WO2019238656A1 - Procédé de préparation d'un matériau composite lto/carbone utilisé comme matériau d'électrode négative pour batterie li-ion - Google Patents

Procédé de préparation d'un matériau composite lto/carbone utilisé comme matériau d'électrode négative pour batterie li-ion Download PDF

Info

Publication number
WO2019238656A1
WO2019238656A1 PCT/EP2019/065173 EP2019065173W WO2019238656A1 WO 2019238656 A1 WO2019238656 A1 WO 2019238656A1 EP 2019065173 W EP2019065173 W EP 2019065173W WO 2019238656 A1 WO2019238656 A1 WO 2019238656A1
Authority
WO
WIPO (PCT)
Prior art keywords
lto
carbon
electrode
composite material
alginic acid
Prior art date
Application number
PCT/EP2019/065173
Other languages
English (en)
Inventor
Hubert Mutin
Sanghoon Kim
Johan Alauzun
Nicolas Brun
Laure Monconduit
Nicolas LOUVAIN
Original Assignee
Centre National De La Recherche Scientifique
Université De Montpellier
Ecole Nationale Supérieure De Chimie De Montpellier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Université De Montpellier, Ecole Nationale Supérieure De Chimie De Montpellier filed Critical Centre National De La Recherche Scientifique
Publication of WO2019238656A1 publication Critical patent/WO2019238656A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Li 4 Ti50i2 is widely studied as a negative electrode alternative to graphite for high power lithium-ion batteries (electric vehicle in particular), due to its intrinsic characteristics such as low cost, zero volume variation during intercalation, very good cycle stability, etc.
  • the low electronic conductivity of the LTO decreases the performance at high power.
  • Li + provided by the nanostructured LTO.
  • the syntheses of these nanostructured materials are generally based on sophisticated multi-stage syntheses, which cannot be extended to the industrial scale.
  • Solid phase synthesis is a common method for the synthesis of electrode material which can be adapted to industrialization. This method involves mixing solid precursors by grinding, followed by heat treatment such as calcination or pyrolysis at high temperature.
  • citric and maleic acid lead to impurities
  • citric acid, maleic acid and polyvinyl alcohol lead to poorer capacity than PAA.
  • approximately one equivalent of LiOH must be added to dissolve the PAA during the synthesis, which makes it difficult to control the carbon level according to the method described by the authors.
  • the present invention provides a process for the synthesis of LTO / carbon nanocomposites by a “one pot” type method, using an expanded hydrogel of alginic acid as carbon source, lithium acetate and TiO 2 nanoparticles as precursors of the LTO phase. Said method results in the formation of a high purity LTO phase and in the uniform deposition of carbon on the LTO nanoparticles. The electrochemical performance of the LTO / carbon nanocomposites thus obtained is significantly improved compared to commercial LTO.
  • the present invention therefore relates to a process for the preparation of a Li 4 Ti 5 O 12 (LTO) / carbon composite material, said process comprising:
  • TiO 2 is in the form of a powder of nanoparticles, possibly agglomerated.
  • the heat treatment of step ii) is a pyrolysis.
  • said pyrolysis can be carried out up to a temperature of approximately 800 ° C., for a period of between two and five hours, typically by heating at the speed of 1 ° C. min ⁇ 1 , under a controlled atmosphere, such as '' an atmosphere of argon in particular
  • step (Supra) comprising dissolving LiOH and PAA, or dissolving citric acid, maleic acid or polyvinyl alcohol in water
  • alginic acid is not soluble in water and the mixture obtained in step (i) generally does not allow it to be heated to extract the water present.
  • the method comprises step (i) using TiO 2 , LiOAc and alginic acid.
  • the method according to the invention advantageously comprises the freeze-drying step between steps i) and ii).
  • the process for preparing the invention therefore comprises, in stages i) and ii) the step of extracting the water present in the mixture, in particular by lyophilization.
  • the alginic acid hydrogel used in step i) can in particular be obtained by mixing alginic acid and water, under heating, in particular at a temperature between 70 and 100 ° C., then by cooling, to a temperature in particular between 0 and 10 ° C.
  • the heating phase can be carried out for variable times, depending on the quantities of alginic acid and water used, typically of the order of a few hours, in particular between two and three hours.
  • the cooling phase can be carried out for variable durations, in particular durations sufficient to obtain the desired hydrogel structure.
  • the present invention also relates to the Li 4 Ti 5 O 12 (LTO) / carbon composite material capable of being obtained by the process according to the invention.
  • the composite material of the invention is typically characterized in that it consists of LTO in the form of nanoparticles or aggregates of nanoparticles, and carbon, with a homogeneous distribution of carbon on the surface of the LTO nanoparticles , or on the surface of said aggregates.
  • the LTO / C composite material comprises between 3 and 20% by weight of carbon, typically between 3 and 9% of carbon, in particular between 3 and 6% of carbon by weight.
  • the preparation process comprises the mixture of TiO 2 and LiOAc in equal parts, by weight. TiO 2 and LiOAc are added at concentrations of between 30 and 50% by weight, based on the total mass of the mixture from step i) TiO 2 / LiOAc / hydrogel.
  • the concentration of the hydrogel in the mixture of step i) is generally between 10 and 25% by weight, based on the total mass of the mixture of step i) TiO 2 / LiOAc / hydrogel.
