WO2019237741A1 - 电子装置的制备方法、电子装置及其制备工具 - Google Patents

电子装置的制备方法、电子装置及其制备工具 Download PDF

Info

Publication number
WO2019237741A1
WO2019237741A1 PCT/CN2019/072715 CN2019072715W WO2019237741A1 WO 2019237741 A1 WO2019237741 A1 WO 2019237741A1 CN 2019072715 W CN2019072715 W CN 2019072715W WO 2019237741 A1 WO2019237741 A1 WO 2019237741A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretched
electronic device
stretching
stretched portion
flexible substrate
Prior art date
Application number
PCT/CN2019/072715
Other languages
English (en)
French (fr)
Inventor
汪杨鹏
谢扶政
胡耀
张振华
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810621420.XA external-priority patent/CN110611051B/zh
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2020534182A priority Critical patent/JP7328223B2/ja
Priority to US16/497,897 priority patent/US11349106B2/en
Priority to EP19819825.1A priority patent/EP3809483A1/en
Publication of WO2019237741A1 publication Critical patent/WO2019237741A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present disclosure relate to a manufacturing method of an electronic device, an electronic device, and a manufacturing tool thereof.
  • foldable display device facilitates miniaturization of a portable electronic device.
  • Folding display devices have received more and more attention due to their advantages such as large screen size and portability.
  • the foldable display device can be used in many electronic devices such as mobile communication terminals, tablet computers, e-books, navigation devices, and the like.
  • At least one embodiment of the present disclosure provides a method for manufacturing an electronic device.
  • the electronic device includes a stretching area and non-stretching areas on both sides of the stretching area.
  • the method includes: providing a flexible substrate, the flexibility
  • the substrate includes a stretched portion and non-stretched portions on both sides of the stretched portion; wherein the stretched portion and the non-stretched portion correspond to the stretched region and the non-stretched region, respectively; Perpendicular to the length direction of the stretched portion, stretching the stretched portion and fixing it, and maintaining the stretched portion in a stretched state; forming a circuit structure on the non-stretched portion; Fixing the stretched part restores the stretched part.
  • stretching the stretched portion includes: stretching the non-stretched portion along the stretched portion and the non-stretched portion. The boundary is fixed, and the stretched portion is stretched at the boundary position.
  • the flexible substrate and the rigid substrate are fixed to maintain the stretching portion in a stretched state.
  • the flexible substrate is separated from the rigid substrate, so as to release the fixing of the stretching portion.
  • a sacrificial layer is formed on the rigid substrate to bond and fix the flexible substrate to the rigid substrate, and the flexible substrate is The sacrificial layer is removed when separated from the rigid substrate.
  • the circuit structure is simultaneously fabricated on the non-stretched portions on both sides of the stretched portion.
  • the flexible substrate is covered with a mask plate including a shielding portion, the shielding portion corresponding to the The stretching portion is to block the stretching portion.
  • a structural layer including the circuit structure is formed on the flexible substrate, and then the structural layer in the stretched region is removed to expose the structure layer. Stretching section.
  • a method for manufacturing an electronic device provided by at least one embodiment of the present disclosure further includes: forming a trace on the stretched portion to connect the circuit structures on both sides of the stretched portion.
  • the method further includes: in the stretching region, forming a first portion on a side of the circuit structure.
  • An encapsulation layer for example, in a method for manufacturing an electronic device provided by at least one embodiment of the present disclosure, after the circuit structure is formed, the method further includes: in the stretching region, forming a first portion on a side of the circuit structure. An encapsulation layer.
  • the method further includes: forming flexibility on a side of the circuit structure remote from the flexible substrate. A cover to cover the circuit structure.
  • the method before the stretching portion is stretched, the method further includes: modifying the stretching portion to make it stretch.
  • the stretchability is higher than the non-stretched portion.
  • At least one embodiment of the present disclosure provides an electronic device having a stretched region and non-stretched regions on both sides of the stretched region, and including: a flexible substrate including a stretched portion and the stretched region. Non-stretched portions on both sides of the portion; wherein the stretched portion and the non-stretched portion are respectively located in the stretched region and the non-stretched region; a circuit structure is provided on the non-stretched portion ; Wherein the stretching portion can be stretched during the manufacturing process of the electronic device, and the electronic device can be bent through the stretching region.
  • an electronic device provided by at least one embodiment of the present disclosure further includes a flexible cover plate disposed on a side of the circuit structure remote from the flexible substrate to cover the circuit structure.
  • an electronic device provided by at least one embodiment of the present disclosure further includes: at least two sets of driving circuits, the non-stretched regions respectively disposed on two sides of the stretched region to be the non-stretched regions, respectively.
  • the circuit structure in provides a driving signal.
  • an electronic device provided by at least one embodiment of the present disclosure further includes: a trace disposed in the stretching region, the trace connecting the circuit structures on both sides of the stretching region.
  • an electronic device provided by at least one embodiment of the present disclosure further includes: a first packaging layer disposed on a side of the circuit structure near the stretching region.
  • At least one embodiment of the present disclosure provides a preparation tool for an electronic device, including: a supporting platform for supporting a flexible substrate; at least one fixing portion for detachably fixing the flexible substrate on the supporting platform; wherein
  • the loading platform includes at least two parts and the gap between two adjacent parts is adjustable, and the at least one fixing part may be respectively disposed at an edge position of the two parts near the gap to allow only The fixed flexible substrate is stretched at the gap.
  • a preparation tool for an electronic device provided by at least one embodiment of the present disclosure further includes: a driving device drivingly connected to the bearing platform to adjust a gap between two adjacent portions of the bearing platform to Stretching or recovering the fixed flexible substrate.
  • FIG. 1 is a flowchart of a method for manufacturing an electronic device according to some embodiments of the present disclosure
  • FIGS. 2A and 2B are schematic plan views of a flexible substrate before stretching according to some embodiments of the present disclosure
  • FIG. 3 is a schematic plan view of a flexible substrate after stretching according to some embodiments of the present disclosure
  • FIG. 4 is a schematic cross-sectional view of a flexible substrate in a stretched state provided by some embodiments of the present disclosure
  • FIG. 5A, FIG. 6A, FIG. 7A, and FIG. 8 to FIG. 11 are schematic cross-sectional views of an electronic device provided in some embodiments of the present disclosure during a manufacturing process;
  • 5B is a schematic cross-sectional view of a thin film transistor included in an electronic device according to some embodiments of the present disclosure
  • 6B is a schematic cross-sectional view of a light emitting structure included in an electronic device provided by some embodiments of the present disclosure
  • FIG. 7B is a schematic cross-sectional view of a second packaging layer included in an electronic device provided by some embodiments of the present disclosure.
  • FIG. 7C is a schematic cross-sectional view of an electronic device with a first packaging layer formed according to some embodiments of the present disclosure
  • FIG. 12A to FIG. 12C are three schematic plan views of circuit structures using traces to connect non-bend areas according to some embodiments of the present disclosure
  • FIG. 13 is a schematic plan view of an electronic device provided by some embodiments of the present disclosure.
  • 14A and 14B are two schematic plan views of a preparation tool for an electronic device provided by some embodiments of the present disclosure.
  • 15 is another schematic plan view of a manufacturing tool for an electronic device provided by some embodiments of the present disclosure.
  • FIG. 16 shows the electronic device in a folded state.
  • the folding display is generally obtained by splicing two or more display screens.
  • this preparation method is simple, the gap between the multiple display screens of the folding display screen is often large, and the screens are displayed together.
  • the folding display screen can also adopt a flexible display screen, thereby realizing the folding function by utilizing the flexibility of the flexible screen.
  • each layer of the flexible display needs to have predetermined flexibility, so the material selection range of the functional structure of each layer is narrowed, and thus the further improvement of the performance of the flexible display is restricted; and, each functional layer is in The stress situation during folding may be different. Therefore, for example, the stress situation of each functional layer needs to be simulated and precisely designed; otherwise, during the folding process, these functional layers may be prone to fracture and peeling, which affects the final product. Reliability.
  • At least one embodiment of the present disclosure provides a method for manufacturing an electronic device.
  • the electronic device includes a stretching area and non-stretching areas on both sides of the stretching area.
  • the manufacturing method includes: providing a flexible substrate, the flexible substrate including stretching Parts and non-stretched parts on both sides of the stretched part; wherein the stretched part and the non-stretched part correspond to the stretched area and the non-stretched area, respectively; and the stretched part is pulled perpendicular to the length direction of the stretched part It is fixed after stretching, and the stretched part is kept in a stretched state; a circuit structure is formed on the non-stretched part; the fixation of the stretched part is released, and the stretched stretched part is restored.
  • An electronic device provided by at least one embodiment of the present disclosure includes a stretched area and non-stretched areas located on both sides of the stretched area, and includes a flexible substrate including a stretched portion and two sides of the stretched portion.
  • the non-stretched portion wherein the stretched portion and the non-stretched portion are respectively located in the stretched region and the non-stretched region; the circuit structure is disposed on the non-stretched portion; wherein the stretched portion is in the process of preparing the electronic device It is stretched and the electronic device can be bent through the stretched area.
  • At least one embodiment of the present disclosure provides a preparation tool for an electronic device, including: a supporting table for supporting a flexible substrate; at least one fixing part for detachably fixing the flexible substrate on the supporting platform; wherein the supporting platform includes The gap between at least two parts and adjacent two parts is adjustable, and at least one fixing part may be respectively disposed at the edge position of the two parts near the gap to allow the fixed flexible substrate to be stretched only at the gap.
  • An embodiment of the present disclosure provides a method for manufacturing an electronic device.
  • the electronic device includes a flexible substrate and various circuit structures prepared on the flexible substrate, and has a plurality of sections that can be folded to each other. Adjacent sections (for example, every two adjacent sections) are bendable regions.
  • the electronic device may include a stretched area and a non-stretched area located on both sides of the stretched area, and the stretched area is a bendable area.
  • a bendable region allows non-stretched regions on both sides of the region to at least partially overlap.
  • the bendable region 300 causes two adjacent non-stretched regions 20 to overlap each other (eg, parallel to each other).
  • the method for manufacturing the electronic device includes steps S101-S104.
  • Step S101 Provide a flexible substrate including a stretched portion and non-stretched portions on both sides of the stretched portion.
  • the flexible substrate includes a stretched portion 101 and non-stretched portions located on both sides of the stretched portion 101.
  • the non-stretched portion includes, for example, the first non-stretched portion 102A and The second non-stretched portion 102B.
  • the stretched portion 101 corresponds to the stretched region 10 of the prepared electronic device, that is, a region that can be bent, and the non-stretched portions 102A and 102B respectively correspond to the non-stretched region 20 of the electronic device.
  • the material for preparing the flexible substrate may include, for example, flexible materials such as polyimide (PI), polydimethylsiloxane (PMDS), or polyurethane (PU), which is not specifically limited in the embodiments of the present disclosure.
  • the stretched portion 101 has elastic restoring force due to being stretched. The above elastic restoring force allows the stretched portion 101 to be juxtaposed with the first non-stretched portion 102A and the second non-stretched portion 102B without receiving external force. The size in the arrangement direction is reduced.
  • Step S102 perpendicularly to the length direction of the stretched portion, stretch the stretched portion and fix it, and keep the stretched portion in a stretched state.
  • the vertical direction is the length direction of the stretched portion 101, so the stretched portion 101 is stretched and fixed in the horizontal direction (that is, the direction indicated by the arrow in the figure), and the stretched portion is kept pulled. Stretched state.
  • the non-stretched portions 102A and 102B when stretching the stretched portion 101, can be fixed along the boundary between the stretched portion 101 and the non-stretched portions 102A and 102B, respectively, and the stretched portion 101 can be fixed at the boundary position. Stretched so that only the stretched portion 101 is stretched, and the non-stretched portions 102A and 102B are not affected.
  • the four corners of the boundary between the stretched portion 101 and the non-stretched portions 102A and 102B may be respectively fixed to a carrier (not shown in the figure) (for example, fixed with a clamp 103, And the size of the clamp 103 is smaller than the length of the stretched portion 101), thereby fixing the non-stretched portions 102A and 102B (for example, the fixation between the non-stretched portions 102A and 102B and the supporting table).
  • the stretched portion 101 is then stretched.
  • a stretching force may be applied to four corners at the boundary of the stretched portion 101 and the non-stretched portions 102A and 102B, thereby making the stretching force (for example, The tensile force is applied only to the stretched portion 101 in the direction of the arrow in FIG. 2A, and is not applied to the non-stretched portions 102A and 102B.
  • the fixture can be temporarily released from fixing the four corners of the boundary between the stretched portion 101 and the non-stretched portions 102A and 102B.
  • the stretching portion 101 may be stretched first, and after the stretching portion 101 is appropriately stretched, the stretching portion 101 may be fixed using a jig.
