WO2019237874A1 - 一种绘图机械臂及其控制系统 - Google Patents

一种绘图机械臂及其控制系统 Download PDF

Info

Publication number
WO2019237874A1
WO2019237874A1 PCT/CN2019/086969 CN2019086969W WO2019237874A1 WO 2019237874 A1 WO2019237874 A1 WO 2019237874A1 CN 2019086969 W CN2019086969 W CN 2019086969W WO 2019237874 A1 WO2019237874 A1 WO 2019237874A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering gear
arm
servo
platform
compensation
Prior art date
Application number
PCT/CN2019/086969
Other languages
English (en)
French (fr)
Inventor
崔国锋
成润泽
徐庆原
Original Assignee
深圳市小怪兽教育科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市小怪兽教育科技有限公司 filed Critical 深圳市小怪兽教育科技有限公司
Publication of WO2019237874A1 publication Critical patent/WO2019237874A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1651Programme controls characterised by the control loop acceleration, rate control

Definitions

  • the invention relates to a drawing device, in particular to a drawing robot arm and a control system thereof.
  • stepping motors are basically used in existing drawing devices. Due to the high cost of using stepper motors, a lower cost steering gear is used in this solution, and the precision of the steering gear itself is low, and the angle is low. Defects such as inaccurate control.
  • the technical task of the invention is to provide a drawing robot arm and a control system thereof in view of the shortcomings of the prior art.
  • a drawing robotic arm including a support platform and a lifting platform, wherein the lifting platform and the supporting platform are connected by a lifting mechanism, and the lifting mechanism includes an elevator and a lifting shaft
  • the lifting shaft is arranged on a supporting platform.
  • the top of the lifting shaft passes through the lifting platform and is connected to a limit plate.
  • the elevator servo is arranged on one side of the supporting platform and is provided between the lifting platform and the supporting platform.
  • cam There is a cam, the cam is connected to the elevator servo, an upper servo and a lower servo are respectively provided on the lifting platform, a main arm is connected to the lower servo, and an auxiliary is connected to the upper servo An arm, a link is articulated at the other end of the auxiliary arm, a working arm is articulated at the other end of the link, a pen clip is provided at the other end of the working arm, and the other end of the main arm is connected to the The working arm is articulated.
  • a system for controlling a drawing robotic arm which includes the following steps:
  • Step 1 Use linear compensation to correct the steering gear; first input a standard pulse signal, measure the actual rotation angle of the steering gear, and then compare and analyze the actual rotation angle of the steering gear with the ideal rotation angle to obtain the corresponding pulse signal Correction value. All the correction values are aggregated into a linear correction table for the servo, and the linear correction table is stored in the single-chip microcomputer.
  • Step 2 Curvature speed regulation: Before drawing, first import the image into the single-chip microcomputer, and then divide the image into several curve segments. According to the curvature of different pixel points on each curve segment, determine the density of pixel points on each curve segment and The coordinates of different pixel points, the coordinates of each pixel point and the curvature of the pixel point are combined into a drawing point;
  • Step 3 When drawing, the servo determines the angle that the servo needs to rotate according to the coordinates of the pixels. First, the coordinates of the pixels are converted into the pulse signal input by the servo, and then the corresponding correction values on the linear correction table are obtained. Determine the rotation angle of the servo;
  • the speed of the steering gear rotation is calculated, and then the delay time is calculated. Finally, the drawing of each drawing point is completed by the rotation angle of the steering gear and the speed of the rotation of the steering gear.
  • step 3 compare the graphics drawn by the drawing robot arm with the original image.
  • the error between the original picture and the graphics drawn by the drawing robot arm forms graphic feedback compensation, and the graphic feedback compensation is stored in the microcontroller , And then complete steps 1 to 3 in turn.
