WO2019237413A1 - 一种基于gis的无人机植保系统及方法 - Google Patents

一种基于gis的无人机植保系统及方法 Download PDF

Info

Publication number
WO2019237413A1
WO2019237413A1 PCT/CN2018/092220 CN2018092220W WO2019237413A1 WO 2019237413 A1 WO2019237413 A1 WO 2019237413A1 CN 2018092220 W CN2018092220 W CN 2018092220W WO 2019237413 A1 WO2019237413 A1 WO 2019237413A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
drone
gis
plant protection
control mode
Prior art date
Application number
PCT/CN2018/092220
Other languages
English (en)
French (fr)
Inventor
唐宇
骆少明
侯超钧
庄家俊
郭琪伟
孙胜
刘泽锋
陈亚勇
张恒涛
黄建钧
陈家政
Original Assignee
仲恺农业工程学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 仲恺农业工程学院 filed Critical 仲恺农业工程学院
Publication of WO2019237413A1 publication Critical patent/WO2019237413A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers

Definitions

  • the invention relates to the technical field of unmanned aerial vehicle plant protection, in particular to an unmanned aerial vehicle plant protection system and method based on GIS.
  • the current drone plant protection technology relies on professional pilots. Pilots are technicians with professional drone control technology. Plant protection operations have very high requirements for the pilots. Within the distance of visual flight, the pilots must achieve high-lock, straight, and uniform flight. When flying pilots use drones to plant and protect agricultural and forest land, it is difficult to control drones to accurately carry out crops due to the obstruction of sight and the limitation of human control. Plant protection, and there is no guarantee that drones have plant protection in every part of the farmland.
  • the present invention provides a GIS-based unmanned aerial vehicle plant protection system and method, which can accurately and without omission control the unmanned aerial vehicle to plant farmland.
  • a GIS-based drone plant protection system includes a drone and a monitoring terminal.
  • the drone is provided with a positioning unit, a depth camera, and a flight execution unit.
  • the monitoring terminal includes a GIS processing unit, a manual control unit, and an automatic Control unit and control mode switching unit;
  • the positioning unit is configured to obtain the current position of the drone and send it to the GIS processing unit;
  • the control mode switching unit is configured to obtain a GIS map from a GIS processing unit, and switch between a manual control mode and an automatic control mode according to the layout of each point on the GIS map;
  • the manual control unit When switching to the manual control mode, the manual control unit is configured to receive a flight control instruction issued by a controller and send it to the flight execution unit;
  • the automatic control unit When switching to the automatic control mode, the automatic control unit is configured to obtain X k and Y k from the GIS processing unit and plan the drone flight route according to X k and Y k , and form a flight control instruction according to the drone flight route and Sent to flight execution unit;
  • the flight execution unit is configured to receive a flight control command sent by a manual control unit and / or an automatic control unit, and control the drone to perform plant protection on the farmland according to the flight control command.
  • the depth camera collects the depth point cloud data of the farmland.
  • the depth point cloud data is stored as set D.
  • Each element in the set D represents each point, and each element stores each in the three-dimensional point coordinate of the Cartesian coordinate system XYZ, i.e. the set D i D i th element of the i-th stored point X i, Y i, Z i.
  • the XY plane of the rectangular coordinate system is a horizontal plane, and the direction corresponding to the Z axis is perpendicular to the horizontal plane.
  • the GIS processing unit may be the first in accordance with the Z i to distinguish between the i-th point Are there any crops in the position corresponding to point i? Because the location where the crops are planted needs drones for plant protection, the location must be included in the flight path of the drones, so the GIS processing unit will place the points where the crops are planted in the corresponding location determined by Z i in the set A .
  • the GIS processing unit draws each point in the set A on a GIS map, and the area where the drone needs to perform plant protection is displayed on the GIS map.
  • the control mode switching unit selects whether to switch to the manual control mode or the automatic control mode according to the layout of each point of the GIS map.
  • control mode switching unit switches the current control mode to the manual control mode
  • the operator can send flight control to the manual control unit according to the area requiring plant protection displayed on the GIS map and the current position of the drone displayed on the GIS map.
  • the command allows the manual control unit to send flight control commands to the flight execution unit, so as to realize manual control of the drone for accurate and unobtrusive plant protection in areas where plant protection is needed.
  • the automatic control unit forms flight control commands and sends them to the flight execution unit according to the coordinates (X k , Y k ) of each point in the set A on the horizontal plane, thereby achieving Automatically control drones for accurate and unobtrusive plant protection in areas where plant protection is needed.
  • control mode switching unit includes a distance calculation module and a switching decision module
  • the distance calculation module is configured to calculate a plant protection distance displayed between two points farthest from each other on the GIS map and / or a point farthest from the drone control point and the drone control point displayed on the GIS map. The control distance between them, and sends the plant protection distance and / or the control distance to the switching judgment module;
  • the switching decision module is configured to receive the plant protection distance and / or the control distance sent by the distance calculation module, and decide to switch to the automatic control mode or the manual control mode according to the size of the plant protection distance and / or the control distance.
  • the manual control mode allows the operator to flexibly control the time that the drone stays at each point in the plant protection operation area according to the actual farmland conditions, thereby controlling the plant protection time at each point.
  • the distance calculation module can calculate the plant protection distance displayed between the two furthest points on the GIS map and / or between the point farthest from the drone control point on the GIS map and the drone control point.
  • the control mode switching unit switches to the automatic control mode.
  • control mode switching unit further includes a dispersion calculation module
  • the dispersion calculation module is configured to calculate the dispersion of all points displayed on the GIS map, and send the dispersion to the switching decision unit;
  • the switching decision unit is further configured to receive the dispersion sent by the dispersion calculation module, and decide to switch to the automatic control mode or the manual control mode according to the level of the dispersion.
  • the dispersion calculation module can calculate all the points displayed on the GIS map.
  • the control mode switching unit switches to an automatic control mode.
  • the drone is further provided with a color camera
  • the GIS processing unit is further configured to receive the set D sent by the color camera, extract R i , G i , and B i at the i-th point in the set D, and determine whether the position corresponding to the i-th point is based on R i , G i , and B i . cultivated crops, if the position corresponding to the i-th point cultivated crops, d i in the set B will be placed in the set B, set intersection, or a and set B and set a set B and set as a set A.
  • the color camera collects the color point cloud data of the farmland, and the color point cloud data is added to the set D.
  • Each element in the set D stores the three-dimensional coordinates of each point, and also stores value of each point three color channels, i.e., the set of D i D i th element of the i-th stored point X i, Y i, Z i, R i, G i, B i.
  • the GIS processing unit draws each point in the set A on a GIS map, and the area where the drone needs to be plant protected is displayed on the GIS map.
  • the accuracy of the plant protection area displayed on the GIS map can achieve more accurate plant protection.