  • the present invention also relates to the electrode material comprising the LTO / carbon composite material of the invention, and one or several electrode formulation agents, which can in particular be chosen from binders, conductive agents and their mixtures.
  • binder of PVDF, sodium carboxymethylcellulose (CMC), or sodium alginate.
  • CMC sodium carboxymethylcellulose
  • a conductive agent mention may in particular be made of conductive carbon black, such as super P, Super C65 or acetylene black.
  • the material also incorporates composite material, carbon black.
  • the carbon black is added in an amount such that the total carbon content in the electrode material is between 3 and 10% by weight, in particular between 3 and 6% of carbon.
  • the present invention also relates to a negative electrode comprising the electrode material according to the invention.
  • the present invention also relates to an electrochemical cell comprising the electrode according to the invention.
  • the present invention relates to the process for the preparation of an electrode according to the invention, said process comprising the step of mixing the composite material according to the invention with one or more optional electrode formulation agents, in a solvent, then the ribbon casting of the mixture obtained on a current collector.
  • NMP N-methyl-2-pyrrolidone
  • DMF N, N-dimethylformamide
  • Copper is generally used as a current collector.
  • FIG. 1 represents the X-ray diffraction spectra of the LTO / C nanocomposites of the invention.
  • FIG. 2 represents the images by scanning electron microscopy of the nanocomposite LTO / C-9.
  • FIG. 3 represents the images by transmission electron microscopy of the nanocomposite LTO / C-3 with a mapping by energy dispersion spectrometry (EDX), confirming a homogeneous dispersion of carbon on the LTO particles.
  • EDX energy dispersion spectrometry
  • Figure 4 shows the flow capacity and cycle performance of LTO / C electrode materials compared to the commercial T-LTO material and the LTO material.
  • the solid and hollow symbols refer to reduction (discharge) and oxidation (charge), respectively.
  • FIG. 5 represents the flow capacity (a) and the cyclability, the long-term cycle performance (b) of the LTO / C-3 electrode.
  • TiO 2 The titanium oxide nanoparticles (TiO 2 , anatase> 99%) were purchased from Tronox. Lithium acetate di hydrate (LiOAc> 98%) and alginic acid from brown algae were purchased from Sigma-Aldrich. Super P (> 99%) was purchased from Alfa Aesar. For comparison, a commercially available sub-micron LT O powder (denoted T-LTO) was obtained from Targray (Canada).
  • the carbon black powders were dried in an oven at 65 ° G before use. All other reagents were used without further purification.
  • LTO / C nanocomposites having various carbon contents were synthesized by a “one pot” reaction in the solid state.
  • an LTO / Carbon nanocomposite with 3% by weight of carbon was prepared as follows:
  • alginic acid 200 mg was gelled in water (10 mL) by heating at 90 ° C for 2.5 h, followed by demotion at 4 ° C for 24 h.
  • Electrode suspensions with 3 different formulations were prepared using the active material, Super P (conductive carbon black) and PVDF (binder) in a mass ratio of 94: 0: 6, 91: 3: 6 or 88: 6: 6 by increasing the proportion of carbon black. These electrodes are then called LTO / Cx-CB-y, where x represents the carbon content in the nanocomposite LTO / C, y represents the amount of Super P added in the electrode formulation (for example LTO / C-3- CB -6).
  • NMP N-methyl-2-pyrrolidone
  • the suspension is mixed using an agate grinding jar (1 h at 500 rpm), then poured uniformly at 150 pm on a copper collector (0.018mm,> 99.96%, Prometor) using an Elcometer 3540 film applicator. Electrodes (diameter 12.7 mm) were cut with a disc cutter and then dried under vacuum at 90 ° C for 15 h. The loading weight per electrode disc was about 2.0 mg / disc.
  • CR2032 button type cells were assembled in a glove box under an Ar atmosphere (0 2 ⁇ 0.5 ppm, H 2 0 ⁇ 0.5 ppm), using metallic lithium as a reference and counter-electrode.
  • Physisorption experiments of N 2 were carried out at -196 ° C on a Micromeritics 3Flex device. The specific surface was calculated by the BET method (Brunauer-Emmett-Teller) and the pore volume was calculated by the Barrett-Joyner-Halenda (BJH) method.
  • Th erm og ravi m etriq ue analysis was carried out on a TG instrument (NETZSCH STA 409 PC) with a heating rate of 5 ° C.min 1 from 25 to 1000 ° C.
  • Scanning electron microscopy (SEM) images were acquired with a Hitachi S-4800 electron microscope.
  • Transmission electron microscopy (TEM) images were acquired using a JEOL FX2200 microscope.
  • the galvanostatic electrochemical characterizations were carried out at ambient temperature on a BTS3000 instrument from Neware Battery in the voltage range 2.5-1, 25 V as a function of Li + / Li at different current densities.
  • Electrochemical impedance spectroscopy (EIS) studies were performed on a BioLogic VSP instrument, from 100 kHz to 20 mHz, with an amplitude of 10 mV in potentiostatic mode. All capacity data reported here is the average of at least 3 different experiences. The relative experimental error (resulting mainly from variations in the weight of the active ingredient) is estimated at ⁇ 3%.
  • a series of LTO / C nanocomposites with different carbon contents was obtained by mixing an alginic acid hydrogel with TiO 2 nanoparticles and lithium acetate, followed by lyophilization and then pyrolysis at 800 °. vs.
  • the carbon content in the final nanocomposites can be adjusted by the relative amount of alginic acid used in the synthesis, as shown in Table 1.