  • graphic feedback compensation will be added.
  • the servo is selected as the power source of the mechanical arm, thereby reducing the cost of the entire device.
  • it is overcome by software such as linear compensation, curvature speed adjustment, virtual position compensation, and graphic feedback compensation of the servo itself.
  • the defects of the steering gear itself ensure the stable operation of the entire device.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a framework diagram of a control flow of the present invention.
  • Support platform 1 cam 2, elevator 3, elevator shaft 4, spring 41, limit plate 5, elevator platform 6, upper servo 7, auxiliary arm 8, connecting rod 9, working arm 10, pen holder 11, main arm 12.
  • Lower steering gear 13
  • a drawing robot arm includes a support platform 1 and a lifting platform 6, wherein the lifting platform 6 and the supporting platform 1 are connected by a lifting mechanism, and the lifting mechanism includes an elevator 3 and a lifting shaft 4,
  • the lifting shaft 4 is provided on the support platform 1, the top of the lifting shaft 4 passes through the lifting platform 1 and is connected to the limit plate 5, and the elevator servo 3 is provided on one side of the support platform 1, on the lifting platform
  • a cam 2 is provided between 6 and the supporting platform 1, and the cam 2 is connected to the elevator 3.
  • a spring 41 is sleeved on the lifting shaft 4. The spring 41 is located between the lifting platform 6 and the limit plate 5.
  • an upper steering gear 7 and a lower steering gear 13 are respectively provided on the lifting platform 6, a main boom 12 is connected to the lower steering gear 13, and an auxiliary arm 8 is connected to the upper steering gear 7, A link 9 is hinged on the other end of the auxiliary arm 8, a working arm 10 is hinged on the other end of the link 9, a pen clip 11 is provided on the other end of the working arm 10, and the main arm 12 is The other end is hinged to the working arm 10.
  • Step 1 Use linear compensation to correct the steering gear; first input a standard pulse signal, measure the actual rotation angle of the steering gear, and then compare and analyze the actual rotation angle of the steering gear with the ideal rotation angle to obtain the corresponding pulse signal. Correction value. All the correction values are aggregated into a linear correction table for the servo, and the linear correction table is stored in the single-chip microcomputer.
  • Step 2 Curvature speed regulation: Before drawing, first import the image into the single-chip microcomputer to become the pixel coordinate queue, and then divide the image into several curve segments. According to the curvature of different pixel points on each curve segment, determine the curve segment. The density of pixel points and the coordinates of different pixel points, the coordinates of each pixel point and the curvature of the pixel point are combined into a drawing point, and all the drawing points are combined to form a drawing file;
  • Step 3 When drawing, the servo determines the angle that the servo needs to rotate according to the coordinates of the pixels. First, the coordinates of the pixels are converted into the pulse signal input by the servo, and then the corresponding correction values on the linear correction table are obtained. Determine the rotation angle of the servo;
  • the speed of the steering gear rotation is calculated, and then the delay time is calculated. Finally, the drawing of each drawing point is completed by the rotation angle of the steering gear and the speed of the rotation of the steering gear.
  • step 3 compare the graphics drawn by the drawing robot arm with the original image.
  • the error between the original picture and the graphics drawn by the drawing robot arm forms graphic feedback compensation, and the graphic feedback compensation is stored in the single-chip microcomputer. , And then complete steps 1 to 3 in turn.
  • graphic feedback compensation will be added.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Processing Or Creating Images (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

一种机械臂绘图机构,包括支撑平台(1)和升降平台(6),其中升降平台(6)与支撑平台(1)之间通过升降机构连接,在升降平台(6)上分别设有上舵机(7)和下舵机(13),在下舵机(13)上连接有主臂(12),在上舵机(7)上连接有辅臂(8),在辅臂(8)的另一端铰接有连杆(9),在连杆(9)的另一端铰接有工作臂(10),在工作臂(10)的另一端设有笔夹(11),主臂(12)的另一端与工作臂(10)铰接。还公开了一种用于控制机械臂绘图机械臂的系统。该机械臂绘图机构和系统通过对舵机的线性补偿、曲率调速、虚位补偿和图形反馈补偿等手段解决了舵机本身的缺陷,确保了整个装置的稳定运行。