  • the GIS processing unit is further configured to arrange the points in the set A according to the size of X k and Y k , and connect the points in the set A on the GIS map according to the order.
  • the operator can easily and intuitively determine the flight path of the drone. According to this connection, the precise plant protection of the drone can be controlled, and every position where the crops are planted is plant protected.
  • the automatic control unit is further configured to acquire from the GIS processing unit and h k UAV flight plan according to the height h k, according to the flight path of UAV, UAV flight height of the flight control instructions transmitted to the execution unit flight.
  • the flight height of the drone is calculated by the GIS processing unit, and the points in the set A are plotted on the GIS map, and the flight heights of the points are also displayed.
  • the operator can perform the flight according to the displayed flight. Highly precise control of the height of the drone when planting crops.
  • the flight height calculated by the GIS processing unit is sent to the automatic control unit.
  • the automatic control mode the height when the drone performs plant protection on the crop can also be accurately controlled.
  • a GIS-based drone plant protection method includes the following steps:
  • the drone When the drone is flying in the farmland, collect the depth point cloud data of the farmland and store the depth point cloud data as the set D.
  • Each element in the set D represents each point, and each element stores each point in the
  • the XY plane of the rectangular coordinate system is a horizontal plane, and the direction corresponding to the Z axis is perpendicular to the horizontal plane.
  • the GIS processing unit draws each point in the set A on a GIS map, and the area where the drone needs to perform plant protection is displayed on the GIS map.
  • the operator can issue flight control commands based on the area where plant protection is displayed on the GIS map and the current position of the drone displayed on the GIS map, thereby achieving manual control of the drone. Precise and non-missing plant protection in areas where plant protection is required.
  • the flight control command is formed according to the coordinates (X k , Y k ) of each point in the set A on the horizontal plane, so that the automatic control of the drone is performed accurately and without omission in the area requiring plant protection Ground plant protection.
  • step S4 specifically includes the following steps:
  • the manual control mode allows the operator to flexibly control the time that the drone stays at each point in the plant protection operation area according to the actual farmland conditions, thereby controlling the plant protection time at each point.
  • step S4 specifically includes the following steps:
  • the dispersion When the dispersion is large, it indicates that the area of the plant protection operation needs to be large, and the plant protection operation time will be correspondingly long. In order to avoid the operator to perform long-term plant protection operation, the dispersion of all points displayed on the GIS map is calculated. When the dispersion is high, the current control mode is switched to the automatic control mode.
  • R i, G i, B i distinguish corresponding to whether the point position i cultivated crops, if the position corresponding to the i-th point cultivated crops, will be placed in the set D B i, the set B, set intersection, or a and set B and set a and set B Set as set A.
  • the color camera collects the color point cloud data of the farmland, and the color point cloud data is added to the set D.
  • Each element in the set D stores the three-dimensional coordinates of each point, and also stores value of each point three color channels, i.e., the set of D i D i th element of the i-th stored point X i, Y i, Z i, R i, G i, B i.
  • each point in the set A is drawn on the GIS map, and the area where the drone needs to be protected is displayed on the GIS map, which improves the GIS map.
  • the accuracy of the plant protection area shown above, whether in the manual control mode or the automatic control mode, can achieve more accurate plant protection.
  • step S3 the points in the set A are arranged in an order according to the sizes of Xk and Yk , and the points in the set A are connected on the GIS map in this order.
  • the operator can easily and intuitively determine the flight path of the drone. According to this connection, the precise plant protection of the drone can be controlled, and every position where the crops are planted is plant protected.
  • step S5 when switching to the automatic control mode, the flying height of the drone is also planned according to hk , and a flight control instruction is formed according to the flying path of the drone and the flying height of the drone.
  • UAVs In order to ensure the quality of plant protection, UAVs need to keep a certain distance from the tip of crops in order to ensure the quality of plant protection. It is necessary to ensure effective plant protection of crops and to avoid damage to crops caused by the strong airflow caused by the drone rotors. Therefore, by calculating the flying height of the drone, while drawing each point in the set A on the GIS map, the flying height of each point is also displayed. In the manual control mode, the operator can accurately determine the flying height according to the displayed flying height. Control the height of drones when planting crops. The calculated flying height is sent to the automatic control unit, and it can also precisely control the height of the drone when planting crops in automatic control mode.
  • the system of the present invention collects depth information and color information of farmland through depth cameras and color cameras provided by the drone, and the GIS processing unit analyzes the depth information and color information to display the farmland on the GIS map.
  • control mode switching unit can switch between the manual control mode and the automatic control mode according to the layout of each point on the GIS map formed by the GIS processing unit, and according to the actual situation of the plant protection work area, Choose a drone control mode that is more conducive to plant protection operations;
  • the method of the present invention collects the depth information and color information of the farmland through the drone, obtains the depth information and color information collected by the drone, and analyzes and processes the areas where the crops are planted in the farmland on the GIS map. In order to control the flight path and flight height of the drone, so that the drone can accurately and without fail omit crop protection in the farmland;
  • the method of the present invention can switch between manual control mode and automatic control mode according to the layout of each point on the formed GIS map. According to the actual situation of the plant protection operation area, a method that is more conducive to plant protection operation can be selected. Drone control mode.
  • FIG. 1 is a schematic diagram of a system composition according to an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or suggesting relative importance or implicitly indicating the number of technical features. Therefore, the defined “first” and “second” features may explicitly or implicitly include one or more of the features. In the description of the present invention, unless otherwise stated, "a plurality" means two or more.
  • a GIS-based drone 100 plant protection system includes a drone 100 and a monitoring terminal 200.
  • the drone 100 is provided with a positioning unit 110, a depth camera 120, and a flight execution unit 140.
  • the monitoring terminal 200 includes a GIS processing unit 210, a manual control unit 220, an automatic control unit 230, and a control mode switching unit 240.
  • the positioning unit 110 is configured to obtain the current position of the drone 100 and send it to the GIS processing unit 210;
  • the control mode switching unit 240 is configured to obtain a GIS map from the GIS processing unit 210, and switch between a manual control mode and an automatic control mode according to the layout of each point on the GIS map;
  • the manual control unit 220 When switching to the manual control mode, the manual control unit 220 is configured to receive a flight control instruction from a controller and send it to the flight execution unit 140;
  • the automatic control unit 230 When switching to the automatic control mode, the automatic control unit 230 is configured to obtain X k and Y k from the GIS processing unit 210 and plan the flight path of the drone 100 according to the X k and Y k , and form the flight path according to the drone 100 flight path. Flight control instructions are sent to the flight execution unit 140;
  • the flight execution unit 140 is configured to receive a flight control command sent by the manual control unit 220 and / or the automatic control unit 230 and control the drone 100 to perform plant protection on farmland according to the flight control command.
  • the depth camera 120 collects the depth point cloud data of the farmland.
