WO2019242242A1 - Procédé de préparation pour une micro- et nano-structure composite de surface d'une cellule monocristalline - Google Patents

Procédé de préparation pour une micro- et nano-structure composite de surface d'une cellule monocristalline Download PDF

Info

Publication number
WO2019242242A1
WO2019242242A1 PCT/CN2018/118250 CN2018118250W WO2019242242A1 WO 2019242242 A1 WO2019242242 A1 WO 2019242242A1 CN 2018118250 W CN2018118250 W CN 2018118250W WO 2019242242 A1 WO2019242242 A1 WO 2019242242A1
Authority
WO
WIPO (PCT)
Prior art keywords
texturing
single crystal
concentration
solution
pickling
Prior art date
Application number
PCT/CN2018/118250
Other languages
English (en)
Chinese (zh)
Inventor
王涛
洪布双
尹丙伟
杨蕾
张元秋
Original Assignee
通威太阳能(合肥)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(合肥)有限公司 filed Critical 通威太阳能(合肥)有限公司
Publication of WO2019242242A1 publication Critical patent/WO2019242242A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of single crystal silicon texturing, in particular to a method for preparing a surface micrometer and nanometer composite structure of a single crystal battery chip.
  • the existing single crystal texturing method while obtaining a lower reflectance (that is, a higher light absorption rate), makes the specific surface area of the silicon wafer larger, increases the surface recombination of minority carriers, and limits Further improvement in efficiency.
  • Black silicon technology is one of the mainstream efficiency improvement technologies currently used on polycrystalline products, and its application on single crystal products is also foreseeable.
  • the production line uses alkaline flock to form pyramid structured flocks for single crystals.
  • Surface its high specific surface area under its low reflectivity limits the further improvement of the texturing effect.
  • FIG. 1 of the specification The steps of a conventional polycrystalline black silicon texturing process are shown in FIG. 1 of the specification. After the texturing process steps, a pile structure as shown in FIG. 3 of the specification can be formed on the black silicon surface; a conventional single crystal The steps of the silicon texturing process are shown in FIG. 2 of the specification. After the texturing process steps, the suede structure shown in FIG. 4 of the specification can be formed on the surface of the single crystal silicon. The reflectivity is still high, making it impossible to improve the light absorption rate, which greatly reduces the photoelectric conversion efficiency of single crystal silicon cells.
  • An object of the present invention is to provide a method for preparing a surface micron nano-composite structure of a single crystal battery chip, so as to solve the problems mentioned in the background art described above.
  • the present invention provides the following technical solutions:
  • a method for preparing a surface micro-nano composite structure of a single crystal battery chip includes the following steps:
  • Alkali texturing solution is used to texturize single crystal battery chips.
  • the alkaline texturing solution is a mixed solution of NaOH, additives and DIW, where the NaOH concentration is 7-9% and the additive concentration is 0.5. -1%, temperature control is 83-87 °C, reaction time is 12-15min, pyramid suede with 15-17% reflectance is formed, and pyramid size is 5-10 ⁇ m;
  • Pickling 1 pickling with HNO3 solution, the HNO3 solution concentration is 0.5-1%, the temperature is controlled to normal temperature, and the pickling time is 60-100s;
  • a texturing solution for single crystal cells is made using an auxiliary texturing solution.
  • the auxiliary texturing solution is a mixed solution of HF, H2O2, silver-containing additives, and DIW.
  • the concentration of HF is 4-5. %
  • H2O2 concentration is 25-30%
  • silver ion content is 0.006-0.01mol / L
  • temperature control is 33-37 ° C
  • reaction time is 150-250s
  • nanometers with a diameter of 80-130nm and a depth of 150-200nm are formed Potholes.
  • step S3 the single crystal battery chip is sequentially desilvered, pickled, and dried.
  • the specific steps are as follows:
  • Desilvering is performed by using a desilvering solution, which is a mixed solution of NH4OH, H2O2, and DIW, wherein the concentration of NH4OH is 0.3-0.5%, the concentration of H2O2 is 3-5%, and the temperature is controlled to normal temperature. , The reaction time is 100-150s;
  • the single crystal battery chip is subjected to DIW cleaning once.
  • the invention combines conventional single-crystal alkali texturing with conventional black silicon-assisted texturing to texture the surface of single crystal silicon to form a micro-nano composite structure suede, and the composite structure suede is under the same specific surface area. Has a higher light absorption rate, and the composite suede structure can be applied to a variety of high-efficiency single crystal silicon battery surfaces, such as PERC, IBC batteries.
  • the invention first performs the first alkaline texturing on the surface of the single crystal silicon to prepare a micron-sized large pyramid structure, and then performs a second silver ion-assisted texturing on this basis to prepare a nano-scale pit-like structure to form
  • the micron-nano composite structure while ensuring a low reflectivity, has a low specific surface area, reduces surface recombination, and further improves the light absorption rate, thereby improving the conversion efficiency of the battery. It is highly practical and worthy of promotion.