  • the carbon content of LTO / C nanocomposites was determined by thermogravimetric analysis (TGA).
  • TGA thermogravimetric analysis
  • the carbon content for all materials is slightly lower than the estimated value, for example only 3% by weight of carbon obtained for LTO / C-3, instead of 5% by weight, calculated on the carbonization of alginic acid (around 20%). This could probably be due to the presence of TiO 2 or Li + during carbonization, which would catalyze an unexpected decomposition or degradation of the alginic acid.
  • Figure 1 shows the XRD diagram of LTO / C nanocomposites with different carbon contents. In all cases, the XRD diagram indicated the formation of a pure LTO phase.
  • the diffraction peaks at 20 18.4, 35.6, 37.2 43.2, 47.3, 57.2, 62.8 and 66.1 °, corresponding to the planes (1 1 1), (31 1), (222), (400), (331), (333), (440) and (531) can be indexed on the envisaged spinel phase of LTO (JCPDS n ° 49-0207). No other characteristic peak of impurity such as TiO 2 or Li 2 Ti0 3 was observed. On the other hand, small amounts of these impurities have been detected in LTO synthesized without alginic acid.
  • LTO precursors LiOAc and TiO 2
  • carboxylic acid groups of the alginic acid hydrogel promotes the formation of a phase of pure LTO.
  • the size of the LTO crystallites estimated by Scherrer's equation was ⁇ 36 nm, similar for all LTO / C samples, even for LTO / CO, which was obtained by calcination in air from LTO / C-3 at 500 ° C.
  • the Raman spectra of the LTO / C nanocomposite with 3% carbon (LTO / C-3) in the range of 100 to 1000 cnr 1 were performed.
  • the peaks at 228, 278, 342, 392 and 674 crrr 1 can be attributed to the five species of symmetry T2g, Eg and A1g expected for the 0 7 h spinel symmetry group.
  • No characteristic peak for the phase of TiO 2 anatase (peak intense at 152 cnr 1 ) or rutile (intense peak at 413 cnr 1 ) has not been observed, confirming the high purity of the inorganic LTO phase in the nanocomposites.
  • the two important bands around 1319 and 1583 crrr 1 can be attributed to vibrations in the plane of disordered amorphous carbon (band D) and graphitic carbon (band G), respectively.
  • band D disordered amorphous carbon
  • band G graphitic carbon
  • the carbon in LTO / C-3 has a low degree of graphitization, in agreement with the results of DRX.
  • the texture properties of LTO / C nanocomposites were measured by N 2 adsorption-desorption isotherms. As shown in Table 2, the surface area of the materials increases with the carbon content, while the pore volume remains practically constant, which suggests that the carbon phase is porous and that it contributes significantly to the textural properties of the nanocomposite. . In the case of LTO / C- 0, the surface is negligible. This loss of specific surface can be attributed to the elimination of the porous carbon phase and, possibly, to the sintering of the bare LTO particles.
  • the excellent performance of the electrodes based on the LTO / C-3 nanocomposite can be explained as follows: first, as already shown in the TEM images, the carbon is dispersed homogeneously on the LTO aggregated particles, ensuring a better connection between the black additive particles. In addition, the porosity of this carbon coating should also allow easy access of the electrolyte to the surface. Indeed, a continuous and non-porous carbon coating could prevent access of the electrolyte to the surface of the active material. Finally, the insertion and de-insertion of Li + should be faster for the nanocomposite LTO / C than for the T-LTO.
  • the specific capacity of LTO for LTO / C-3 based electrodes illustrates the good performance of these composites. Data show that the presence of intrinsic carbon in the nanocomposite is essential, but a high amount of carbon, for example greater than 10%, in particular greater than 10% in the composite does not lead to better performance. In addition, for practical application, a higher carbon content will increase the weight and volume of the battery.
  • LTO / C-3-CB3 has showed a discharge capacity of 151 mAh.g -1 after 500 cycles at 5C, with only 2.5% loss of capacity compared to the first cycle.
  • Coulombic efficiency remained constant at 98.7% after 500 cycles, demonstrating excellent reversibility of the insertion and deinsertion of Li + .
  • the C-LTO-3-CB-0 electrode despite a moderate drop in capacity after approximately 400 cycles, still showed good long-term cyclability performance at 5 ° C.
  • the performances of the LTO / C nanocomposites of the invention are slightly better than those of the LTO / C composites prepared according to Hu et al.
  • the LTO / C nanocomposites of the invention could be promising candidates as anode materials for practical application in lithium-ion batteries.
  • the invention provides a simple, “one pot” synthesis of LTO / C nanocomposites using a hydrogel of alginic acid as a carbon source, and particles of LiOAc and TiO 2 as precursors of LTO.
  • the carbon appears homogeneously dispersed on the aggregates of LTO nanoparticles, forming a porous coating.
  • Nanocomposite with a moderate amount of carbon (3%) shows promising performance as a negative electrode material for Li-ion batteries, leading to high capacity and long-term cyclability, even with a low amount of a conventional conductive additive such as carbon black. Consequently, these LTO / carbon nanocomposites could find an application in high-power lithium-ion batteries, for example for electric vehicles or for stationary energy storage systems with a longer lifespan.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un nouveau matériau composite Li4TiO12/carbone.