  • the depth point cloud data is stored as the set D.
  • Each element in the set D represents each point, and each element is stored.
  • the coordinate value of each point in the three-dimensional rectangular coordinate system XYZ, that is, the i-th element d i in the set D stores the i-th point's X i , Y i , Z i .
  • the XY plane of the rectangular coordinate system is a horizontal plane, and the direction corresponding to the Z axis is perpendicular to the horizontal plane.
  • the Z i collected by the depth camera 120 is different. Therefore, in the GIS processing unit 210, the Z i It is distinguished whether there is a crop planted at the position corresponding to the i-th point. Because there is a position for planting crops that requires drone 100 for plant protection, this position must be included in the flight path of drone 100, so GIS processing unit 210 will place the points where there are crops that are judged to be corresponding positions according to Z i In set A.
  • the GIS processing unit 210 draws each point in the set A on a GIS map, and the area where the drone 100 needs to perform plant protection is displayed on the GIS map. .
  • the control mode switching unit 240 selects whether to switch to the manual control mode or the automatic control mode according to the layout of each point of the GIS map.
  • control mode switching unit 240 switches the current control mode to the manual control mode
  • the operator may send the manual control unit 220 to the manual control unit 220 according to the area requiring plant protection displayed on the GIS map and the current position of the drone 100 displayed on the GIS map.
  • the flight control command is issued, and the manual control unit 220 sends the flight control command to the flight execution unit 140, so as to implement manual control of the drone 100 to perform accurate and non-missing plant protection in areas requiring plant protection.
  • the automatic control unit 230 forms flight control commands according to the coordinates (X k , Y k ) of each point in the set A on the horizontal plane and sends them to the flight execution unit 140. In this way, the automatic control of the drone 100 can implement accurate and non-missing plant protection in areas where plant protection is needed.
  • control mode switching unit 240 includes a distance calculation module 241, a dispersion calculation module 242, and a switching decision module 243.
  • the distance calculation module 241 is configured to calculate a plant protection distance displayed between two points farthest from each other on a GIS map and / or a point and a drone that are farthest from a control point of the drone 100 on the GIS map. 100 control distance between control points, and send the plant protection distance and / or control distance to the switching judgment module;
  • the dispersion calculation module 242 is configured to calculate the dispersion of all points displayed on the GIS map, and send the dispersion to a switching decision unit; and decide to switch to an automatic control mode or a manual control mode according to the level of the dispersion.
  • the switching decision module 243 is configured to receive the plant protection distance and / or control distance sent by the distance calculation module 241, and receive the dispersion sent by the dispersion calculation module 242, according to the size and / or dispersion of the plant protection distance and / or control distance. The degree of degree determines whether to switch to automatic control mode or manual control mode.
  • the manual control mode allows the operator to flexibly control the time that the drone 100 stays at each point in the plant protection operation area according to the actual farmland conditions, thereby controlling the plant protection time at each point.
  • the distance calculation module 241 can calculate the plant protection distance displayed between the two furthest points on the GIS map and / or the point on the GIS map that is furthest from the drone 100 control point and the drone 100 control. The control distance between the locations.
  • the control mode switching unit 240 switches to an automatic control mode.
  • the dispersion calculation module 242 can calculate all the displayed on the GIS map The degree of dispersion of the points. When the degree of dispersion is high, the control mode switching unit 240 switches to an automatic control mode.
  • the dispersion calculation module 242 obtains the coordinates (X k , Y k ) of all points on the GIS map on the horizontal plane, calculates the variance or standard deviation of these coordinates, and uses the variance or standard deviation to measure all the points displayed on the GIS map. And a predetermined variance threshold or standard deviation threshold is set. When the calculated variance or standard deviation is greater than the predetermined variance threshold or standard deviation threshold, it indicates that the dispersion is large, and the automatic control mode can be switched at this time. When the calculated variance or standard deviation is less than or equal to a predetermined variance threshold or standard deviation threshold, it means that the dispersion is small, and the manual control mode can be switched at this time.
  • the drone 100 is further provided with a color camera 130;
  • the GIS processing unit 210 is further configured to receive the set D sent by the color camera 130, extract R i , G i , and B i at the i-th point in the set D, and distinguish the i-point corresponding to the i-th point according to R i , G i , and B i . Whether there are planted crops at the position. If there are planted crops at the position corresponding to the i-th point, place d i in the set B, and set the intersection of the set B, the set A and the set B, or the union of the set A and the set B as the set A. .
  • the color camera collects the color point cloud data of the farmland, and the color point cloud data is added to the set D.
  • Each element in the set D stores the three-dimensional coordinates of each point and also stores value of each point three color channels, i.e., the set of D i D i th element of the i-th stored point X i, Y i, Z i, R i, G i, B i.
  • the GIS processing unit 210 draws each point in the set A on a GIS map, and the area where the drone 100 needs to perform plant protection is displayed on the GIS map. , Improve the accuracy of the plant protection area displayed on the GIS map, whether in the manual control mode or the automatic control mode, more accurate plant protection can be achieved.
  • the GIS processing unit 210 is further configured to arrange the points in the set A according to the size of X k and Y k , and connect the points in the set A on the GIS map according to the order.
  • the points displayed on the GIS map are connected according to the order of X k and Y k , and the connected line is the flight path of the drone 100.
  • the operator can easily and intuitively determine the flight path of the drone 100, and according to the connection, the precise plant protection of the drone 100 can be controlled, and the position of each crop planted can be guaranteed.
  • the automatic control unit 230 is further configured to obtain 210 from the GIS h k h k in accordance with the processing unit and plan altitude of UAV 100, in accordance with the flight path of UAV 100, UAV 100 is formed altitude flight control commands sent Flight execution unit 140.
  • the drone 100 In order to ensure the quality of plant protection, the drone 100 needs to maintain a certain distance from the tip of the crops in order to ensure the quality of the plant protection. It is necessary to ensure effective plant protection of the crops and avoid the strong airflow caused by the rotors of the drone 100 to cause damage to the crop . Therefore, the flight height of the drone 100 is calculated by the GIS processing unit 210, and each point in the set A is plotted on the GIS map, and the flight height of each point is also displayed. In the manual control mode, the control personnel can The flying height accurately controls the height of the drone 100 when planting crops. The flight height calculated by the GIS processing unit 210 is sent to the automatic control unit 230, and the height when the drone 100 performs plant protection on the crop can also be accurately controlled in the automatic control mode.
  • the GIS processing unit 210 displays h k as a label at the position corresponding to the k-th point on the GIS map, which can present the effect of augmented reality, and the operator can easily and intuitively determine the absence of Flying height of the man-machine 100.
  • the value of c is from 0.5m to 1.5m.
  • the unmanned aerial vehicle 100 When the unmanned aerial vehicle 100 is in a plant protection operation, the unmanned aerial vehicle 100 is generally about 1 m above the tip of a crop leaf, and therefore, the value of c is preferably 0.5 m to 1.5 m.