  • the four corners of the boundary between the stretched portion 101 and the non-stretched portions 102A and 102B can be fixed by using a clamp before stretching, and a tensile force is applied to the clamp during the stretching process, thereby The stretching part 101 can be stretched via a jig.
  • the entire boundary line between the stretched portion 101 and the non-stretched portions 102A and 102B can be fixed to a bearing platform (not shown in the figure) (for example, fixed with a clamp 103, and The size of the clamp 103 is larger than the length of the stretched portion 101).
  • the non-stretched portions 102A and 102B can also be fixed (for example, the fixation between the non-stretched portions 102A and 102B and the bearing table), and The extension 101 is stretched.
  • the stress of the stretching portion 101 can be made more uniform.
  • FIG. 2B for a specific stretching method, refer to the example shown in FIG. 2A, and details are not described herein again.
  • the stretching portion 101 before the stretching portion 101 is stretched (for example, after the stretching portion is formed and before the stretching is performed; or during the process of forming the stretching portion), the stretching portion may be further processed. 101 is modified to make the tensile properties higher than those of the non-stretched portions 102A and 102B, so that the stretched portion 101 is easier to stretch and can stretch longer.
  • a chemical modification method may be used to select a modifier having a predetermined composition according to the material of the flexible substrate to modify the stretched portion 101 of the flexible substrate to improve the stretchability of the stretched portion 101; for example, A physical modification method is used to modify the stretched portion 101 of the flexible substrate by selecting a plasma having a predetermined composition according to the material of the flexible substrate, or selecting an ion source of a predetermined composition to the tensile portion of the flexible substrate according to the material of the flexible substrate 101 is ion-implanted to perform a modification treatment to improve the tensile properties of the stretched portion 101. This treatment is advantageous for stretching only the stretching portion 101 in the subsequent stretching process.
  • the stretching portion 101 is made of polyimide
  • at least one of the following methods can be used to improve the stretching performance of the stretching portion 101.
  • the stretched part 101 after the completion of the preparation is subjected to a high temperature (for example, 250 degrees to 350 degrees) heat treatment (for example, treatment for 1 hour).
  • a high temperature for example, 250 degrees to 350 degrees
  • heat treatment for example, treatment for 1 hour
  • an organic phosphate for example, triphenyl phosphate
  • the material for forming the polyimide is gelled to form a gel film, and the gel film is subjected to a stretching treatment. For example, as shown in FIG. 3 and FIG. 4 (FIG.
  • FIG. 4 is a schematic cross-sectional view taken along line AA in FIG. 3), after the stretching portion 101 is stretched, the flexible substrate and the rigid substrate 104 can be fixed, for example, bonded and fixed, so that The stretched portion 101 remains stretched.
  • a sacrificial layer 105 may be formed on the rigid substrate 104 to adhere and fix the flexible substrate and the rigid substrate 104, and the jig 103 may be removed after fixing. The sacrificial layer 105 can be removed, for example, when the subsequent flexible substrate is separated from the rigid substrate 104.
  • the material of the sacrificial layer 105 may be, for example, an adhesive material such as optical transparency, and the rigid substrate may be a glass substrate, a ceramic substrate, a stainless steel substrate, or the like, which is not limited in the embodiments of the present disclosure.
  • the rigid substrate 104 (the rigid substrate 104 via the sacrificial layer 105) may continuously apply a tensile force to the stretching portion 101 (for example, the direction of the tensile force may be an arrow in FIG. 2A Direction) to balance the elastic restoring force of the stretched portion 101 so as to keep the stretched portion 101 in a stretched state.
  • Step S103 forming a circuit structure on the non-stretched portion.
  • a circuit structure may be fabricated simultaneously on the non-stretched portions 102A and 102B on both sides of the stretched portion 101, or circuit structures may be separately fabricated.
  • a circuit structure may be first formed on the first non-stretched portion 102A, and then a circuit structure may be formed on the second non-stretched portion 102B; or a second non-stretched portion 102B may be formed first.
  • a circuit structure is formed thereon, and then a circuit structure is formed on the first non-stretched portion 102A.
  • a flexible substrate may be covered with a mask plate including a shielding portion corresponding to the stretching portion 101 to cover the stretching portion 101, thereby realizing the first A non-stretched portion 102A and a second non-stretched portion 102B simultaneously form a circuit structure.
  • a structural layer including a circuit structure may be directly formed on the flexible substrate, and then the structural layer formed in the stretching area 10, that is, the stretching portion 101 is removed to expose the stretching portion 101, thereby realizing the stretching portion 101 respectively.
  • Circuit structures are formed on the first non-stretched portion 102A and the second non-stretched portion 102B on both sides.
  • the circuit structure may include, for example, a circuit structure for display, for example, including a thin film transistor (including a switching transistor, a driving transistor, etc.), a light emitting structure, and a functional component such as a storage capacitor.
  • a circuit structure for display for example, including a thin film transistor (including a switching transistor, a driving transistor, etc.), a light emitting structure, and a functional component such as a storage capacitor.
  • the circuit structure on the non-stretched portion 102A may correspond to multiple display pixels
  • the circuit structure on the non-stretched portion 102B may correspond to multiple display pixels.
  • a thin film transistor layer 106 may be first formed on the first non-stretched portion 102A and the second non-stretched portion 102B by a method such as patterning.
  • the patterning method includes, for example, steps of coating, exposing, developing, and etching a photoresist.
  • the thin film transistor layer 106 includes a plurality of thin film transistors.
  • the formed thin film transistor may include a structure such as a gate 1061, a source 1062, a drain 1063, and an active layer 1064.
  • the thin film transistor may be formed, for example, as a top gate type or a bottom gate type, and its active layer may be amorphous silicon, polysilicon, an oxide semiconductor (such as IGZO, etc.), and the embodiment of the present disclosure does not specifically limit this.
  • the thin film transistor can be used to drive and control a light emitting structure to be formed later.
  • a light emitting structure 107 may be formed by a method such as patterning.
  • the light emitting structure 107 includes, for example, a plurality of pixel units, and each pixel unit is formed corresponding to a thin film transistor.
  • each pixel unit of the light emitting structure 107 may include, for example, an organic light emitting diode.
  • the organic light emitting diode includes a first electrode 1071, a second electrode 1072, and an organic light emitting diode disposed between the first electrode 1071 and the second electrode 1072.
  • the light emitting layer 1074, the hole transport layer 1073, the electron transport layer 1075, and the like; the organic light emitting diode can emit red light, green light, blue light, and the like, which are not limited in the embodiments of the present disclosure.
  • a voltage is applied between the first electrode 1071 and the second electrode 1072, electrons and holes are injected into the light emitting layer to recombine and excite, so that the light emitting layer 1074 can emit light.
  • the first electrode 1071 of each pixel unit may be connected to the source 1062 or the drain 1063 of the corresponding thin film transistor, so as to realize the driving control of the light emitting structure 107 by the thin film transistor.
  • FIG. 5B illustrates a case where the first electrode 1071 and the drain 1063 of the thin film transistor are connected in one example.
  • a second encapsulation layer 108B may be formed on the light emitting structure 107.
  • the second encapsulation layer 108B may include, for example, a first inorganic encapsulation layer 1081, a second organic encapsulation layer 1082, and a third inorganic encapsulation layer 1083.
  • the inorganic materials used for the first inorganic encapsulation layer 1081 and the second organic encapsulation layer 1082 may include silicon nitride, silicon oxide, silicon oxynitride, titanium oxide, zirconia, tantalum oxide, barium titanate, neodymium oxide, nitrogen Suitable materials are alumina, zirconium oxynitride, tantalum oxynitride, yttrium oxynitride, or neodymium oxynitride.
  • the inorganic packaging material has excellent water blocking properties, and can effectively prevent moisture introduced in the preparation of each functional layer and moisture in the air from penetrating into the circuit structure.
  • the organic material used for the second organic encapsulation layer 1082 may be, for example, a suitable material such as polyimide (PI) or epoxy resin.
  • PI polyimide
  • a first encapsulation layer may also be formed on the side of the circuit structure in the stretching region 10 of the electronic device. 108A.
  • the first packaging layer 108A is in direct contact with the side edges 200 (see FIG. 7A) of the circuit structure.
  • the side edges 200 of adjacent circuit structures are opposite to each other.
  • the side 200 of the circuit structure may intersect (e.g., perpendicular) to the flexible substrate 104.
  • the first encapsulation layer 108A can encapsulate and protect the sides of the circuit structure located in the non-stretched region 20.
  • the first encapsulation layer 108A may be formed as a very thin layer, for example, may be a single-layer encapsulation layer, for example, may be a single-layer encapsulation layer formed of an inorganic material, so that after the stretched portion recovers, the first non-stretching layer There is also no significant gap between the portion 102A and the second non-stretched portion 102B (for example, the user does not notice the gap between the first non-stretched portion 102A and the second non-stretched portion 102B).
  • a touch layer 109 may be formed on the second encapsulation layer 108B.
  • the touch layer 109 may include a single-layer touch pattern, a double-layer touch pattern, or Various types of touch patterns, such as bridge-type touch patterns, are not limited in the embodiments of the present disclosure.
  • the touch layer 109 may be formed independently, for example, and then attached to the second packaging layer 108B.
  • the touch-sensitive layer 109 may be formed in the second encapsulation layer 108B, so that the second encapsulation layer 108B may also encapsulate and protect the touch-sensitive layer 109.
  • the embodiment of the present disclosure does not specifically limit the manner of forming the touch layer 109.
  • the touch layer 109 may be any appropriate type of touch structure, such as a resistive type, a capacitive type, and the like, and the capacitive type may further be a self-capacitance type or a mutual capacitance type.
  • Step S104 The fixing of the stretched part is released, and the stretched stretched part is restored (that is, restored).
  • the flexible substrate and the rigid substrate may be irradiated with laser light (for rigid substrates made of glass or transparent ceramics) or mechanical methods (for example, heated, corresponding to rigid substrates made of non-transparent ceramics or stainless steel). Detach, thereby releasing the fixation of the stretched portion.
  • the surface of the flexible substrate 104 may be irradiated with a laser to weaken the adhesiveness of the sacrificial layer 105, thereby separating the flexible substrate from the rigid substrate 104, and releasing the fixing of the stretching portion 101, and At the same time, since the adhesion of the sacrificial layer 105 is weakened, it is easy to peel off from the surfaces of the flexible substrate and the rigid substrate 104.
  • the elastic restoring force of the stretched part allows the stretched part 101 to be in the first non-stretched part 102A and the second non-stretched part.
  • the size of the stretched portion 102B is reduced in the side-by-side arrangement direction, thereby reducing the distance between the first non-stretched portion 102A and the second non-stretched portion 102B on both sides of the stretched portion and the circuits on both sides of the stretched portion.
  • the spacing of the structure can reduce the size of the blind zone of the electronic device and improve the performance of the electronic device.
  • the non-stretched portions located on both sides of the stretched portion 101 that is, the first non-stretched portion 102A and the first
  • the circuit structures of the two non-stretched portions 102B may be connected to each other (and, for example, insulated from each other) or have only a small distance, which may be, for example, less than or equal to between adjacent pixel units in the light emitting structure 107 in the circuit structure. Therefore, the distance will not affect the overall display effect of the light emitting structure 107 of the electronic device located on both sides of the stretched portion.
  • the preparation method provided by the embodiment of the present disclosure may further include, for example, bonding a flexible substrate with a circuit structure formed on the flexible cover 110 to cover the circuit structure.
  • a flexible cover plate may be formed on a side of the circuit structure remote from the flexible substrate.
  • the flexible cover 110 is transparent and flexible, and can be folded together with the stretched portion 101 of the flexible substrate, and the transparency of the flexible cover 110 does not affect the display effect of the light emitting structure 107 formed on the flexible substrate.
  • the flexible cover 110 has flexibility that allows a first region of the flexible cover 110 overlapped with the first non-stretched portion 102A and a second region of the flexible cover 110 overlapped with the second non-stretched portion 102B to each other Stacked.
  • the first non-stretched portion 102A and the second non-stretched portion 102B in the process of forming a circuit structure on the first non-stretched portion 102A and the second non-stretched portion 102B, for example, the first non-stretched portion 102A and A driving circuit is formed on the second non-stretched portion 102B to control the circuit structures on the first non-stretched portion 102A and the second non-stretched portion 102B, respectively.
  • the circuit structures on the first non-stretched portion 102A and the second non-stretched portion 102B are independent of each other and can be controlled independently.
  • a wiring 1011 connecting the circuit structure in the first non-stretched portion 102A and the second non-stretched portion 102B may also be formed on the stretched portion 101 of the flexible substrate, so that only the first non-stretched portion 102A and the first
  • a driving circuit is formed on one of the two non-stretched portions 102B, the control of the circuit structure in the first non-stretched portion 102A and the second non-stretched portion 102B is realized simultaneously.
  • the circuit structures on the first non-stretched portion 102A and the second non-stretched portion 102B are electrically connected and can be controlled by the same driving signal at the same time.
  • the traces 1011 formed on the stretched portion 101 of the flexible substrate may be, for example, a broken line shape (the case shown in FIG. 12A), an S shape (the case shown in FIG. 12B), or a hollowing process ( FIG. 12C shows a situation where the colorless circle is hollowed out, so that during the recovery of the stretched portion 101, the shape of the fold line, the S shape or the hollowed out shape of the wiring 1011 will adapt as the stretched portion 101 shrinks. Change without affecting the electrical connection effect of the trace 1011 on the circuit structure on the first non-stretched portion 102A and the second non-stretched portion 102B.
