路の開閉動作を行うモータ用開閉器によるリレーシーケンス回路で構成された歩進制御機構で実行される。また、電動操作装置は、主動軸と歯車で連結されたダイヤルスイッチを備える。ダイヤルスイッチは、主動軸の回転位置に基づきタップ位置信号を出力する。
 しかしながら、従来の電動操作装置は、上述したように歩進制御機構やダイヤルスイッチ等の構造上機械的な構成を備えるため、部品点数が多く、組立やメンテナンスに時間がかかる場合があった。また、組立時やメンテナンス時には、機構の仕組みを熟知した者の作業が必要となり、メンテナンス時の作業性に欠けることから修理やメンテナンスが容易にできない場合があった。また、従来では、タップの位置情報は、ダイヤルスイッチによって取得することができるが、この信号はタップのリミット(限界値)を把握するためのものであり、電動操作装置の動作制御において有効に使用されていなかった。
特開昭54-129367号公報 特表2010-502170号公報
 本発明が解決しようとする課題は、電動操作装置の組立時の調整の簡略化ができるとともに、容易なメンテナンスを実現させることができるタップ切換器用電動操作装置およびタップ切換方法を提供することである。
 実施形態のタップ切換器用電動操作装置は、駆動部と、多回転型エンコーダと、監視部と、制御部とを持つ。駆動部は、モータにより主動軸を駆動することによってタップ切換器のタップの切り換えを行う。多回転型エンコーダは、前記主動軸に対してn倍の回転をする部材を有し、前記部材の回転位置を検出することで、前記主動軸の回転位置を検出する。監視部は、前記多回転型エンコーダにより検出された回転位置に基づいて、前記タップ切換器の状態を監視する。制御部は、前記監視部による監視結果に基づいて前記駆動部を制御する。
実施形態のタップ切換器用電動操作装置の構成例を示す図。 実施形態のモータ20の部品構成例を示す図。 図1に示すタップ切換器用電動操作装置の構成をハードウェアの観点から表現した図。 昇圧時でのタップ切換制御について説明するための図。 昇圧制御後に更に昇圧制御を行う場合のタップ切換制御について説明するための図。 昇圧制御後に降圧制御を行う場合のタップ切換制御について説明するための図。 降圧制御後に更に降圧制御を行う場合のタップ切換制御について説明するための図。 タップ切換制御テーブルを用いた昇圧時および降圧時でのタップ切換制御の様子を説明するための図。 実施形態のタップ切換器用電動操作装置の処理の一例を示すフローチャート。 実施形態の停止制御処理の一例を示すフローチャート。 実施形態の渋滞時における異常処理の一例を示すフローチャート。 実施形態の暴走時における異常処理の一例を示すフローチャート。
 以下、実施形態のタップ切換器用電動操作装置およびタップ切換方法を、図面を参照して説明する。なお、以下の実施形態では、タップ切換器の一例として、負荷時タップ切換器を用いるものとする。
 図1は、実施形態のタップ切換器用電動操作装置の構成例を示す図である。タップ切換器用電動操作装置1は、例えば、上位盤操作部10と、モータ20と、多回転型エンコーダ30と、操作制御部100とを備える。モータ20と、モータ駆動制御部130とを合わせたものが、「駆動部」の一例である。
 上位盤操作部10は、上位機器に設けられた操作部に対する管理者等からの操作による制御信号を操作制御部100に出力する。上位盤操作部10による制御信号には、例えば、上位制御の信号が含まれる。上位制御とは、例えば、負荷時タップ切換器LTCに対する昇圧制御や降圧制御に伴うタップ切り換え制御である。
 モータ20は、回転可能な軸部(例えば、後述する主動軸21)を所定方向に回転させることで、負荷時タップ切換器LTCのタップ(一定の回転数を選びうる巻線に沿う接続ポイント)の位置を切り換える。モータ20は、例えば、昇圧制御と、降圧制御とで主動軸を逆方向に回転させる。タップ切換器用電動操作装置1は、モータ20により負荷時タップ切換器LTCのタップの位置を切り換えることで、負荷時タップ切換器LTCが設置された変圧器の巻線比を変えて、変圧器の電圧を調整させる。実施形態のモータ20の部品構成の詳細については、後述する。
 多回転型エンコーダ30は、例えば、モータ20の駆動により回転する主動軸の直下に実装される。多回転型エンコーダ30は、主動軸に対してn(n>0)倍の回転をする部材を有し、その部材の回転位置を検出することで、主動軸の回転位置を検出する。また、多回転型エンコーダ30は、検出した回転位置情報を操作制御部100に出力する。回転位置情報とは、例えば、主動軸の多回転での回転角度や回転数を含めた絶対位置情報(絶対値)である。多回転型エンコーダ30は、主動軸の回転位置が変化した場合(回転角度が数[度]ずれた場合)に、回転位置情報を出力する。
 操作制御部100は、例えば、操作部110と、切換制御部120と、モータ駆動制御部130とを備える。切換制御部120およびモータ駆動制御部130は、それぞれ、CPU(Central Processing Unit)等のハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)等のハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め操作制御部100の記憶部(不図示)に格納されていてもよいし、DVDやCD-ROM等の着脱可能な記憶媒体に格納されており、記憶媒体がドライブ装置に装着されることで操作制御部100のHDD(Hard Disk Drive)やフラッシュメモリにインストールされてもよい。