  • h k ⁇ 2m.
  • the drone 100 For low crops, the drone 100 needs to be about 2m above the ground. Therefore, the flying height of the drone 100 cannot be less than 2m.
  • a GIS-based drone plant protection method includes the following steps:
  • the drone When the drone is flying in the farmland, collect the depth point cloud data of the farmland and store the depth point cloud data as the set D.
  • Each element in the set D represents each point, and each element stores each point in the
  • the XY plane of the rectangular coordinate system is a horizontal plane, and the direction corresponding to the Z axis is perpendicular to the horizontal plane.
  • each point in the set A is drawn on a GIS map, and the area where the drone needs to perform plant protection is displayed on the GIS map.
  • the operator can issue flight control commands based on the area where plant protection is displayed on the GIS map and the current position of the drone displayed on the GIS map, thereby achieving manual control of the drone. Precise and non-missing plant protection in areas where plant protection is required.
  • the flight control command is formed according to the coordinates (X k , Y k ) of each point in the set A on the horizontal plane, so that the automatic control of the drone is performed accurately and without omission in the area requiring plant protection Ground plant protection.
  • step S4 may specifically include the following steps:
  • the manual control mode allows the operator to flexibly control the time that the drone stays at each point in the plant protection operation area according to the actual farmland conditions, thereby controlling the plant protection time at each point.
  • step S4 may specifically include the following steps:
  • the dispersion When the dispersion is large, it indicates that the area of the plant protection operation needs to be large, and the plant protection operation time will be correspondingly long. In order to avoid the operator to perform long-term plant protection operation, the dispersion of all points displayed on the GIS map is calculated. When the dispersion is high, the current control mode is switched to the automatic control mode.
  • the coordinates (X k , Y k ) of all points on the GIS map on the horizontal plane can be obtained, the variance or standard deviation of these coordinates is calculated, and the variance or standard deviation is used to measure the dispersion of all points displayed on the GIS map.
  • a predetermined variance threshold or standard deviation threshold is set. When the calculated variance or standard deviation is greater than the predetermined variance threshold or standard deviation threshold, it indicates that the dispersion is large, and the automatic control mode can be switched at this time. When the calculated variance or standard deviation is less than or equal to a predetermined variance threshold or standard deviation threshold, it means that the dispersion is small, and the manual control mode can be switched at this time.
  • the union of B is taken as the set A.
  • the color camera collects the color point cloud data of the farmland, and the color point cloud data is added to the set D.
  • Each element in the set D stores the three-dimensional coordinates of each point, and also stores value of each point three color channels, i.e., the set of D i D i th element of the i-th stored point X i, Y i, Z i, R i, G i, B i.
  • each point in the set A is drawn on the GIS map, and the area where the drone needs to be protected is displayed on the GIS map, which improves the GIS map.
