WO2019239805A1 - デジタルpcrの測定方法および測定装置 - Google Patents

デジタルpcrの測定方法および測定装置 Download PDF

Info

Publication number
WO2019239805A1
WO2019239805A1 PCT/JP2019/019946 JP2019019946W WO2019239805A1 WO 2019239805 A1 WO2019239805 A1 WO 2019239805A1 JP 2019019946 W JP2019019946 W JP 2019019946W WO 2019239805 A1 WO2019239805 A1 WO 2019239805A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
temperature
fluorescence intensity
droplet
fluorescence
Prior art date
Application number
PCT/JP2019/019946
Other languages
English (en)
French (fr)
Inventor
淳子 田中
樹生 中川
譲 島崎
原田 邦男
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US16/973,990 priority Critical patent/US20210130877A1/en
Publication of WO2019239805A1 publication Critical patent/WO2019239805A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/523Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for multisample carriers, e.g. used for microtitration plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/113PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence

Definitions

  • the present invention relates to a digital PCR measurement method and measurement apparatus.
  • Digital PCR (special table 2013-521764) is PCR (US Pat. No. 4,683,195; US Pat. No. 4,683,202; US Pat. No. 4,800,199) and real-time PCR (Genome Res., Vol. 10, pp. 986-994, 1996). ) was developed as a method for solving the problem that the measurement reproducibility decreases when the amount of the target gene is small.
  • digital PCR a very small amount of DNA can be quantified by detecting DNA at 0 (none) or 1 (present) using a sample that has undergone limiting dilution.
  • a DNA polymerase necessary for PCR, a primer, and a fluorescently labeled probe are added to the limit diluted sample, and a PCR reaction liquid droplet is prepared in oil.
  • the prepared droplet contains either one molecule of the target gene or not.
  • the target gene in the droplet is amplified by PCR.
  • the target gene can be quantified by measuring the fluorescence intensity of each droplet after PCR and counting the number of droplets having a fluorescence intensity exceeding a threshold. Since such digital PCR uses a sample diluted by limiting dilution, it is possible to suppress the influence of the component derived from the sample, which becomes a PCR inhibiting factor. In addition, since no calibration curve is required, the absolute amount can be measured directly.
  • reaction efficiency decreases due to the presence of reaction inhibitors in the reaction solution, formation of secondary structure of template DNA, insufficient primer design, and the like.
  • digital PCR since measurement is performed at an end point, it has been considered that the reaction efficiency of PCR does not greatly affect the measurement result. However, actually, even when measured at the end point, variation in fluorescence intensity due to non-uniformity of the PCR reaction efficiency of each droplet is large, reducing the measurement reproducibility and measurement accuracy of digital PCR.
  • the present inventors measured the drop by measuring the melting temperature (Tm) of the PCR amplification product even if the PCR reaction efficiency of each droplet is not uniform.
  • Tm melting temperature
  • the fluorescently labeled probe called molecular beacon used for melting curve analysis seems to be decomposed and sensitized during PCR like TaqMan (registered trademark) probe used in conventional digital PCR. Since it does not have a simple structure, the fluorescence intensity after PCR is small even if it contains a target gene and is a positive droplet. Next, since each droplet is widely arranged in a plane and the fluorescence intensity is measured, in-plane variation occurs during light irradiation and fluorescence capture.
  • the fluorescence intensity of the droplet in which the target gene is amplified in the droplet is decreased, and as a result, the variation in the fluorescence intensity of the entire droplet is increased, resulting in a low signal (S) / noise (N) ratio.
  • S signal
  • N noise
  • the accuracy of discriminating between an empty droplet that does not contain the target gene and a droplet that contains the target gene by the fluorescence intensity may be low.
  • an object of the present invention is to provide a new digital PCR measuring method and measuring apparatus that distinguishes empty droplets that do not contain a target gene in a digital PCR using melting curve analysis and removes them from the analysis target data. Is to provide.
  • the empty droplets that do not contain the target gene have a small change in fluorescence intensity with increasing temperature, and the droplets that contain the target gene have a change in fluorescence intensity with increasing temperature. Therefore, by measuring the fluorescence intensity ratio between low temperature and high temperature, it was found that empty droplets not containing the target gene can be distinguished with high accuracy, and the present invention has been completed.
  • One embodiment of the present invention includes a step of dividing a DNA solution containing a fluorescently labeled probe or DNA intercalator and a DNA to be detected into a plurality of fractions, a step of performing a nucleic acid amplification reaction in the fractions, A step of measuring fluorescence intensity in accordance with a temperature change, a step of calculating a melting temperature of a DNA duplex measured based on the change in fluorescence intensity in accordance with the temperature change, and a first in accordance with the temperature change. Calculating the ratio of the fluorescence intensity at a second temperature lower than the first temperature to the fluorescence intensity at the temperature.
  • the DNA detection method may further include a step of identifying a fraction having a calculated fluorescence intensity ratio that is equal to or less than a predetermined threshold as a fraction not including the detection target DNA.
  • the method may further include a step of identifying a fraction in which the calculated fluorescence intensity ratio is within a predetermined range as a fraction containing the DNA to be detected.
  • the DNA solution includes a fluorescently labeled probe, and the melting temperature is a melting temperature of a duplex formed between the fluorescently labeled probe and the DNA to be detected.
  • the fluorescently labeled probe may have a fluorescent dye and its quencher.
  • the DNA solution may include a DNA intercalator, and the melting temperature may be the melting temperature of the double strand of the DNA to be detected.
  • the plurality of fractions may be arranged in a plane.
  • the DNA solution may be divided into the plurality of fractions by droplets or wells.
  • Another embodiment of the present invention is a DNA detection apparatus for detecting DNA to be detected in a DNA solution, wherein the DNA detection apparatus is heated from the DNA solution and is released from the DNA solution.
  • a fluorescence measuring unit for measuring the intensity of the fluorescence, a melting temperature of the DNA double strand is calculated from the change in the intensity of the fluorescence accompanying the temperature change of the DNA solution, and the fluorescence intensity at the first temperature of the previous DNA solution is calculated.
  • a calculation unit that calculates a ratio of the fluorescence intensity at the second temperature lower than the first temperature to the DNA detection device.
  • the DNA detection apparatus may further include an amplification unit for amplifying the detection target DNA. Moreover, you may further provide the monitor which displays the said detection result.
  • a further embodiment of the present invention is a program for causing a DNA detection device such as any of the above DNA detection devices to perform any one of the above-described DNA detection methods.
  • a further embodiment of the present invention is a recording medium for storing the program.
  • the fluorescence intensity of the second temperature lower than the first temperature relative to the fluorescence intensity of the first temperature associated with the temperature change for the PCR amplification product. It is a figure which shows the basic concept of the DNA detection method performed using ratio. It is a figure which shows the basic concept of the DNA detection method performed in digital PCR using the melting curve analysis in one embodiment of this invention using the melting temperature (Tm) of a PCR amplification product. It is a schematic diagram of the fluorescence measurement part for measuring the color and fluorescence intensity of the fluorescent dye which a droplet or a well contains in one embodiment of this invention.
  • Tm melting temperature
  • B accompanying a temperature change with respect to the PCR amplification product
  • a DNA detection method using a ratio of fluorescence intensity at a second temperature lower than the first temperature to fluorescence intensity at the first temperature associated with temperature change using a DNA intercalator It is a schematic diagram which shows the method of measuring the melting temperature of DNA.
  • a fluorescently labeled probe in the DNA detection method performed using the ratio of the fluorescence intensity at the second temperature lower than the first temperature to the fluorescence intensity at the first temperature associated with the temperature change, a fluorescently labeled probe is used.
  • FIG. 8 is a flowchart illustrating an embodiment of a method for performing a melting temperature measurement by measurement using the apparatus and cartridge of FIG. 7. It is an example of the measurement result displayed on a monitor. It is an example of the measurement result displayed on a monitor. In one Example of this invention, it is a graph which shows the result of discriminating the presence or absence of the target gene in a well using a fluorescence labeled probe.
  • the DNA detection method comprises a step of dividing a DNA solution containing a fluorescently labeled probe or DNA intercalator and DNA to be detected into a plurality of fractions, and the fraction A step of performing a nucleic acid amplification reaction, a step of measuring the fluorescence intensity according to a temperature change, and a melting temperature of the DNA duplex measured based on the change of the fluorescence intensity accompanying the temperature change And a process.
  • FIG. 1 shows a representative example of a method for detecting DNA by calculating the ratio of the fluorescence intensity at the second temperature lower than the first temperature to the fluorescence intensity at the first temperature accompanying the temperature change.
  • the example of the measurement result assumed in this embodiment is shown.
  • FIG. 2 shows an example of the result of digital PCR measurement using melting curve analysis when DNA detection is performed using the melting temperature (Tm) of the PCR amplification product.
  • genotype discrimination is performed by utilizing the fact that the melting temperature of a fluorescently labeled probe and DNA differs depending on the genotype.
  • FIG. 2 is a diagram schematically showing the results of measuring the melting temperature of DNA in a droplet using fluorescently labeled probes corresponding to the wild type and the mutant type of the target gene.
  • a molecular beacon can be used as the fluorescently labeled probe.
  • a DNA detection method will be described in detail by taking a molecular beacon as an example.
  • a molecular beacon is complementary to a sequence between primer pairs used for PCR to amplify a detection target gene, has a sequence complementary to both ends, and a fluorescent dye and a quencher dye (quencher dye) at the ends. ) Is an oligonucleotide.
  • the fluorescent dye and quenching dye at both ends separate and emit fluorescence, but when dissociated from the detection target gene as the temperature rises, complementary sequences at both ends hybridize. As a result, a stem loop structure is formed, and the fluorescent dye and the quenching dye approach each other and the fluorescent dye is quenched.
  • the fluorescently labeled probe corresponding to the wild-type allele of the detection target gene hybridizes to the DNA amplified by PCR and emits fluorescence. A corresponding melting temperature is observed.
  • a fluorescent labeling probe corresponding to the mutant allele of the detection target gene hybridizes to the DNA amplified by PCR and emits fluorescence. A melting temperature corresponding to the probe is observed.
  • the empty droplet 203 that does not include the detection target gene does not detect fluorescence.
  • the PCR reaction efficiency in the droplets is not uniform for each droplet, and the measurement variation at the time of fluorescence measurement is large, so that the fluorescence intensity from the droplets 201 and 202 containing the detection target gene and the detection target
  • Tm melting temperatures
  • a fluorescent dye that emits fluorescence of a different wavelength is used for a fluorescently labeled probe corresponding to a wild type allele and a fluorescently labeled probe corresponding to a mutant type allele, a gene having a wild type allele is detected depending on the detected fluorescent color. Or whether there is a gene having a mutant allele.
  • the sequences of the fluorescently labeled probes are determined so that the melting temperatures (Tm) of the respective fluorescently labeled probes with respect to the detection target genes are different, and melting curve analysis is performed. By calculating Tm, it becomes possible to determine whether the wild type mutant or the mutant allele was amplified.
  • the experimenter sets thresholds for fluorescence intensity and melting temperature, excludes empty droplets that do not contain the target gene from the data, or counts the number of droplets for each type of mutation. Can be.
  • the fluorescence intensity of the droplet 201 including the wild-type allele of the detection target gene and the droplet 202 including the mutant-type allele of the detection target gene varies widely, and the fluorescence intensity distribution is widened, but the detection target gene is not included. Since the fluorescence of the empty droplet 203 is weak, there may be a large variation in the calculated melting temperature. At that time, as shown in FIG.