Description

Procédé de préparation d’un matériau composite LTO/carbone utilisé comme matériau d’électrode négative pour batterie Li-ion
Li4Ti50i2 (LTO) est très étudié comme électrode négative alternative au graphite pour les batteries lithium-ion de haute puissance (véhicule électrique notamment), en raison de ses caractéristiques intrinsèques telles qu’un faible coût, une variation de volume nulle lors de l’intercalation, une très bonne stabilité en cycle, etc...
Cependant, la faible conductivité électronique du LTO diminue les performances à puissance élevée.
Il est donc nécessaire de mettre à disposition un matériau à base de LTO permettant le maintien des performances électrochimiques.
Plusieurs méthodes ont été proposées pour surmonter cet inconvénient, comme le dopage par un métal ou l’enrobage par des carbones conducteurs, la nanostructuration du LTO, afin d’obtenir de plus grandes surfaces de contact entre l’électrode et l’électrolyte...
Actuellement, les nanocomposites LTO/carbone ont attiré beaucoup d’attention en raison de l’amélioration de la performance à puissance élevée qui peut être obtenue, non seulement en raison de la conductivité électronique augmentée liée au carbone, mais aussi la diffusion rapide des ions Li+, apportée par le LTO nanostructuré. Néanmoins, les synthèses de ces matériaux nanostructurés sont généralement basées sur des synthèses sophistiquées à étapes multiples, qui ne peuvent être étendues à l’échelle industrielle. La synthèse en phasesolide est une méthode commune pour la synthèse de matériau d’électrode qui peut être adaptée à l’industrialisation. Cette méthode comprend le mélange de précurseurs solides par broyage, suivi d’un traitement thermique tel que la calcination ou la pyrolyse à haute température. Cependant, malgré sa simplicité et des coûts de production bas, le contrôle fin des matériaux obtenus par cette réaction ne peut être facilement effectué dans la mesure où le matériau final souffre généralement d’une taille de particules mal contrôlée, une agglomération irrégulière ou même d’inhomogénéité, avec la présence d’impuretés de phase. Par conséquent, les performances électrochimiques de tels matériaux d’électrodes sont généralement plus basses que celles des matériaux nanostructurés.
Il est donc désirable de mettre à disposition un procédé de synthèse d’un matériau composite LTO/carbone simple, facile à contrôler permettant d’obtenir des électrodes à haute performance, compatible avec l’échelle industrielle. Hu et al., Electrochemica Acta 56, 5046-5053, 201 1 décrivent la synthèse de LTO/C en utilisant différentes sources de carbone. Néanmoins, la source retenue est l’acide polyacrylique (PAA), les autres composés étant considérés moins satisfaisants. Il reste donc nécessaire de mettre à disposition un procédé alternatif, conduisant à de bonnes propriétés électrochimiques, au moyen d’une source plus adéquate, distincte d’un polymère synthétique.
En effet, l’acide citrique et maléique conduisent à des impuretés, et l’acide citrique, l’acide maléique et le polyvinyl alcool conduisent à une moins bonne capacité que le PAA. De plus il faut ajouter environ un équivalent de LiOH pour solubiliser le PAA pendant la synthèse, ce qui rend le contrôle du taux de carbone difficile selon le procédé décrit par les auteurs.
La présente invention met à disposition un procédé de synthèse de nanocomposites LTO/carbone par une méthode de type « one pot », au moyen d’un hydrogel expansé d’acide alginique en tant que source de carbone, de l’acétate de lithium et des nanoparticules de TiO2 en tant que précurseurs de la phase LTO. Ledit procédé aboutit à la formation d’une phase LTO de haute pureté et au dépôt uniforme de carbone sur les nanoparticules de LTO. Les performances électrochimiques des nanocomposites LTO/carbone ainsi obtenues sont nettement améliorées par rapport au LTO commercial.
Selon un premier objet, la présente invention concerne donc un procédé de préparation d’un matériau composite Li4Ti5O12 (LTO)/carbone, ledit procédé comprenant :
i) le mélange de type « one pot » de TiO2 et LiOAc à un hydrogel d’acide alginique ; et
ii) le traitement thermique du mélange par montée en température jusqu’à une température maximale comprise entre 750 et 850°C, à une vitesse inférieure à 5°C.min 1.
Selon un mode de réalisation, TiO2 est sous forme de poudre de nanoparticules, éventuellement agglomérées.
Selon un mode de réalisation, le traitement thermique de l’étape ii) est une pyrolyse. Typiquement, ladite pyrolyse peut être conduite jusqu’à une température d’environ 800°C, pendant une durée comprise entre deux et cinq heures, typiquement par chauffage à la vitesse de 1 °C.mn·1, sous atmosphère contrôlée, telle qu’une atmosphère d’argon notamment
Contrairement au procédé décrit par Hu et al., (supra) comprenant la mise en solution de LiOH et du PAA, ou la mise en solution de l’acide citrique, acide maléique ou du polyvinyl alcool dans l’eau, l’acide alginique n’est pas soluble dans l’eau et le mélange obtenu à l’étape (i) ne permet généralement pas d’être chauffé pour extraire l’eau présente. Selon l’invention, le procédé comprend l’étape (i) au moyen de TiO2, LiOAc et l’acide alginique.
De plus, le procédé selon l’invention comprend avantageusement l’étape de lyophilisation entre les étapes i) et ii).
Selon un mode de réalisation, le procédé de préparation de l’invention comprend donc intermédiairement aux étapes i) et ii) l’étape d’extraction de l’eau présente dans le mélange, notamment par lyophilisation.
L’hydrogel d’acide alginique utilisé à l’étape i) peut notamment être obtenu par mélange d’acide alginique et d’eau, sous chauffage, notamment à température comprise entre 70 et 100°C, puis par refroidissement, à une température notamment comprise entre 0 et 10°C.
La phase de chauffage peut être conduite pendant des durées variables, selon les quantités d’acide alginique et d’eau utilisées, typiquement de l’ordre de quelques heures, notamment entre deux et trois heures.
La phase de refroidissement peut être conduite pendant des durées variables, notamment des durées suffisantes pour obtenir la structure d’hydrogel désirée.
Selon un autre objet, la présente invention concerne également le matériau composite Li4Ti5O12 (LTO)/carbone susceptible d’être obtenu par le procédé selon l’invention.