  • the circuit structures on the first non-stretched portion 102A and the second non-stretched portion 102B may be stitched together, and the circuit of the first non-stretched portion 102A There is a small distance between the structure and the circuit structure on the second non-stretched portion 102B (that is, the size of the seam is small), and the distance may be, for example, less than or equal to that in the light-emitting structure 107 in the circuit structure.
  • the distance between the pixel units so when multiple circuit structures are used for display, there is no user-observable between the circuit structures for display on the first non-stretched portion 102A and the second non-stretched portion 102B. At this time, for example, the electronic device does not have a dead zone, and therefore, seamless display can be achieved, so the electronic device has a better quality display effect.
  • the circuit structure formed in the non-stretched area of the electronic device (that is, formed in the first non-stretched area)
  • the functional requirements of materials such as the circuit structure on the portion 102A and the second non-stretched portion 102B are reduced (for example, non-flexible materials can be used), which broadens the scope of materials and simplifies functional components such as circuit structures. Design difficulty and manufacturing process, and therefore can improve the device performance of electronic devices.
  • the electronic device has a stretched region 10 and non-stretched regions 20 on both sides of the stretched region 10 (due to the stretching shown in the figure).
  • the region 10 is not in a stretched state, so its width is small), and the electronic device includes a flexible substrate and a circuit structure.
  • the flexible substrate includes a stretched portion 101 and non-stretched portions (eg, including a first non-stretched portion 102A and a second non-stretched portion 102B) located on both sides of the stretched portion 101; wherein the stretched portion 101 and the non-stretched portion
  • the extensions are located in the stretched area 10 and the non-stretched area 20, respectively.
  • the circuit structures 30A and 30B are respectively disposed on the non-stretched portions 102A and 102B; the stretched portion 101 is stretched during the preparation of the electronic device, and the electronic device can pass through the stretched area 10 (that is, the stretch corresponding to the flexible substrate) Position of the portion 101).
  • the stretched portion 101 In the non-bent state of the electronic device, the stretched portion 101 is in a non-stretched state.
  • the electronic device is in a non-bent state; during transportation and storage, the electronic device is in a bent state to reduce the space occupied by the electronic device.
  • the electronic device may have multiple bending regions, multiple first non-stretched portions 102A, and multiple second non-stretched portions 102B to further reduce the space occupied by the electronic device during transportation and storage.
  • the electronic device provided by the embodiments of the present disclosure may further include a flexible cover plate disposed on a side of the circuit structure remote from the flexible substrate to cover the circuit structure.
  • the flexible cover plate can protect the circuit structure, and can also be bent when the electronic device is folded.
  • the circuit structures 30A and 30B located on the non-stretched portions 102A and 102B respectively include a light-emitting circuit layer (ie, a light-emitting structure layer) and a touch layer that are sequentially disposed on a flexible substrate.
  • the light-emitting circuit layer can be used for display, and the touch-sensitive layer can perform touch operations on circuit structures such as the light-emitting circuit layer.
  • the circuit structures 30A and 30B further include a second packaging layer located between the light emitting circuit layer and the touch layer.
  • the second encapsulation layer may include, for example, a first inorganic encapsulation layer, a second organic encapsulation layer, and a third inorganic encapsulation layer.
  • the electronic device may further include at least two sets of driving circuits, and the at least two sets of driving circuits are respectively disposed in non-stretched regions (such as stretched portions of the flexible substrate) on both sides of the stretched region of the electronic device. On the non-stretched portions on both sides) to provide driving signals for the circuit structures on both sides of the stretched region, respectively.
  • the circuit structures on both sides of the stretched area can be controlled independently.
  • the circuit structure located on the left side of the stretched area is driven by a set of driving circuits located on the left side of the stretched area to display the image output by the electronic device.
  • the circuit structure located on the right side of the stretched area is driven by a set of driving circuits located on the right side of the stretched area to display a partial sub-image of the image output by the electronic device.
  • the electronic device includes two sets of driving circuits, which are respectively disposed in a non-stretched area of the electronic device, that is, the first non-stretched portions 102A and On the second non-stretched portion 102B, driving signals are provided by circuit structures 30A and 30B on the first non-stretched portion 102A and the second non-stretched portion 102B, respectively.
  • the first group of driving circuits includes a first data driving IC 111A, a first routing area 112A for electrically connecting the circuit structure 30A on the first non-stretched portion 102A and the first data driving IC 111A, and a first signal A line (for example, a VSS signal line) 113A, a first gate driver 114A, and the like.
  • the second group of driving circuits includes a second data driving IC 111B, a second routing area 112B for electrically connecting the circuit structure 30B on the second non-stretched portion 102B and the second data driving IC 111B, and a second signal line ( For example, the VSS signal line) 113B, the second gate driver 114B, and the like.
  • the circuit structures 30A and 30B on the first non-stretched portion 102A and the second non-stretched portion 102B can be independently controlled by the first and second sets of driving circuits, respectively; for example, in one example, the first One set of driving circuits and the second set of driving circuits can be synchronized by clock signals and the like from the same timing controller (T-con).
  • the VSS signal line is used to transmit a power supply voltage (VSS voltage, usually a low voltage); in addition, the electronic device may further include a VDD signal line to transmit another power supply voltage (a VDD voltage, usually a higher voltage).
  • the first non-stretched portion 102A may be formed in the stretched zone, that is, the stretched portion 101 of the flexible substrate.
  • the circuit structure 1011 on the second non-stretched portion 102B so that only when one driving circuit is provided on one of the first non-stretched portion 102A and the second non-stretched portion 102B
  • the circuit structure on the first non-stretched portion 102A and the second non-stretched portion 102B is controlled.
  • the circuit structures on the first non-stretched portion 102A and the second non-stretched portion 102B may be controlled by the same driving signal at the same time.
  • the wiring 1011 provided on the stretched portion 101 of the flexible substrate may be, for example, a polygonal shape (the case shown in FIG. 12A), an S-shape (the case shown in FIG. 12B), or a hollowing process (FIG. 12C).
  • a polygonal shape the case shown in FIG. 12A
  • an S-shape the case shown in FIG. 12B
  • a hollowing process FIG. 12C
  • the situation shown in which the colorless circle is hollowed out) so that during the bending of the stretched part 101, the shape of the fold line, the S shape or the shape of the hollowed line 1011 will be stretched or recovered with the stretched part 101 Adapt the change without affecting the connection effect of the trace 1011 on the circuit structure on the first non-stretched portion 102A and the second non-stretched portion 102B.
  • the electronic device may further include, for example, a first packaging layer.
  • the first packaging layer 108A may be disposed on a side of the circuit structure near the stretching region 10.
  • the first packaging layer 108A can form and protect the sides of the circuit structure.
  • the circuit structures on the first non-stretched portion 102A and the second non-stretched portion 102B of the electronic device may be spliced together or have only a small distance, which may be less than or equal to The distance between adjacent pixel units in the light emitting structure 107 in the structure.
  • the circuit structure for display on the first non-stretched portion 102A and the second non-stretched portion 102B can be realized. Seamless display without blind spots, so it has better quality display.
  • the circuit structure formed in the non-stretched area of the electronic device is formed in the first non-stretched portion.
  • the materials of the functional components such as the circuit structure on the 102A and the second non-stretched portion 102B have no flexibility requirements. Therefore, the application range of the material is widened and the design difficulty and preparation process of the functional components such as the circuit structure are simplified.
  • the electronic device may be, for example, an electronic product or component such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, which is not limited in the embodiments of the present disclosure.
  • an electronic product or component such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, which is not limited in the embodiments of the present disclosure.
  • the preparation tool includes a carrier (11A / 11B) and at least one fixing portion 12.
  • the supporting table (11A / 11B) is used for supporting the flexible substrate, and the fixing part 12 is used for detachably fixing the flexible substrate to the supporting table (11A / 11B).
  • the supporting platform (11A / 11B) includes at least two parts arranged in parallel, namely a first part 11A and a second part 11B, and the size of the gap D between two adjacent parts, namely the first part 11A and the second part 11B, is adjustable.
  • At least one fixing portion 12 (for example, two or four) may be respectively provided at edge positions of the first portion 11A and the second portion 11B near the gap D to allow only the fixed flexible substrate to be stretched at the gap D.
  • the fixing portion 12 may be disposed, for example, near the gap D of the first portion 11A and the second portion 11B At the corner position, the non-stretched portion can be fixed along the boundary between the stretched portion and the non-stretched portion, and the stretched portion can be placed at the gap D.
  • the preparation tool may further include an auxiliary fixing portion 12B for fixing an edge on the other side of the non-stretched portion.
  • the fixing portion 12 and the auxiliary fixing portion 12B are, for example, appropriate types of jigs, including tensile performance jigs, screw jigs, and the like.
  • the fixing portion 12 may be provided, for example, at the entire edge position of the first portion 11A and the second portion 11B near the gap D, so that the non-stretched portion is along the stretched portion and the non-stretched portion
  • the non-stretched part is fixed at the entire boundary position of.
  • the preparation tool provided by the embodiment of the present disclosure may further include a driving device 13 that is drivingly connected to the carrier (eg, connected to the carrier and can be used to drive the movement of the carrier) to adjust The size of the gap D between the two adjacent parts of the supporting platform, ie, 11A and 11B shown in the figure, stretches or recovers the stretched portion of the fixed flexible substrate corresponding to the gap D.
  • a driving device 13 that is drivingly connected to the carrier (eg, connected to the carrier and can be used to drive the movement of the carrier) to adjust The size of the gap D between the two adjacent parts of the supporting platform, ie, 11A and 11B shown in the figure, stretches or recovers the stretched portion of the fixed flexible substrate corresponding to the gap D.
  • the driving device 13 may include a power source and a transmission structure.
  • the power source includes, for example, a motor (such as a stepper motor, etc.), an air cylinder, an oil cylinder, and the like.
  • the first part 11A and / or the second part 11B of the loading platform are drivingly connected and can work according to a predetermined instruction to push the first part 11A and / or the second part 11B, thereby adjusting the gap D between the first part 11A and the second part 11B the size of.
  • the preparation tool provided by the embodiment of the present disclosure may further include a control device 14 that is signal-connected (eg, wired or wirelessly connected) with the driving device 13 so as to send a predetermined instruction to the driving device 13.
  • control device 14 is also connected to an input device (such as a keyboard, a touch pad, a mouse, etc.), an output device (such as a display), and the like, so as to facilitate operations such as setting and monitoring by an operator.
  • the control device 14 may be any electronic device with a control function, such as a central processing unit (CPU), a programmable logic controller (PLC), a single-chip computer, and the like.
  • the driving device 13 may first adjust the gap D between 11A and 11B to a first predetermined length, so that the stretched portion of the flexible substrate is stretched to the first predetermined length, and then use a semiconductor preparation including a thin film deposition process, a patterning process, and the like. After preparing functional components such as a circuit structure on a flexible substrate, the driving device 13 can adjust the gap D between 11A and 11B again to a second predetermined length, which can be zero or close to zero, for example, to stretch Partial recovery, and then the subsequent preparation process can be performed on the flexible substrate.
  • a second predetermined length which can be zero or close to zero, for example, to stretch Partial recovery
  • the driving device 13 may first adjust the gap D between 11A and 11B to a first predetermined length, so that the stretched portion of the flexible substrate is stretched to the first predetermined length; then, the flexible substrate and the rigid substrate 104 are fixed to The rigid substrate 104 is used to keep the stretched portion in a stretched state; then, the auxiliary fixing portion 12B is removed, and functional components such as a circuit structure are prepared on the flexible substrate by using a semiconductor manufacturing process including a thin film deposition process, a patterning process, etc .; The rigid substrate 104 is recovered, and the stretched portion is recovered, and the subsequent preparation process is performed on the flexible substrate.
  • the preparation tool of the electronic device can be used to prepare the electronic device, and the prepared electronic device has better performance (for example, display effect).
  • the blind area of the electronic device provided by some examples of the present disclosure is smaller, thereby improving device performance (eg, display effect).
  • some examples of the present disclosure provide electronic devices that can use flexible materials only in the bending area, and can use non-flexible materials or materials with relatively less flexibility to be located in the non-bending area.
  • the circuit structure can thereby broaden the applicable range of materials, thereby simplifying the design difficulty and preparation process of functional components such as circuit structures, and improving the device performance of electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