  • the distribution of the droplets 201 and 202 including the detection target gene on the graph overlaps the distribution of the empty droplet 203 including no detection target gene. In this part, it becomes impossible to determine the presence or absence of a gene, which causes a decrease in measurement accuracy.
  • a sample is limitedly diluted so that one or zero target genes are contained in one droplet, and thus a droplet is prepared. Therefore, 50 to 90% of the prepared droplets do not contain a target gene. If the distribution of these droplets 201 and 202 including the target gene overlaps, highly accurate quantification may be difficult.
  • the horizontal axis indicates the fluorescence intensity at low temperature and high temperature as shown in FIG.
  • the measurement result can be plotted with the ratio and the vertical axis as the melting temperature of the fluorescently labeled probe and DNA, and the empty droplet 101 that does not include the detection target gene and the droplet that includes the wild type allele of the detection target gene 102, The droplet 103 containing the mutant allele of the detection target gene can be separated. As a result, it is possible to reliably identify empty droplets that do not contain the target gene and droplets with insufficient PCR reaction efficiency, and improve measurement reproducibility and measurement accuracy.
  • the DNA detection device of the present invention is a DNA detection device for detecting DNA to be detected in a DNA solution, and a heating unit for heating the DNA solution; A fluorescence measuring unit for measuring the intensity of fluorescence emitted from the DNA solution, and calculating the melting temperature and melting temperature of the DNA duplex from the change in the intensity of the fluorescence accompanying the temperature change of the DNA solution, A calculation unit that calculates a ratio of the fluorescence intensity at the second temperature lower than the first temperature to the fluorescence intensity at the first temperature.
  • the DNA solution may be in any carrier, for example, a droplet in oil or a solution in a well such as a plate.
  • FIG. 3 shows a DNA detection apparatus having a fluorescence measurement unit for measuring the color and fluorescence intensity of a fluorescent dye contained in a DNA solution in a droplet or well as an example of the DNA detection apparatus.
  • the apparatus is not limited to this.
  • the fluorescence intensity of the droplet is measured using a microchannel.
  • the droplet 301 flows in the direction of the arrow through the microchannel 303.
  • the droplet is heated by a heating unit (not shown), and excitation light is irradiated to the droplet by the light source 304.
  • the fluorescent material contained in the droplet is excited by the light source 304, and the emitted fluorescence is detected by the photo multiple meter 306 through the fluorescent filter 305.
  • the detected fluorescence data is sent to a calculation unit (not shown), where the melting temperature of the fluorescently labeled probe and the DNA or the melting temperature of the DNA duplex is calculated.
  • the fluorescence detector composed of the light source 304, the fluorescence filter 305, and the photo multiple meter 306 may be provided separately for each color of the fluorescent dye, or excited with the excitation light of one light source as shown in FIG. 3A. You may make it the structure which detects each fluorescence simultaneously with two fluorescence filters.
  • the droplets may be arranged in a plane as shown in FIGS. 3B and 3C, and the color and fluorescence intensity of the fluorescent dye of the droplets may be measured.
  • the droplet 311 is arranged in a plane on the droplet detection cartridge 310 and set on the temperature adjustment stage 312 which is a heating unit.
  • the temperature of the droplet detection cartridge is changed by the temperature adjustment device 312 and the fluorescence intensity of the droplet accompanying the temperature change is measured by the following procedure.
  • the excitation light is irradiated from the light source 304 through the lens 308, the filter 305, and the dichroic mirror 309 to the droplet 311 that is arranged in a plane on the droplet detection cartridge 310.
  • the fluorescent material contained in the droplet is excited by the excitation light, and the emitted fluorescence is detected by the CCD camera 307 through the dichroic mirror 309, the filter 305, and the lens 308.
  • the detected fluorescence data is sent to a calculation unit (not shown), where the melting temperature of the amplification product is calculated.
  • a calculation unit not shown
  • FIG. 3A it is necessary to process the droplets one by one, but the apparatus of FIGS. 3B and 3C is preferred in that many droplets can be processed at once.
  • 3B and 3C is also preferable to FIG. 3A in that the temperature adjustment device 312 can be used for DNA amplification reaction.
  • a sample is added so that 1 or 0 of the target gene is contained in each well, and PCR is performed in the wells to perform fluorescence of the wells.
  • the color and fluorescence intensity of the dye may be measured.
  • PCR is performed in the well and set on the temperature adjustment stage 312 which is a heating unit.
  • the temperature of the well type detection cartridge is changed by the temperature adjustment device 312 and the fluorescence intensity of the well accompanying the temperature change is measured by the following procedure.
  • excitation light is irradiated from a light source 304 through a lens 308, a filter 305, and a dichroic mirror 309 to wells that are arranged in a plane on a well type detection cartridge 313.
  • the fluorescent substance contained in the reaction solution in the well is excited by the excitation light, and the emitted fluorescence is detected by the CCD camera 307 through the dichroic mirror 309, the filter 305, and the lens 308.
  • the detected fluorescence data is sent to a calculation unit (not shown), where the melting temperature of the amplification product is calculated.
  • PCR to melting curve analysis can be performed in the well type detection cartridge without the step of arranging the droplets on the droplet detection cartridge in a plane.
  • FIG. 4A shows a case where a DNA detection method using a melting temperature (Tm) of a PCR amplification product is used, as described in FIG. It is a schematic diagram which shows an example of the measurement result which may be unable to determine the presence or absence of the target gene in a sample solution.
  • FIG. 4B shows the ratio of the fluorescence intensity at the second temperature lower than the first temperature to the fluorescence intensity at the first temperature associated with the temperature change for the PCR amplification product, as described in FIG.
  • FIG. 5 and FIG. 6 are schematic diagrams showing an example of the result of performing a melting curve analysis of DNA amplified in the solution for which the presence or absence of the detection target gene could not be determined in FIG.
  • the melting is performed. From the temperature value, it can be seen that the solution a404 contains the wild type gene of the detection target gene, and the sample solution b405 contains the mutant type gene of the detection target gene.
  • the fluorescence intensity is observed at the position of the sample solution c406 or the sample solution d407, it cannot be determined from the measurement result whether or not these sample solutions contain the detection target gene.
  • a DNA intercalator 502 is added to a PCR reaction solution to prepare a sample solution.
  • a nucleic acid amplification reaction such as PCR is performed, double strands amplified in the sample solution at a temperature of about room temperature.
  • the DNA intercalator 502 binds to the DNA 501 and emits strong fluorescence.
  • FIG. 5 shows an example of the result when the fluorescence intensity change with respect to the temperature change is plotted on the graph.
  • the measurement of the fluorescence intensity change with respect to the temperature change may be performed by raising the temperature of the sample solution independently of the nucleic acid amplification reaction (for example, after completion of the nucleic acid amplification reaction).
  • the measurement result of the sample solution a404 is shown in FIG. 5C
  • the measurement result of the sample solution b405 is shown in FIG. 5A
  • the measurement result of the sample solution c406 is shown in FIG. 5B
  • the measurement result of the sample solution d407 is shown in FIG.
  • the fluorescence intensity changes in FIGS. 5A to 5D are differentiated by temperature changes
  • the results are as shown in FIGS. 5E to H, respectively, and the temperature that becomes the inflection point of the fluorescence intensity change is obtained, and this can be calculated as the melting temperature of the DNA duplex. .
  • the sample solution c406 and the sample solution d407 could not be determined from the measurement results as to whether the sample solution contains the target gene, but the fluorescence intensity change accompanying the temperature change is large in FIG. 5B and small in FIG. 5D. Therefore, as shown in FIG. 4B, when the fluorescence intensity ratio at low temperature and high temperature is plotted on the horizontal axis and the melting temperature is plotted on the vertical axis, the sample solution c406 includes the wild type of the target gene, and the sample solution d407 does not include the target gene. It can be determined that the solution is empty.
  • the melting temperature of the target gene can be controlled depending on the sequence of the PCR amplification product and the chain length of the sequence by changing the primer design.
  • the DNA intercalator used here is applicable to any intercalator that can be used for detection of double-stranded DNA because the fluorescence intensity increases by binding to double-stranded DNA.
  • SYBR registered trademark
  • Green I Green I
  • SYBR Gold PicoGreen
  • SYTO registered trademark
  • Blue SYTO Green
  • SYTO Orange SYTO Red
  • POPO registered trademark
  • BOBO registered trademark
  • YOYO registered trademark
  • TOTO registered trademark
  • JOJO registered trademark
  • POPO-3 LEO
  • LOLO registered trademark
  • BOBO-3 YOYO-3
  • TOTO- 3 PO-Pro (registered trademark) -1, YO-Pro (registered trademark) -1, TO-Pro (registered trademark) -1, JO-Pro (registered trademark) -1, PO-Pro-3, YO- Pro-3, TO-
  • a fluorescently labeled probe can be used in place of the DNA intercalator.
  • a fluorescently labeled probe has a fluorescent dye and its quencher at or near both ends, the sequences around both ends are complementary, and forms a stem loop structure like a molecular beacon, while the sequence of the loop portion is It is designed to have a structure that is complementary to the detection target gene and can hybridize to the detection target gene.
  • the fluorescently labeled probe 602 exists alone and forms a stem loop, the fluorescent dye 603 and the quencher 604 are close to each other, so that no fluorescence is emitted.
  • the loop portion of the fluorescent labeled probe 602 anneals to the DNA 601 amplified in the sample solution at a temperature of about room temperature, and the fluorescent dye 603 and the quencher 604 are separated. Therefore, the fluorescently labeled probe 602 emits strong fluorescence. Thereafter, when the sample solution is heated, the DNA 601 and the fluorescently labeled probe 602 are dissociated, and a stem loop is formed in the fluorescently labeled probe 602, so that the fluorescence intensity from the fluorescently labeled probe 602 decreases.
  • FIG. 6 shows an example of the result when the fluorescence intensity change with respect to the temperature change is plotted on the graph.
  • This fluorescently labeled probe may be shared with a fluorescently labeled probe for PCR, but a probe different from the fluorescently labeled probe for PCR may be prepared and used.
  • the measurement of the fluorescence intensity change with respect to the temperature change may be performed in the nucleic acid amplification reaction, and is performed by heating the sample solution independently of the nucleic acid amplification reaction (for example, after completion of the nucleic acid amplification reaction). Also good.
  • the measurement result of the sample solution a404 is as shown in FIG. 6C
  • the measurement result of the sample solution b405 is as shown in FIG. 6A
  • the measurement result of the sample solution c406 is as shown in FIG. 6B
  • the measurement result of the sample solution d407 is as shown in FIG.
  • the fluorescence intensity changes in FIGS. 6A to 6D are differentiated by temperature changes
  • the results are as shown in FIGS. 6E to H, respectively, and temperatures that become inflection points of the fluorescence intensity changes are obtained. This is the melting temperature of the probe and DNA.
  • the sample solution c406 and the sample solution d407 could not be determined from the measurement results as to whether the sample solution contains the detection target gene, but the fluorescence intensity change accompanying the temperature change is large in FIG. 6B and FIG. 4B, when the fluorescence intensity ratio between the low temperature and the high temperature is plotted on the horizontal axis and the melting temperature is plotted on the vertical axis, the sample solution c406 includes the wild type of the detection target gene, and the sample solution d407 is the detection target gene. It can be determined that the sample solution is empty.
  • the melting temperature of the fluorescently labeled probe for detecting the detection target gene can be controlled by changing the probe sequence and chain length.
  • the melting temperature can be controlled by using artificial DNA such as Peptide Nucleic Acid (PNA) or Locked Nucleic Acid (LNA).
  • PNA Peptide Nucleic Acid
  • LNA Locked Nucleic Acid
  • the combination of the fluorescent dye 603 and the quencher 604 of the fluorescently labeled probe 602 used here is not particularly limited as long as it is a combination generally used for real-time PCR, and the fluorescent dye 603 is FAM, VIC, ROX, Cy3, Examples of the quencher 604 include TAMRA, BHQ1, BHQ2, and BHQ3.