 操作部110は、利用者の手動操作による操作内容を切換制御部120に出力する。手動操作による操作内容とは、例えば、予め操作部110として実装された変圧器による電圧の昇圧または降圧の指示を行う操作ボタンを利用者が手動操作することで得られる、昇圧操作や降圧操作を制御する信号である。
 切換制御部120は、例えば、操作受付部122と、監視部124と、指令制御部126と、出力部128とを備える。指令制御部は、「制御部」の一例である。操作受付部122は、操作部110または上位盤操作部10から、負荷時タップ切換器LTCの昇圧または降圧によるタップの切り換え指示する制御信号を受け付ける。
 監視部124は、多回転型エンコーダ30により検出された回転位置情報に基づいて、負荷時タップ切換器LTCの状態を監視する。具体的には、監視部124は、回転位置情報に基づいて取得されるモータ20の位置および状態に基づいて負荷時タップ切換器LTCの状態を監視する。モータ20の位置には、例えば、モータ20により回転された主動軸の回転角度や回転数が含まれる。また、監視部124は、回転角度や回転数に基づいて負荷時タップ切換器LTCのタップの位置を導出する。また、監視部124は、モータ20自体の状態(例えば、指令制御部126からの指令通りにモータ20が駆動しているか等の状態)に基づいて、負荷時タップ切換器LTCの状態(正常状態であるか、または異常状態であるか)を監視する。ここで、負荷時タップ切換器LTCの異常状態とは、例えば、渋滞状態または暴走状態である。渋滞状態とは、例えば、回転制御指令を出力した後、所定時間内にモータ20が回転しない状態、または、モータ20が動作してからタップが切り換わるまでの時間が所定時間を超える状態である。暴走状態とは、例えば、負荷時タップ切換器LTCによるタップの切り換えが終了し、モータ20に停止制御指令を出力したにもかかわらず、モータ20の駆動が継続している状態である。監視部124は、多回転型エンコーダ30から得られる回転位置情報を、バイナリカウンタ等のカウンタ値により所定のレジスタに記憶して管理する。
 指令制御部126は、操作受付部122により受け付けられた制御情報に基づいて、モータ20に対する回転制御または停止制御の指令信号を、モータ駆動制御部130に出力する。
 出力部128は、操作制御部100による制御の状態(例えば、監視部124による監視結果)等を出力する。例えば、出力部128は、上位通知の信号として、動作中信号等の制御信号を所定のタイミングで上位盤操作部10に出力する。動作中信号とは、例えば、モータ20が動作中であれば1を、停止している場合には0で表現される信号である。また、出力部128は、例えば、処理状態を通知するための発光部(例えば、LED(Light Emitting Diode))や画像を表示する表示装置を備える。出力部128は、例えば、タップの切り換え制御において、エラーや異常が発生した場合に、異常検出用のLEDを点灯させたり、異常が発生したことを表示装置に表示させる。
 モータ駆動制御部130は、切換制御部120から回転制御の信号を受信すると、モータ20を所定方向に回転させて、歩進制御によるタップの切り換えを実行する。また、モータ駆動制御部130は、切換制御部120から停止制御の信号を受信すると、モータ20の回転を停止させる駆動制御を実行する。
 次に、実施形態におけるモータ20の部品構成について説明する。図2は、実施形態のモータ20の部品構成例を示す図である。図2に示すモータ20は、例えば、主動軸21と、モータ側プーリ22と、主動軸側プーリ23と、テンションプーリ24と、タイミングベルト25と、カサ歯車26と、ハンドル軸27と、ハンドル用インターロック28とを備える。また、図2の例では、多回転型エンコーダ30も示している。
 モータ20には、回転軸にモータ側プーリ22が取り付けられ、タイミングベルト25を介して主動軸側プーリ23と結合される。主動軸側プーリ23には、主動軸21が取り付けられ、主動軸21の直下に減速機構等を介さずに多回転型エンコーダ30が直接取り付けられている。図2の構成のように多回転型エンコーダ30が主動軸21に取り付けられることで、主動軸21の回転位置情報を、より正確に検出することができる。
 また、テンションプーリ24は、タイミングベルト25にテンションを負荷させることで、モータ20と主動軸21の連動性を向上させる。主動軸21は、カサ歯車26でハンドル軸27と連結される。ハンドル軸27には、ハンドル用インターロック28が取り付けられている。ハンドル用インターロック28は、例えば、メンテナンス時等に作業員がハンドルを用いて手動でのタップを切り換える場合に、電動での操作が行われないように制限を行うものである。
 図3は、図1に示すタップ切換器用電動操作装置の構成をハードウェアの観点から表現した図である。図3の例において、タップ切換器用電動操作装置1は、モータ20と、多回転型エンコーダ30と、受電部200と、NFB(No Fuse Breaker)210と、モータ用開閉器220と、電源変換部230と、盤内操作スイッチ240と、トリップリレー250と、制御基板260と、表示装置270と、上位基板280とを備える。ここで、盤内操作スイッチ240は、操作部110に相当し、上位基板280は、上位盤操作部10に相当する。また、制御基板260は、操作制御部100に相当する。
 モータ20に供給される電源(例えば、三相交流210[V])は、受電部200を通って、配線用遮断器であるNFB210を介して、モータ用開閉器220に出力され、モータ20に供給される。