  • the accuracy of the plant protection area shown above, whether in the manual control mode or the automatic control mode, can achieve more accurate plant protection.
  • step S3 the points in the set A are arranged in an order according to the sizes of Xk and Yk , and the points in the set A are connected on the GIS map in this order.
  • the operator can easily and intuitively determine the flight path of the drone. According to this connection, the precise plant protection of the drone can be controlled, and every position where the crops are planted is plant protected.
  • step S5 when switching to the automatic control mode, the flying height of the drone is also planned according to hk , and a flight control instruction is formed according to the flying path of the drone and the flying height of the drone.
  • UAVs In order to ensure the quality of plant protection, UAVs need to keep a certain distance from the tip of crops in order to ensure the quality of plant protection. It is necessary to ensure effective plant protection of crops and to avoid damage to crops caused by the strong airflow caused by the drone rotors. Therefore, by calculating the flying height of the drone, while drawing each point in the set A on the GIS map, the flying height of each point is also displayed. In the manual control mode, the operator can accurately determine the flying height according to the displayed flying height. Control the height of drones when planting crops. The calculated flying height makes it possible to precisely control the height of the drone when planting crops in automatic control mode.
  • h k is displayed in the form of a label at the position corresponding to the k-th point on the GIS map, which can show the effect of augmented reality, and the operator can easily and intuitively determine the flight of the drone. height.
  • the value of c is from 0.5m to 1.5m.
  • the UAV When the UAV is in plant protection operation, the UAV is generally about 1 m above the leaf tip of the crop. Therefore, the value of c is preferably 0.5 m to 1.5 m.
  • h k ⁇ 2m.
  • the drone For low crops, the drone needs to be about 2m above the ground. Therefore, the flying height of the drone cannot be less than 2m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Image Processing (AREA)

Abstract

一种基于GIS的无人机植保系统及方法,该基于GIS的无人机植保系统包括无人机(100)、监控终端(200),无人机(100)设有定位单元(110)、深度摄像机(120)、飞行执行单元(140),监控终端(200)包括GIS处理单元(210)、手动控制单元(220)、自动控制单元(230)以及控制模式切换单元(240),深度摄像机(120)采集农田的深度点云数据并发送到GIS处理单元(210),GIS处理单元(210)对深度点云数据分析,在GIS地图上显示农田中种植了农作物的区域,根据GIS地图可以手动或自动控制无人机在农田中精准且不遗漏地对农作物进行植保。

Description

一种基于GIS的无人机植保系统及方法 技术领域
本发明涉及无人机植保技术领域,具体涉及一种基于GIS的无人机植保系统及方法。
背景技术
现行的无人机植保技术依赖于专业的飞手,飞手是指拥有专业的无人机操控技术的技术人员。植保作业对飞手的要求非常高,在目视飞行的距离内,飞手必须要做到锁高、直线、匀速飞行。飞手在操控无人机对农林地进行植保时,由于视线的阻碍以及人为操控的局限性,即使是拥有无人机专业操控技能的飞手,也很难控制无人机精准地对农作物进行植保,并且不能保证无人机对农田的每一个地方都进行了植保。
发明内容
本发明为了克服上述现有技术所述的至少一种缺陷(不足),提供一种基于GIS的无人机植保系统及方法,可以精准且不遗漏地控制无人机对农田进行植保。
为实现本发明的目的,采用以下技术方案予以实现:
一种基于GIS的无人机植保系统,包括无人机、监控终端,所述无人机设有定位单元、深度摄像机、飞行执行单元,所述监控终端包括GIS处理单元、手动控制单元、自动控制单元以及控制模式切换单元;
所述定位单元,用于获取无人机当前位置并发送到GIS处理单元;
所述深度摄像机,用于采集农田的深度点云数据,将深度点云数据存储为集合D={d 1,d 2,……,d m},其中d i=(X i,Y i,Z i),X i、Y i、Z i分别表示第i点在直角坐标系X-Y-Z下的坐标值,所述直角坐标系的X-Y平面为水平面,Z轴对应的方向是垂直于水平面的,i=1,2,……,m,m为深度点云数据中点的总数,并将集合D发送到GIS处理单元;
所述GIS处理单元,用于接收定位单元发送的无人机当前位置并显示在GIS地图上,还用于接收深度摄像机发送的集合D,提取集合D内第i点的Z i,根据Z i区分第i点的对应的位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合A中,提取集合A内第k点的X k、Y k,根据(X k,Y k) 将第k点显示在GIS地图上,k=1,2,……,n,n为集合A中点的总数;
所述控制模式切换单元,用于从GIS处理单元中获取GIS地图,根据GIS地图上各个点的布局在手动控制模式和自动控制模式之间切换;
当切换为手动控制模式时,所述手动控制单元用于接收操控人员发出的飞行控制指令并发送到飞行执行单元;
当切换为自动控制模式时,所述自动控制单元用于从GIS处理单元获取X k、Y k并根据X k、Y k规划无人机飞行路线,根据无人机飞行路线形成飞行控制指令并发送到飞行执行单元;