一种电子装置的制备方法、电子装置及其制备工具。该电子装置包括拉伸区(10)以及位于所述拉伸区(10)两侧的非拉伸区(20),该制备方法包括:提供柔性基板,所述柔性基板包括拉伸部(101)以及位于所述拉伸部(101)两侧的非拉伸部(102A,102B);其中,所述拉伸部(101)和所述非拉伸部(102A,102B)分别对应于所述拉伸区(10)和所述非拉伸区(20);垂直于所述拉伸部(101)的长度方向,将所述拉伸部(101)拉伸后固定,且使所述拉伸部(101)保持拉伸状态;在所述非拉伸部(102A,102B)上形成电路结构;解除对所述拉伸部(101)的固定,使被拉伸的所述拉伸部(101)回复。该制备方法形成的电子装置的性能得到提升。

Description

电子装置的制备方法、电子装置及其制备工具
对相关申请的交叉参考
本申请要求于2018年6月15日递交的中国专利申请第201810621420.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种电子装置的制备方法、电子装置及其制备工具。
背景技术
目前,显示器件正往大屏化方向发展,对于便携式电子器件来说,大屏显示器件占有较大的空间,不利于携带。因此,利用可弯曲或可折叠的显示器件为便携式电子器件的小型化提供了便利。折叠显示器件以大屏化和便于携带等优点得到了越来越多的关注。折叠显示器件例如可以用于移动通讯终端、平板电脑、电子书、导航设备等诸多电子器件中。
发明内容
本公开至少一实施例提供一种电子装置的制备方法,所述电子装置包括拉伸区以及位于所述拉伸区两侧的非拉伸区,所述方法包括:提供柔性基板,所述柔性基板包括拉伸部以及位于所述拉伸部两侧的非拉伸部;其中,所述拉伸部和所述非拉伸部分别对应于所述拉伸区和所述非拉伸区;垂直于所述拉伸部的长度方向,将所述拉伸部拉伸后固定,且使所述拉伸部保持拉伸状态;在所述非拉伸部上形成电路结构;解除对所述拉伸部的固定,使被拉伸的所述拉伸部回复。
例如,本公开至少一实施例提供的一种电子装置的制备方法中,将所述拉伸部拉伸包括:将所述非拉伸部沿所述拉伸部与所述非拉伸部的交界固定,在所述交界位置处对所述拉伸部拉伸。
例如,本公开至少一实施例提供的一种电子装置的制备方法中,在将所述拉伸部拉伸后,将所述柔性基板与刚性基板固定,使所述拉伸部保持拉伸 状态。
例如,本公开至少一实施例提供的一种电子装置的制备方法中,在所述电路结构形成后,将所述柔性基板与所述刚性基板分离,从而解除对所述拉伸部的固定。
例如,本公开至少一实施例提供的一种电子装置的制备方法中,在所述刚性基板上形成牺牲层以将所述柔性基板与所述刚性基板粘结固定,且在将所述柔性基板与所述刚性基板分离时去除所述牺牲层。
例如,本公开至少一实施例提供的一种电子装置的制备方法中,在所述拉伸部两侧的所述非拉伸部上同时制作所述电路结构。
例如,本公开至少一实施例提供的一种电子装置的制备方法中,同时制作所述电路结构的过程中,采用包括遮挡部的掩模板覆盖所述柔性基板,所述遮挡部对应于所述拉伸部以遮挡所述拉伸部。
例如,本公开至少一实施例提供的一种电子装置的制备方法中,在所述柔性基板上形成包括所述电路结构的结构层,然后去除所述拉伸区中的结构层以露出所述拉伸部。
例如,本公开至少一实施例提供的一种电子装置的制备方法,还包括:在所述拉伸部形成走线以将所述拉伸部两侧的所述电路结构连接。
例如,本公开至少一实施例提供的一种电子装置的制备方法中,在所述电路结构形成后,所述方法还包括:在所述拉伸区,在所述电路结构的侧边形成第一封装层。
例如,本公开至少一实施例提供的一种电子装置的制备方法中,在所述拉伸部回复后,所述方法还包括:在所述电路结构的远离所述柔性基板的一侧形成柔性盖板以覆盖所述电路结构。
例如,本公开至少一实施例提供的一种电子装置的制备方法中,在对所述拉伸部拉伸之前,所述方法还包括:对所述拉伸部进行改性处理,使其拉伸性能高于所述非拉伸部。
本公开至少一实施例提供一种电子装置,该电子装置具有拉伸区和位于所述拉伸区两侧的非拉伸区,并包括:柔性基板,包括拉伸部和位于所述拉伸部两侧的非拉伸部;其中,所述拉伸部和所述非拉伸部分别位于所述拉伸区和所述非拉伸区;电路结构,设置在所述非拉伸部上;其中,所述拉伸部能够在所述电子装置的制备过程中被拉伸,且所述电子装置能够通过所述拉 伸区进行弯折。
例如,本公开至少一实施例提供的一种电子装置,还包括:柔性盖板,设置在所述电路结构的远离所述柔性基板的一侧以覆盖所述电路结构。
例如,本公开至少一实施例提供的一种电子装置,还包括:至少两组驱动电路,分别设置在所述拉伸区两侧的所述非拉伸区以分别为所述非拉伸区中的所述电路结构提供驱动信号。
例如,本公开至少一实施例提供的一种电子装置,还包括:设置在所述拉伸区的走线,所述走线将所述拉伸区两侧的所述电路结构连接。
例如,本公开至少一实施例提供的一种电子装置,还包括:第一封装层,设置在所述电路结构的靠近所述拉伸区的侧边。
本公开至少一实施例提供一种电子装置的制备工具,包括:承载台,用于承载柔性基板;至少一个固定部,用于将所述柔性基板可拆卸地固定在所述承载台上;其中,所述承载台包括至少两部分且相邻的两部分之间的间隙可调,所述至少一个固定部可分别设置在所述两个部分的靠近所述间隙的边缘位置处,以允许仅在所述间隙处拉伸被固定的所述柔性基板。
例如,本公开至少一实施例提供的一种电子装置的制备工具,还包括:驱动装置,与所述承载台驱动连接以调整所述承载台相邻的两部分之间的间隙的大小,以对固定的所述柔性基板进行拉伸或回复。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一些实施例提供的电子装置的制备方法的流程图;
图2A和图2B为本公开一些实施例提供的柔性基板在拉伸前的平面示意图;
图3为本公开一些实施例提供的柔性基板在拉伸后的平面示意图;
图4为本公开一些实施例提供的柔性基板保持拉伸状态的截面示意图;
图5A、图6A、图7A以及图8至图11为本公开一些实施例提供的电子装置在制备过程中的截面示意图;
图5B为本公开一些实施例提供的电子装置所包括的薄膜晶体管的截面 示意图;
图6B为本公开一些实施例提供的电子装置所包括的发光结构的截面示意图;
图7B为本公开一些实施例提供的电子装置所包括的第二封装层的截面示意图;
图7C为本公开一些实施例提供的形成有第一封装层的电子装置的截面示意图;
图12A-图12C为本公开一些实施例提供的采用走线连接非弯折区电路结构的三种平面示意图;
图13为本公开一些实施例提供的电子装置的平面示意图;
图14A和图14B为本公开一些实施例提供的电子装置的制备工具的两种平面示意图;
图15为本公开一些实施例提供的电子装置的制备工具的另一种平面示意图;以及
图16为处于弯折状态下的电子装置。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前,折叠显示屏一般由两块或多块显示屏拼接在一起而得到,这种制备方法虽然简单,但是折叠显示屏所具有的多块显示屏之间的间隙往往较大,在共同显示画面时,多块显示屏之间的间隙位置处会有较大的盲区(例如,不能提供显示信息的区域),较大的影响了折叠显示屏的整体显示效果。此外,折叠显示屏还可以采用柔性显示屏,从而利用柔性屏的柔性实现折叠功能。此时,柔性显示屏的各层功能结构都需要具有预定的柔性,因此缩窄了各层功能结构的材料选择范围,并因此限制了柔性显示屏性能的进一步提升;并且,每一功能层在折叠时的受力情况可能均不同,因此需要对例如每一功能层的受力情况进行模拟和精密地设计,否则在折叠过程中这些功能层可能容易出现断裂、剥落等现象,影响最终产品的信赖性。
本公开至少一实施例提供一种电子装置的制备方法,该电子装置包括拉伸区以及位于拉伸区两侧的非拉伸区,该制备方法包括:提供柔性基板,该柔性基板包括拉伸部以及位于拉伸部两侧的非拉伸部;其中,拉伸部和非拉伸部分别对应于拉伸区和非拉伸区;垂直于拉伸部的长度方向,将拉伸部拉伸后固定,且使拉伸部保持拉伸状态;在非拉伸部上形成电路结构;解除对拉伸部的固定,使被拉伸的拉伸部回复。
本公开至少一实施例提供的一种电子装置,该电子装置具有拉伸区和位于拉伸区两侧的非拉伸区,并包括:柔性基板,包括拉伸部和位于拉伸部两侧的非拉伸部;其中,拉伸部和非拉伸部分别位于拉伸区和非拉伸区;电路结构,设置在非拉伸部上;其中,拉伸部在电子装置的制备过程中被拉伸,且电子装置能够通过拉伸区进行弯折。
本公开至少一实施例提供一种电子装置的制备工具,包括:承载台,用于承载柔性基板;至少一个固定部,用于将柔性基板可拆卸地固定在承载台上;其中,承载台包括至少两部分且相邻的两部分之间的间隙可调,至少一个固定部可分别设置在两个部分的靠近间隙的边缘位置处,以允许仅在间隙处拉伸被固定的柔性基板。
下面通过几个具体的实施例对本公开的电子装置的制备方法、电子装置及其制备工具进行说明。
本公开的一个实施例提供一种电子装置的制备方法,该电子装置包括柔性基板以及制备在柔性基板上的各种电路结构,并且具有可彼此折叠的多个部分,多个部分中两个相邻的部分(例如,每两个相邻的部分)之间为可弯 折区。例如,电子装置可以包括拉伸区以及位于拉伸区两侧的非拉伸区,拉伸区即为可弯折区。例如,可弯折区允许该区域两侧的非拉伸区至少部分重叠。例如,如图16所示,可弯折区300使得两个相邻的非拉伸区20彼此叠置(例如,彼此平行)。
如图1所示,该电子装置的制备方法包括步骤S101-步骤S104。
步骤S101:提供柔性基板,该柔性基板包括拉伸部以及位于拉伸部两侧的非拉伸部。
例如,如图2A所示,柔性基板包括拉伸部101以及位于拉伸部101两侧的非拉伸部,该非拉伸部例如包括图2A中示出的第一非拉伸部102A和第二非拉伸部102B。该拉伸部101对应于制备的电子装置的拉伸区10,即可以弯折的区域,非拉伸部102A和102B分别对应于电子装置的非拉伸区20。柔性基板的制备材料例如可以包括聚亚酰胺(PI)、聚二甲基硅氧烷(PMDS)或聚氨酯(PU)等柔性材料,本公开的实施例对此不做具体限定。例如,由于受到拉伸,拉伸部101具有弹性恢复力,在未受到外力的情况下,上述弹性恢复力允许拉伸部101在第一非拉伸部102A和第二非拉伸部102B并列布置方向上的尺寸降低。