Description

一种绘图机械臂及其控制系统 技术领域
发明涉及一种绘图装置,尤其是一种绘图机械臂及其控制系统。
背景技术
目前,现有的绘图装置中,基本采用的是步进电机,由于采用步进电机存在成本大的缺陷,因此本方案中采用了造价较低的舵机,而针对舵机本身精度低,角度控制不精确等缺陷。
实用新型内容
发明的技术任务是针对以上现有技术的不足,而提供一种绘图机械臂及其控制系统。
发明解决其技术问题所采用的技术方案是:一种绘图机械臂,包括支撑平台和升降平台,其中所述升降平台与支撑平台之间通过升降机构连接,所述升降机构包括升降舵机和升降轴,所述升降轴设置在支撑平台上,所述升降轴的顶部穿过升降平台后连接有限位板,所述升降舵机设置在支撑平台的一侧,在所述升降平台与支撑平台之间设有凸轮,所述凸轮与所述升降舵机连接,在所述升降平台上分别设有上舵机和下舵机,在所述下舵机上连接有主臂,在所述上舵机上连接有辅臂,在所述辅臂的另一端铰接有连杆,在所述连杆的另一端铰接有工作臂,在所述工作臂的另一端设有笔夹,所述主臂的另一端与所述工作臂铰接。
一种用于控制绘图机械臂的系统,其中包括以下步骤:
步骤一:采用线性补偿对舵机进行校正;首先输入标准的脉冲信号,测出舵机的实际旋转角度,然后根据舵机的实际旋转角度与理想旋转角度 进行对比分析,得出脉冲信号对应的修正值,将所有的修正值集合在一起为该舵机的线性修正表,将线性修正表存在在单片机内;
步骤二:曲率调速:绘图前,首先将图像导入单片机,随后将图像分成若干条曲线段,根据每条曲线段上不同像素点处的曲率大小,确定每条曲线段上像素点的密度以及不同像素点的坐标,每个像素点的坐标与该像素点的曲率合并成为一个绘图点;
步骤三:绘图时,舵机根据像素点的坐标,确定舵机需要旋转的角度,首先将像素点的坐标转换为舵机输入的脉冲信号,然后再根据线性修正表上对应的修正值,从而确定舵机的旋转角度;
根据像素点处的曲率,计算出舵机旋转的速度,进而计算出延迟时间,最终通过舵机的旋转角度与舵机旋转的速度从而完成每个绘图点的绘制。
进一步改进:在完成线性补偿后,在单片机内插入对舵机进行虚位补偿。
进一步改进:在完成步骤三后,将绘图机械臂画出的图形与原图进行对比,原图与绘图机械臂画出的图形之间的误差形成图形反馈补偿,将图形反馈补偿存储在单片机内,然后再依次完成步骤一至三,在进行到步骤三时,除了原有的线性修正表外,还会增加图形反馈补偿。
发明的优点:首先选用舵机作为机械臂的动力源,从而降低了整个装置的成本,同时通过对舵机本身的线性补偿、曲率调速、虚位补偿、图形反馈补偿,等软件方式来克服舵机本身的缺陷,从而确保整个装置的稳定运行。
附图说明
图1是本发明的结构示意图。
图2是本发明控制流程框架图。
支撑平台1、凸轮2、升降舵机3、升降轴4、弹簧41、限位板5、升降平台6、上舵机7、辅臂8、连杆9、工作臂10、笔夹11、主臂12、下舵机13。
具体实施方式
下面结合说明书附图对发明做以下详细说明。
如图所示,一种绘图机械臂,包括支撑平台1和升降平台6,其中所述升降平台6与支撑平台1之间通过升降机构连接,所述升降机构包括升降舵机3和升降轴4,所述升降轴4设置在支撑平台1上,所述升降轴4的顶部穿过升降平台1后连接有限位板5,所述升降舵机3设置在支撑平台1的一侧,在所述升降平台6与支撑平台1之间设有凸轮2,所述凸轮2与所述升降舵机3连接,在所述升降轴4上套有弹簧41,所述弹簧41位于升降平台6与限位板5之间,在所述升降平台6上分别设有上舵机7和下舵机13,在所述下舵机13上连接有主臂12,在所述上舵机7上连接有辅臂8,在所述辅臂8的另一端铰接有连杆9,在所述连杆9的另一端铰接有工作臂10,在所述工作臂10的另一端设有笔夹11,所述主臂12的另一端与所述工作臂10铰接。
其工作原理是:
步骤一:采用线性补偿对舵机进行校正;首先输入标准的脉冲信号,测出舵机的实际旋转角度,然后根据舵机的实际旋转角度与理想旋转角度进行对比分析,得出脉冲信号对应的修正值,将所有的修正值集合在一起 为该舵机的线性修正表,将线性修正表存在在单片机内;
步骤二:曲率调速:绘图前,首先将图像导入单片机,成为像素坐标队列,随后将图像分成若干条曲线段,根据每条曲线段上不同像素点处的曲率大小,确定每条曲线段上像素点的密度以及不同像素点的坐标,每个像素点的坐标与该像素点的曲率合并成为一个绘图点,将所有的绘图点集合在一起,形成一个绘图文件;
步骤三:绘图时,舵机根据像素点的坐标,确定舵机需要旋转的角度,首先将像素点的坐标转换为舵机输入的脉冲信号,然后再根据线性修正表上对应的修正值,从而确定舵机的旋转角度;
根据像素点处的曲率,计算出舵机旋转的速度,进而计算出延迟时间,最终通过舵机的旋转角度与舵机旋转的速度从而完成每个绘图点的绘制。
进一步改进:在完成线性补偿后,在单片机内插入对舵机进行虚位补偿。
进一步改进:在完成步骤三后,将绘图机械臂画出的图形与原图进行对比,原图与绘图机械臂画出的图形之间的误差形成图形反馈补偿,将图形反馈补偿存储在单片机内,然后再依次完成步骤一至三,在进行到步骤三时,除了原有的线性修正表外,还会增加图形反馈补偿。
以上所述仅为发明的实施例,并非因此限制发明的专利范围,凡是利用发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在发明的专利保护范围内。