所述飞行执行单元,用于接收手动控制单元和/或自动控制单元发送的飞行控制命令,根据飞行控制命令控制无人机对农田进行植保。
当无人机在农田中飞行时,深度摄像机采集农田的深度点云数据,深度点云数据被存储为集合D,集合D内的每个元素代表每一个点,每个元素都存储了每一个点在三维的直角坐标系X-Y-Z下的坐标值,也即集合D内第i个元素d i存储了第i点的X i、Y i、Z i。直角坐标系的X-Y平面为水平面,Z轴对应的方向是垂直于水平面的。
在农田中有种植农作物的位置和没有种植农作物的位置在高度上有明显区别的,用深度摄像机所采集的Z i是不同的,因此在GIS处理单元中可以根据第i点的Z i区分第i点对应的位置是否有种植农作物。因为有种植农作物的位置需要无人机去植保,该位置必须包含在无人机的飞行路径上,所以GIS处理单元将根据Z i判断为对应的位置有种植农作物的点均放置在集合A中。
根据集合A内各个点在水平面上的坐标(X k,Y k),GIS处理单元将集合A内各个点绘制在GIS地图上,在GIS地图上即显示无人机需要进行植保的区域。
控制模式切换单元会根据GIS地图各个点的布局选择切换为手动控制模式还是切换为自动控制模式。
如果控制模式切换单元将当前控制模式切换为手动控制模式时,操控人员可以根据GIS地图上所显示的需要植保的区域以及GIS地图上所显示的无人机当前位置,向手动控制单元发出飞行控制命令,让手动控制单元将飞行控制命令发送到飞行执行单元中,从而实现手动控制无人机在需要植保区域进行精准且不遗 漏地植保。
如果控制模式切换单元将当前控制模式切换为自动控制模式时,自动控制单元根据集合A内各个点在水平面上的坐标(X k,Y k)形成飞行控制命令发送到飞行执行单元中,从而实现自动控制无人机在需要植保区域进行精准且不遗漏地植保。
进一步地,所述控制模式切换单元包括距离计算模块、切换决策模块;
所述距离计算模块,用于计算出显示在GIS地图上相距最远的两点之间的植保距离和/或显示在GIS地图上距离无人机操控地点最远的点与无人机操控地点之间的操控距离,并将植保距离和/或操控距离发送到切换判断模块;
所述切换决策模块,用于接收距离计算模块发送的植保距离和/或操控距离,根据植保距离和/或操控距离的大小决定切换为自动控制模式或手动控制模式。
手动控制模式与自动控制模式相比,手动控制模式可以让操控人员灵活地根据实际农田情况控制在植保作业区域内各个点无人机停留的时间,从而控制各个点的植保时间。
当植保距离或操控距离太远时,通过操控人员的手动控制可能会无法远距离地操控无人机进行植保作业。因此,距离计算模块可以计算出显示在GIS地图上相距最远的两点之间的植保距离和/或显示在GIS地图上距离无人机操控地点最远的点与无人机操控地点之间的操控距离,当植保距离和/或操控距离太大时,控制模式切换单元切换为自动控制模式。
进一步地,所述控制模式切换单元还包括离散度计算模块;
所述离散度计算模块,用于计算出显示在GIS地图上所有点的离散度,并将离散度发送到切换决策单元;
所述切换决策单元还用于接收离散度计算模块发送的离散度,根据离散度的高低决定切换为自动控制模式或手动控制模式。
当离散度较大时表明需要植保作业区域跨度很大,植保作业时间也会相应的很长,为了避免操控人员进行长时间的植保操控,离散度计算模块可以计算出显示在GIS地图上所有点的离散度,当离散度较高时,控制模式切换单元切换为自动控制模式。
进一步地,所述无人机还设有彩色摄像机;
所述彩色摄像机,用于采集农田的彩色点云数据并将彩色点云数据添加在集合D中,d i=(X i,Y i,Z i,R i,G i,B i),R i、G i、B i分别表示第i点三个颜色通道的值,并将集合D发送到GIS处理单元;
所述GIS处理单元还用于接收彩色摄像机发送的集合D,提取集合D内第i点的R i、G i、B i,根据R i、G i、B i区分第i点对应的位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合B中,将集合B、集合A与集合B的交集或者集合A与集合B的并集作为集合A。
当无人机在农田中飞行时,彩色摄像机采集农田的彩色点云数据,彩色点云数据添加在集合D中,集合D内的每个元素除了存储每一个点的三维坐标以外,还存储了每一个点三个颜色通道的值,也即集合D内第i个元素d i存储了第i点的X i、Y i、Z i、R i、G i、B i
在农田中有种植农作物的位置和没有种植农作物的位置在颜色上是有明显区别的,用彩色摄像机所采集的R i、G i、B i是不同的,因此可以根据第i点的R i、G i、B i区分第i点对应的位置是否有种植农作物,将根据R i、G i、B i判断为对应的位置有种植农作物的点均放置在集合B中。
不同农作物在农田中的高度、颜色是不同的。有一些农作物生长高度较高,根据Z i去判断第i点对应的位置是否有种植农作物较为准确;有一些农作物颜色较有辨识度,根据R i、G i、B i去判断第i点对应的位置是否有种植农作物较为准确。因此,在实际中根据农田所种植农作物的特点,可以单独根据Z i去判断,也可以单独根据R i、G i、B i去判断,将集合B作为集合A,还可以结合Z i、R i、G i、B i综合去判断,将集合A和集合B的交集或并集作为集合A。
根据集合A内各个点在水平面上的坐标(X k,Y k),GIS处理单元将集合A内各个点绘制在GIS地图上,在GIS地图上即显示无人机需要进行植保的区域,提高在GIS地图上所显示的需要植保区域的精准度,无论是在手动控制模式下还是在自动控制模式下,都可以实现更加精准的植保。
优选地,所述GIS处理单元还用于将集合A内各个点根据X k、Y k的大小排列顺序,并按照该顺序对集合A内各个点在GIS地图上进行连线。
根据X k、Y k的大小顺序将显示在GIS地图上的各个点进行连线,所连成的 线即为无人机的飞行路径。
在手动控制模式下,操控人员可以方便、直观地确定无人机的飞行路径,根据该连线可以控制无人机精准植保,且保证每一个种植农作物的位置都被植保了。
进一步地,所述GIS处理单元还用于提取集合A内第k点的Z k,根据Z k计算第k点的飞行高度h k=Z k+c,c为无人机与农作物的距离,将h k显示在GIS地图上并发送到自动控制单元;
所述自动控制单元还用于从GIS处理单元获取h k并根据h k规划无人机飞行高度,根据无人机飞行路线、无人机飞行高度形成飞行控制指令并发送到飞行执行单元。
无人机在植保作业时,为了保证植保的质量,需要与农作物叶尖保持一定距离,既要保证对农作物的有效植保,又要避免无人机旋翼所造成的强气流对农作物造成伤害。因此,通过GIS处理单元计算无人机的飞行高度,在GIS地图上绘制集合A内各个点的同时,将各个点的飞行高度也显示出来,在手动操控模式下操控人员可以根据所显示的飞行高度精准地控制无人机对农作物进行植保时的高度。将GIS处理单元计算出的飞行高度发送到自动控制单元,在自动操控模式下也可以精准地控制无人机对农作物进行植保时的高度。
一种基于GIS的无人机植保方法,包括以下步骤:
S1.获取无人机的当前位置并显示在GIS地图上;
S2.采集农田的深度点云数据,将深度点云数据存储为集合D={d 1,d 2,……,d m},其中d i=(X i,Y i,Z i),X i、Y i、Z i分别表示第i点在直角坐标系X-Y-Z下的坐标值,所述直角坐标系的X-Y平面为水平面,i=1,2,……,m,m为深度点云数据中点的总数,提取集合D内第i点的Z i,根据Z i区分第i点的对应的位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合A中;
S3.提取集合A内第k点的X k、Y k,根据(X k,Y k)将第k点显示在GIS地图上,k=1,2,……,n,n为集合A中点的总数;
S4.根据GIS地图上各个点的布局在手动控制模式和自动控制模式之间切换;
S5.当切换为手动控制模式时,接收操控人员发出的飞行控制指令;当切换为自动控制模式时,根据X k、Y k规划无人机飞行路线,根据无人机飞行路线形成 飞行控制指令;
S6.根据飞行控制命令控制无人机对农田进行植保。
当无人机在农田中飞行时,采集农田的深度点云数据并将深度点云数据存储为集合D,集合D内的每个元素代表每一个点,每个元素都存储了每一个点在三维的直角坐标系X-Y-Z下的坐标值,也即集合D内第i个元素d i存储了第i点的X i、Y i、Z i。直角坐标系的X-Y平面为水平面,Z轴对应的方向是垂直于水平面的。