步骤S102:垂直于拉伸部的长度方向,将拉伸部拉伸后固定,且使拉伸部保持拉伸状态。
例如,在图2A中,竖直方向为拉伸部101的长度方向,因此沿水平方向(即图中箭头所指示的方向)将拉伸部101拉伸后固定,且使拉伸部保持拉伸状态。
例如,在对拉伸部101进行拉伸时,可以将非拉伸部102A和102B分别沿拉伸部101与非拉伸部102A和102B的交界固定,并在交界位置处对拉伸部101拉伸,从而使得仅拉伸部101被拉伸,而非拉伸部102A和102B不受影响。
例如,如图2A所示,可以将拉伸部101与非拉伸部102A和102B交界的四个边角分别与一承载台(图中未示出)进行固定(例如,使用夹具103固定,且夹具103的尺寸小于拉伸部101的长度),由此实现了非拉伸部102A和102B的固定(例如,非拉伸部102A和102B与承载台之间的固定)。然后对拉伸部101进行拉伸。例如,在对拉伸部101进行拉伸的过程中,拉伸力可以施加在拉伸部101与非拉伸部102A和102B交界的四个边角上,由此使 得拉伸力(例如,拉伸力沿图2A中箭头方向)仅施加在拉伸部101上,而不会施加在非拉伸部102A和102B上。
例如,在对拉伸部101进行拉伸的过程中,可以暂时解除夹具对拉伸部101与非拉伸部102A和102B交界的四个边角的固定。又例如,可以首先对拉伸部101进行拉伸,在对拉伸部101进行适当的拉伸之后,使用夹具固定拉伸部101。再例如,可以在拉伸之前使用夹具对拉伸部101与非拉伸部102A和102B交界的四个边角进行固定,并在拉伸过程中将拉伸力施加在夹具之上,由此可以经由夹具对拉伸部101进行拉伸。
又例如,如图2B所示,可以将拉伸部101与非拉伸部102A和102B的整条交界线与一承载台(图中未示出)进行固定(例如,使用夹具103固定,且夹具103的尺寸大于拉伸部101的长度),此时,也可以实现非拉伸部102A和102B的固定(例如,非拉伸部102A和102B与承载台之间的固定),然后对拉伸部101进行拉伸。例如,此种情况下,可以使得拉伸部101的受力更为均匀。例如,对于图2B示出的示例,具体拉伸方法可以参见图2A所示的示例,在此不再赘述。
例如,在本公开的实施例中,对拉伸部101进行拉伸之前(例如,形成拉伸部之后,进行拉伸之前;或者,形成拉伸部的过程中),还可以对拉伸部101进行改性处理,使其拉伸性能高于非拉伸部102A和102B,从而使拉伸部101更容易拉伸并且能够拉伸的长度更长。例如,可以采用化学改性的方法,根据柔性基板的材料选择预定组成的改性剂对柔性基板的拉伸部101进行改性处理,以提高拉伸部101的拉伸性能;例如,还可以采用物理改性的方法,根据柔性基板的材料选择预定组成的等离子体对柔性基板的拉伸部101进行改性处理,或者根据柔性基板的材料选择预定组成的离子源对柔性基板的拉伸部101进行离子注入以进行改性处理,以提高拉伸部101的拉伸性能。该处理有利于在后续的拉伸过程中仅对拉伸部101进行拉伸。例如,在拉伸部101使用聚亚酰胺制成时,可以使用以下方法中的至少一个来提升拉伸部101的拉伸性能。(1)对制备完成后的拉伸部101进行高温(例如,250度-350度)热处理(例如,处理1小时)。(2)在形成聚亚酰胺之前或过程中,可以在形成聚亚酰胺的材料中,添加有机磷酸酯(例如,磷酸三苯酯)。(3)在形成聚亚酰胺的过程中,使得用于形成聚亚酰胺的材料凝胶化,以形成凝胶膜,并对上述凝胶膜进行拉伸处理。例如,如图3和图4所示(图4为图3沿A-A 线的截面示意图),在将拉伸部101拉伸后,可以将柔性基板与刚性基板104固定,例如粘结固定,使拉伸部101保持拉伸状态。例如,可以在刚性基板104上形成牺牲层105以将柔性基板与刚性基板104粘结固定,固定后可以卸掉夹具103。该牺牲层105例如可以在后续的柔性基板与刚性基板104分离时被去除。牺牲层105的材料例如可以为光学透明等具有粘结性的材料,刚性基板可以为玻璃基板、陶瓷基板、不锈钢基板等,本公开的实施例对此不做限定。例如,在将柔性基板与刚性基板104固定之后,刚性基板104(刚性基板104经由牺牲层105)可向拉伸部101持续施加拉伸力(例如,拉伸力的方向可为图2A中箭头方向),以平衡拉伸部101的弹性恢复力,进而使得拉伸部101保持拉伸状态。
步骤S103:在非拉伸部上形成电路结构。
例如,可以在拉伸部101两侧的非拉伸部102A和102B上同时制作电路结构,或分别制作电路结构。
例如,在分别制作电路结构的过程中,可以首先在第一非拉伸部102A上形成电路结构,然后在第二非拉伸部102B上形成电路结构;或者首先在第二非拉伸部102B上形成电路结构,然后在第一非拉伸部102A上形成电路结构。
例如,在同时制作电路结构的过程中,可以采用包括遮挡部的掩模板覆盖柔性基板,该遮挡部对应于拉伸部101以遮挡拉伸部101,从而实现在拉伸部101两侧的第一非拉伸部102A和第二非拉伸部102B上同时形成电路结构。或者,可以直接在柔性基板上形成包括电路结构的结构层,之后去除在拉伸区10中,即拉伸部101上形成的结构层以露出拉伸部101,从而实现分别在拉伸部101两侧的第一非拉伸部102A和第二非拉伸部102B上形成电路结构。
在本公开的实施例中,电路结构例如可以包括用于显示的电路结构,例如包括薄膜晶体管(包括开关晶体管、驱动晶体管等)、发光结构、存储电容等功能部件。下面以制备用于显示的电路结构为例,对本公开的实施例提供的制备方法进行具体介绍。
例如,非拉伸部102A上的电路结构可对应于多个显示像素,非拉伸部102B上的电路结构可对应于多个显示像素。
例如,如图5A所示,可以利用构图等方法首先在第一非拉伸部102A和第二非拉伸部102B上形成薄膜晶体管层106。该构图方法例如包括光刻胶的涂覆、曝光、显影以及刻蚀等工序。例如,薄膜晶体管层106包括多个薄膜 晶体管。如图5B所示,所形成的薄膜晶体管例如可以包括栅极1061、源极1062、漏极1063和有源层1064等结构。该薄膜晶体管例如可以形成为顶栅型或底栅型等,其有源层可以为非晶硅、多晶硅、氧化物半导体(例如IGZO等)等,本公开的实施例对此不做具体限定。该薄膜晶体管可以用于对之后将要形成的发光结构进行驱动控制。
例如,如图6A所示,在薄膜晶体管层106形成后,可以采用构图等方法形成发光结构107。发光结构107例如包括多个像素单元,每个像素单元对应于薄膜晶体管而形成。如图6B所示,发光结构107的每一像素单元例如可以包括有机发光二极管,该有机发光二极管包括第一电极1071、第二电极1072以及设置在第一电极1071和第二电极1072之间的发光层1074、空穴传输层1073和电子传输层1075等;该有机发光二极管可以发出红光、绿光、蓝光等,本公开的实施例对此不作限制。当对第一电极1071和第二电极1072之间施加电压时,电子和空穴被注入到发光层中复合并激发,从而发光层1074可发光。例如,每个像素单元的第一电极1071可以与相应的薄膜晶体管的源极1062或漏极1063相连,从而实现薄膜晶体管对发光结构107的驱动控制。例如,图5B中示出了在一个示例中的第一电极1071与薄膜晶体管的漏极1063相连接的情况。
例如,如图7A所示,在上述电路结构形成后,可以在发光结构107上形成第二封装层108B。如图7B所示,第二封装层108B例如可以包括第一无机封装层1081、第二有机封装层1082以及第三无机封装层1083。例如,第一无机封装层1081和第二有机封装层1082所采用的无机材料可以包括氮化硅、氧化硅、氮氧化硅、氧化钛、氧化锆、氧化钽,钛酸钡、氧化钕、氮氧化铝、氮氧化锆、氮氧化钽、氮氧化钇或者氮氧化钕等合适的材料。该无机封装材料具有优异的阻水特性,可有效避免各功能层制备时引入的水分和空气中的水分渗入到电路结构中。第二有机封装层1082所采用的有机材料例如可以为聚酰亚胺(PI)、环氧树脂等合适的材料。该三层封装结构可以对电路结构形成有效的封装与保护。
例如,在本公开的实施例的另一个示例中,如图7C所示,在上述电路结构形成后,还可以在电子装置的拉伸区10中,在电路结构的侧边形成第一封装层108A。例如,第一封装层108A与电路结构的侧边200(参见图7A)直接接触,如图7A所示,相邻的电路结构的侧边200彼此对置。例如,电路结 构的侧边200可以与柔性基板104交叉(例如,垂直)。第一封装层108A可以对位于非拉伸区20中的电路结构的侧边形成封装与保护。该第一封装层108A例如可以形成为很薄的一层,例如可以为单层封装层,例如可以为采用无机材料形成的单层封装层,从而在拉伸部回复后,第一非拉伸部102A和第二非拉伸部102B之间也不会产生明显的间隔(例如,用户不会注意到第一非拉伸部102A和第二非拉伸部102B之间的间隔)。
例如,如图8所示,在第二封装层108B形成后,可以在第二封装层108B上形成触控层109,触控层109例如可以包括单层触控图案、双层触控图案或者跨桥式触控图案等各种类型的触控图案,本公开的实施例对此不做限定。
在本公开的实施例的另一示例中,该触控层109例如也可以独立形成,然后贴附在第二封装层108B上。或者,触控层109也可以形成在第二封装层108B内,从而第二封装层108B也可以对触控层109形成封装与保护。本公开的实施例对触控层109的形成方式不做具体限定。并且,触控层109可以为任何适当类型的触控结构,例如电阻型、电容型等,电容型还可以进一步为自电容型或互电容型等。
步骤S104:解除对拉伸部的固定,使被拉伸的拉伸部回复(也即,恢复)。
例如,在上述结构形成后,可以采用激光照射(对应玻璃或透明陶瓷等材质的刚性基板)或机械法(例如加热,对应于非透明陶瓷或不锈钢等材质的刚性基板)将柔性基板与刚性基板分离,从而解除对拉伸部的固定。