  • the sequence recognized by the fluorescently labeled probe 602 may be on the same gene as the detection target gene or on a different gene, and a gene having a sequence different from the detection target gene by one base, for example, the wild type of the same gene Types and variants may be used.
  • a genetic test for lung cancer is performed, the presence or absence of an ALK fusion gene and an EGFR gene mutation is determined in order to predict the effect of the molecular target drug.
  • a sequence that recognizes each of the ALK fusion gene and the EGFR gene may be used, or a sequence that recognizes the EGFR L858R mutant and its wild type.
  • a DNA detection device includes a droplet preparation unit for preparing a droplet by adding a DNA solution containing DNA to be detected to oil, and An amplification unit for amplifying DNA with respect to the droplet may also be included.
  • FIG. 7 is a diagram showing an example of an apparatus for performing the method of the present invention and a cartridge used in the apparatus.
  • the digital PCR measurement device 721 includes a droplet preparation unit 701, a thermal cycler 702 as an amplification unit, a droplet detection unit 703, a monitor 704, and a control unit 724.
  • the droplet preparation unit 701 sets and uses a droplet preparation cartridge 705 shown in FIG. 7B.
  • the droplet preparation cartridge 705 has an oil supply port 715, a PCR reaction solution introduction port 716, and a droplet discharge port 717.
  • the droplet detection unit 703 uses the droplet detection cartridge 707 shown in FIG. 7C set on the temperature control device 722.
  • the droplet detection cartridge 707 has an oil supply port 718, a droplet introduction port 719, a liquid reservoir 723, and a waste liquid discharge port 720.
  • the oil supply port 715 of the droplet preparation cartridge is fluidly connected to the digital PCR measurement device 721, and oil 713 is supplied by the pump 709.
  • the PCR reaction solution inlet 716 of the droplet preparation cartridge is fluidly connected to the digital PCR measurement device 721, and a gas such as nitrogen gas or air or oil 712 is supplied by a pump 708.
  • a droplet discharge port 717 of the cartridge for droplet preparation is fluidly connected to the digital PCR measurement device 721 and connected to a microtube 706 set in the thermal cycler 702.
  • the oil supply port 718 of the droplet detection cartridge 707 is fluidly connected to the digital PCR measurement device 721, and oil 713 is supplied by the pump 710.
  • a droplet introduction port 719 of the droplet detection cartridge 707 is fluidly connected to the digital PCR measurement device 721 and is connected to a micro tube 706 set in the thermal cycler 702.
  • the waste liquid discharge port 720 of the droplet detection cartridge 707 is fluidly connected to the digital PCR measurement device 721, and the waste liquid in the droplet detection cartridge 707 is discharged to the waste liquid reservoir 714 by the pump 711.
  • the pump may be a peristaltic pump, a syringe pump, or a diaphragm pump.
  • the monitor 704 is a display unit for displaying measurement results and messages, and is also an input unit for a user to input an operation.
  • a DNA detection apparatus includes a chip preparation unit for applying a DNA solution containing DNA to be detected to a well arranged on a chip and / or amplifying the DNA in the well.
  • An amplifying unit may be included.
  • a sample solution derived from a biological sample containing DNA is added to a PCR reaction solution containing DNA polymerase, primer, DNA intercalator or molecular beacon, deoxyribonucleotides, and buffer (S801).
  • This PCR reaction solution is added to the PCR reaction solution inlet 716 of the droplet preparation cartridge 705 (S802).
  • the droplet preparation cartridge 705 is set in the droplet preparation unit 701 of the digital PCR measurement device 721.
  • the droplet is generated at the site where the oil in the droplet preparation cartridge 705 and the flow path of the PCR reaction solution intersect. Generate.
  • the generated droplets are discharged from the droplet discharge port 717, moved to the microtube 706 previously installed in the thermal cycler, and stored in the tube (S804).
  • the lid of the microtube 706 is closed, and PCR is performed by controlling the temperature of the thermal cycler (S805).
  • the DNA is amplified, and in the case of a DNA intercalator, it is intercalated into the amplified DNA, and in the case of a molecular beacon, it is hybridized with the amplified DNA.
  • the fluorescence intensity increases.
  • Those skilled in the art can easily set reaction conditions such as the temperature, time, and cycle number of each step. After PCR, when the temperature is lowered to room temperature, the synthesized DNA forms a double strand. After the PCR, a droplet is added from a droplet introduction port 719 and an oil 713 is added from an oil supply port 718 of a droplet detection cartridge previously installed in the droplet detection unit 703 (S806).
  • the fluorescence intensity of the fluorescently labeled probe of the droplet stored in the liquid reservoir 723 of the droplet detection cartridge is measured (S807).
  • the temperature of the droplet detection cartridge reservoir 723 is raised from 50 ° C. to 85 ° C. by the temperature controller 722, and the fluorescence intensity from the DNA intercalator or molecular beacon is measured (S808).
  • the detected fluorescence data is sent to a calculation unit (not shown), where the fluorescence intensity change due to temperature rise is differentiated by the temperature change, and the inflection point of the fluorescence intensity change is calculated as the melting temperature (S809).
  • a threshold is determined to be empty (S810).
  • the number of droplets in which the fluorescence intensity of the fluorescently labeled probe is equal to or higher than the threshold and the melting temperature is within a predetermined range is counted (S811).
  • the number of droplets containing the target gene and the number of empty droplets are displayed on the monitor (S812). It should be noted that the predetermined threshold value of the fluorescence intensity and the predetermined range of the melting temperature can be determined in advance by a pilot experiment or the like.
  • the sample solution to be used is not particularly limited as long as it is a sample containing the DNA to be detected.
  • biological samples such as animal and plant body fluids, tissues, cells, and excreta, and samples containing fungi and bacteria such as soil samples. it can.
  • the body fluid include blood, saliva, spinal fluid, etc.
  • blood includes cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA).
  • cfDNA cell-free DNA
  • ctDNA circulating tumor DNA
  • An example of the tissue is an affected part of a disease obtained by surgery or biopsy (for example, a cancer tissue such as breast or liver).
  • the tissue may be already fixed, for example, formalin-fixed paraffin-embedded tissue section (FFPE).
  • FFPE formalin-fixed paraffin-embedded tissue section
  • cells include cells at or near the affected area collected by biopsy, circulating tumor cells in the blood, and the like.
  • the pretreatment of these specimens is not particularly limited, and after collection from a living body or the environment, it may be added to the suspension and homogenized, or may be used as it is by dissolving in a solution. It is preferable to use a nucleic acid extracted or purified.
  • Oil is a chemically inert substance that is insoluble or hardly soluble in the PCR reaction solution constituting the droplet, and is preferably a substance that is stable against temperature changes at high temperatures such as PCR.
  • Oil, silicone oil, hydrocarbon oil, etc. can be used.
  • the fluorinated oil include Perfluorocarbon and Hydrofluoroether. Fluorine-based oils are preferred because the longer carbon chain is less volatile.
  • the specific gravity of fluorine-type oil is more than 1.7 and is heavier than the specific gravity 1 of water as a solvent of the PCR reaction solution, the produced droplet floats on the oil.
  • silicone oil include Polyphenylmethylsiloxane and Trimethylsiloxysilicate.
  • silicone oils Unlike fluorinated oils, silicone oils have a specific gravity of about 0.98 and are close to the specific gravity of water, which is a solvent for PCR reaction solutions, and the produced droplets are uniformly dispersed in the oil.
  • the hydrocarbon oil include mineral oil, liquid paraffin, and hexadecane. Since the hydrocarbon-based oil has a specific gravity of about 0.84 and is lighter than the specific gravity of water, which is the solvent of the PCR reaction solution, the produced droplet sinks in the oil.
  • This oil may be used after adding a surfactant.
  • the type of the surfactant is not particularly limited, but Tween 20, Tween 80, Span 80, Triton X-100, and the like are applicable.
  • FIGS. 9 and 10 are examples of images of measurement results displayed on the monitor.
  • the number of sample solutions counted for each type of cancer-related gene and type of mutation may be displayed, and as shown in FIG.
  • the ratio of the sample solution counted for each type may be displayed.
  • the result displayed on the monitor is not only the number and ratio of the sample solution as shown in FIG. 9 and FIG. 10, but also the ratio of the sample solution in two axes of the low temperature and high temperature fluorescence intensity and the melting temperature as shown in FIG.
  • a graph in which the measurement values are plotted may be included. It may also include a histogram plotting the number of analyte solutions against the fluorescence intensity or melting temperature of the fluorescently labeled probe.
  • the sample solution is within the fluorescence intensity threshold and the melting temperature range by the user changing the setting of the fluorescence intensity ratio and / or fluorescence intensity ratio threshold and / or melting temperature range of the fluorescently labeled probe by looking at the graph or histogram. The number of can be counted again.
  • the number of droplets or the number of wells is used instead of the number of sample solutions. May be represented as
  • One embodiment of the present invention is a program for causing a DNA detection apparatus to perform a DNA detection method.
  • the DNA detection apparatus uses the apparatus detailed in (2), and executes the method detailed in (1) as the DNA detection method.
  • a recording medium for storing this program is one embodiment of the present invention.
  • This example shows the result of measuring the melting temperature of DNA in a well using a fluorescently labeled probe.
  • KRAS gene wild type and G12D mutant genomic DNA (final concentration 67 molecules / ⁇ L) is prepared, forward primer necessary for PCR (final concentration 0.25 ⁇ M), reverse primer (final concentration 0.5 ⁇ M) , A fluorescently labeled probe corresponding to the wild type (final concentration 0.5 ⁇ M), a fluorescently labeled probe corresponding to the G12D variant (final concentration 0.5 ⁇ M), and 1 ⁇ master mix (including DNA polymerase and dNTP), and PCR A reaction solution was prepared. At this time, the primer pair concentration was added to be asymmetric so that the complementary DNA strand of the fluorescently labeled probe was excessively amplified.
  • Primer and probe sequences are as follows. Each fluorescently labeled probe contains a special molecule that forms complementary strands at both ends. In addition, FAM is bound as a fluorescent dye at the 5 'end and BHQ-1 is bound as a quencher at the 3' end.
  • the PCR reaction was performed at 95 ° C. for 10 minutes, followed by 45 cycles of (95 ° C., 15 seconds ⁇ 60 ° C., 75 seconds), and finally at 98 ° C. for 2 minutes. After the reaction, the fluorescence intensity of each well was observed while heating the chip provided with the well on the temperature control stage, and the melting curve was measured and analyzed.
  • FIG. 12A shows a histogram of fluorescence intensity at 50 ° C. when only the KRAS gene wild type was added to the PCR reaction solution.
  • the amplified DNA and the fluorescently labeled probe are hybridized to emit fluorescence, so two peaks are observed: an empty well and a well containing the wild type of the KRAS gene. .
  • the peak of the well containing the wild type of the KRAS gene has a low height and is broad, it is difficult to distinguish it from an empty well.
  • FIG. 12B shows a histogram of fluorescence intensity at 85 ° C. when only the KRAS gene wild type was added to the PCR reaction solution.
  • the hybridized amplified DNA and the fluorescently labeled probe dissociate, so that the fluorescence intensity of the well containing the wild type of the KRAS gene also decreases, and does not change from the fluorescence intensity of the empty well. Overlap to form one peak. That is, it can be seen that the fluorescence intensity change accompanying the temperature change is small in the empty well, and the fluorescence intensity change accompanying the temperature change is large in the well containing the wild type of the KRAS gene.
  • FIG. 12C is a graph in which the fluorescence intensity of each well at 50 ° C. is plotted on the horizontal axis and the melting temperature is plotted on the vertical axis.
  • the KRAS gene G12D mutant has a wild-type sequence mutated from 1 base guanine to adenine, and has a melting temperature lower than that of the wild-type.
  • a population having a melting temperature around 65 ° C. is a mutant type.
  • both wild type and G12D mutants have large variations in fluorescence intensity, and it is difficult to distinguish them from empty wells.
  • FIG. 12D is a graph in which the ratio of the fluorescence intensity at 50 ° C. to the fluorescence intensity at 85 ° C. is plotted on the horizontal axis and the melting temperature is plotted on the vertical axis.
  • empty droplets that do not contain the target gene can be identified by the measurement device, and measurement reproducibility and measurement accuracy can be improved.