在农田中有种植农作物的位置和没有种植农作物的位置在高度上有明显区别的,所采集的Z i是不同的,因此可以根据第i点的Z i区分第i点对应的位置是否有种植农作物。因为有种植农作物的位置需要无人机去植保,该位置必须包含在无人机的飞行路径上,所以将根据Z i判断为对应的位置有种植农作物的点均放置在集合A中。
根据集合A内各个点在水平面上的坐标(X k,Y k),GIS处理单元将集合A内各个点绘制在GIS地图上,在GIS地图上即显示无人机需要进行植保的区域。
根据GIS地图各个点的布局选择切换为手动控制模式还是切换为自动控制模式。
如果当前控制模式切换为手动控制模式时,操控人员可以根据GIS地图上所显示的需要植保的区域以及GIS地图上所显示的无人机当前位置,发出飞行控制命令,从而实现手动控制无人机在需要植保区域进行精准且不遗漏地植保。
如果当前控制模式切换为自动控制模式时,根据集合A内各个点在水平面上的坐标(X k,Y k)形成飞行控制命令,从而实现自动控制无人机在需要植保区域进行精准且不遗漏地植保。
进一步地,所述步骤S4具体包括以下步骤:
S41.计算出显示在GIS地图上相距最远的两点之间的植保距离和/或显示在GIS地图上距离无人机操控地点最远的点与无人机操控地点之间的操控距离;
S42.根据植保距离和/或操控距离的大小决定切换为自动控制模式或手动控制模式。
手动控制模式与自动控制模式相比,手动控制模式可以让操控人员灵活地根 据实际农田情况控制在植保作业区域内各个点无人机停留的时间,从而控制各个点的植保时间。
当植保距离或操控距离太远时,通过操控人员的手动控制可能会无法远距离地操控无人机进行植保作业。因此,计算出显示在GIS地图上相距最远的两点之间的植保距离和/或显示在GIS地图上距离无人机操控地点最远的点与无人机操控地点之间的操控距离,当植保距离和/或操控距离太大时,将当前控制模式切换为自动控制模式。
进一步地,所述步骤S4具体包括以下步骤:
S41.计算出显示在GIS地图上所有点的离散度;
S42.根据离散度的高低决定切换为自动控制模式或手动控制模式。
当离散度较大时表明需要植保作业区域跨度很大,植保作业时间也会相应的很长,为了避免操控人员进行长时间的植保操控,计算出显示在GIS地图上所有点的离散度,当离散度较高时,将当前控制模式切换为自动控制模式。
进一步地,所述步骤S2中,还采集农田的彩色点云数据并将彩色点云数据添加在集合D中,d i=(X i,Y i,Z i,R i,G i,B i),R i、G i、B i分别表示第i点三个颜色通道的值,提取集合D内第i点的R i、G i、B i,根据R i、G i、B i区分第i点对应的位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合B中,将集合B、集合A与集合B的交集或者集合A与集合B的并集作为集合A。
当无人机在农田中飞行时,彩色摄像机采集农田的彩色点云数据,彩色点云数据添加在集合D中,集合D内的每个元素除了存储每一个点的三维坐标以外,还存储了每一个点三个颜色通道的值,也即集合D内第i个元素d i存储了第i点的X i、Y i、Z i、R i、G i、B i
在农田中有种植农作物的位置和没有种植农作物的位置在颜色上是有明显区别的,用彩色摄像机所采集的R i、G i、B i是不同的,因此可以根据第i点的R i、G i、B i区分第i点对应的位置是否有种植农作物,将根据R i、G i、B i判断为对应的位置有种植农作物的点均放置在集合B中。
不同农作物在农田中的高度、颜色是不同的。有一些农作物生长高度较高,根据Z i去判断第i点对应的位置是否有种植农作物较为准确;有一些农作物颜色 较有辨识度,根据R i、G i、B i去判断第i点对应的位置是否有种植农作物较为准确。因此,在实际中根据农田所种植农作物的特点,可以单独根据Z i去判断,也可以单独根据R i、G i、B i去判断,将集合B作为集合A,还可以结合Z i、R i、G i、B i综合去判断,将集合A和集合B的交集或并集作为集合A。
根据集合A内各个点在水平面上的坐标(X k,Y k),将集合A内各个点绘制在GIS地图上,在GIS地图上即显示无人机需要进行植保的区域,提高在GIS地图上所显示的需要植保区域的精准度,无论是在手动控制模式下还是在自动控制模式下,都可以实现更加精准的植保。
优选地,所述步骤S3中,还将集合A内各个点根据X k、Y k的大小排列顺序,并按照该顺序对集合A内各个点在GIS地图上进行连线。
根据X k、Y k的大小顺序将显示在GIS地图上的各个点进行连线,所连成的线即为无人机的飞行路径。
在手动控制模式下,操控人员可以方便、直观地确定无人机的飞行路径,根据该连线可以控制无人机精准植保,且保证每一个种植农作物的位置都被植保了。
进一步地,还包括以下步骤:所述步骤S3中,还提取集合A内第k点的Z k,根据Z k计算第k点的飞行高度h k=Z k+c,c为无人机与农作物的距离,将h k显示在GIS地图上;
所述步骤S5中,当切换为自动控制模式时,还根据h k规划无人机飞行高度,根据无人机飞行路线、无人机飞行高度形成飞行控制指令。
无人机在植保作业时,为了保证植保的质量,需要与农作物叶尖保持一定距离,既要保证对农作物的有效植保,又要避免无人机旋翼所造成的强气流对农作物造成伤害。因此,通过计算无人机的飞行高度,在GIS地图上绘制集合A内各个点的同时,将各个点的飞行高度也显示出来,在手动操控模式下操控人员可以根据所显示的飞行高度精准地控制无人机对农作物进行植保时的高度。计算出的飞行高度发送到自动控制单元,在自动操控模式下也可以精准地控制无人机对农作物进行植保时的高度。
与现有技术相比,本发明技术方案的有益效果是:
(1)本发明的系统通过无人机所设置的深度摄像机、彩色摄像机,分别采 集农田的深度信息和彩色信息,GIS处理单元将深度信息、彩色信息分析处理后在GIS地图上显示出农田中种植了农作物的区域,以便控制无人机的飞行路径和飞行高度,使无人机在农田中精准且不遗漏地对农作物进行植保;
(2)在本发明的系统中,控制模式切换单元可以根据GIS处理单元所形成的GIS地图上各个点的布局在手动控制模式和自动控制模式之间切换,可以根据植保作业区域的实际情况,选择一种更有利于进行植保作业的无人机控制模式;
(3)本发明的方法通过无人机分别采集农田的深度信息和彩色信息,获取无人机所采集的深度信息、彩色信息进行分析处理后在GIS地图上显示出农田中种植了农作物的区域,以便控制无人机的飞行路径和飞行高度,使无人机在农田中精准且不遗漏地对农作物进行植保;
(4)本发明的方法可以根据所形成的GIS地图上各个点的布局在手动控制模式和自动控制模式之间切换,可以根据植保作业区域的实际情况,选择一种更有利于进行植保作业的无人机控制模式。
附图说明
图1是本发明实施例的系统组成示意图。
说明:100.无人机;110.定位单元;120.深度摄像机;130.彩色摄像机;140.飞行执行单元;200.监控终端;210.GIS处理单元;220.手动控制单元;230.自动控制单元;240.控制模式切换单元;241.距离计算模块;242.离散度计算模块;243.切换决策模块。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含所指示的技术特征的数量。由此,限定的“第一”、“第二”的特征可以明示或隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例
如图1所示,一种基于GIS的无人机100植保系统,包括无人机100、监控终端200,所述无人机100设有定位单元110、深度摄像机120、飞行执行单元140,所述监控终端200包括GIS处理单元210、手动控制单元220、自动控制单元230以及控制模式切换单元240;
所述定位单元110,用于获取无人机100当前位置并发送到GIS处理单元210;
所述深度摄像机120,用于采集农田的深度点云数据,将深度点云数据存储为集合D={d 1,d 2,……,d m},其中d i=(X i,Y i,Z i),X i、Y i、Z i分别表示第i点在直角坐标系X-Y-Z下的坐标值,所述直角坐标系的X-Y平面为水平面,Z轴对应的方向是垂直于水平面的,i=1,2,……,m,m为深度点云数据中点的总数,并将集合D发送到GIS处理单元210;
所述GIS处理单元210,用于接收定位单元110发送的无人机100当前位置并显示在GIS地图上,还用于接收深度摄像机120发送的集合D,提取集合D内第i点的Z i,根据Z i区分第i点的对应的位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合A中,提取集合A内第k点的X k、Y k,根据(X k,Y k)将第k点显示在GIS地图上,k=1,2,……,n,n为集合A中点的总数;