Selon un mode de réalisation, le matériau composite de l’invention est typiquement caractérisé en ce qu’il est constitué de LTO sous forme de nanoparticules ou agrégats de nanoparticules, et carbone, avec une répartition homogène du carbone à la surface des nanoparticules de LTO, ou à la surface desdits agrégats.
Selon un mode de réalisation, le matériau composite LTO/C comprend entre 3 et 20% en poids de carbone, typiquement entre 3 et 9% de carbone, notamment entre 3 et 6% de carbone en poids. Généralement, le procédé de préparation comprend le mélange de TiO2 et de LiOAc à parts égales, en poids. Le TiO2 et le LiOAc sont ajoutés à des concentrations comprises entre 30 et 50% en poids, rapportées à la masse totale du mélange de l’étape i) TiO2/LiOAc/hydrogel.
La concentration de l’hydrogel dans le mélange de l’étape i) est généralement comprise entre 10 et 25% en poids, rapportée à la masse totale du mélange de l’étape i) TiO2/LiOAc/hydrogel.
Selon un autre objet, la présente invention concerne également le matériau d’électrode comprenant le matériau composite LTO/carbone de l’invention, et un ou plusieurs agents de formulation d’électrode, qui peuvent être notamment choisis parmi les liants, les agents conducteurs et leurs mélanges.
A titre de liant, on peut notamment citer le PVDF, le carboxyméthylcellulose de sodium (CMC), ou l’alginate de sodium. A titre d’agent conducteur, on peut notamment citer le noir de carbone conducteur, tel que super P, Super C65 ou acétylène black.
En particulier, selon un mode de réalisation, le matériau incorpore en outre du matériau composite, du noir de carbone. Typiquement, le noir de carbone est ajouté en quantité telle que la teneur totale en carbone dans le matériau électrode est comprise entre 3 et 10% en poids, notamment entre 3 et 6% de carbone.
Selon un autre objet, la présente invention concerne également une électrode négative comprenant le matériau d’électrode selon l’invention.
Selon un autre objet, la présente invention concerne également une cellule électrochimique comprenant l’électrode selon l’invention.
Selon un autre objet, la présente invention concerne le procédé de préparation d’une électrode selon l’invention, ledit procédé comprenant l’étape de mélange du matériau composite selon l’invention avec un ou plusieurs agents de formulation d’électrode éventuel, dans un solvant, puis la coulée en ruban du mélange obtenu sur un collecteur de courant.
A titre de solvant, on peut notamment citer la N-méthyl-2-pyrrolidone (NMP), le N,N-diméthylformamide (DMF) ou l’eau.
A titre de collecteur de courant, le cuivre est généralement utilisé.
La figure 1 représente les spectres par diffraction aux rayons X des nanocomposites LTO/C de l’invention.
La figure 2 représente les images par microscopie électronique à balayage du nanocomposite LTO/C-9.
La figure 3 représente les images par microscopie électronique en transmission du nanocomposite LTO/C-3 avec un mapping par spectrométrie à dispersion d’énergie (EDX), confirmant une dispersion homogène du carbone sur les particules de LTO.
La figure 4 représente la capacité de débit et la performance en cycle des matériaux d’électrode LTO/C, comparé au matériau commercial T-LTO et le matériau LTO. Les symboles plein et creux font référence à la réduction (décharge) et l’oxydation (charge), respectivement.
La figure 5 représente la capacité de débit (a) et la cyclabilité, la performance en cycle à long terme (b) d’électrode à base de LTO/C-3. Exemples
Synthèse de nanocomposites LTO/C
Les nanoparticules d'oxyde de titane ( TiO2, anatase>99%) ont été achetées auprès de Tronox. L'acétate de lithium di hydraté (LiOAc>98%) et l'acide alginique provenant d'algues brunes ont été achetés chez Sigma-Aldrich. Super P (>99%) a été acheté auprès d'Alfa Aesar. A des fins de comparaison, une poudre de LT O sub-micronique disponible dans le commerce (notée T-LTO) a été obtenue auprès de Targray (Canada).
Les poudres de noir de carbone ont été séchées dans un four à 65 °G avant utilisation. Tous les autres réactifs ont été utilisés sans autre purification.
Des nanocomposites LTO/C ayant diverses teneurs en carbone ont été synthétisés par une réaction « one pot » à l'état solide.
Par exemple, un nanocomposite LTO/Carbone avec 3% en poids de carbone a été préparé comme suit:
200 mg d'acide alginique ont été gélifiés dans de l'eau (10 mL) en chauffant à 90 °C pendant 2,5 h, suivi d'une rétrogradation à 4 °C pendant 24 h.
Ensuite, 479 mg de Ti02 et 505 mg de LiOAc ont été ajoutés à l’hydrogel résultant, et agités pendant 2 h à température ambiante. L’élimination de l’eau a été effectuée par lyophilisation, donnant un composite constitué d’un gel dilué, séché, d’acide alginique et de précurseurs de LTO. Les matériaux finaux, les composites LTO/Carbone ont été obtenus par pyrolyse à 800 °C (chauffage 1 °C.min~1) pendant 3h sous flux d'argon (50 mL.min 1). En fonction du poids de l’acide alginique ayant réagi, des échantillons de LTO/C ayant différentes teneurs en carbone ont été obtenus (Tableau 1 ). Les échantillons sont notés LTO/C-x, où x représente la teneur en carbone (% en poids). En outre, LTO sans carbone a également été obtenu par calcination du composite LTO/Carbone à 500 °C pendant 5h et noté LTO/C-0.
Figure imgf000007_0001
Préparation des électrodes et assemblage de la demi-pile de type bouton
Des suspensions d'électrodes avec 3 formulations différentes ont été préparées en utilisant le matériau actif, Super P (noir de carbone conducteur) et PVDF (liant) dans un rapport massique de 94: 0: 6, 91 : 3: 6 ou 88: 6: 6 en augmentant la proportion de noir de carbone. Ces électrodes sont ensuite appelées LTO/Cx-CB-y, où x représente la teneur en carbone dans le nanocomposite LTO/C, y représente la quantité de Super P ajoutée dans la formulation d'électrode (par exemple LTO/C-3-CB -6). Après agitation dans de la N-méthyl-2-pyrrolidone (NMP), la suspension est mélangée à l’aide d'un pot de broyage en agate (1 h à 500 tr/min), puis coulée uniformément à 150 pm sur un collecteur de cuivre (0,018mm, >99,96%, Prometor) en utilisant un applicateur de film 3540 d'Elcometer. Des électrodes (diamètre 12,7 mm) ont été coupées avec un cutter à disque et ensuite séchées sous vide à 90 °C pendant 15 h. Le poids de chargement par disque d'électrode était d’environ 2,0 mg / disque. Des cellules de type bouton CR2032 ont été assemblées dans une boîte à gants sous atmosphère d'Ar (02 <0,5 ppm, H20 <0,5 ppm), en utilisant du lithium métallique comme référence et contre-électrode. L'électrolyte était du LP30 (LiPFe 1 M dissous dans un mélange de carbonate d’éthylène (EC) et de carbonate de propylène (PC) (rapport EC:DMC = 1 :1 ). Des disques en fibre de verre Whatman ont été utilisés comme séparateurs. De plus, une électrode a également été préparée en utilisant l'échantillon commercial T-LTO, Super P, et PVDF dans un rapport massique de 88: 6: 6 et noté T-LTO-CB-6.