Abstract

本発明は、新たなデジタルPCRの解析方法を提供することを課題とする。新たなデジタルPCRの解析方法の一実施態様は、蛍光標識プローブまたはDNAインターカレーターと検出対象のDNAを含有するDNA溶液を複数の画分に分割する工程と、前記画分の中で核酸増幅反応を行う工程と、温度変化に伴って蛍光強度を測定する工程と、前記温度変化に伴う前記蛍光強度の変化に基づいて計測されるDNA二重鎖の融解温度を算出する工程と、前記温度変化に伴う第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を算出する工程と、を含む、DNA検出方法である。

Description

デジタルPCRの測定方法および測定装置
 本発明は、デジタルPCRの測定方法および測定装置に関する。
 デジタルPCR(特表2013-521764)は、PCR(米国特許第4683195号;米国特許第4683202号;米国特許第4800159号)やリアルタイムPCR(Genome Res.,vol.10,pp.986-994,1996)などの従来の遺伝子検査において、対象遺伝子が微量なときに測定再現性が低下するという課題を解決する方法として開発された。デジタルPCRを用いると、限界希釈したサンプルを用いてDNAを0(無し)か1(有り)で検出することで微量なDNAを定量できる。
 デジタルPCRの検出方法の一例を以下に示す。まず、限界希釈した検体に、PCRに必要となるDNAポリメラーゼ、プライマー、蛍光標識プローブを加え、オイル中にPCR反応液のドロップレットを作製する。作製したドロップレットは、1分子の対象遺伝子が入っているか、入っていないかのいずれかである。次に、ドロップレット内の対象遺伝子を、PCRにより増幅する。PCR後に各ドロップレットの蛍光強度を測定し、閾値を超える蛍光強度をもつドロップレットの数をカウントすることにより、対象遺伝子を定量することができる。このようなデジタルPCRは、限界希釈した検体を用いるため、PCRの阻害要因となる検体由来成分の影響を抑えることができる。また、検量線を必要としないため、絶対量を直接測定できる。
 通常のPCRでは、反応液中の反応阻害物の存在、テンプレートDNAの二次構造の形成、プライマーの設計不十分などの理由により、反応効率が低下することが知られている。一方、デジタルPCRでは、エンドポイントで測定するため、PCRの反応効率が測定結果に大きく影響しないとされてきた。しかし実際には、エンドポイントで測定しても各ドロップレットのPCR反応効率の不均一性による蛍光強度ばらつきが大きく、デジタルPCRの測定再現性および測定精度を低下させていた。
 そこで、本発明者らは、デジタルPCRの測定再現性および測定精度の向上のため、各ドロップレットのPCR反応効率が不均一でも、PCR増幅産物の融解温度(Tm)を測定することによって、ドロップレット内の対象遺伝子の判別ができる技術を開発した。具体的には、例えば、PCR後のドロップレットを平面配置し、ドロップレット内で増幅した対象遺伝子と蛍光標識プローブの融解温度(Tm)を測定することで、PCRの反応効率が不均一でも融解温度の違いによって対象遺伝子の遺伝子型を同定できるようになった。
 一方、デジタルPCRでは9割のドロップレットが対象遺伝子を含まない空のドロップレットとなるため、対象遺伝子を含まない空のドロップレットを測定装置により見分け、解析対象データから除去することは、測定再現性および測定精度を向上させる上で重要である。しかし、対象遺伝子を含まない空のドロップレットは蛍光標識プローブがハイブリダイゼーションする相手がいないため、融解温度による判別ができない。一方で、対象遺伝子を含まない空のドロップレットを従来のデジタルPCRのように蛍光強度で判別するのも、次のような理由から難しいことがわかってきた。まず、融解曲線分析を行うために用いているモレキュラービーコンという蛍光標識プローブは、従来のデジタルPCRで用いられていたTaqMan(登録商標)プローブのようにPCR中に自身が分解されて増感するような構造をもたないため、対象遺伝子を含み、ポジティブなドロップレットであっても、PCR後の蛍光強度が小さい。次に、各ドロップレットを広く平面配置して蛍光強度を測定するため、光照射時および蛍光取り込み時に面内ばらつきが生じる。これらのことから、ドロップレット内で対象遺伝子が増幅したドロップレットの蛍光強度が小さくなり、ドロップレット全体の蛍光強度ばらつきが大きくなった結果、シグナル(S)/ノイズ(N)比が低くなり、対象遺伝子を含まない空のドロップレットと対象遺伝子を含むドロップレットを蛍光強度で判別する精度が低くなる場合があった。
 そこで、本発明の目的は、融解曲線分析を用いたデジタルPCRにおいて、対象遺伝子を含まない空のドロップレットを測定装置により見分け、解析対象データから除去する新たなデジタルPCRの測定方法および測定装置を提供することである。
 本発明者らは、融解曲線分析を用いたデジタルPCRにおいて、対象遺伝子を含まない空のドロップレットは温度上昇に伴う蛍光強度変化が小さく、対象遺伝子を含むドロップレットは温度上昇に伴う蛍光強度変化が大きいことから、低温時と高温時の蛍光強度比を測定することによって、対象遺伝子を含まない空のドロップレットを精度よく見分けられることを見出し、本発明の完成に至った。
 本発明の一実施態様は、蛍光標識プローブまたはDNAインターカレーターと検出対象のDNAを含有するDNA溶液を複数の画分に分割する工程と、前記画分の中で核酸増幅反応を行う工程と、温度変化に伴って蛍光強度を測定する工程と、前記温度変化に伴う前記蛍光強度の変化に基づいて計測されるDNA二重鎖の融解温度を算出する工程と、前記温度変化に伴う第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を算出する工程と、を含む、DNA検出方法である。このDNA検出方法は、算出した前記蛍光強度の比が所定の閾値以下の画分を、前記検出対象のDNAを含まない画分と特定する工程をさらに含んでもよい。また、算出した前記蛍光強度の比が所定の範囲内にある画分を、前記検出対象のDNAを含む画分と特定する工程をさらに含んでもよい。
 上記いずれかのDNA検出方法において、前記DNA溶液が蛍光標識プローブを含み、前記融解温度が、前記蛍光標識プローブと前記検出対象のDNAとの間で形成される二重鎖の融解温度であってもよい。ここで、前記蛍光標識プローブが、蛍光色素とそのクエンチャーを有してもよい。あるいは、前記DNA溶液がDNAインターカレーターを含み、前記融解温度が、前記検出対象のDNAの二重鎖の融解温度であってもよい。
 上記いずれかのDNA検出方法において、前記複数の画分が平面配置されていてもよい。また、前記DNA溶液を、ドロップレットまたはウェルによって前記複数の画分に分割してもよい。
 本発明の他の実施態様は、DNA溶液中の検出対象のDNAを検出するためのDNA検出装置であって、前記DNA溶液を加温するための加温部と、前記DNA溶液から放出される蛍光の強度を測定するための蛍光測定部と、前記DNA溶液の温度変化に伴う前記蛍光の強度の変化からDNA二重鎖の融解温度を算出し、前期DNA溶液の第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を算出する計算部と、を備える、DNA検出装置である。このDNA検出装置は、前記検出対象のDNAを増幅するための増幅部をさらに備えてもよい。また、前記検出結果を表示するモニターをさらに備えてもよい。
 本発明のさらなる実施態様は、上記いずれかのDNA検出装置などのDNA検出装置に、上記いずれかのDNA検出方法を行わせるためのプログラムである。
 本発明のさらなる実施態様は、上記プログラムを格納する記録媒体である。
==関連文献とのクロスリファレンス==
 本出願は、2018年6月14日付で出願した日本国特許出願2018-113894に基づく優先権を主張するものであり、当該基礎出願を引用することにより、本明細書に含めるものとする。
本発明の一実施態様における融解曲線分析を用いたデジタルPCRにおいて、PCR増幅産物に対し、温度変化に伴う第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を用いて行うDNA検出方法の基本概念を示す図である。 本発明の一実施態様における融解曲線分析を用いたデジタルPCRにおいて、PCR増幅産物の融解温度(Tm)を用いて行うDNA検出方法の基本概念を示す図である。 本発明の一実施態様における、ドロップレットまたはウェルが含む蛍光色素の色と蛍光強度を測定するための蛍光測定部の模式図である。 本発明の一実施態様における、(A)PCR増幅産物の融解温度(Tm)を用いて行うDNA検出方法を用いたデジタルPCR測定結果の一例、(B)PCR増幅産物に対し、温度変化に伴う第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を用いて行うDNA検出方法を用いたデジタルPCR測定結果の一例、を示す図である。 本発明の一実施態様における、温度変化に伴う第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を用いて行うDNA検出方法において、DNAインターカレーターを用いてDNAの融解温度を測定する方法を示す模式図である。 本発明の一実施態様における、温度変化に伴う第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を用いて行うDNA検出方法において、蛍光標識プローブを用いてDNAの融解温度を測定する方法を示す模式図である。 本発明の一実施態様におけるDNA検出方法を行うための装置とその装置で用いるカートリッジを示す模式図である。 図7の装置とカートリッジを用いた測定で融解温度測定を行う方法の一実施態様を示すフローチャートである。 モニターに表示される測定結果の一例である。 モニターに表示される測定結果の一例である。 本発明の一実施例において、蛍光標識プローブを用いてウェル内対象遺伝子の有無を判別する結果を示すグラフである。
 本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的に実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。
(1)DNA検出方法の原理及び効果
 本発明に係るDNA検出方法は、蛍光標識プローブまたはDNAインターカレーターと検出対象のDNAを含有するDNA溶液を複数の画分に分割する工程と、前記画分の中で核酸増幅反応を行う工程と、温度変化に伴って蛍光強度を測定する工程と、前記温度変化に伴う前記蛍光強度の変化に基づいて計測されるDNA二重鎖の融解温度を算出する工程と、を含む。
 ここで、図1に、前記温度変化に伴う第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を算出することによって、DNAを検出する方法の代表的な実施態様において想定される測定結果の例を示した。また、図2に、DNA検出をPCR増幅産物の融解温度(Tm)を用いて行う場合の融解曲線分析を用いたデジタルPCRの測定結果の例を示した。