  • FIG. 1 is a schematic view of a conventional polycrystalline black silicon texturing process step in the prior art
  • FIG. 2 is a schematic view of a conventional single crystal silicon texturing process step in the prior art
  • FIG. 3 is a schematic view of a structure of a conventional polycrystalline black silicon fleece
  • FIG. 4 is a schematic view of a structure of a conventional single crystal silicon fleece
  • FIG. 5 is a schematic diagram of a single crystal texturing process of the present invention.
  • FIG. 6 is a schematic view of the micron nano-composite structure suede structure of the texturing process of the present invention.
  • FIGS. 1-6 Please refer to FIGS. 1-6.
  • the present invention provides a technical solution:
  • a method for preparing a surface micro-nano composite structure of a single crystal battery chip includes the following steps:
  • Alkali texturing Alkaline texturing solution is used to texturize single crystal battery cells.
  • the alkaline texturing solution is a mixed solution of NaOH, additives and DIW.
  • the additives are all commonly used texturing additives.
  • the NaOH concentration is 7%
  • the additive concentration is 0.5%
  • the temperature is controlled at 83 ° C
  • the reaction time is 12 minutes.
  • a pyramid suede with a reflectance of 15% is formed, and the pyramid size is 5 ⁇ m;
  • Pickling 1 pickling with HNO3 solution, the HNO3 solution concentration is 0.5%, the temperature is controlled to normal temperature, and the pickling time is 60s;
  • Silver ion-assisted texturing texturing of single crystal battery cells using an auxiliary texturing solution, the auxiliary texturing solution is a mixed solution of HF, H2O2, silver-containing additives, and DIW, where the HF concentration is 4%, The H2O2 concentration is 25%, the silver ion content is 0.006mol / L, the temperature is controlled to 33 ° C, and the reaction time is 150s. As shown in FIG. 6 of the specification, nanopits with a diameter of 80nm and a depth of 150nm are formed;
  • the conventional monocrystalline alkali texturing and conventional black silicon texturing are compared with the texturing process steps of the present invention.
  • the conventional black silicon process and the single crystal alkali texturing process are combined, and the single crystal silicon surface is firstly subjected to The first alkaline texturing produced a micron-sized large pyramid structure.
  • a second silver ion-assisted texturing was performed to prepare a nanoscale pit-like structure to form a micron-nano composite structure.
  • the composite suede structure Based on the relatively low specific surface area, the reflectivity of the silicon wafer can be reduced, the light absorption rate can be improved, and the efficiency can be further improved.
  • step S3 the single crystal battery chip is sequentially desilvered, pickled, and dried.
  • the specific steps are as follows:
  • Desilvering using a desilvering solution for desilvering, the desilvering solution is a mixed solution of NH4OH, H2O2, and DIW, wherein the concentration of NH4OH is 0.3%, the concentration of H2O2 is 3%, the temperature is controlled to normal temperature, and the reaction time is 100s;
  • a method for preparing a surface micro-nano composite structure of a single crystal battery chip includes the following steps:
  • Alkali texturing solution is used to texturize single crystal battery chips.
  • the alkaline texturing solution is a mixed solution of NaOH, additives and DIW, where the NaOH concentration is 9% and the additive concentration is 1%.
  • the temperature is controlled at 87 ° C, the reaction time is 15 minutes, a pyramid suede with a reflectance of 17% is formed, and the pyramid size is 10 ⁇ m;
  • Pickling 1 pickling with HNO3 solution, the HNO3 solution concentration is 1%, the temperature is controlled to normal temperature, and the pickling time is 100s;
  • the auxiliary texturing solution is a mixed solution of HF, H2O2, silver-containing additives, and DIW, in which the HF concentration is 5%.
  • H2O2 concentration is 30%
  • silver ion content is 0.01mol / L
  • temperature is controlled at 37 ° C
  • reaction time is 250s
  • nano-pits with a diameter of 130nm and a depth of 200nm are formed;
  • the conventional monocrystalline alkali texturing and conventional black silicon texturing are compared with the texturing process steps of the present invention.
  • the conventional black silicon process and the single crystal alkali texturing process are combined, and the single crystal silicon surface is firstly subjected to The first alkaline texturing produced a micron-sized large pyramid structure.
  • a second silver ion-assisted texturing was performed to prepare a nanoscale pit-like structure to form a micron-nano composite structure.
  • the composite suede structure Based on the relatively low specific surface area, the reflectivity of the silicon wafer can be reduced, the light absorption rate can be improved, and the efficiency can be further improved.
  • step S3 the single crystal battery chip is sequentially desilvered, pickled, and dried.
  • the specific steps are as follows:
  • Desilvering is performed by using a desilvering solution, which is a mixed solution of NH4OH, H2O2, and DIW, wherein the concentration of NH4OH is 0.5%, the concentration of H2O2 is 5%, the temperature is controlled to normal temperature, and the reaction time is 150s;
  • a desilvering solution which is a mixed solution of NH4OH, H2O2, and DIW, wherein the concentration of NH4OH is 0.5%, the concentration of H2O2 is 5%, the temperature is controlled to normal temperature, and the reaction time is 150s;