 盤内操作スイッチ240には、また、制御基板260に昇圧制御に基づく処理を実行させる昇圧スイッチや降圧制御を実行させる降圧スイッチ、停止制御を実行させる実行スイッチが含まれる。また、盤内操作スイッチ240には、遠隔で昇圧、降圧、または停止を制御する遠隔スイッチが含まれてもよい。
 また、盤内操作スイッチ240および上位基板280からの制御信号(例えば、昇圧制御または降圧制御)は、制御基板260に入力される。制御基板260は、入力された制御信号をトリガにして、モータ用開閉器220を動作させることで、モータ20の昇圧方向の回転や降圧方向の回転、または回転を停止させるブレーキ等の制御を実行する。
 トリップリレー250は、制御基板260で暴走状態を検知した場合に、制御基板260からの指令を受け付けてNFB210をトリップ(電源遮断)させる回路である。また、トリップリレー250は、盤内操作スイッチ240により停止スイッチが押された場合に、NFB210をトリップさせる。トリップリレー250による電源遮断制御により、例えば、暴走による変圧器へのダメージを回避することができる。
 電源変換部230は、受電部200からNFB210を介して供給される電源を制御基板260で使用する直流電圧24[V]に変換する。実施形態のタップ切換器用電動操作装置1は、歩進制御機構やダイヤルスイッチ等の機械的な構成を備えることなく、多回転型エンコーダ30により検出される情報に基づく電子制御化によってモータ20が制御されるため、モータ用開閉器220への制御電流を微小にすることができる。また、モータ用開閉器220の小型化や小容量化を実現することができる。
 また、電源変換部230は、電源の供給が停電等により遮断した場合に、制御基板260での制御が実施できなくなるため、電源の供給が完全に喪失する前に、制御基板260を介してトリップリレー250に指令を出力する。これにより、トリップリレー250は、指令に基づいてNFB210をトリップさせ、モータ電源を遮断させる。
 制御基板260は、例えば、FPGA262を備える。FPGA262は、例えば、上述した切換制御部120の各構成における機能を実行する。また、制御基板260は、多回転型エンコーダ30により検出される回転位置情報をレジスタに記憶したバイナリカウンタによりタップの切り換えに関するカウンタ制御を行う。例えば、制御基板260は、バイナリカウンタに基づいて、負荷時タップ切換器LTCのタップの切り換え位置、停止位置、タップのリミット値(例えば、昇圧時におけるタップの上限位置、降圧時におけるタップの下限位置)、または中間タップ位置のうち、少なくとも一つを含む設定情報をパラメータ化してレジスト等に記憶する。また、制御基板260は、記憶されたパラメータに基づいて、負荷時タップ切換器LTCの状態を監視する。また、制御基板260は、監視結果等に基づいて表示装置270に対する表示制御を行う。
 表示装置270は、例えば、LCD(Liquid Crystal Display)や有機EL(Electro Luminescence)表示装置等である。また、表示装置270は、表示装置270は、制御基板260により入出力された情報や監視結果、異常状態等を所定の表示態様で表示させる。
 次に、実施形態のタップ切換制御について説明する。図4は、昇圧時でのタップ切換制御について説明するための図である。図4では、昇圧時でのタップの切り換えと多回転型エンコーダ30から得られる主動軸21の回転数との関係を示している。以下の説明では、主動軸21を33回転させることで、負荷時タップ切換器LTCのタップが1タップ分切り替わるものとする。また、図4の例では、昇圧時でのタップの切り換えにおける正規の開始位置を0[度]とし、切換終了後の正規の終了位置を180[度]とした模式図を示している。
 操作制御部100は、昇圧時でのタップ切換時に初期値(正規の開始位置0[度])から主動軸21を第1方向に回転させる制御を行い、33回転後の正規の停止位置180[度]で回転を停止させる制御を行う。しかしながら、実際には、操作制御部100がモータ20を停止させる制御信号を出力してから実際にモータ20が停止するまでの間に、正規の停止位置から2回転分のオーバーストロークが発生し、実際の停止位置は、正規の停止位置よりも2回転分先の位置となる。
 図5は、昇圧制御後に更に昇圧制御を行う場合のタップ切換制御について説明するための図である。図5の例では、図4による昇圧制御後に、更に昇圧制御を行う場合のタップの切り換えと多回転型エンコーダ30から得られる主動軸21の回転数との関係を示している。例えば、操作制御部100は、昇圧制御の後に更に昇圧制御を行う場合には、主動軸21を前回と同一方向(第1方向)に回転させるため、前回停止した位置を基準としてモータ20により主動軸21を33回転させてタップの切り換えを行う。
 図6は、昇圧制御後に降圧制御を行う場合のタップ切換制御について説明するための図である。なお、図6の例では、図5に示す昇圧制御を実行した後に、降圧制御を行うものとする。昇圧制御から降圧制御に切り替わる場合、主動軸21の回転方向は、第1方向と逆方向(第2方向)となる。そのため、オーバーストローク分を考慮して回転制御を行わないと、停止させるタイミングがずれてしまい、タップの切り換え制御が正しく行われない可能性がある。そこで、操作制御部100は、昇圧から降圧に制御が切り換わる場合に、タップの切り換えに必要な33回転に、オーバーストロークによる回転数分を加算した回転数になるまで、主動軸21を回転させる。