 融解曲線分析を用いたデジタルPCRでは、蛍光標識プローブとDNAとの融解温度が遺伝子型によって異なることを利用し、遺伝子型の判別を行う。図2の例は、対象遺伝子の野生型と変異型のそれぞれに対応した蛍光標識プローブを用いて、ドロップレット内のDNAの融解温度を測定した結果を模式的に示した図である。ここで、蛍光標識プローブは、例えばモレキュラービーコンを用いることができ、以下モレキュラービーコンを例として、DNA検出方法を詳細に説明する。モレキュラービーコンは、検出対象遺伝子を増幅させるPCRに用いられるプライマーペアの間にある配列に相補的であって、両端に相補的な配列を有し、末端にはそれぞれ蛍光色素と消光色素(クエンチャー)が設けられているオリゴヌクレオチドである。モレキュラービーコンは、検出対象遺伝子とハイブリダイズすると、両末端にある蛍光色素と消光色素が離れて蛍光を発するが、温度上昇に伴って検出対象遺伝子から解離すると、両端の相補的な配列がハイブリダイズしてステムループ構造を形成し、蛍光色素と消光色素が近づいて蛍光色素が消光する。検出対象遺伝子の野生型アレルを含むドロップレット201では、検出対象遺伝子の野生型アレルに対応した蛍光標識プローブがPCRにより増幅したDNAにハイブリダイズして蛍光を発し、野生型アレルの蛍光標識プローブに対応した融解温度が観察される。また、検出対象遺伝子の変異型アレルを含むドロップレット202では、検出対象遺伝子の変異型アレルに対応した蛍光標識プローブがPCRにより増幅したDNAにハイブリダイズして蛍光を発し、変異型アレルの蛍光標識プローブに対応した融解温度が観察される。検出対象遺伝子が含まれない空のドロップレット203は、蛍光が検出されない。こうして、蛍光の有無及び蛍光の種類で、野生型アレルを有する検出対象遺伝子の有無及び変異型アレルを有する検出対象遺伝子の有無を判断できる。
 しかしながら、ドロップレット内のPCRの反応効率はドロップレットごとに均一でないこと、蛍光測定時の測定ばらつきが大きいことなどにより、検出対象遺伝子が含まれるドロップレット201、202からの蛍光強度と、検出対象遺伝子が含まれない空のドロップレット203からの蛍光強度に差がない場合が生じる。そこで、ドロップレット内のDNAに対し、温度変化に伴う蛍光強度変化を測定し、融解曲線分析を行い、融解温度(Tm)を比較することにより、より高精度な遺伝子検出が可能になる。例えば、検出対象遺伝子が含まれない空のドロップレット203の場合、温度変化に伴う蛍光強度変化がないため融解温度は定まらず、不安定な値が生じる。一方、野生型アレルに対応した蛍光標識プローブと変異型アレルに対応した蛍光標識プローブについて、それぞれ異なる波長の蛍光を放出する蛍光色素を用いれば、検出された蛍光色により、野生型アレルを有する遺伝子が存在するのか、変異型アレルを有する遺伝子が存在するのかを決めることができる。あるいは、両方同じ蛍光色素を用いた場合であっても、各蛍光標識プローブの検出対象遺伝子に対する融解温度(Tm)が異なるように、蛍光標識プローブの配列を決めておき、融解曲線分析を行って、Tmを計算することによって、野生型アレルと変異型アレルのどちらが増幅したかを決定することが可能になる。
 このように、デジタルPCRでは、実験者が蛍光強度や融解温度の閾値を設定し、対象遺伝子を含まない空のドロップレットをデータから排除したり、変異の種類ごとにドロップレットの数をカウントしたりすることができる。しかしながら、検出対象遺伝子の野生型アレルを含むドロップレット201と検出対象遺伝子の変異型アレルを含むドロップレット202の蛍光強度はばらつきが大きく、蛍光強度分布が広くなる一方、検出対象遺伝子が含まれない空のドロップレット203の蛍光は弱いので、計算された融解温度のばらつきが大きくなってしまう場合がある。その時、図2に示すように、検出対象遺伝子が含まれるドロップレット201、202のグラフ上での分布と、検出対象遺伝子が含まれない空のドロップレット203のグラフ上での分布が重なってしまい、その部分で、遺伝子の有無が判定できなくなって、測定精度が低下する要因となる。特に、デジタルPCRでは、1ドロップレットに1つか0の対象遺伝子が入るように検体を限界希釈してドロップレットを作製するため、作製されたドロップレットの5―9割は対象遺伝子を含まない空のドロップレット203となり、これらの空のドロップレットと対象遺伝子を含むドロップレット201と202の分布が重なっていると、高度に正確な定量が難しくなる場合がある。
 そこで、低温時と高温時において蛍光標識プローブとDNAとのハイブリダイズによる蛍光強度を測定し、その蛍光強度比を算出すると、図1に示すように、横軸を低温時と高温時の蛍光強度比、縦軸を蛍光標識プローブとDNAの融解温度として計測結果をプロットすることができるようになり、検出対象遺伝子が含まれない空のドロップレット101、検出対象遺伝子の野生型アレルを含むドロップレット102、検出対象遺伝子の変異型アレルを含むドロップレット103を分離することができるようになる。その結果、対象遺伝子を含まない空のドロップレットやPCRの反応効率が不十分なドロップレットを確実に識別することができ、測定再現性および測定精度を向上させることができる。
(2)DNA検出装置の主要な構成
 本発明のDNA検出装置は、DNA溶液中の検出対象のDNAを検出するためのDNA検出装置であって、DNA溶液を加温するための加温部と、DNA溶液から放出される蛍光の強度を測定するための蛍光測定部と、DNA溶液の温度変化に伴う前記蛍光の強度の変化からDNA二重鎖の融解温度融解温度を算出し、DNA溶液の第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を算出する計算部と、を備える。
 DNA溶液は、どのような担体にあってもよく、例えば、オイル中のドロップレットであってもよく、プレートなどのウェル内の溶液であってもよい。図3に、DNA検出装置の一例として、ドロップレットまたはウェル中のDNA溶液が含む蛍光色素の色と蛍光強度を測定するための蛍光測定部を有するDNA検出装置を示すが、本発明のDNA検出装置はこれに限定されない。
 図3Aに示す蛍光測定部の例では、マイクロ流路を用いてドロップレットの蛍光強度を測定する。ドロップレット301がマイクロ流路303中を矢印の方向に流れている。ドロップレット302の位置までドロップレットが流れると、加温部(図示せず)によってドロップレットが加温されつつ、光源304により励起光がドロップレットに照射される。光源304によりドロップレットに含まれる蛍光物質が励起され、発する蛍光を蛍光フィルター305を通してフォトマルチプルメーター306で検出する。検出された蛍光データは、計算部(図示せず)に送られ、そこで蛍光標識プローブとDNAとの融解温度またはDNAの二重鎖の融解温度が算出される。光源304、蛍光フィルター305、フォトマルチプルメーター306で構成される蛍光検出器は、蛍光色素の色ごとに別々に設けてもよいし、図3Aに示すように1つの光源の励起光で励起して2つの蛍光フィルターでそれぞれの蛍光を同時に検出する構成にしてもよい。
 また、図3BおよびCのようにドロップレットを平面配置し、ドロップレットの蛍光色素の色と蛍光強度を測定してもよい。具体的には、例えば、ドロップレット311をドロップレット検出用カートリッジ310に平面配置し、加温部である温調ステージ312の上にセットする。温調装置312でドロップレット検出用カートリッジの温度を変化させ、温度変化に伴うドロップレットの蛍光強度を以下の手順で測定する。まず、光源304からレンズ308、フィルター305およびダイクロイックミラー309を通して、励起光をドロップレット検出用カートリッジ310に平面配置したドロップレット311に照射する。励起光によりドロップレットに含まれる蛍光物質が励起され、発する蛍光をダイクロイックミラー309、フィルター305、レンズ308を通してCCDカメラ307で検出する。検出された蛍光データは、計算部(図示せず)に送られ、そこで増幅産物の融解温度が算出される。図3Aでは、ドロップレットを一つずつ処理する必要があるが、多数のドロップレットを一度に処理できるという点で、図3BおよびCの装置が好ましい。また、図3BおよびCの装置では、温調装置312をDNAの増幅反応にも用いることができる点でも、図3Aより好適である。
 さらに、図3Dのようにドロップレットの代わりにアレイ状に並んだウェルを用いて、1ウェルに1つか0の対象遺伝子が入るように検体を添加し、ウェル内でPCRを行ってウェルの蛍光色素の色と蛍光強度を測定してもよい。具体的には、例えば、ウェル方式検出用カートリッジ313に設けられたウェルに検体を含む反応液を添加後、ウェル内でPCRを行い、加温部である温調ステージ312の上にセットする。温調装置312でウェル方式検出用カートリッジの温度を変化させ、温度変化に伴うウェルの蛍光強度を以下の手順で測定する。まず、光源304からレンズ308、フィルター305およびダイクロイックミラー309を通して、励起光をウェル方式検出用カートリッジ313に平面配置したウェルに照射する。励起光によりウェル内の反応液に含まれる蛍光物質が励起され、発する蛍光をダイクロイックミラー309、フィルター305、レンズ308を通してCCDカメラ307で検出する。検出された蛍光データは、計算部(図示せず)に送られ、そこで増幅産物の融解温度が算出される。図3Dのようにウェルを用いた場合、ドロップレットをドロップレット検出用カートリッジに平面配置する工程なしに、ウェル方式検出用カートリッジ内でPCRから融解曲線分析まで行える。
(3)融解曲線分析方法
 図4Aは、図2で述べたのと同様に、PCR増幅産物の融解温度(Tm)を用いて行うDNA検出方法を用いた場合で、検出した蛍光強度が重なり、検体溶液内の対象遺伝子の有無を判定できない場合がある測定結果の一例を示す模式図である。一方、図4Bは図1で述べたのと同様に、PCR増幅産物に対し、温度変化に伴う第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を用いて行うDNA検出方法を用いたデジタルPCR測定結果の一例で、検体溶液内の対象遺伝子の有無をより精度高く判定できた測定結果の一例を示す模式図である。図5および図6は、図4で検出対象遺伝子の有無を判定できなかった検体溶液に対し、溶液内で増幅したDNAの融解曲線分析を行った結果の一例を示す模式図である。
 図4Aに示すように、融解温度と低温時の蛍光強度により検体溶液内の検出対象遺伝子の遺伝子型判別を行うと、測定結果が検体溶液a404または検体溶液b405の位置にプロットされれば、融解温度の値から溶液a404が検出対象遺伝子の野生型遺伝子を含み、検体溶液b405が検出対象遺伝子の変異型遺伝子を含むと分かる。しかし、検体溶液c406や検体溶液d407の位置に蛍光強度が観察されると、それらの検体溶液が検出対象遺伝子を含むかどうかは測定結果から判断することができない。
 そこで、DNAインターカレーターを用いて検体溶液内で増幅したDNAの融解温度を測定する際に、低温時と高温時の蛍光強度比も算出することによって、図4aで判別できなかった対象遺伝子の有無を判別することができるようになる。具体的な方法は、まず、DNAインターカレーター502をPCR反応液に添加して検体溶液を作製し、PCRなどの核酸増幅反応を行うと、室温程度の温度では検体溶液内で増幅した2本鎖DNA501にDNAインターカレーター502が結合し、強い蛍光を発する。その後、検体溶液の温度が上昇するにつれ、検体溶液内の2本鎖DNA501が解離して1本鎖DNA501となり、DNAインターカレーター502が結合しなくなるため、蛍光強度が減少する。このときの温度変化に対する蛍光強度変化をグラフにプロットした時の結果の一例を図5に示す。なお、温度変化に対する蛍光強度変化の測定は、核酸増幅反応とは独立に(例えば、核酸増幅反応完了後に)、検体溶液を昇温させることによって行ってもよい。