例如,如图9和图10所示,可以采用激光照射柔性基板104的表面,使牺牲层105粘结性减弱,从而将柔性基板与刚性基板104分离,解除对拉伸部101的固定,与此同时,由于牺牲层105的粘结性减弱,因此很容易从柔性基板和刚性基板104的表面剥落。
例如,在解除对拉伸部的固定之后,拉伸部上不再存在拉伸力,此时,拉伸部的弹性恢复力允许拉伸部101在第一非拉伸部102A和第二非拉伸部102B并列布置方向上的尺寸降低,由此可以减小拉伸部两侧的第一非拉伸部102A和第二非拉伸部102B之间的间距以及拉伸部两侧的电路结构的间距,由此可以减小电子装置的盲区的尺寸,提升电子装置的性能。
例如,在本公开的实施例的一个示例中,如图11所示,在拉伸部101回复之后,位于拉伸部101两侧的非拉伸部,即第一非拉伸部102A和第二非拉伸部102B的电路结构可以彼此相接(且例如彼此绝缘)或者仅具有很小的距 离,该距离例如可以小于或等于在电路结构中的发光结构107中相邻的像素单元之间的距离,因此该距离不会影响电子装置的位于拉伸部两侧的发光结构107的整体显示效果。
例如,继续参考图11,在拉伸部101回复后,本公开的实施例提供的制备方法例如还可以包括:将形成有电路结构的柔性基板与柔性盖板110粘合以覆盖电路结构。例如,可以在电路结构的远离柔性基板的一侧形成柔性盖板。该柔性盖板110透明,并具有柔性,可以与柔性基板的拉伸部101一起进行折叠,并且柔性盖板110的透明性不会影响柔性基板上形成的发光结构107的显示效果。例如,柔性盖板110具有的柔性允许与第一非拉伸部102A叠置的柔性盖板110的第一区域以及与第二非拉伸部102B叠置的柔性盖板110的第二区域彼此叠置。
例如,在本公开的实施例的一个示例中,在第一非拉伸部102A和第二非拉伸部102B上形成电路结构的过程中,例如还可以分别在第一非拉伸部102A和第二非拉伸部102B上形成驱动电路以分别对第一非拉伸部102A和第二非拉伸部102B上的电路结构进行控制。该情况下,第一非拉伸部102A和第二非拉伸部102B上的电路结构相互独立并且可以受到独立控制。
例如,在本公开的实施例的另一示例中,如图12A、图12B以及图12C所示,在第一非拉伸部102A和第二非拉伸部102B上形成电路结构的过程中,也可以在柔性基板的拉伸部101上形成连接第一非拉伸部102A和第二非拉伸部102B中的电路结构的走线1011,从而可以仅在第一非拉伸部102A和第二非拉伸部102B的其中一个上形成驱动电路的情况下同时实现对第一非拉伸部102A和第二非拉伸部102B中的电路结构的控制。该情况下,第一非拉伸部102A和第二非拉伸部102B上的电路结构电连接并可以同时受到同一驱动信号的控制。
例如,在该示例中,在柔性基板的拉伸部101上形成的走线1011例如可以为折线形(图12A示出的情况)、S形(图12B示出的情况)或者进行镂空处理(图12C示出的情况,其中无色圆圈即为镂空),从而在拉伸部101回复的过程中,走线1011的折线形状、S形状或者镂空的形状会随拉伸部101的缩小而适应性地变化,而不会影响走线1011对第一非拉伸部102A和第二非拉伸部102B上的电路结构的电连接效果。
在本公开的一些示例中,在拉伸部101回复后,第一非拉伸部102A和第 二非拉伸部102B上的电路结构可以拼接在一起,并且第一非拉伸部102A的电路结构和第二非拉伸部102B上的电路结构之间具有很小的距离(也即,拼缝的尺寸很小),该距离例如可以小于或等于在电路结构中的发光结构107中相邻的像素单元之间的距离,因此在多个电路结构用于显示时,第一非拉伸部102A和第二非拉伸部102B上的用于显示的电路结构之间不存在用户可观察到的缝隙,此时电子装置例如不会具有盲区,并因此可以实现无缝显示,由此电子装置具有更优质的显示效果。另外,由于电子装置仅在拉伸区(即对应于柔性基板的拉伸部101处)进行弯折,因此对形成于电子装置的非拉伸区的电路结构(即形成于第一非拉伸部102A和第二非拉伸部102B上电路结构)等功能部件的材料的柔韧性要求降低(例如,可以使用非柔性的材料),因此拓宽了材料的适用范围并简化了电路结构等功能部件的设计难度与制备工艺,并因此可以提升电子装置的器件性能。
本公开的另一个实施例提供一种电子装置,如图13所示,该电子装置具有拉伸区10和位于拉伸区10两侧的非拉伸区20(由于图中示出的拉伸区10未处于拉伸状态,因此其宽度很小),并且该电子装置包括柔性基板和电路结构。该柔性基板包括拉伸部101和位于拉伸部101两侧的非拉伸部(例如包括第一非拉伸部102A和第二非拉伸部102B);其中,拉伸部101和非拉伸部分别位于拉伸区10和非拉伸区20。电路结构30A和30B分别设置在非拉伸部102A和102B上;拉伸部101在电子装置的制备过程中被拉伸,且电子装置可通过拉伸区10(即对应于柔性基板的拉伸部101的位置)进行弯折。在电子装置的非弯折状态下,该拉伸部101处于非拉伸的状态。例如,在显示时,电子装置处于非弯折状态;在运输和收纳时,电子装置处于弯折状态,以减小电子装置所占用的空间。例如,电子装置可以具有多个弯折区、多个第一非拉伸部102A和多个第二非拉伸部102B,以进一步降低电子装置在运输和收纳时所占用的空间。
例如,本公开的实施例提供的电子装置还可以包括柔性盖板,该柔性盖板设置在电路结构的远离柔性基板的一侧以覆盖电路结构。该柔性盖板可以对电路结构起到保护的作用,并且在电子装置折叠时也可以进行弯折。
例如,本公开的实施例中,位于非拉伸部102A和102B上的电路结构30A和30B分别包括依次设置于柔性基板上的发光电路层(也即,发光结构层)和触控层。发光电路层可以用于显示,触控层可以对发光电路层等电路结构 进行触控操作。
例如,本公开的实施例中,电路结构30A和30B还包括位于发光电路层和触控层之间的第二封装层。第二封装层例如可以包括第一无机封装层、第二有机封装层以及第三无机封装层。第二封装层的形成材料及与触控层的位置关系可以参照上一实施例,本公开的实施例不再赘述。该三层封装结构可以对电路结构形成有效的封装与保护。
例如,本公开的实施例中,电子装置还可以包括至少两组驱动电路,该至少两组驱动电路分别设置在电子装置的拉伸区两侧的非拉伸区(例如柔性基板的拉伸部两侧的非拉伸部上)以分别为拉伸区两侧的电路结构提供驱动信号。该情况下,拉伸区两侧的电路结构可以受到独立控制,例如,位于拉伸区左侧的电路结构受到位于拉伸区左侧的一组驱动电路的驱动而显示电子装置输出的图像的部分子图像,位于拉伸区右侧的电路结构受到位于拉伸区右侧的一组驱动电路的驱动而显示电子装置输出的图像的部分子图像。
例如,如图13所示,电子装置包括两组驱动电路,该两组驱动电路分别设置在电子装置的非拉伸区,即柔性基板的拉伸部两侧的第一非拉伸部102A和第二非拉伸部102B上,以分别第一非拉伸部102A和第二非拉伸部102B上的电路结构30A和30B提供驱动信号。例如,第一组驱动电路包括第一数据驱动IC 111A、用于将第一非拉伸部102A上的电路结构30A与第一数据驱动IC 111A电连接的第一走线区112A、第一信号线(例如VSS信号线)113A和第一栅极驱动器114A等。第二组驱动电路包括第二数据驱动IC 111B、用于将第二非拉伸部102B上的电路结构30B与第二数据驱动IC 111B电连接的第二走线区112B、第二信号线(例如VSS信号线)113B和第二栅极驱动器114B等。因此,第一非拉伸部102A和第二非拉伸部102B上的电路结构30A和30B可以分别受到第一组驱动电路和第二组驱动电路的独立控制;例如,在一个示例中,第一组驱动电路和第二组驱动电路可以通过来自于同一时序控制器(T-con)的时钟信号等实现同步。例如,VSS信号线用于传输电源电压(VSS电压,通常为低电压);另外电子装置还可以包括VDD信号线以用于传输另一电源电压(VDD电压,通常为较高电压)。
例如,在本公开的实施例的另一示例中(参照图12A、图12B以及图12C),也可以在拉伸区,即柔性基板的拉伸部101上形成连接第一非拉伸部102A和第二非拉伸部102B上的电路结构的走线1011,从而可以仅在第一非拉伸部 102A和第二非拉伸部102B的其中一个上设置一个驱动电路的情况下同时实现对第一非拉伸部102A和第二非拉伸部102B上的电路结构进行控制。该情况下,第一非拉伸部102A和第二非拉伸部102B上的电路结构可以同时受到同一驱动信号的控制。
在该示例中,在柔性基板的拉伸部101上设置的走线1011例如可以为折线形(图12A示出的情况)、S形(图12B示出的情况)或者进行镂空处理(图12C示出的情况,其中无色圆圈即为镂空),从而在拉伸部101弯折的过程中,走线1011的折线形状、S形状或者镂空的形状会随拉伸部101的拉伸或回复进行适应变化,而不会影响走线1011对第一非拉伸部102A和第二非拉伸部102B上的电路结构的连接效果。
本公开的实施例中,电子装置例如还可以包括第一封装层,参照图7C,第一封装层108A可以设置在电路结构的靠近拉伸区10的侧边。第一封装层108A可以对电路结构的侧边形成封装与保护。
本公开的一些示例中,电子装置的第一非拉伸部102A和第二非拉伸部102B上的电路结构可以拼接在一起或者仅具有很小的距离,该距离例如可以小于或等于在电路结构中的发光结构107中相邻的像素单元之间的距离,在电路结构用于显示时,第一非拉伸部102A和第二非拉伸部102B上的用于显示的电路结构可以实现无缝显示,不会具有盲区,因此具有更优质的显示效果。另外,由于电子装置仅在拉伸区,即对应于柔性基板的拉伸部101处进行弯折,因此对形成于电子装置的非拉伸区的电路结构,即形成于第一非拉伸部102A和第二非拉伸部102B上电路结构等功能部件的材料没有柔韧性要求,因此拓宽了材料的适用范围并简化了电路结构等功能部件的设计难度与制备工艺。
本公开的实施例中,该电子装置例如可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等电子产品或部件,本公开的实施例对此不做限定。