 具体的には、操作制御部100は、図6に示すように、タップの切り換えに必要な33回転に、前回の昇圧制御でのオーバーストローク分をキャンセルさせる2回転と、降圧制御によるオーバーストロークの2回転とを加算した4回転分を付加し、合計で37回転させる制御を実行させる。なお、上述の処理は、昇圧から降圧に切り替える場合を示したが、降圧から昇圧に切り替える場合にも同様に37回転の制御が実行される。
 図7は、降圧制御後に更に降圧制御を行う場合のタップ切換制御について説明するための図である。図7の例では、図6による降圧制御後に、更に降圧制御を行う場合のタップの切り換えと多回転型エンコーダ30から得られる主動軸21の回転数との関係を示している。例えば、操作制御部100は、降圧制御の後に更に降圧制御を行う場合には、主動軸21を前回と同一方向(第2方向)に回転させるため、前回停止した位置を基準としてモータ20により主動軸21を33回転させてタップの切り換えを行う。この場合にも、2回転分のオーバーストロークが発生する。
 このように、操作制御部100は、昇圧から昇圧、または降圧から降圧のように、前回の回転制御と同一方向への回転制御を行う場合には、33回転分の回転制御を行い、昇圧から降圧、または降圧から昇圧のように、前回の回転制御と逆方向への回転制御を行う場合には、37回転分の制御を行う。これにより、操作制御部100は、適切なタップ切り換え制御を実現することができる。
 なお、操作制御部100は、昇圧時および降圧時におけるタップ切り換えと回転数に関する情報とを対応付けてタップ切換制御テーブルとして記憶しておき、タップ切換制御テーブルに基づいて、昇圧時および降圧時における回転制御を実行してもよい。
図8は、タップ切換制御テーブルを用いた昇圧時および降圧時でのタップ切換制御の様子を説明するための図である。図8において、T1、T2、…、TNは、切り替えられたタップを識別する識別情報と、昇圧時および降圧時におけるタップ切換に関する回転数を示している。図8の例では、昇圧から昇圧、または降圧から降圧にタップを切り換える場合には33回転の制御を行い、昇圧から降圧または降圧から昇圧に動作方向を変えるタイミングでオーバーストロークの4回転を含めた37回転の回転制御が実行されることが示されている。このように、回転方向に基づいて回転数を考慮したタップ位置の切り換え制御を行うことで、オーバーストロークに対する制御を機械的構成で行うのではなく、操作制御部100による電子制御化によって実現することができる。
 また、実施形態では、多回転型エンコーダ30を使用することで、実際のタップの切り換えによる主動軸21の回転数と、多回転型エンコーダ30から検出される回転数とが一致するため、正規の停止位置に満たない場合の異常状態(渋滞)と、正規の停止位置より超過する異常状態(暴走)を取得して、処理を終了させる等の制御を行うことができる。なお、渋滞状態は、制御時間と停止位置から把握することができ、暴走状態は、多回転型エンコーダ30から得られる回転数により把握することができる。
 次に、実施形態のタップ切換器用電動操作装置の処理について説明する。図9は、実施形態のタップ切換器用電動操作装置の処理の一例を示すフローチャートである。図9の処理において、監視部124は、多回転型エンコーダ30からのエンコーダ信号を入力する(ステップS100)。多回転型エンコーダ30の出力信号は、16ビット(bit)のグレイコード等の電気信号で出力される。そのため、監視部124は、入力されたグレイコードを操作制御部100で認識が可能なBCD(Binary Coded Decimal)コード等の電子信号に変換する(ステップS102)。
 次に、監視部124は、変換した電気信号を単回転の回転角度用の信号と、多回転カウント用の信号とに分解して、レジスタに格納する。具体的には、監視部124は、回転角度を取得して5ビットのレジスタ(レジスタA)に格納し(ステップS104)、回転数およびタップ位置を取得して11ビットのレジスタ(レジスタB)に格納する(ステップS106)。回転数は、例えば、最大で2048回転分まで格納可能とするが、これに限定されるものではない。
 次に、操作受付部122は、操作部110または上位盤操作部10により負荷時タップ切換器LTCに対する昇圧指令または降圧指令を受け付ける(ステップS108)。次に、指令制御部126は、指令内容に基づいてモータ駆動制御部130にモータ20を駆動させる回転制御指令を出力してモータを駆動させる(ステップS110)。次に、監視部124は、モータ20の駆動による多回転型エンコーダ30からの回転位置情報の変化を検出する(ステップS112)。
 次に、監視部124は、回転指令を出力してから多回転型エンコーダ30が動作するまでの時間(第1時間)を監視する(ステップS114)。次に、監視部124は、多回転型エンコーダ30が動作してからタップが切り換わるまでの時間(第2時間)を監視する(ステップS116)。次に、監視部124は、第1時間または第2時間が、タイムオーバーか否かを判定する(ステップS118)。タイムオーバーか否かの判定は、例えば、第1時間が第1閾値Th1を超える場合、または第2時間が第2閾値Th2を超える場合に、タイムオーバーであると判定する。