 図5では、検体溶液a404の測定結果が図5C、検体溶液b405の測定結果が図5A、検体溶液c406の測定結果が図5B、検体溶液d407の測定結果が図5Dに示されている。さらに、図5A~Dの蛍光強度変化を温度変化で微分するとそれぞれ図5E~Hのようになり、蛍光強度変化の変極点となる温度が求められ、これがDNA二重鎖の融解温度として算出できる。図4Aでは、検体溶液c406と検体溶液d407は検体溶液が対象遺伝子を含むのかどうか測定結果から判断することができなかったが、温度変化に伴う蛍光強度変化が図5Bは大きく、図5Dは小さいため、図4Bのように低温時と高温時の蛍光強度比を横軸に、融解温度を縦軸にプロットすると検体溶液c406は対象遺伝子の野生型を含み、検体溶液d407は対象遺伝子を含まない空の溶液だと判断できる。
 なお、対象遺伝子の融解温度は、プライマーの設計を変えることでPCR増幅産物の配列や配列の鎖長に依存して制御することができる。
 ここで用いるDNAインターカレーターは、2本鎖DNAと結合することによって蛍光強度が増加し、2本鎖DNAの検出に用いることのできるインターカレーターであれば適用できる。具体的には、SYBR(登録商標) Green IやSYBR Gold、PicoGreen(登録商標)、SYTO(登録商標) Blue、SYTO Green、SYTO Orange、SYTO Red、POPO(登録商標)-1、BOBO(登録商標)-1、YOYO(登録商標)-1、TOTO(登録商標)-1、JOJO(登録商標)-1、POPO-3、LOLO(登録商標)-1、BOBO-3、YOYO-3、TOTO-3、PO-Pro(登録商標)-1、YO-Pro(登録商標)-1、TO-Pro(登録商標)-1、JO-Pro(登録商標)-1、PO-Pro-3、YO-Pro-3、TO-Pro-3、TO-Pro-5、エチジウムブロマイドなどが適用可能である。DNAインターカレーターが熱耐性である場合、PCR反応を行う前からドロップレットに添加しておくことができる。
 図6に示すように、本方法で、DNAインターカレーターの代わりとして、蛍光標識プローブを用いることもできる。蛍光標識プローブは、両端またはその近傍に蛍光色素とそのクエンチャーを有し、両端周辺の配列が相補的になっており、モレキュラービーコンのようなステムループ構造を形成する一方、ループ部分の配列が検出対象遺伝子と相補的になっており、検出対象遺伝子にハイブリダイズできるような構造を有するように設計する。蛍光標識プローブ602は、単独で遊離して存在するとき、ステムループを形成し、蛍光色素603とクエンチャー604が近接しているため、蛍光は発しない。蛍光標識プローブ602をPCR反応が終了した検体溶液に添加すると、室温程度の温度では検体溶液に内で増幅したDNA601に蛍光標識プローブ602のループ部分がアニールし、蛍光色素603とクエンチャー604が離れるため、蛍光標識プローブ602は強い蛍光を発する。その後、検体溶液を加熱すると、DNA601と蛍光標識プローブ602が解離し、蛍光標識プローブ602内でステムループが形成するため蛍光標識プローブ602からの蛍光強度が低下する。さらに検体溶液を加熱すると、蛍光標識プローブ602のステムループも解離するため、蛍光強度が再度増加する。このときの温度変化に対する蛍光強度変化をグラフにプロットした時の結果の一例を図6に示す。なお、この蛍光標識プローブは、PCRのための蛍光標識プローブと共用してもよいが、PCRのための蛍光標識プローブとは別のプローブを作製して用いてもよい。また、温度変化に対する蛍光強度変化の測定は、核酸増幅反応の中で行ってもよく、核酸増幅反応とは独立に(例えば、核酸増幅反応完了後に)、検体溶液を昇温させることによって行ってもよい。
 図6では、検体溶液a404の測定結果が図6C、検体溶液b405の測定結果が図6A、検体溶液c406の測定結果が図6B、検体溶液d407の測定結果が図6Dのようになる。さらに、図6A~Dの蛍光強度変化を温度変化で微分するとそれぞれ図6E~Hのようになり、蛍光強度変化の変極点となる温度が求められ、これが検出対象遺伝子を検出するための蛍光標識プローブとDNAの融解温度となる。図4Aでは、検体溶液c406と検体溶液d407は検体溶液が検出対象遺伝子を含むのかどうか測定結果から判断することができなかったが、温度変化に伴う蛍光強度変化が図6Bは大きく、図6Dは小さいため、図4Bのように低温時と高温時の蛍光強度比を横軸に、融解温度を縦軸にプロットすると検体溶液c406は検出対象遺伝子の野生型を含み、検体溶液d407は検出対象遺伝子を含まない空の検体溶液だと判断できる。
 なお、検出対象遺伝子を検出するための蛍光標識プローブの融解温度は、プローブの配列や鎖長を変えることで制御することができる。また、Peptide Nucleic Acid(PNA)やLocked Nucleic Acid(LNA)のような人工DNAを利用することで、融解温度を制御することができる。
 ここで用いる蛍光標識プローブ602の蛍光色素603とクエンチャー604の組み合わせは、一般的にリアルタイムPCRに用いられている組み合わせであれば特に限定されず、蛍光色素603がFAM、VIC、ROX、Cy3、Cy5など、クエンチャー604がTAMRA、BHQ1、BHQ2、BHQ3などが例示できる。
 蛍光標識プローブ602が認識する配列は、検出対象遺伝子と同じ遺伝子上にあっても、異なる遺伝子上にあってもよく、検出対象の遺伝子と1塩基だけ異なる配列を有する遺伝子、例えば同じ遺伝子の野生型と変異型であってもよい。一例として、肺がんの遺伝子検査を行う場合であれば、分子標的薬の効果を予測するため、ALK融合遺伝子とEGFR遺伝子変異の有無を判定する。その時、ALK融合遺伝子とEGFR遺伝子の各々を認識する配列であってもよいし、EGFRのL858R変異型とその野生型を認識する配列であってもよい。
(4)DNA検出装置の他の構成
 本発明の一実施態様にかかるDNA検出装置は、検出対象のDNAを含有するDNA溶液をオイルに加えてドロップレットを作製するためのドロップレット作製部、及び/又はドロップレットに対してDNAを増幅するための増幅部を含んでもよい。
 図7は、本発明の方法を行うための装置とその装置で用いるカートリッジの一例を示す図である。図7Aに示すように、デジタルPCR測定装置721はドロップレット作製部701、増幅部としてのサーマルサイクラー702、ドロップレット検出部703、モニター704、制御部724から構成される。ドロップレット作製部701は、図7Bに示すドロップレット作製用カートリッジ705をセットして用いる。ドロップレット作製用カートリッジ705は、オイル供給口715、PCR反応液導入口716、ドロップレット排出口717をもつ。ドロップレット検出部703は、図7Cに示すドロップレット検出用カートリッジ707を温調装置722の上にセットして用いる。ドロップレット検出用カートリッジ707は、オイル供給口718、ドロップレット導入口719、液溜723、廃液排出口720をもつ。ドロップレット作製用カートリッジのオイル供給口715はデジタルPCR測定装置721と流体的に接続され、ポンプ709によってオイル713が供給される。ドロップレット作製用カートリッジのPCR反応液導入口716はデジタルPCR測定装置721と流体的に接続され、ポンプ708によって窒素ガスや空気などのガスまたはオイル712が供給される。ドロップレット作製用カートリッジのドロップレット排出口717はデジタルPCR測定装置721と流体的に接続され、サーマルサイクラー702にセットしたマイクロチューブ706へとつながっている。ドロップレット検出用カートリッジ707のオイル供給口718はデジタルPCR測定装置721と流体的に接続され、ポンプ710によってオイル713が供給される。ドロップレット検出用カートリッジ707のドロップレット導入口719はデジタルPCR測定装置721と流体的に接続され、サーマルサイクラー702にセットしたマイクロチューブ706へとつながっている。ドロップレット検出用カートリッジ707の廃液排出口720は、デジタルPCR測定装置721と流体的に接続され、ポンプ711によって廃液溜め714にドロップレット検出用カートリッジ707内の廃液が排出される。ポンプは、ペリスタポンプであっても、シリンジポンプであっても、ダイアフラムポンプであってもよい。モニター704は、測定結果やメッセージを表示するための表示部であり、ユーザーが操作を入力する入力部でもある。
 本発明の他の実施態様にかかるDNA検出装置は、検出対象のDNAを含有するDNA溶液をチップにアレイ上に並んだウェルに塗布するためのチップ作製部、及び/又はウェル内でDNAを増幅するための増幅部を含んでもよい。
(5)融解温度測定方法
 図7の装置とカートリッジ、及びDNAインターカレーターまたはモレキュラービーコンを用いて融解温度測定を行う方法の一例を、図8のフローチャートを参考にしながら説明する。まず、DNAを含む生体試料由来の検体溶液を、DNAポリメラーゼ、プライマー、DNAインターカレーターまたはモレキュラービーコン、デオキシリボヌクレオチド類、緩衝液を含むPCR反応液に添加する(S801)。このPCR反応液をドロップレット作製用カートリッジ705のPCR反応液導入口716に添加する(S802)。ドロップレット作製用カートリッジ705をデジタルPCR測定装置721のドロップレット作製部701にセットする。オイル供給口715からオイル713を、PCR反応液導入口716からオイル712を添加する(S803)と、ドロップレット作製用カートリッジ705内のオイルとPCR反応液の流路が交わる部位において、ドロップレットが生成する。生成したドロップレットは、ドロップレット排出口717から排出され、サーマルサイクラー内にあらかじめ設置しておいたマイクロチューブ706に移動し、チューブ内に貯蔵される(S804)。所定数のドロップレットが得られたところで、マイクロチューブ706の蓋を閉め、サーマルサイクラーの温度制御によりPCRを行う(S805)。変性工程、伸長工程、アニーリング工程のサイクルを繰り返すことで、DNAが増幅するとともに、DNAインターカレーターの場合は増幅したDNAにインターカレートし、モレキュラービーコンの場合は増幅したDNAにハイブリダイズすることによって、蛍光強度が高くなる。各工程の温度や時間、サイクル数などの反応条件は、当業者が容易に設定することができる。PCR後、温度を室温へと下げると合成したDNAは2本鎖を形成する。PCR後、ドロップレット検出部703にあらかじめ設置しておいたドロップレット検出用カートリッジのドロップレット導入口719からドロップレットを、オイル供給口718からオイル713を添加する(S806)。ドロップレット検出部703において、ドロップレット検出用カートリッジの液溜723に溜めたドロップレットの蛍光標識プローブの蛍光強度を測定する(S807)。温調装置722によりドロップレット検出用カートリッジの液溜723を50℃から85℃まで昇温し、DNAインターカレーターまたはモレキュラービーコンからの蛍光強度を測定する(S808)。検出された蛍光データは、計算部(図示せず)に送られ、そこで、昇温による蛍光強度変化が温度変化で微分され、蛍光強度変化の変極点が融解温度として算出される(S809)。40℃と95℃における蛍光強度の比が閾値以下のドロップレットを空と判定する(S810)。蛍光標識プローブの蛍光強度が閾値以上および融解温度が所定の範囲内のドロップレットをカウントする(S811)。対象遺伝子を含むドロップレットの数と空のドロップレットの数をモニターに表示する(S812)。なお、所定の蛍光強度の閾値および融解温度の所定の範囲はあらかじめ、パイロット実験などで作業者が決めておくことができる。