本公开的再一个实施例提供一种电子装置的制备工具,如图14A所示,该制备工具包括承载台(11A/11B)和至少一个固定部12。承载台(11A/11B)用于承载柔性基板,固定部12用于将柔性基板可拆卸地固定在承载台上(11A/11B)。承载台(11A/11B)包括并列设置的至少两部分,即第一部分11A和第二部分11B,并且相邻的两部分即第一部分11A和第二部分11B之 间的间隙D的大小可调,至少一个固定部12(例如,两个或者四个)可分别设置在第一部分11A和第二部分11B的靠近间隙D的边缘位置处,以允许在间隙D处仅拉伸被固定的柔性基板。
例如,在柔性基板包括拉伸部和位于拉伸部两侧的非拉伸部的情况下,如图14A所示,固定部12例如可以设置在第一部分11A和第二部分11B的靠近间隙D的边角位置处,从而可以将非拉伸部沿拉伸部与非拉伸部的边界位置处将非拉伸部固定,进而将拉伸部置于间隙D处。当沿水平方向分别对承载台实施拉力时,拉伸部可以被拉伸。本公开的实施例中,制备工具例如还可以包括辅助固定部12B,用于固定非拉伸部另外一侧的边缘。固定部12和辅助固定部12B例如适当类型的夹具,包括拉伸性能夹具、螺纹夹具等。
例如,如图14B所示,固定部12例如也可以设置在第一部分11A和第二部分11B的靠近间隙D的整条边缘位置处,从而将非拉伸部沿拉伸部与非拉伸部的整条边界位置处将非拉伸部固定。在沿水平方向分别对承载台实施拉力时,该设置有利于仅在间隙D处使柔性基板的拉伸部进行拉伸,而不影响(即不拉伸)柔性基板的非拉伸部。
例如,如图15所示,本公开的实施例提供的制备工具还可以包括驱动装置13,该驱动装置13与承载台驱动连接(例如,与承载台连接并可用于驱动承载台移动)以调整承载台相邻的两部分即图中示出的11A和11B之间的间隙D的大小,从而对固定的柔性基板的对应于间隙D的拉伸部进行拉伸或回复。
例如,驱动装置13可以包括动力源以及传动结构,该动力源例如包括电机(例如步进电机等)、气缸、油缸等,传动部件可以包括丝杠、皮带、齿轮、涡轮等,驱动装置13与承载台的第一部分11A和/或第二部分11B驱动连接,并且可以按照预定指令工作,推动第一部分11A和/或第二部分11B,从而调节第一部分11A和第二部分11B之间的间隙D的大小。本公开的实施例提供的制备工具还可以包括控制装置14,其与驱动装置13信号连接(例如有线或无线连接),从而将预定指令发送给驱动装置13。另外,该控制装置14还与输入装置(例如键盘、触摸板、鼠标等)、输出装置(例如显示器)等连接,以方便操作人员进行设置、监控等操作。该控制装置14可以为任何具有控制功能的电子装置,例如中央处理器(CPU)、可编程逻辑控制器(PLC)、单片机等。
例如,驱动装置13可以首先调节11A和11B之间的间隙D至第一预定长度,使得柔性基板的拉伸部拉伸至第一预定长度,然后利用包括薄膜沉积工艺、构图工艺等的半导体制备工艺在柔性基板上制备电路结构等功能部件后,驱动装置13可以再次调节11A和11B之间的间隙D至第二预定长度,该第二预定长度例如可以为零或接近于零,使得拉伸部回复,然后可以对柔性基板进行后续制备工序。
又例如,驱动装置13可以首先调节11A和11B之间的间隙D至第一预定长度,使得柔性基板的拉伸部拉伸至第一预定长度;然后,将柔性基板与刚性基板104固定,以使用刚性基板104使得拉伸部保持在拉伸状态;接着,去除辅助固定部12B,并利用包括薄膜沉积工艺、构图工艺等的半导体制备工艺在柔性基板上制备电路结构等功能部件;最后,去除刚性基板104,并使得拉伸部回复,并对柔性基板进行后续制备工序。
该电子装置的制备工具可以用于制备电子装置,并且所制备的电子装置具有更优质的性能(例如,显示效果)。例如,相比于常规的拼接式电子装置,本公开的一些示例提供的电子装置的盲区较小,由此可以提升器件性能(例如,显示效果)。又例如,相比于全柔性的电子装置,本公开的一些示例提供的电子装置可仅在弯折区使用柔性材料,并且可使用非柔性材料或者柔性相对较小的材料制作位于非弯折区电路结构,由此可以拓宽材料的适用范围,进而简化了电路结构等功能部件的设计难度与制备工艺以及提升了电子装置的器件性能。
还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易 想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种电子装置的制备方法,所述电子装置包括拉伸区以及位于所述拉伸区两侧的非拉伸区,所述方法包括:
    提供柔性基板,所述柔性基板包括拉伸部以及位于所述拉伸部两侧的非拉伸部;其中,所述拉伸部和所述非拉伸部分别对应于所述拉伸区和所述非拉伸区;
    垂直于所述拉伸部的长度方向,将所述拉伸部拉伸后固定,且使所述拉伸部保持拉伸状态;
    在所述非拉伸部上形成电路结构;
    解除对所述拉伸部的固定,使被拉伸的所述拉伸部回复。
  2. 根据权利要求1所述的电子装置的制备方法,其中,将所述拉伸部拉伸包括:将所述非拉伸部沿所述拉伸部与所述非拉伸部的交界固定,在所述交界位置处对所述拉伸部拉伸。
  3. 根据权利要求1或2所述的电子装置的制备方法,其中,在将所述拉伸部拉伸后,将所述柔性基板与刚性基板固定,使所述拉伸部保持拉伸状态。
  4. 根据权利要求3所述的电子装置的制备方法,其中,在所述电路结构形成后,将所述柔性基板与所述刚性基板分离,从而解除对所述拉伸部的固定。
  5. 根据权利要求4所述的电子装置的制备方法,其中,在所述刚性基板上形成牺牲层以将所述柔性基板与所述刚性基板粘结固定,且在将所述柔性基板与所述刚性基板分离时去除所述牺牲层。
  6. 根据权利要求1-5任一所述的电子装置的制备方法,其中,在所述拉伸部两侧的所述非拉伸部上同时制作所述电路结构。
  7. 根据权利要求6所述的电子装置的制备方法,其中,同时制作所述电路结构的过程中,采用包括遮挡部的掩模板覆盖所述柔性基板,所述遮挡部对应于所述拉伸部以遮挡所述拉伸部。
  8. 根据权利要求6所述的电子装置的制备方法,其中,在所述柔性基板上形成包括所述电路结构的结构层,然后去除所述拉伸区中的结构层以露出所述拉伸部。
  9. 根据权利要求6所述的电子装置的制备方法,还包括:在所述拉伸部 形成走线以将所述拉伸部两侧的所述电路结构连接。
  10. 根据权利要求6所述的电子装置的制备方法,其中,在所述电路结构形成后,所述方法还包括:
    在所述拉伸区,在所述电路结构的侧边形成第一封装层。
  11. 根据权利要求1-10任一所述的电子装置的制备方法,其中,在所述拉伸部回复后,所述方法还包括:
    在所述电路结构的远离所述柔性基板的一侧形成柔性盖板以覆盖所述电路结构。
  12. 根据权利要求1-11任一所述的电子装置的制备方法,其中,在对所述拉伸部拉伸之前,所述方法还包括:
    对所述拉伸部进行改性处理,使其拉伸性能高于所述非拉伸部。
  13. 一种电子装置,具有拉伸区和位于所述拉伸区两侧的非拉伸区,并包括:
    柔性基板,包括拉伸部和位于所述拉伸部两侧的非拉伸部;其中,所述拉伸部和所述非拉伸部分别位于所述拉伸区和所述非拉伸区;
    电路结构,设置在所述非拉伸部上;
    其中,所述拉伸部能够在所述电子装置的制备过程中被拉伸,且所述电子装置可通过所述拉伸区进行弯折。
  14. 根据权利要求13所述的电子装置,还包括:
    柔性盖板,设置在所述电路结构的远离所述柔性基板的一侧以覆盖所述电路结构。
  15. 根据权利要求13或14所述的电子装置,还包括:
    至少两组驱动电路,分别设置在所述拉伸区两侧的所述非拉伸区以分别为所述非拉伸区中的所述电路结构提供驱动信号。
  16. 根据权利要求13-15任一所述的电子装置,还包括:
    设置在所述拉伸区的走线,所述走线将所述拉伸区两侧的所述电路结构连接。
  17. 根据权利要求13-16任一所述的电子装置,还包括:
    第一封装层,设置在所述电路结构的靠近所述拉伸区的侧边。
  18. 一种电子装置的制备工具,包括:
    承载台,用于承载柔性基板;以及
    至少一个固定部,用于将所述柔性基板可拆卸地固定在所述承载台上,
    其中,所述承载台包括至少两部分且相邻的两部分之间的间隙可调,所述至少一个固定部可分别设置在所述两个部分的靠近所述间隙的边缘位置处,以允许仅在所述间隙处拉伸被固定的所述柔性基板。
  19. 根据权利要求18所述的电子装置的制备工具,还包括:
    驱动装置,与所述承载台驱动连接以调整所述承载台相邻的两部分之间的间隙的大小,以对固定的所述柔性基板进行拉伸或回复。
PCT/CN2019/072715 2018-06-15 2019-01-22 电子装置的制备方法、电子装置及其制备工具 WO2019237741A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020534182A JP7328223B2 (ja) 2018-06-15 2019-01-22 電子装置の製造方法、電子装置及びその製造ツール
US16/497,897 US11349106B2 (en) 2018-06-15 2019-01-22 Manufacture method of electronic device, electronic device, and manufacture tool for electronic device
EP19819825.1A EP3809483A1 (en) 2018-06-15 2019-01-22 Production method for electronic device, and electronic device and production tool therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810621420.X 2018-06-15
CN201810621420.XA CN110611051B (zh) 2018-06-15 电子装置的制备方法、电子装置及其制备工具