 第1時間または第2時間がタイムオーバーでない場合、監視部124は、昇圧時または降圧時におけるバイナリカウンタの変化を監視し(ステップS120)、変化したバイナリカウンタの値に基づいて、制御が正常であるか否かを判定する(ステップS122)。例えば、ステップS120およびS122の処理では、監視部124は、昇圧制御時におけるモータ20の回転方向と降圧制御時におけるモータ20の回転方向とが合致しているか否かを監視する。制御が正常でない場合、出力部128は、制御が正常でないことを示すエラー情報を出力する(ステップS124)。また、制御が正常である場合、監視部124は、停止制御処理を実行する(ステップS200)。
 また、ステップS118の処理において、第1時間または第2時間がタイムオーバーである場合、渋滞と判断して異常処理を実行する(ステップS300)。これにより、本フローチャートの処理は、終了する。
 次に、ステップS200の停止制御処理について説明する。図10は、実施形態の停止制御処理の一例を示すフローチャートである。図10の例において、監視部124は、停止制御によってモータ20にブレーキをかけるべき位置に関する情報を取得する(ステップS202)。ブレーキをかけるべき位置は、例えば、実際に回転させる回転数(例えば、33回転)中のX回転目-角度Y[度]で設定される位置である。これは、例えば、回転位置が33回転目の角度0[度]の時点でモータ20を停止させるための停止制御信号を出力すると、モータ20が惰性で数回転余計に回ってしまうため、実際の停止位置よりも手前でブレーキをかけるためである。上述のX、Yの値の一例としては、例えば、X=31、Y=120である。また、ブレーキをかけるべき位置は、上述したレジスタAおよびレジスタBの位置レジスタによって取得される。
 次に、監視部124は、ブレーキをかけるべき位置に関する情報に基づいて、モータ20にブレーキをかけるべきタイミング(以下、ブレーキタイミングと称する)であるか否かを判定する(ステップS204)。ブレーキタイミングでない場合、監視部124は、次回停止する位置を算出する(ステップS206)。ステップS206の処理では、次回停止するべき位置レジスタを、レジスタAおよびレジスタBの値に基づいて算出する。具体的には、現在が昇圧制御であり次回も昇圧制御である場合には、回転数に対応付けられた現在の位置レジスタに+33を加算し、現在が降圧であるが次回は昇圧である場合には、現在の位置レジスタに+37を加算する。また、現在が降圧時であり次回も降圧である場合に、現在の位置レジスタに-33を加算し、現在が昇圧であるが次回は降圧である場合には、現在の位置レジスタに-37を加算する。
 次に、監視部124は、モータ20が停止したか否かを判定する(ステップS208)。モータが停止した場合、出力部128は、停止したことを外部等に通知し(ステップS210)、1タップ分の移動を終了する(ステップS212)。また、ステップS204の処理において、ブレーキタイミングである場合、指令制御部126は、モータ駆動制御部130に停止制御指令を出力する(ステップS216)。次に、監視部124は、停止タイマーをスタートさせる(ステップS218)。
 ステップS218の処理の終了後、またはステップS208の処理において、モータ20が停止していない場合、監視部124は、停止タイマーをチェックする(ステップS220)。次に、停止タイマーがタイムオーバーか否かを判定する(ステップS222)。停止タイマーがタイムオーバーであるか否かの判断は、例えば、停止タイマーのカウント値(第3時間)が第3閾値Th3を超えている場合に、タイムオーバーであると判定する。タイムオーバーである場合に、監視部124は、暴走と判断して異常処理を行う(ステップS400)。また、ステップS222の処理において、タイムオーバーでない場合、ステップS208の処理に戻る。これにより、本フローチャートは、終了する。
 次に、渋滞と判定された場合の異常処理について、フローチャートを用いて説明する。図11は、実施形態の渋滞時における異常処理の一例を示すフローチャートである。図11の例において、指令制御部126は、モータ駆動制御部130に停止制御指令を出力する(ステップS302)。次に、出力部128は、渋滞状態を示す異常表示を行う(ステップS304)。ステップS304の処理における異常表示とは、例えば、渋滞の異常検出用のLEDを点灯させる等の表示でもよく、表示装置270に対する渋滞状態を示す表示でもよい。これにより、本フローチャートの処理は終了する。
 次に、暴走と判定された場合の異常処理について、フローチャートを用いて説明する。図12は、実施形態の暴走時における異常処理の一例を示すフローチャートである。図12の例において、監視部124は、NFB210における強制トリップを実施する(ステップS402)。次に、出力部128は、暴走状態を示す異常表示を行う(ステップS404)。ステップS404の処理における異常表示とは、例えば、暴走の異常検出用のLEDを点灯させる等の表示でもよく、表示装置270に対する暴走状態を示す表示でもよい。これにより、本フローチャートの処理は終了する。
 以上説明した少なくとも一つの実施形態によれば、タップ切換器用電動操作装置1は、モータ20により主動軸21を駆動することによってタップ切換器LTCのタップの切り換えを行うモータ駆動制御部130と、主動軸21に対してn倍の回転をする部材を有し、前記部材の回転位置を検出することで、主動軸21の回転位置を検出する多回転型エンコーダ30と、多回転型エンコーダ30により検出された回転位置に基づいて、タップ切換器LTCの状態を監視する監視部124と、監視部124による監視結果に基づいてモータ駆動制御部130を制御する切換制御部120と、を持つことにより、電動操作装置の組立時の調整の簡略化ができるとともに、容易なメンテナンスを実現させることができる。