Claims (4)

  1. 一种绘图机械臂,包括支撑平台和升降平台,其特征在于:所述升降平台与支撑平台之间通过升降机构连接,所述升降机构包括升降舵机和升降轴,所述升降轴设置在支撑平台上,所述升降轴的顶部穿过升降平台后连接有限位板,所述升降舵机设置在支撑平台的一侧,在所述升降平台与支撑平台之间设有凸轮,所述凸轮与所述升降舵机连接,在所述升降平台上分别设有上舵机和下舵机,在所述下舵机上连接有主臂,在所述上舵机上连接有辅臂,在所述辅臂的另一端铰接有连杆,在所述连杆的另一端铰接有工作臂,在所述工作臂的另一端设有笔夹,所述主臂的另一端与所述工作臂铰接。
  2. 一种用于控制如权利要求1所述的绘图机械臂的系统,其特征在于:包括以下步骤:
    步骤一:采用线性补偿对舵机进行校正;首先输入标准的脉冲信号,测出舵机的实际旋转角度,然后根据舵机的实际旋转角度与理想旋转角度进行对比分析,得出脉冲信号对应的修正值,将所有的修正值集合在一起为该舵机的线性修正表,将线性修正表存在在单片机内;
    步骤二:曲率调速:绘图前,首先将图像导入单片机,随后将图像分成若干条曲线段,根据每条曲线段上不同像素点处的曲率大小,确定每条曲线段上像素点的密度以及不同像素点的坐标,每个像素点的坐标与该像素点的曲率合并成为一个绘图点;
    步骤三:绘图时,舵机根据像素点的坐标,确定舵机需要旋转的角度,首先将像素点的坐标转换为舵机输入的脉冲信号,然后再根据线性修正表上对应的修正值,从而确定舵机的旋转角度;
    根据像素点处的曲率,计算出舵机旋转的速度,进而计算出延迟时间,最终通过舵机的旋转角度与舵机旋转的速度从而完成每个绘图点的绘制。
  3. 根据权利要求2所述的一种用于控制绘图机械臂的系统,其特征在于:在完成线性补偿后,在单片机内插入对舵机进行虚位补偿。
  4. 根据权利要求2所述的一种用于控制绘图机械臂的系统,其特征在于:在完成步骤三后,将绘图机械臂画出的图形与原图进行对比,原图与绘图机械臂画出的图形之间的误差形成图形反馈补偿,将图形反馈补偿存储在单片机内,然后再依次完成步骤一至三,在进行到步骤三时,除了原有的线性修正表外,还会增加图形反馈补偿。
PCT/CN2019/086969 2018-06-11 2019-05-15 一种绘图机械臂及其控制系统 WO2019237874A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810596728.3 2018-06-11
CN201810596728.3A CN108748096B (zh) 2018-06-11 2018-06-11 一种绘图机械臂及其控制系统