Publications (1)

Publication Number Publication Date
WO2019237741A1 true WO2019237741A1 (zh) 2019-12-19

Family

ID=68841911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072715 WO2019237741A1 (zh) 2018-06-15 2019-01-22 电子装置的制备方法、电子装置及其制备工具

Country Status (4)

Country Link
US (1) US11349106B2 (zh)
EP (1) EP3809483A1 (zh)
JP (1) JP7328223B2 (zh)
WO (1) WO2019237741A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771020B1 (en) * 2003-02-21 2004-08-03 Wintek Corporation Double-face lighting electro luminescent device
CN104766820A (zh) * 2015-04-27 2015-07-08 深圳市华星光电技术有限公司 柔性显示装置的制造方法
CN106206384A (zh) * 2016-09-18 2016-12-07 桂林电子科技大学 一种制备可延展电子的装置及方法
CN107564415A (zh) * 2017-08-28 2018-01-09 上海天马有机发光显示技术有限公司 柔性显示面板、显示装置及其制作方法
CN108898953A (zh) * 2018-07-04 2018-11-27 京东方科技集团股份有限公司 柔性显示面板的制备方法、柔性显示面板和显示装置
CN208271903U (zh) * 2018-06-15 2018-12-21 京东方科技集团股份有限公司 电子装置及其制备工具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831828A (en) * 1993-06-03 1998-11-03 International Business Machines Corporation Flexible circuit board and common heat spreader assembly
US6771010B2 (en) 2001-04-30 2004-08-03 Hewlett-Packard Development Company, L.P. Silicon emitter with low porosity heavily doped contact layer
JP4543688B2 (ja) * 2003-02-04 2010-09-15 東レ株式会社 回路基板の製造方法および製造装置
US7491892B2 (en) * 2003-03-28 2009-02-17 Princeton University Stretchable and elastic interconnects
JP2014067609A (ja) * 2012-09-26 2014-04-17 Nitto Denko Corp プロトン伝導性の電解質膜およびその製造方法、ならびにそれを用いた膜・電極接合体および燃料電池
JP2014228347A (ja) * 2013-05-21 2014-12-08 日本電産リード株式会社 基板固定装置、及びこれを備える基板検査装置
US9559337B2 (en) * 2015-04-27 2017-01-31 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for manufacturing flexible display device
US9832863B2 (en) * 2015-09-25 2017-11-28 Intel Corporation Method of fabricating a stretchable computing device
TWM552596U (zh) * 2017-03-05 2017-12-01 Iboson Technology Co Ltd 擬真可撓式基材彎曲測試系統
KR101939462B1 (ko) * 2017-05-19 2019-01-16 경희대학교 산학협력단 스트레처블 전자 소자 및 그의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771020B1 (en) * 2003-02-21 2004-08-03 Wintek Corporation Double-face lighting electro luminescent device
CN104766820A (zh) * 2015-04-27 2015-07-08 深圳市华星光电技术有限公司 柔性显示装置的制造方法
CN106206384A (zh) * 2016-09-18 2016-12-07 桂林电子科技大学 一种制备可延展电子的装置及方法
CN107564415A (zh) * 2017-08-28 2018-01-09 上海天马有机发光显示技术有限公司 柔性显示面板、显示装置及其制作方法
CN208271903U (zh) * 2018-06-15 2018-12-21 京东方科技集团股份有限公司 电子装置及其制备工具
CN108898953A (zh) * 2018-07-04 2018-11-27 京东方科技集团股份有限公司 柔性显示面板的制备方法、柔性显示面板和显示装置

Also Published As

Publication number Publication date
JP7328223B2 (ja) 2023-08-16
US20210359283A1 (en) 2021-11-18
EP3809483A1 (en) 2021-04-21
US11349106B2 (en) 2022-05-31
CN110611051A (zh) 2019-12-24
JP2021526307A (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
TWI783170B (zh) 顯示裝置
US11545508B2 (en) Display panel and fabrication method thereof, and display device
TWI759319B (zh) 顯示裝置及其製造方法
US7939831B2 (en) Semiconductor device and method of manufacturing the same
CN107464878B (zh) 显示装置及其制造方法
WO2016201838A1 (zh) 触控面板及其制备方法、触控显示装置
WO2016206265A1 (zh) 触控显示面板、其制备方法、驱动方法及显示装置
KR20170015805A (ko) 플렉서블 표시 장치 및 그의 제조 방법
US20110255034A1 (en) Display device
JP2011150271A (ja) 埋め込み式タッチディスプレイとその製造方法
US20110279417A1 (en) Display panel of a solid display apparatus, flexible display apparatus, and method of manufacturing the display apparatuses
GB2576825A (en) Display apparatus with touch sensor
US10453363B2 (en) Annular display apparatus and display device
US20230165086A1 (en) Circuit board and display device including the same
US10338708B2 (en) Flexible touch screen, method for manufacturing the same and touch device
US20230380250A1 (en) Display device and manufacturing method thereof
US20220045140A1 (en) Display panel, method for manufacturing the same, display device and method for manufacturing the same
WO2019237741A1 (zh) 电子装置的制备方法、电子装置及其制备工具
CN110611051B (zh) 电子装置的制备方法、电子装置及其制备工具
JP2006250984A (ja) 電気光学装置、その製造方法、及び電子機器
TW202006986A (zh) 顯示裝置及用於顯示裝置的支撐薄膜結構
CN208271903U (zh) 电子装置及其制备工具
KR102575599B1 (ko) 플렉서블 표시 패널 및 그 제조 방법
JP4731809B2 (ja) 半導体装置の作製方法
JP3915425B2 (ja) 液晶装置、液晶装置の製造方法および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019819825

Country of ref document: EP