 具体的には、少なくとも一つの実施形態によれば、従来の電動操作装置の歩進制御機構やダイヤルスイッチ等の機械的構成を、多回転の絶対位置情報が取得可能な多回転型エンコーダ30と操作制御部100とによる電子制御に置き換えることで、機械構成部品点数を削減し、省スペース化を実現することができる。また、多回転型エンコーダ30を主動軸21の直下に減速機構を介さずに直接接続し、出力される絶対位置情報を操作制御部100に取り込むことで、主動軸の正確な回転数(タップ位置と主動軸回転数に相当)、および回転角度をより正確に把握することができる。したがって、本実施形態によれば、分解能を上げることによる正確な停止精度、主動軸の固渋等による、途中停止あるいは不応動となるタップ渋滞、正規の制御位置を越えて動作する暴走の異常状態を検出することができる。また、本実施形態によれば、多回転型エンコーダ30により、高精度で回転位置情報を検出することができ、その結果、モータ停止精度を向上させることができる。また、本実施形態によれば、多回転型エンコーダ30によりダイヤルスイッチを介さずに非接触で位置検出を行うことで、モータ20の負荷を下げて耐久性を向上させることができる。
 なお、実施形態では、例えば、操作制御部100によるタップの切り換え動作を統計的に学習して、タップ切換時のブレーキタイミングの自動調整やタップ切換速度の算出を行ってもよい。その結果、操作制御部100は、モータ20の不具合や負荷時タップ切換器LTC本体の不具合状態等を把握することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (6)

  1.  モータにより主動軸を駆動することによってタップ切換器のタップの切り換えを行う駆動部と、
     前記主動軸に対してn倍の回転をする部材を有し、前記部材の回転位置を検出することで、前記主動軸の回転位置を検出する多回転型エンコーダと、
     前記多回転型エンコーダにより検出された回転位置に基づいて、前記タップ切換器の状態を監視する監視部と、
     前記監視部による監視結果に基づいて前記駆動部を制御する制御部と、
     を備えるタップ切換器用電動操作装置。
  2.  前記監視部は、前記多回転型エンコーダにより検出された前記モータの回転位置情報と時間情報とに基づいて、前記タップ切換器が異常状態であるか否かを判定する、
     請求項1に記載のタップ切換器用電動操作装置。
  3.  前記監視部は、前記制御部により前記モータの回転制御指令が出力されてから、前記多回転型エンコーダにより検出された回転位置情報が変化するまでの第1時間が第1閾値を超える場合、または、前記多回転型エンコーダにより検出された回転位置情報が変化してから、前記タップが切り換わるまでの第2時間が第2閾値を超える場合に、前記タップ切換器が渋滞状態であると判定する、
     請求項2に記載のタップ切換器用電動操作装置。
  4.  前記監視部は、前記制御部により前記モータの停止制御が出力されてから、前記モータが停止されるまでの第3時間が第3閾値を超える場合に、前記タップ切換器が暴走状態であると判定する、
     請求項2または3に記載のタップ切換器用電動操作装置。
  5.  前記監視部は、前記多回転型エンコーダにより検出される回転位置情報に基づいて、前記タップ切換器におけるタップの切り換え位置、停止位置、タップのリミット値、または中間タップ位置のうち、少なくとも一つを含む設定情報をパラメータ化して監視を行う、
     請求項1から4のうち何れか1項に記載のタップ切換器用電動操作装置。
  6.  タップ切換器用電動操作装置が、
     駆動部により駆動されたモータにより主動軸を駆動することによってタップ切換器のタップの切り換えを行い、
     前記主動軸に対してn倍の回転をする部材を有する多回転型エンコーダにより、前記部材の回転位置を検出することで、前記主動軸の回転位置を検出し、
     前記多回転型エンコーダにより検出された回転位置に基づいて、前記タップ切換器の状態を監視し、
     監視結果に基づいて前記駆動部を制御する、
     タップ切換方法。
PCT/JP2018/023258 2018-06-19 2018-06-19 タップ切換器用電動操作装置およびタップ切換方法 WO2019244235A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020525114A JP6961821B2 (ja) 2018-06-19 2018-06-19 タップ切換器用電動操作装置およびタップ切換方法
PCT/JP2018/023258 WO2019244235A1 (ja) 2018-06-19 2018-06-19 タップ切換器用電動操作装置およびタップ切換方法
EP18923344.8A EP3813086A4 (en) 2018-06-19 2018-06-19 ELECTRICAL OPERATOR FOR TAP-CHANGER AND TAP-CHANGE METHOD
CN201880093559.XA CN112136195B (zh) 2018-06-19 2018-06-19 抽头切换器用电动操作装置以及抽头切换方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023258 WO2019244235A1 (ja) 2018-06-19 2018-06-19 タップ切換器用電動操作装置およびタップ切換方法