Caractérisation
Les spectres de diffraction à rayons X (XRD) ont été enregistrés en utilisant un diffractomètre PAnalytical X'Pert Pro MPD, avec le rayonnement Ko de Cu (l = 1 ,5418 À) et une taille de pas de 0,033° dans l'intervalle de 10°-80°. Des expériences de physisorption de N2 ont été réalisées à -196 °C sur un appareil Micromeritics 3Flex. La surface spécifique a été calculée par la méthode BET (Brunauer-Emmett-Teller) et le volume poreux a été calculé par la méthode de Barrett-Joyner-Halenda (BJH). L'analyse th erm og ravi m étriq u e (TGA) a été réalisée sur un instrument TG (NETZSCH STA 409 PC) avec une vitesse de chauffage de 5°C.min 1 de 25 à 1000°C. Des images de microscopie électronique à balayage (MEB) ont été acquises avec un microscope électronique Hitachi S-4800. Les images de microscopie électronique à transmission (TEM) ont été acquises en utilisant un microscope JEOL FX2200. Les caractérisations électrochimiques galvanostatiques ont été réalisées à température ambiante sur un instrument BTS3000 de Neware Battery dans la plage de tension 2,5-1 ,25 V en fonction de Li+/Li à différentes densités de courant. Les études de spectroscopie d'impédance électrochimique (EIS) ont été réalisées sur un instrument BioLogic VSP, de 100 kHz à 20 mHz, avec une amplitude de 10 mV en mode potentiostatique. Toutes les données de capacité rapportées ici sont la moyenne d'au moins 3 expériences différentes. L'erreur expérimentale relative (résultant principalement des variations du poids de la matière active) est estimée à ~ 3%.
Synthèse et caractérisation de nanocomposites LTO/ C
Une série de nanocomposites LTO/C avec différentes teneurs en carbone a été obtenue en mélangeant un hydrogel d'acide alginique avec des nanoparticules de TiO2 et de l'acétate de lithium, suivi d'une lyophilisation puis d'une pyrolyse à 800 °C. Dans cette méthode simple, la teneur en carbone dans les nanocomposites finaux peut être ajustée par la quantité relative d'acide alginique utilisée dans la synthèse, comme indiqué dans le tableau 1 . La teneur en carbone des nanocomposites LTO/C a été déterminée par analyse thermogravimétrique (TGA). La teneur en carbone pour tous les matériaux est légèrement inférieure à la valeur estimée, par exemple seulement 3% en poids de carbone obtenu pour LTO/C-3, au lieu de 5% en poids, calculé sur la carbonisation de l'acide alginique (environ 20%). Cela pourrait être probablement dû à la présence de TiO2 ou de Li+ pendant la carbonisation, ce qui catalyserait une décomposition ou une dégradation inattendue de l'acide alginique.
La figure 1 montre le diagramme XRD de nanocomposites LTO/C avec différentes teneurs en carbone. Dans tous les cas, le diagramme XRD indiquait la formation d'une phase LTO pure. Les pics de diffraction à 20 = 18,4, 35,6, 37,2 43,2, 47,3, 57,2, 62,8 et 66,1 °, correspondant aux plans (1 1 1 ), (31 1 ), (222), (400), (331 ), (333), (440) et (531 ) peuvent être indexés sur la phase spinelle envisagée de LTO (JCPDS n° 49-0207). Aucun autre pic caractéristique d'impureté telle que TiO2 ou Li2Ti03 n'a été observé. D'autre part, de petites quantités de ces impuretés ont été détectées dans du LTO synthétisé sans acide alginique. Ceci suggère que la complexation des précurseurs LTO (LiOAc et TiO2) par les groupes acide carboxylique de l'hydrogel de l’acide alginique favorise la formation d'une phase de LTO pur. De plus, aucun pic caractéristique pour le carbone (environ 2Q = 27°) n'a été observé même pour LTO/C-19 (environ 19% en poids de carbone), indiquant que le carbone de ces nanocomposites était principalement amorphe. La taille des cristallites LTO estimée par l'équation de Scherrer était ~ 36 nm, similaire pour tous les échantillons LTO/C, même pour LTO/C-O, qui a été obtenu par calcination dans l’air de LTO/C-3 à 500 °C.
Les spectres Raman du nanocomposite LTO/C avec 3% de carbone (LTO/C-3) dans la gamme de 100 à 1000 cnr1 ont été effectués. Les pics à 228, 278, 342, 392 et 674 crrr1 peuvent être attribués aux cinq espèces de symétrie T2g, Eg et A1g attendues pour le groupe de symétrie 07h spinelle.Aucun pic caractéristique pour la phase de TiO2 anatase (pic intense à 152 cnr1 ) ou rutile (pic intense à 413 cnr1) n’a été observé, confirmant la grande pureté de la phase LTO inorganique dans les nanocomposites. Dans la gamme supérieure (1000 - 2000 cnr1), les deux bandes importantes autour de 1319 et 1583 crrr1 peuvent être attribuées aux vibrations dans le plan du carbone amorphe désordonné (bande D) et du carbone graphitique (Bande G), respectivement. Selon l’intensité relative de la bande D et sa largeur, ds, le carbone dans LTO/C-3 présente un faible degré de graphitisation, en accord avec les résultats de DRX.
Les propriétés de texture des nanocomposites LTO/C ont été mesurées par isothermes d'adsorption-désorption de N2. Comme le montre le tableau 2, la surface des matériaux augmente avec la teneur en carbone, tandis que le volume des pores reste pratiquement constant, ce qui suggère que la phase carbonée est poreuse et qu'elle participe de manière significative aux propriétés texturales du nanocomposite. Dans le cas de LTO/C- 0, la surface est négligeable. Cette perte de surface spécifique peut être attribuée à l'élimination de la phase carbonée poreuse et, éventuellement, au frittage des particules de LTO nues.
Figure imgf000010_0001