 用いる検体溶液は特に限定されないが、検出対象のDNAを含む試料であればよく、動植物の体液や組織、細胞、排泄物などの生体試料や、土壌サンプルなど真菌や細菌などが含まれる試料が例示できる。体液としては血液、唾液、髄液などが例示でき、血液中には存在するセルフリーDNA(cfDNA)や血中循環腫瘍DNA(ctDNA)が含まれる。組織としては、外科手術や生検法によって得られた疾患の患部(例えば、乳房や肝臓などのがん組織)が例示できる。すでに固定された組織でもよく、例えばホルマリン固定パラフィン包埋組織切片(FFPE)でもよい。細胞としては、生検法によって採取した患部またはその付近の細胞や、血液中を循環する血中循環腫瘍細胞などが例示できる。これらの検体の前処理は特に限定されず、生体や環境などから採取後、懸濁液に添加してホモジネートしたり、あるいは溶解液で溶解させたりしたものをそのまま用いてもよいが、それらに含まれる核酸を抽出したり、精製したものを用いることが好ましい。
 オイルはドロップレットを構成するPCR反応液に不溶性もしくは難溶性である化学的に不活性な物質であり、また、PCRのような高温での温度変化に対して安定である物質が好ましく、フッ素系オイル、シリコーン系オイル、炭化水素系オイルなどが使用可能である。フッ素系オイルとしては、例えばPerfluorocarbonやHydrofluoroetherなどが挙げられる。フッ素系オイルは、炭素鎖が長いほうが揮発性が低いので好ましい。また、フッ素系オイルは比重が1.7超であり、PCR反応液の溶媒である水の比重1に比べて重いため、作製したドロップレットはオイルに浮く。シリコーン系オイルとしては、例えばPolyphenylmethylsiloxaneやTrimethylsiloxysilicateなどが挙げられる。シリコーン系オイルはフッ素系オイルと異なり、比重が0.98程度でPCR反応液の溶媒である水の比重に近く、作製したドロップレットはオイル中に均一に分散する。炭化水素系オイルとしては、例えばミネラルオイルや流動パラフィン、ヘキサデカンなどが挙げられる。炭化水素系オイルは比重が0.84程度でPCR反応液の溶媒である水の比重よりも軽いため、作製したドロップレットはオイルに沈む。
 このオイルは、界面活性剤を添加して用いてもよい。ここで界面活性剤の種類は特に限定されないが、Tween 20、Tween 80、Span80、Triton X-100などが適用可能である。
(6)結果の表示
 図9および図10は、モニターに表示される測定結果のイメージの一例である。図9に示すように、がん関連遺伝子の種類や変異の種類ごとにカウントされた検体溶液の数が表示されてもよいし、図10に示すように、がん関連遺伝子の種類や変異の種類ごとにカウントされた検体溶液の割合が表示されてもよい。モニターに表示される結果は、図9や図10のような検体溶液の数や割合だけでなく、図1のような低温時と高温時の蛍光強度比、融解温度の2軸で検体溶液の計測値をプロットしたグラフを含んでいてもよい。また、蛍光標識プローブの蛍光強度または融解温度に対する検体溶液の数をプロットしたヒストグラムを含んでいてもよい。ユーザーがそのグラフやヒストグラムを見て、蛍光標識プローブの蛍光強度や蛍光強度比の閾値および/または融解温度の範囲の設定を変えて、蛍光強度の閾値内及び融解温度の範囲内にある検体溶液の数を再度カウントすることもできる。
 なお、上述したように、検体溶液はドロップレットやウェル中の溶液として扱われるので、検体溶液数の代わりに、ドロップレット数やウェル数。として表されてもよい。
(6)プログラム
 本発明の一実施態様は、DNA検出装置に、DNA検出方法を行わせるためのプログラムである。ここでDNA検出装置は、(2)で詳述した装置を用い、DNA検出方法として、(1)で詳述した方法を実行する。
 また、このプログラムを格納する記録媒体も、本発明の実施形態の一つである。
 本実施例では、蛍光標識プローブを用いて、ウェル内のDNAの融解温度を測定した結果を示す。
 まず、KRAS遺伝子の野生型およびG12D変異型のゲノムDNA(最終濃度67分子/μL)を用意し、PCRに必要となるフォワードプライマー(最終濃度0.25μM)、リバースプライマー(最終濃度0.5μM),野生型に対応した蛍光標識プローブ(最終濃度0.5μM)、G12D変異型に対応した蛍光標識プローブ(最終濃度0.5μM)、及び1xマスターミックス(DNAポリメラーゼ,dNTPを含む)を加え、PCR反応液を調製した。このとき、蛍光標識プローブの相補DNA鎖が過剰に増幅するようにプライマーペアの濃度は非対称になるように添加した。プライマー及びプローブの配列は以下のとおりである。なお、蛍光標識プローブはいずれも、両端に相補鎖を形成する特殊分子を含む。また、5’末端に蛍光色素としてFAM、3’末端にクエンチャーとしてBHQ-1が結合している。
フォワードプライマー:5'‐AGGCCTGCTGAAAATGACTGAATAT‐3' (配列番号1)
リバースプライマー:5'‐GCTGTATCGTCAAGGCACTCTT‐3' (配列番号2)
野生型に対応した蛍光標識プローブ:5'‐TTGGAGCTGGTGGCGT‐3' (配列番号3)
変異型に対応した蛍光標識プローブ:5'‐TTGGAGCTGATGGCGT‐3' (配列番号4)
 その後、各ウェルに対し、KRAS遺伝子の野生型またはG12D変異型のDNAのいずれかが1個入るか、どちらも入らないようにするため、15μLのPCR反応液を入れて、PCRによりDNAを増幅した。PCRの反応は,95℃、10分処理後、(95℃,15秒→60℃,75秒)を45サイクル行い、最後に98℃、2分処理をした。反応後、ウェルが設けられたチップを温調ステージ上で加熱しながら各ウェルの蛍光強度変化を観察し、融解曲線の測定および解析を行った。
 図12Aは、PCR反応液にKRAS遺伝子の野生型のみを添加した際の50℃における蛍光強度のヒストグラムを示したものである。50℃では、KRAS遺伝子の野生型を含むウェルでは増幅したDNAと蛍光標識プローブがハイブリダイズして蛍光を発するため、空のウェルとKRAS遺伝子の野生型を含むウェルの2つのピークが観察される。しかし、KRAS遺伝子の野生型を含むウェルのピークは高さが低くブロードなため、空のウェルとの判別は難しい。
 図12Bは、PCR反応液にKRAS遺伝子の野生型のみを添加した際の85℃における蛍光強度のヒストグラムを示したものである。85℃では、ハイブリダイズした増幅したDNAと蛍光標識プローブが解離するため、KRAS遺伝子の野生型を含むウェルの蛍光強度も低くなり、空のウェルの蛍光強度と変わらなくなるため、それぞれに対応するピークが重なり、1つのピークとなる。すなわち、空のウェルでは温度変化に伴う蛍光強度変化が小さく、KRAS遺伝子の野生型を含むウェルでは温度変化に伴う蛍光強度変化が大きいことが分かる。
 そこで、図12Cのように、85℃の蛍光強度に対する50℃の蛍光強度の比を用いてヒストグラムを作成すると、空のウェルとKRAS遺伝子の野生型を含むウェルのピークを明確に分離することができる。
 次に、KRAS遺伝子の野生型とG12D変異型を混合し、遺伝子型の判別を行った。反応条件は、上記と同じで行った。図12Cは、各ウェルの50℃のときの蛍光強度を横軸に、融解温度を縦軸にプロットしたグラフである。蛍光強度が4000のあたりに空のウェルの集団があり、蛍光強度が4000から14000のあたりにKRAS遺伝子の野生型とG12D変異型を含むウェルの集団がある。KRAS遺伝子のG12D変異型は、野生型の配列が1塩基グアニンからアデニンに変異しており、野生型に比べて融解温度が低いので、融解温度が68℃付近に見られる集団が野生型で、融解温度が65℃付近に見られる集団が変異型である。しかし、野生型もG12D変異型も蛍光強度のばらつきが大きく、空のウェルと判別するのが難しい部分がある。
 図12Dは、85℃の蛍光強度に対する50℃の蛍光強度の比を横軸に、融解温度を縦軸にプロットしたグラフである。85℃の蛍光強度に対する50℃の蛍光強度の比を横軸に用いた結果、KRAS遺伝子を含むウェルの横軸方向のばらつきが小さくなり、空のウェル、野生型を含むウェル、G12D変異型を含むウェルの集団を明確に判別できる。
 このように、低温時と高温時の蛍光強度比を用いることで、対象遺伝子を含まない空のドロップレットを測定装置により見分け、測定再現性および測定精度の向上を図ることができる。
 本発明によって、融解曲線分析を用いたデジタルPCRにおいて、対象遺伝子を含まない空のドロップレットを精度よく特定でき、測定再現性および測定精度の高い、新たなデジタルPCRの解析方法を提供することができるようになった。
101 野生型の遺伝子を含むドロップレット
102 変異型の遺伝子を含むドロップレット
103 空のドロップレット
201 野生型の遺伝子を含むドロップレット
202 変異型の遺伝子を含むドロップレット
203 空のドロップレット
301 対象遺伝子を含むドロップレット
302 対象遺伝子を含まないドロップレット
303 マイクロ流路
304 光源
305 フィルター
306 フォトマルチプルメーター
307 CCD
308 レンズ
309 ダイクロイックミラー
310 ドロップレット検出用カートリッジ
311 ドロップレット
312 温調装置
313 ウェル方式検出用カートリッジ
314 対象遺伝子を含むウェル
315 対象遺伝子を含まないウェル
401 野生型の遺伝子を含むドロップレット 
402 変異型の遺伝子を含むドロップレット 
403 空のドロップレット
404 ドロップレットa
405 ドロップレットb
406 ドロップレットc
407 ドロップレットd
501 DNA
502 DNAインターカレーター
503 融解温度 
601 DNA
602 蛍光標識プローブ
603 蛍光色素
604 クエンチャー
605 融解温度 
701 ドロップレット作製部
702 サーマルサイクラー
703 ドロップレット検出部
704 モニター
705 ドロップレット作製用カートリッジ
706 マイクロチューブ
707 ドロップレット検出用カートリッジ
708~711 ポンプ
712 オイル
713 オイル
714 廃液溜め
715 オイル供給口
716 PCR反応液導入口
717 ドロップレット排出口
718 オイル供給口
719 ドロップレット導入口
720 廃液排出口
721 デジタルPCR測定装置
722 温調装置
723 液溜
724 制御部