Publications (1)

Publication Number Publication Date
WO2019244235A1 true WO2019244235A1 (ja) 2019-12-26

Family

ID=68982776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023258 WO2019244235A1 (ja) 2018-06-19 2018-06-19 タップ切換器用電動操作装置およびタップ切換方法

Country Status (4)

Country Link
EP (1) EP3813086A4 (ja)
JP (1) JP6961821B2 (ja)
CN (1) CN112136195B (ja)
WO (1) WO2019244235A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020178914A1 (ja) * 2019-03-01 2021-09-13 株式会社東芝 タップ切換器用電動操作装置およびタップ切換方法
JP2022059887A (ja) * 2020-10-02 2022-04-14 株式会社東芝 極限タップ制限装置および負荷時タップ切換器の電動操作装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022123571B3 (de) * 2022-09-15 2023-10-26 Maschinenfabrik Reinhausen Gmbh System zur betätigung eines stufenschalters

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129367A (en) 1978-03-29 1979-10-06 Tokyo Shibaura Electric Co Electric operation device for tap changer loaded
JP2000223331A (ja) * 1999-01-29 2000-08-11 Toshiba Corp 負荷時タップ切換装置、その制御方法及びその制御用プログラムを記録した記録媒体
JP2008091393A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 負荷時タップ切換器
US20150061806A1 (en) * 2011-03-27 2015-03-05 Abb Technology Ag Tap changer with an improved drive system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213542A (ja) * 1996-02-02 1997-08-15 Toshiba Corp 負荷時タップ切換器の状態監視装置
DE19744465C1 (de) * 1997-10-08 1999-03-11 Reinhausen Maschf Scheubeck Verfahren zur Überwachung eines Stufenschalters
BRPI0116197B8 (pt) * 2000-12-15 2022-11-22 Abb Technology Ltd Método para diagnosticar uma condição de um comutador de derivação, aparelho para diagnosticar tal condição, um comutador de derivação, sistema de dispositivo indutivo de energia, e processo para geração de sinal de dados
JP3886042B2 (ja) * 2002-07-09 2007-02-28 株式会社デンソー モータ制御装置
JP2006128237A (ja) * 2004-10-27 2006-05-18 Tokyo Electric Power Co Inc:The 負荷時タップ切換装置の異常判定装置及び方法
CN100587863C (zh) * 2005-05-09 2010-02-03 三菱电机株式会社 有载分接头切换器的切换动作监视装置
JP4834712B2 (ja) * 2008-10-15 2011-12-14 株式会社東芝 モータ制御装置,モータ制御システム,洗濯機及び永久磁石モータの着磁方法
CN103548107B (zh) * 2011-03-27 2016-08-24 Abb技术有限公司 具有改进的监视系统的抽头变换器
DE102012103736A1 (de) * 2012-04-27 2013-10-31 Maschinenfabrik Reinhausen Gmbh Verfahren zur Funktionsüberwachung eines Stufenschalters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129367A (en) 1978-03-29 1979-10-06 Tokyo Shibaura Electric Co Electric operation device for tap changer loaded