La morphologie des nanocomposites LTO/C a été étudiée en utilisant l’analyse SEM (Fig. 2) et l'analyse TEM. (Figure 3) Tous les nanocomposites étaient constitués de nanoparticules agrégées (d'une taille d'environ 30 nm). Compte tenu des densités de LTO (3,43 g cnr3) et de carbone amorphe (1 , 8-2,1 g.cnr3), la fraction volumique du carbone dans les échantillons LTO/C-3 et LTO/C-9 est ~ 5 et ~ 15%, respectivement. Cependant, aucune phase de carbone indépendante n'a été détectée par SEM, même pour l'échantillon LTO/C-9. Après élimination du carbone par calcination à 500 °C (LTO/C-0), la surface des particules de LTO est devenue plus lisse. Ces deux observations suggèrent que le carbone forme un enrobage rugueux sur les particules de LTO. Cela a été confirmé en utilisant la cartographie TEM-EDX (figure 3). La distribution de Ti, O et C coïncident, indiquant une dispersion homogène du carbone à la surface des particules de LTO.
Performance électrochimigue des nanocomposites LTO/Carbone
La performance électrochimique des nanocomposites LTO/C-3 et LTO/C-9 et l'influence de l’addition de noir de carbone (Super P) ont été étudiées en préparant des électrodes avec différentes quantités de noir de carbone (3% et 0%) puis en testant dans des demi- cellules de type bouton contre du métal Li dans une fenêtre de potentiel de 1 ,25 à 2,5V. Les électrodes sont étiquetées LTO/C-x-CB-y, comme expliqué dans la partie expérimentale. A titre de comparaison, des électrodes à base de LTO/C-O et de T-LTO formulé avec 6% en poids de noir de carbone ont également été étudiées (électrodes LTO/C-O-CB-6 et T-LTO-CB-6).
Les profils de tension de charge-décharge galvanostatiques des électrodes ont été étudiés. Leur capacité de débit et leur performance cyclique sont représentées sur la figure 4 A la densité de courant initiale (1 C), la courbe galvanostatique de toutes les électrodes affiche un plateau spécifique autour de 1 ,55 V vs Li+/Li, ce, qui est typique de LTO et est classiquement attribué à la coexistence de 2 phases, Li4Ti5O12 et Li7Ti5O12. Comme le montre la figure 4, après 10 cycles à 1 C les capacités spécifiques de LTO dans les électrodes dérivées de LTO/C-3 (157 mAh.g 1 pour LTO/C-3-CB-0, 155 mAh.g 1 pour LTO/C-3-CB-3) étaient proches de la capacité spécifique de l'électrode dérivée du LTO commercial (153 mAh.g 1 pour T-LTO-CB-6). A fortes densités de courant, l'électrode LTO/C-3-CB-3 s'est comportée significativement mieux que les autres électrodes, retenant après 10 cycles à 10C une capacité spécifique de 152 mAh g 1 , soit plus de 95% de sa capacité à 1 C. La rétention de capacité pour LTO/C-3-CB-0 était inférieure, = 88%. En comparaison, l'électrode à base de LTO commercial (T-LTO-CB-6) n'a montré qu'une rétention de 84% de la capacité, même avec 6% en poids de noir de carbone. Le LTO dérivé de LTO/C-3 par calcination (électrode LTO/C-O-CB-6, -83% de rétention de capacité) se comportait de la même manière que le LTO commercial.
Les excellentes performances des électrodes basées sur le nanocomposite LTO/C-3 peuvent s'expliquer comme suit: d'abord, comme déjà montré dans les images TEM, le carbone est dispersé de façon homogène sur les particules agrégées LTO, assurant une meilleure connexion électronique entre les particules additif noir. De plus, la porosité de ce revêtement de carbone devrait également permettre un accès facile de l'électrolyte à la surface. En effet, un revêtement de carbone continu et non poreux pourrait empêcher l'accès de l'électrolyte à la surface du matériau actif. Enfin, l’insertion et la désinsertion de Li+ devraient être plus rapides pour le nanocomposite LTO/C que pour le T-LTO. La taille des particules LTO dans les nanocomposites étant significativement plus faible (=30 nm) que dans le T-LTO (=200 nm). La capacité spécifique de LTO pour les électrodes à base de LTO/C-3 illustre la bonne performance de ces composites. Des données montrent que la présence de carbone intrinsèque dans le nanocomposite est essentielle, mais une quantité élevée de carbone, par exemple supérieure à 10% notamment supérieure à 10% dans le composite ne conduit pas à de meilleures performances. De plus, pour une application pratique, une teneur en carbone plus élevée augmentera le poids et le volume de la batterie.
Enfin, les performances élevées (jusqu'à 40 C) et la cyclabilité à long terme ont été étudiées pour le nanocomposite LTO/C-3, qui a montré les meilleures performances électrochimiques parmi les matériaux LTO/C. Comme représenté sur la figure 5a, à 40 °C, l’électrode LTO/C-3-CB-3 avait encore une capacité spécifique pour LTO de 95 mAh.g 1 , environ 60% de la capacité spécifique initiale à 1 °C. Fait intéressant, l'électrode LTO/C-3 sans additif de carbone (LTO/C-3-CB-0) a également montré de bonnes performances de capacité de débit, 63 mAh.g 1 à 40C. Pour la cyclabilité à long terme, LTO/C-3-CB3 a montré une capacité de décharge de 151 mAh.g-1 après 500 cycles à 5C, avec seulement 2,5% de perte de capacité par rapport au premier cycle. L'efficacité coulombique est restée constante à 98,7% après 500 cycles, démontrant une excellente réversibilité de l’insertion et de la désinsertion de Li+. L’électrode C-LTO-3-CB-0, malgré une baisse modérée de la capacité après environ 400 cycles, a encore montré de bonnes performances de cyclabilité à long terme à 5 °C.
En comparant avec Hu et al. (Supra) (tableau 3), les performances des nanocomposites LTO/C de l’invention sont légèrement meilleures que celles des composites LTO/C préparés selon Hu et al. Ainsi, compte tenu de la simplicité et du faible coût de la synthèse, les nanocomposites LTO/C de l’invention pourraient être des candidats prometteurs comme matériaux anodiques pour une application pratique dans les batteries lithium-ion.
Figure imgf000013_0001
En conclusion, l’invention propose une synthèse simple, « one pot » de nanocomposites LTO/C en utilisant un hydrogel d'acide alginique comme source de carbone, et des particules de LiOAc et de TiO2 en tant que précurseurs de LTO. Le carbone apparaît dispersé de façon homogène sur les agrégats de nanoparticules LTO, formant un revêtement poreux. Le nanocomposite avec une quantité modérée de carbone (3%) présente des performances prometteuses en tant que matériau d'électrode négative pour les batteries Li-ion, conduisant à une capacité élevée et une cyclabilité à long terme, même avec une faible quantité d’un additif conducteur conventionnel comme le noir de carbone. Par conséquent, ces nanocomposites LTO/carbone pourraient trouver une application dans des batteries lithium-ion de forte puissance, par exemple pour des véhicules électriques ou pour des systèmes de stockage d'énergie stationnaire avec une durée de vie plus longue.