Claims (14)

  1.  蛍光標識プローブまたはDNAインターカレーターと検出対象のDNAを含有するDNA溶液を複数の画分に分割する工程と、
     前記画分の中で核酸増幅反応を行う工程と、
     温度変化に伴って蛍光強度を測定する工程と、
     前記温度変化に伴う前記蛍光強度の変化に基づいて計測されるDNA二重鎖の融解温度を算出する工程と、
     前記温度変化に伴う第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を算出する工程と、
    を含む、DNA検出方法。
  2.  算出した前記蛍光強度の比が所定の閾値以下の画分を、前記検出対象のDNAを含まない画分と特定する工程をさらに含む、請求項1に記載のDNA検出方法。
  3.  算出した前記蛍光強度の比が所定の範囲内にある画分を、前記検出対象のDNAを含む画分と特定する工程をさらに含む、請求項1または2に記載のDNA検出方法。
  4.  前記DNA溶液が蛍光標識プローブを含み、
     前記融解温度が、前記蛍光標識プローブと前記検出対象のDNAとの間で形成される二重鎖の融解温度である、請求項1~3のいずれか1項に記載のDNA検出方法。
  5.  前記蛍光標識プローブが、蛍光色素とそのクエンチャーを有する、請求項4に記載のDNA検出方法。
  6.  前記DNA溶液がDNAインターカレーターを含み、
     前記融解温度が、前記検出対象のDNAの二重鎖の融解温度である、請求項1~3のいずれか1項に記載のDNA検出方法。
  7.  前記複数の画分が平面配置されていることを特徴とする、請求項1~6に記載のDNA検出方法。
  8.  前記DNA溶液を、ドロップレットまたはウェルによって前記複数の画分に分割する、請求項1~7に記載のDNA検出方法。
  9.  DNA溶液中の検出対象のDNAを検出するためのDNA検出装置であって、
     前記DNA溶液を加温するための加温部と、
     前記DNA溶液から放出される蛍光の強度を測定するための蛍光測定部と、
     前記DNA溶液の温度変化に伴う前記蛍光の強度の変化からDNA二重鎖の融解温度融解温度を算出し、前期DNA溶液の第1の温度の蛍光強度に対する、第1の温度より低い第2の温度の蛍光強度の比を算出する計算部と、
    を備えることを特徴とする、DNA検出装置。
  10.  前記検出対象のDNAを増幅するための増幅部をさらに備えることを特徴とする、請求項9に記載のDNA検出装置。
  11.  前記検出結果を表示するモニターをさらに備えることを特徴とする、請求項9または10に記載のDNA検出装置。
  12.  DNA検出装置に、請求項1~8のいずれか1項に記載のDNA検出方法を行わせるためのプログラム。
  13.  前記検出装置は、請求項9~11のいずれか1項に記載の検出装置である、請求項12に記載のプログラム。
  14.  請求項12または13に記載のプログラムを格納する記録媒体。
PCT/JP2019/019946 2018-06-14 2019-05-20 デジタルpcrの測定方法および測定装置 WO2019239805A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/973,990 US20210130877A1 (en) 2018-06-14 2019-05-20 Method and device for digital pcr measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-113894 2018-06-14
JP2018113894A JP7066540B2 (ja) 2018-06-14 2018-06-14 デジタルpcrの測定方法および測定装置

Publications (1)

Publication Number Publication Date
WO2019239805A1 true WO2019239805A1 (ja) 2019-12-19

Family

ID=68842474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019946 WO2019239805A1 (ja) 2018-06-14 2019-05-20 デジタルpcrの測定方法および測定装置

Country Status (3)

Country Link
US (1) US20210130877A1 (ja)
JP (1) JP7066540B2 (ja)
WO (1) WO2019239805A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220588A (zh) * 2020-03-24 2020-06-02 哈尔滨工业大学(威海) 一种基于油膜荧光亮度的流场辐聚辐散测量方法
WO2020189197A1 (ja) * 2019-03-19 2020-09-24 株式会社日立製作所 デジタルpcr計測装置
WO2023218588A1 (ja) * 2022-05-12 2023-11-16 株式会社日立ハイテク 計測デバイスおよび測定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4092134A4 (en) * 2020-01-16 2023-10-04 Hitachi High-Tech Corporation METHOD AND SYSTEM FOR DNA DETECTION

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511434A (ja) * 1996-06-06 2000-09-05 ウィスコンシン アラムニ リサーチ ファンデーション 人工的ミスマッチハイブリダイゼーション
JP2010529954A (ja) * 2007-05-22 2010-09-02 ノバルティス アーゲー Fgf21関連障害を処置、診断および検出する方法
JP2012029689A (ja) * 2010-07-07 2012-02-16 Arkray Inc 核酸の存在比測定装置、核酸の存在比測定方法、核酸の存在比測定プログラム、判定方法、及び核酸の存在比測定キット
JP2013521763A (ja) * 2010-02-10 2013-06-13 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 肺癌検出用唾液バイオマーカー
WO2018128013A1 (ja) * 2017-01-05 2018-07-12 株式会社日立製作所 Pcrの測定方法および測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11915795B2 (en) * 2016-12-23 2024-02-27 The Regents Of The University Of California Method and device for digital high resolution melt
KR101899371B1 (ko) * 2017-07-25 2018-10-29 (주)엔바이오텍 핵산 복합체 페어, 핵산 복합체 페어를 포함하는 pcr용 키트, 및 핵산 복합체 페어를 이용한 타겟 검출 방법
WO2023023533A1 (en) * 2021-08-19 2023-02-23 Luminex Corporation Digital amplification assay analysis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511434A (ja) * 1996-06-06 2000-09-05 ウィスコンシン アラムニ リサーチ ファンデーション 人工的ミスマッチハイブリダイゼーション
JP2010529954A (ja) * 2007-05-22 2010-09-02 ノバルティス アーゲー Fgf21関連障害を処置、診断および検出する方法
JP2013521763A (ja) * 2010-02-10 2013-06-13 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 肺癌検出用唾液バイオマーカー
JP2012029689A (ja) * 2010-07-07 2012-02-16 Arkray Inc 核酸の存在比測定装置、核酸の存在比測定方法、核酸の存在比測定プログラム、判定方法、及び核酸の存在比測定キット
WO2018128013A1 (ja) * 2017-01-05 2018-07-12 株式会社日立製作所 Pcrの測定方法および測定装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FRALEY, S. I. ET AL.: "Universal digital high- resolution melt: a novel approach to broad-based profiling of heterogeneous biological samples", NUCLEIC ACIDS RESEARCH, vol. 41, no. 18, 2013, pages e175, XP055236116, DOI: 10.1093/nar/gkt684 *
SINHA, M. ET AL.: "A High-Resolution Digital DNA Melting Platform for Robust Sequence Profiling and Enhanced Genotype Discrimination", SLAS TECHNOLOGY, vol. 23, no. 6, 13 April 2018 (2018-04-13), pages 580 - 591, XP055664279 *
TANAKA, J. ET AL.: "KRAS genotyping by digital PCR combined with melting curve analysis", SCIENTIFIC REPORTS, vol. 9, February 2019 (2019-02-01), pages 2626, XP055664276 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189197A1 (ja) * 2019-03-19 2020-09-24 株式会社日立製作所 デジタルpcr計測装置
CN111220588A (zh) * 2020-03-24 2020-06-02 哈尔滨工业大学(威海) 一种基于油膜荧光亮度的流场辐聚辐散测量方法
CN111220588B (zh) * 2020-03-24 2023-05-16 哈尔滨工业大学(威海) 一种基于油膜荧光亮度的流场辐聚辐散测量方法
WO2023218588A1 (ja) * 2022-05-12 2023-11-16 株式会社日立ハイテク 計測デバイスおよび測定方法

Also Published As

Publication number Publication date
US20210130877A1 (en) 2021-05-06
JP7066540B2 (ja) 2022-05-13
JP2019213513A (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2019239805A1 (ja) デジタルpcrの測定方法および測定装置
US20240102088A1 (en) Pcr measuring method and measurement device
JP7245734B2 (ja) デジタルpcrの測定方法および測定装置
JP4740237B2 (ja) 単分子増幅及びdna長の検出
EP3004391B1 (en) Methods for sequencing in emulsion based microfluidics
JP4395133B2 (ja) Dnaの単一分子増幅および検出
JP5707132B2 (ja) コピー数変動の決定、方法およびシステム
US20090317798A1 (en) Analysis using microfluidic partitioning devices
JP2009542210A (ja) マイクロチャネル内のリアルタイムpcr
JP2010538614A5 (ja)
Hou et al. Droplet-based digital PCR (ddPCR) and its applications
CN107636167A (zh) 靶核酸和变异体的检测
WO2018008083A1 (ja) Dna検出方法およびそのための装置
JP7016382B2 (ja) ドロップレットデジタルpcrの測定方法および測定装置
JP7432622B2 (ja) Dna検出方法およびdna検出システム
WO2022259334A1 (ja) Dna検出方法およびdna検出システム
JP2016189704A (ja) 遺伝子変異の検出方法及びそれに用いる蛍光標識オリゴヌクレオチド
JP2019533474A (ja) 高速核酸融解分析

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820180

Country of ref document: EP

Kind code of ref document: A1