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

La présente invention concerne un procédé de préparation pour une micro- et nano-structure composite de surface d'une cellule monocristalline, comprenant les étapes suivantes : S1, texturation alcaline : former une surface texturée en forme de pyramide ayant la réflectivité de 15 à 17 %, et la taille de la pyramide étant de 5 à 10 µm; S2, décapage à l'acide primaire : réaliser un décapage à l'acide en utilisant une solution de HNO3, la concentration de la solution de HNO3 étant de 0,5 à 1 %, la température étant régulée de façon à être une température ambiante, et une durée du décapage à l'acide étant de 60 à 100 s; S3, texturation assistée par ions d'argent : former un nano-trou ayant un diamètre de 80 à 130 nm et une profondeur de 150 à 200 nm. Selon le procédé, une texturation alcaline monocristalline classique et une texturation assistée par ions d'argent de silicium noir classique sont combinées, et la surface de la cellule monocristalline est texturée pour former une surface texturée de micro- et nano-structure composite, qui a une aire spécifique faible tandis qu'une faible réflectivité est garantie; la recombinaison de surface est réduite, et l'efficacité de conversion d'une cellule est davantage améliorée.
PCT/CN2018/118250 2018-06-20 2018-11-29 Procédé de préparation pour une micro- et nano-structure composite de surface d'une cellule monocristalline WO2019242242A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810638896.4A CN108807569B (zh) 2018-06-20 2018-06-20 一种单晶电池片的表面微米纳米复合结构的制备方法
CN201810638896.4 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019242242A1 true WO2019242242A1 (fr) 2019-12-26

Family

ID=64083909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118250 WO2019242242A1 (fr) 2018-06-20 2018-11-29 Procédé de préparation pour une micro- et nano-structure composite de surface d'une cellule monocristalline

Country Status (2)

Country Link
CN (1) CN108807569B (fr)
WO (1) WO2019242242A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807569B (zh) * 2018-06-20 2020-02-14 通威太阳能(合肥)有限公司 一种单晶电池片的表面微米纳米复合结构的制备方法
CN110416353A (zh) * 2019-06-25 2019-11-05 阜宁苏民绿色能源科技有限公司 一种湿法槽式黑硅制绒方法
CN110729379B (zh) * 2019-10-16 2021-05-04 哈尔滨工业大学 一种具有超低反射率微纳复合结构的黑硅衬底制备方法
CN110739357A (zh) * 2019-10-30 2020-01-31 江苏海洋大学 纳米倒金字塔-准微米金字塔背钝化太阳电池及制法
CN112701184A (zh) * 2020-12-16 2021-04-23 天津爱旭太阳能科技有限公司 一种晶硅电池绒面的制作方法
WO2022142943A1 (fr) * 2020-12-30 2022-07-07 泰州隆基乐叶光伏科技有限公司 Procédé et équipement de texturation, tranche de silicium monocristallin et cellule solaire au silicium monocristallin
CN112652671A (zh) * 2020-12-30 2021-04-13 泰州隆基乐叶光伏科技有限公司 制绒方法、单晶硅片及单晶硅太阳电池
CN114551644A (zh) * 2022-02-22 2022-05-27 江西中弘晶能科技有限公司 一种提升高效电池片转换效率的表面微米-纳米复合结构的设计