Claims

REVENDICATIONS
1. Procédé de préparation d’un matériau composite Li4Ti5O12 (LTO)/carbone, ledit procédé comprenant :
i) le mélange de type « one pot » de TiO2 et LiOAc à un hydrogel d’acide alginique ; et
ii) le traitement thermique, tel que la pyrolyse, du mélange, par montée en température jusqu’à une température maximale comprise entre 750 et 850°C, à une vitesse inférieure à 5°C.min·1.
2. Procédé selon la revendication 1 tel que TiO2 est sous forme de poudre de nanoparticules, éventuellement agglomérées
3. Procédé selon la revendication 1 ou 2 tel que le procédé comprend intermédiairement aux étapes i) et ii) l’étape d’extraction de l’eau présente dans le mélange par lyophilisation.
4. Procédé selon la revendication 1 , 2 ou 3 tel qu’il comprend préalablement à l’étape i) l’étape de préparation de l’hydrogel d’acide alginique par mélange d’acide alginique et d’eau, à température comprise entre 70 et 100°C puis refroidissement à température comprise entre 0 et 10°C.
5. Matériau composite Li45O12 (LTO)/carbone susceptible d’être obtenu par le procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que le carbone est réparti de façon homogène à la surface des nanoparticules de LTO, ou des agrégats de LTO éventuellement présents.
6. Matériau composite Li45O12 (LTO)/carbone selon la revendication 5, caractérisé en ce qu’il comprend de 3 à 20% en poids de carbone.
7. Matériau d’électrode comprenant le matériau composite selon l’une quelconque des revendications 5 à 6 et un ou plusieurs agents de formulations d’électrode choisis parmi les liants, les agents conducteurs, et leurs mélanges.
8. Matériau d’électrode selon la revendication 6 comprenant du noir de carbone, tel que la teneur totale de carbone est comprise entre 3 et 10% en poids.
9. Electrode négative comprenant le matériau d’électrode selon l’une quelconque des revendications 7 ou 8.
10. Cellule électrochimique comprenant l’électrode selon la revendication 9.
PCT/EP2019/065173 2018-06-11 2019-06-11 Procédé de préparation d'un matériau composite lto/carbone utilisé comme matériau d'électrode négative pour batterie li-ion WO2019238656A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855066 2018-06-11
FR1855066A FR3082358B1 (fr) 2018-06-11 2018-06-11 Procede de preparation d'un materiau composite lto/carbone utilise comme materiau d'electrode negative pour batterie li-ion

Publications (1)

Publication Number Publication Date
WO2019238656A1 true WO2019238656A1 (fr) 2019-12-19

Family

ID=65031249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/065173 WO2019238656A1 (fr) 2018-06-11 2019-06-11 Procédé de préparation d'un matériau composite lto/carbone utilisé comme matériau d'électrode négative pour batterie li-ion

Country Status (2)

Country Link
FR (1) FR3082358B1 (fr)
WO (1) WO2019238656A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560227A (zh) * 2013-11-13 2014-02-05 重庆理工大学 一种Li4Ti5O12/C复合材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560227A (zh) * 2013-11-13 2014-02-05 重庆理工大学 一种Li4Ti5O12/C复合材料的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HU ET AL., ELECTROCHEMICA ACTA, vol. 56, 2011, pages 5046 - 5053
HU ET AL.: "Effects of carbon source and carbon contenton electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction", ELECTROCHIMICA ACTA, vol. 56, 2 April 2011 (2011-04-02), pages 5046 - 5053, XP009511837 *
LIN ET AL.: "One-step synthesis of Li4Ti5O12/C anode material withce for litihum-ion batteries", SOILD STATE IONICS, vol. 181, 1 January 2010 (2010-01-01), pages 412 - 415, XP009511834 *
SHAOWEI ZHENG ET AL: "Synthesis of nano-sized LiTiO/C composite anode material with excellent high-rate performance", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 68, 4 October 2011 (2011-10-04), pages 32 - 35, XP028351645, ISSN: 0167-577X, [retrieved on 20111008], DOI: 10.1016/J.MATLET.2011.10.006 *
YANG L ET AL: "Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 485, no. 1-2, 19 October 2009 (2009-10-19), pages 93 - 97, XP026673906, ISSN: 0925-8388, [retrieved on 20090606], DOI: 10.1016/J.JALLCOM.2009.05.151 *

Also Published As

Publication number Publication date
FR3082358A1 (fr) 2019-12-13
FR3082358B1 (fr) 2020-09-11

Similar Documents

Publication Publication Date Title
EP3177651B1 (fr) Matière carbonée à modification hydrophile
EP3484814B1 (fr) Procede de preparation d&#39;un materiau particulaire na3v2(po4)2f3
CA2428090C (fr) Particules a base de li4ti5o12, de li(4-.alpha.)z.alpha.ti5o12, ou li4z.beta.ti(5-.beta.)o12, leurs procedes d&#39;obtention et leur utilisation dans des dispositifs electrochimiques
CA3195890A1 (fr) Methodes de passivation pour controler la teneur en oxygene et la reactivite de materiaux composites silicium-carbone
JP6593330B2 (ja) ナノカーボン複合体及びその製造方法
FR2935546A1 (fr) Materiau composite d&#39;electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode.
JP6511726B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2020002006A (ja) 改善されたリチウム金属酸化物カソード材料及びそれらの作製方法
KR20140114786A (ko) 리튬 이온 전지용 애노드 물질로서 Si/C 복합체
WO2018068035A1 (fr) Particules composites de graphite et de groupe iva et procédés de fabrication
EP2396841B1 (fr) Procédé de préparation d&#39;un mélange d&#39;une poudre d&#39;un composé actif d&#39;électrode et d&#39;une poudre d&#39;un composé conducteur électronique, mélange ainsi obtenu, électrode, cellule et accumulateur
JP2019508854A (ja) Si/Cコンポジット粒子の製造
EP1683219A1 (fr) Matiere de carbone pour electrode de batterie et son procede de production et d&#39;utilisation
FR3071361B1 (fr) Procede de fabrication d&#39;une electrode pour accumulateur lithium-soufre utilisant du li2s comme materiau actif
JP2002348109A (ja) リチウム二次電池用負極材料およびその製造方法、ならびにそれを用いた二次電池
JP2015210960A (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2016028375A (ja) 炭素複合ケイ素材料及びその製造方法並びにリチウム二次電池用負極材料
JP6463875B2 (ja) 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法
WO2019064547A1 (fr) Matériau d&#39;électrode négative pour batteries secondaires au lithium-ion, électrode négative pour batteries secondaires au lithium-ion et batterie secondaire au lithium-ion
WO2019238656A1 (fr) Procédé de préparation d&#39;un matériau composite lto/carbone utilisé comme matériau d&#39;électrode négative pour batterie li-ion
FR2877146A1 (fr) Materiau nanostructure, procede pour sa preparation.
KR102643519B1 (ko) 리튬 이온 전지용 전극 재료 및 리튬 이온 전지
JP6026359B2 (ja) チタン酸リチウム負極活物質
US20040124402A1 (en) Negative electrode material, and production method and use thereof
JP2019033102A (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19729760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19729760

Country of ref document: EP

Kind code of ref document: A1