Publications (1)

Publication Number Publication Date
WO2019237874A1 true WO2019237874A1 (zh) 2019-12-19

Family

ID=64022455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086969 WO2019237874A1 (zh) 2018-06-11 2019-05-15 一种绘图机械臂及其控制系统

Country Status (2)

Country Link
CN (1) CN108748096B (zh)
WO (1) WO2019237874A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108748096B (zh) * 2018-06-11 2020-06-02 深圳市小怪兽教育科技有限公司 一种绘图机械臂及其控制系统
CN109435544B (zh) * 2018-12-20 2020-12-25 深圳市小怪兽教育科技有限公司 一种机械臂绘图装置
CN111872487B (zh) * 2020-07-31 2021-04-20 苏州市诚阳金属制品有限公司 一种金属圆片裁切用辅助装置
CN112140096A (zh) * 2020-09-11 2020-12-29 广州市标准化研究院 标准化推进模型构建曲线图绘制设备及其方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459494A (en) * 1991-11-26 1995-10-17 Mutoh Industries Ltd. Automatic lead supplying device for a plotter
JPH08160124A (ja) * 1994-12-07 1996-06-21 Kaijo Corp 魚群探知機用記録器
JPH10193879A (ja) * 1997-01-10 1998-07-28 Nireco Corp 2面同時マーキング装置
JP2003280741A (ja) * 2002-01-17 2003-10-02 Matsushita Electric Works Ltd モータ制御システム、及びこれを搭載したパンタグラフ
US7165331B1 (en) * 2005-05-24 2007-01-23 Micro Processing Technology, Inc. Apparatus and method for scribing a semiconductor wafer while controlling scribing forces
CN105034658A (zh) * 2015-07-30 2015-11-11 深圳市创客工场科技有限公司 绘图装置
CN204955857U (zh) * 2015-07-30 2016-01-13 深圳市创客工场科技有限公司 绘图装置
CN205272977U (zh) * 2015-12-19 2016-06-01 沈伟 一种工业电气自动化的绘图机械手
CN206605965U (zh) * 2017-01-25 2017-11-03 江门市宏汇科技有限公司 一种绘图工具组件
CN108748096A (zh) * 2018-06-11 2018-11-06 深圳市小怪兽教育科技有限公司 一种绘图机械臂及其控制系统
CN208664735U (zh) * 2018-06-11 2019-03-29 深圳市小怪兽教育科技有限公司 一种机械臂绘图机构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2751286B2 (ja) * 1989-01-06 1998-05-18 松下電器産業株式会社 描画装置
CN104669277B (zh) * 2015-03-11 2016-05-11 宿州学院 一种双臂型写字机器人及其控制方法
CN104827464A (zh) * 2015-04-14 2015-08-12 马鞍山鼎泰稀土新材料股份有限公司 一种四自由度高速搬运机器人水平驱动机构
CN106355990B (zh) * 2016-10-27 2023-05-02 上海建桥学院 一种双自由度平面五杆机构演示仪
CN206968251U (zh) * 2017-04-20 2018-02-06 四川建筑职业技术学院 一种写字机用的自适应式笔架
CN109532001B (zh) * 2017-06-16 2020-06-16 浙江大学 一种三维打印平台的调平方法及使用该方法的调平系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459494A (en) * 1991-11-26 1995-10-17 Mutoh Industries Ltd. Automatic lead supplying device for a plotter
JPH08160124A (ja) * 1994-12-07 1996-06-21 Kaijo Corp 魚群探知機用記録器
JPH10193879A (ja) * 1997-01-10 1998-07-28 Nireco Corp 2面同時マーキング装置
JP2003280741A (ja) * 2002-01-17 2003-10-02 Matsushita Electric Works Ltd モータ制御システム、及びこれを搭載したパンタグラフ
US7165331B1 (en) * 2005-05-24 2007-01-23 Micro Processing Technology, Inc. Apparatus and method for scribing a semiconductor wafer while controlling scribing forces
CN105034658A (zh) * 2015-07-30 2015-11-11 深圳市创客工场科技有限公司 绘图装置
CN204955857U (zh) * 2015-07-30 2016-01-13 深圳市创客工场科技有限公司 绘图装置
CN205272977U (zh) * 2015-12-19 2016-06-01 沈伟 一种工业电气自动化的绘图机械手
CN206605965U (zh) * 2017-01-25 2017-11-03 江门市宏汇科技有限公司 一种绘图工具组件
CN108748096A (zh) * 2018-06-11 2018-11-06 深圳市小怪兽教育科技有限公司 一种绘图机械臂及其控制系统
CN208664735U (zh) * 2018-06-11 2019-03-29 深圳市小怪兽教育科技有限公司 一种机械臂绘图机构