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443801A (zh) * 2010-10-08 2012-05-09 华康半导体股份有限公司 在硅晶基板表面形成微孔结构或凹槽结构的方法
CN103219428A (zh) * 2013-04-12 2013-07-24 苏州大学 一种晶体硅太阳能电池的绒面结构及其制备方法
JP2017161753A (ja) * 2016-03-10 2017-09-14 東レ株式会社 光反射シート
CN107338480A (zh) * 2017-08-24 2017-11-10 嘉兴尚能光伏材料科技有限公司 一种单晶硅硅片制绒方法及其制绒添加剂
CN107910386A (zh) * 2017-11-13 2018-04-13 嘉兴尚能光伏材料科技有限公司 晶体硅太阳电池的单面绒面制备方法
CN108179478A (zh) * 2017-12-27 2018-06-19 无锡尚德太阳能电力有限公司 金属催化化学腐蚀法单面制备多晶黑硅绒面的方法
CN108807569A (zh) * 2018-06-20 2018-11-13 通威太阳能(合肥)有限公司 一种单晶电池片的表面微米纳米复合结构的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046066A (zh) * 2017-03-09 2017-08-15 深圳大学 具有绒面结构单晶硅片及其制备方法和硅太阳能电池
CN107623054A (zh) * 2017-09-19 2018-01-23 绿华能源科技(杭州)有限公司 一种基于金刚线切割硅片的制绒工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443801A (zh) * 2010-10-08 2012-05-09 华康半导体股份有限公司 在硅晶基板表面形成微孔结构或凹槽结构的方法
CN103219428A (zh) * 2013-04-12 2013-07-24 苏州大学 一种晶体硅太阳能电池的绒面结构及其制备方法
JP2017161753A (ja) * 2016-03-10 2017-09-14 東レ株式会社 光反射シート
CN107338480A (zh) * 2017-08-24 2017-11-10 嘉兴尚能光伏材料科技有限公司 一种单晶硅硅片制绒方法及其制绒添加剂
CN107910386A (zh) * 2017-11-13 2018-04-13 嘉兴尚能光伏材料科技有限公司 晶体硅太阳电池的单面绒面制备方法
CN108179478A (zh) * 2017-12-27 2018-06-19 无锡尚德太阳能电力有限公司 金属催化化学腐蚀法单面制备多晶黑硅绒面的方法
CN108807569A (zh) * 2018-06-20 2018-11-13 通威太阳能(合肥)有限公司 一种单晶电池片的表面微米纳米复合结构的制备方法

Also Published As

Publication number Publication date
CN108807569A (zh) 2018-11-13
CN108807569B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2019242242A1 (fr) Procédé de préparation pour une micro- et nano-structure composite de surface d'une cellule monocristalline
CN103219428B (zh) 一种晶体硅太阳能电池的绒面结构及其制备方法
Cheng et al. Efficiency improved by acid texturization for multi-crystalline silicon solar cells
CN108054224B (zh) 一种晶体硅太阳能电池的绒面结构及其制备方法
WO2016019767A1 (fr) Solution de texturation acide servant à graver des plaquettes de silicium de cellules solaires, procédé de texturation, cellule solaire et procédé de fabrication de cellule solaire
CN107338480A (zh) 一种单晶硅硅片制绒方法及其制绒添加剂
WO2021136196A1 (fr) Tranche de silicium monocristallin ayant une structure pyramidale superposée
CN106653889B (zh) 用于刻蚀太阳能电池硅片表面的制绒液及其应用
WO2020248580A1 (fr) Cellule de silicium monocristallin présentant une surface spécifique accrue et son procédé de texturation
WO2015017956A1 (fr) Procédé de polissage simple face pour tranche de silicium monocristallin utilisée dans une batterie de cellules solaires
CN102931290A (zh) 一种不损伤绒面的多晶硅太阳能电池返工方法
CN105449045B (zh) 一种适用于rie制绒后晶体硅片的表面微腐蚀清洗方法
CN105405755B (zh) 用于硅片金字塔制绒的酸性制绒液、制绒方法以及采用该制绒方法制绒而成的硅片
WO2013163823A1 (fr) Structure antireflet optique, son procédé de fabrication et cellule solaire la contenant
Wu et al. The orientation and optical properties of inverted-pyramid-like structures on multi-crystalline silicon textured by Cu-assisted chemical etching
CN106601862A (zh) 一种降低单晶硅异质结太阳能电池片反射率的制绒方法
Zhang et al. An 18.9% efficient black silicon solar cell achieved through control of pretreatment of Ag/Cu MACE
CN104009125A (zh) 多晶硅片的制绒工艺
CN103924305B (zh) 一种准单晶硅片绒面的制备方法
CN106158996B (zh) 单晶硅基纳米倒金字塔结构背钝化太阳电池
WO2012012979A1 (fr) Procédé pour la production de velours par combinaison de laser et de gravure acide
CN103730522A (zh) 光电转换结构、应用其的太阳能电池及其制造方法
CN204167329U (zh) 冶金多晶硅太阳能电池片及太阳能电池板
WO2011156977A1 (fr) Procédé de fabrication d'une surface structurée à attraction par la lumière d'une cellule solaire en polysilicium
CN103972325A (zh) 一种单晶硅片单面制绒的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923718

Country of ref document: EP

Kind code of ref document: A1