JP2000223331A (ja) * 1999-01-29 2000-08-11 Toshiba Corp 負荷時タップ切換装置、その制御方法及びその制御用プログラムを記録した記録媒体
JP2008091393A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 負荷時タップ切換器
US20150061806A1 (en) * 2011-03-27 2015-03-05 Abb Technology Ag Tap changer with an improved drive system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3813086A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020178914A1 (ja) * 2019-03-01 2021-09-13 株式会社東芝 タップ切換器用電動操作装置およびタップ切換方法
JP7021393B2 (ja) 2019-03-01 2022-02-16 株式会社東芝 タップ切換器用電動操作装置およびタップ切換方法
JP2022059887A (ja) * 2020-10-02 2022-04-14 株式会社東芝 極限タップ制限装置および負荷時タップ切換器の電動操作装置
JP7387571B2 (ja) 2020-10-02 2023-11-28 株式会社東芝 極限タップ制限装置および負荷時タップ切換器の電動操作装置

Also Published As

Publication number Publication date
EP3813086A1 (en) 2021-04-28
JP6961821B2 (ja) 2021-11-05
JPWO2019244235A1 (ja) 2021-05-13
CN112136195A (zh) 2020-12-25
CN112136195B (zh) 2023-06-09
EP3813086A4 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2019244235A1 (ja) タップ切換器用電動操作装置およびタップ切換方法
JP2006062063A (ja) 電動ドライバ及びその制御装置
JP2017063565A (ja) ロボットシステム
WO2016103310A1 (ja) 搬送装置の制御装置
JP2015129582A (ja) 制御装置、および、これを用いたシフトバイワイヤシステム
JPWO2017203596A1 (ja) 電子制御装置及びその動作制御方法
JP2011062792A (ja) ロボットシステム
JP5004520B2 (ja) ロックアウト装置の動作監視装置、断路器、ロックアウト装置の動作監視方法
CA2952699C (en) Use of a display means of a converter, method for operating a converter, and converter
US20170129080A1 (en) Torsion control device and method for electric impact power tool
JP6436048B2 (ja) モータ制御装置
JP7115419B2 (ja) シフトレンジ制御装置
JP3207174U (ja) 電動ドライバーの作動検知装置
JP2000223331A (ja) 負荷時タップ切換装置、その制御方法及びその制御用プログラムを記録した記録媒体
US20220216005A1 (en) Method for carrying out a switchover of an on-load tap changer using a drive system, and drive system for an on-load tap changer
JP5279864B2 (ja) 回転角度表示部付きハンドル
KR20180000686U (ko) 전동 스크류드라이버를 위한 작동 검출 장치
JP4828584B2 (ja) 電動ドライバ制御装置及び電動ドライバ装置
WO2021149657A1 (ja) モータ制御装置
JP2008216115A (ja) アブソリュートエンコーダ
MX2023008542A (es) Conjunto de interruptor que comprende un cambiador de tomas con regulacion en carga y un sistema de accionamiento.
WO2020178914A1 (ja) タップ切換器用電動操作装置およびタップ切換方法
WO2020075765A1 (ja) シフトレンジ制御装置
JP2009268335A (ja) モータ装置
RU2809179C2 (ru) Способ выполнения переключения переключателя ступеней нагрузки посредством приводной системы и приводная система для переключателя ступеней нагрузки

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018923344

Country of ref document: EP

Effective date: 20210119