Also Published As

Publication number Publication date
CN108748096B (zh) 2020-06-02
CN108748096A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2019237874A1 (zh) 一种绘图机械臂及其控制系统
CN102345390B (zh) 一种混凝土泵车臂架变形量的补偿方法
WO2016141779A1 (zh) 一种双臂型写字机器人及其控制方法
CN106881711B (zh) 一种自动堆砌机及砌墙控制方法
WO2019237875A1 (zh) 一种机械臂绘图机构
CN104742137B (zh) 四轴运动平台的执行器更换后的轨迹补偿方法
CN107369908B (zh) 一种提高射电望远镜接收机一次定位精度的方法
CN106625629B (zh) 隧道多臂架、多关节作业设备的末端臂架姿态多模式自动控制装置及方法
CN104731015A (zh) 一种快速对中方法
WO2015165346A1 (zh) 一种工程机械和臂架控制系统
CN103738463A (zh) 一种造船用数控胎架的控制方法
CN109278055A (zh) 一种绘画机器人
CN109002658A (zh) 六自由度并联机构运动速度算法优化及速率提升方法
CN206153802U (zh) 一种焊接机械手
CN208898402U (zh) 一种直线运动机构
US20130008221A1 (en) Stretch forming apparatus
CN204728660U (zh) 一种可自动调节角度的粉墙机
WO2017128559A1 (zh) 建筑工程用3d打印机
CN109093624B (zh) 一种机械臂复杂曲线的连续插补运动控制方法
CN101409077B (zh) 自动矫正方法及装置
CN106774035A (zh) 一种基于ipc和pmac平台的喷涂机器人控制系统
CN208075791U (zh) 一种三坐标精度检测装置
CN106320669A (zh) 一种可自动调节角度的粉墙机
CN208498057U (zh) 一种辅助画图型黑板
CN201293912Y (zh) 全自动定位演示白板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19819239

Country of ref document: EP

Kind code of ref document: A1