所述控制模式切换单元240,用于从GIS处理单元210中获取GIS地图,根据GIS地图上各个点的布局在手动控制模式和自动控制模式之间切换;
当切换为手动控制模式时,所述手动控制单元220用于接收操控人员发出的飞行控制指令并发送到飞行执行单元140;
当切换为自动控制模式时,所述自动控制单元230用于从GIS处理单元210获取X k、Y k并根据X k、Y k规划无人机100飞行路线,根据无人机100飞行路线形成飞行控制指令并发送到飞行执行单元140;
所述飞行执行单元140,用于接收手动控制单元220和/或自动控制单元230发送的飞行控制命令,根据飞行控制命令控制无人机100对农田进行植保。
当无人机100在农田中飞行时,深度摄像机120采集农田的深度点云数据,深度点云数据被存储为集合D,集合D内的每个元素代表每一个点,每个元素 都存储了每一个点在三维的直角坐标系X-Y-Z下的坐标值,也即集合D内第i个元素d i存储了第i点的X i、Y i、Z i。直角坐标系的X-Y平面为水平面,Z轴对应的方向是垂直于水平面的。
在农田中有种植农作物的位置和没有种植农作物的位置在高度上有明显区别的,用深度摄像机120所采集的Z i是不同的,因此在GIS处理单元210中可以根据第i点的Z i区分第i点对应的位置是否有种植农作物。因为有种植农作物的位置需要无人机100去植保,该位置必须包含在无人机100的飞行路径上,所以GIS处理单元210将根据Z i判断为对应的位置有种植农作物的点均放置在集合A中。
根据集合A内各个点在水平面上的坐标(X k,Y k),GIS处理单元210将集合A内各个点绘制在GIS地图上,在GIS地图上即显示无人机100需要进行植保的区域。
控制模式切换单元240会根据GIS地图各个点的布局选择切换为手动控制模式还是切换为自动控制模式。
如果控制模式切换单元240将当前控制模式切换为手动控制模式时,操控人员可以根据GIS地图上所显示的需要植保的区域以及GIS地图上所显示的无人机100当前位置,向手动控制单元220发出飞行控制命令,让手动控制单元220将飞行控制命令发送到飞行执行单元140中,从而实现手动控制无人机100在需要植保区域进行精准且不遗漏地植保。
如果控制模式切换单元240将当前控制模式切换为自动控制模式时,自动控制单元230根据集合A内各个点在水平面上的坐标(X k,Y k)形成飞行控制命令发送到飞行执行单元140中,从而实现自动控制无人机100在需要植保区域进行精准且不遗漏地植保。
在本实施例中,所述控制模式切换单元240包括距离计算模块241、离散度计算模块242、切换决策模块243;
所述距离计算模块241,用于计算出显示在GIS地图上相距最远的两点之间的植保距离和/或显示在GIS地图上距离无人机100操控地点最远的点与无人机100操控地点之间的操控距离,并将植保距离和/或操控距离发送到切换判断模块;
所述离散度计算模块242,用于计算出显示在GIS地图上所有点的离散度,并将离散度发送到切换决策单元;根据离散度的高低决定切换为自动控制模式或手动控制模式。
所述切换决策模块243,用于接收距离计算模块241发送的植保距离和/或操控距离,并接收离散度计算模块242发送的离散度,根据植保距离和/或操控距离的大小和/或离散度的高低决定切换为自动控制模式或手动控制模式。
手动控制模式与自动控制模式相比,手动控制模式可以让操控人员灵活地根据实际农田情况控制在植保作业区域内各个点无人机100停留的时间,从而控制各个点的植保时间。
当植保距离或操控距离太远时,通过操控人员的手动控制可能会无法远距离地操控无人机100进行植保作业。因此,距离计算模块241可以计算出显示在GIS地图上相距最远的两点之间的植保距离和/或显示在GIS地图上距离无人机100操控地点最远的点与无人机100操控地点之间的操控距离,当植保距离和/或操控距离太大时,控制模式切换单元240切换为自动控制模式。
当离散度较大时表明需要植保作业区域跨度很大,植保作业时间也会相应的很长,为了避免操控人员进行长时间的植保操控,离散度计算模块242可以计算出显示在GIS地图上所有点的离散度,当离散度较高时,控制模式切换单元240切换为自动控制模式。
具体地,离散度计算模块242获取GIS地图上所有点在水平面上的坐标(X k,Y k),计算这些坐标的方差或者标准差,用方差或者标准差来衡量显示在GIS地图上所有点的离散度,并且设置一预定的方差阈值或者标准差阈值,当计算出来的方差或者标准差大于预定的方差阈值或者标准差阈值时,说明离散度大,此时可以切换为自动控制模式。当计算出来的方差或者标准差小于或等于预定的方差阈值或者标准差阈值时,说明离散度小,此时可以切换为手动控制模式。
在本实施例中,所述无人机100还设有彩色摄像机130;
所述彩色摄像机130,用于采集农田的彩色点云数据并将彩色点云数据添加在集合D中,d i=(X i,Y i,Z i,R i,G i,B i),R i、G i、B i分别表示第i点三个颜色通道的值,并将集合D发送到GIS处理单元210;
所述GIS处理单元210还用于接收彩色摄像机130发送的集合D,提取集合 D内第i点的R i、G i、B i,根据R i、G i、B i区分第i点对应的位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合B中,将集合B、集合A与集合B的交集或者集合A与集合B的并集作为集合A。
当无人机在农田中飞行时,彩色摄像机采集农田的彩色点云数据,彩色点云数据添加在集合D中,集合D内的每个元素除了存储每一个点的三维坐标以外,还存储了每一个点三个颜色通道的值,也即集合D内第i个元素d i存储了第i点的X i、Y i、Z i、R i、G i、B i
在农田中有种植农作物的位置和没有种植农作物的位置在颜色上是有明显区别的,用彩色摄像机所采集的R i、G i、B i是不同的,因此可以根据第i点的R i、G i、B i区分第i点对应的位置是否有种植农作物,将根据R i、G i、B i判断为对应的位置有种植农作物的点均放置在集合B中。
不同农作物在农田中的高度、颜色是不同的。有一些农作物生长高度较高,根据Z i去判断第i点对应的位置是否有种植农作物较为准确;有一些农作物颜色较有辨识度,根据R i、G i、B i去判断第i点对应的位置是否有种植农作物较为准确。因此,在实际中根据农田所种植农作物的特点,可以单独根据Z i去判断,也可以单独根据R i、G i、B i去判断,将集合B作为集合A,还可以结合Z i、R i、G i、B i综合去判断,将集合A和集合B的交集或并集作为集合A。
根据集合A内各个点在水平面上的坐标(X k,Y k),GIS处理单元210将集合A内各个点绘制在GIS地图上,在GIS地图上即显示无人机100需要进行植保的区域,提高在GIS地图上所显示的需要植保区域的精准度,无论是在手动控制模式下还是在自动控制模式下,都可以实现更加精准的植保。
优选地,所述GIS处理单元210还用于将集合A内各个点根据X k、Y k的大小排列顺序,并按照该顺序对集合A内各个点在GIS地图上进行连线。
根据X k、Y k的大小顺序将显示在GIS地图上的各个点进行连线,所连成的线即为无人机100的飞行路径。
在手动控制模式下,操控人员可以方便、直观地确定无人机100的飞行路径,根据该连线可以控制无人机100精准植保,且保证每一个种植农作物的位置都被植保了。
在本实施例中,所述GIS处理单元210还用于提取集合A内第k点的Z k,根据Z k计算第k点的飞行高度h k=Z k+c,c为无人机100与农作物的距离,将h k显示在GIS地图上并发送到自动控制单元230;
所述自动控制单元230还用于从GIS处理单元210获取h k并根据h k规划无人机100飞行高度,根据无人机100飞行路线、无人机100飞行高度形成飞行控制指令并发送到飞行执行单元140。
无人机100在植保作业时,为了保证植保的质量,需要与农作物叶尖保持一定距离,既要保证对农作物的有效植保,又要避免无人机100旋翼所造成的强气流对农作物造成伤害。因此,通过GIS处理单元210计算无人机100的飞行高度,在GIS地图上绘制集合A内各个点的同时,将各个点的飞行高度也显示出来,在手动操控模式下操控人员可以根据所显示的飞行高度精准地控制无人机100对农作物进行植保时的高度。将GIS处理单元210计算出的飞行高度发送到自动控制单元230,在自动操控模式下也可以精准地控制无人机100对农作物进行植保时的高度。
在本实施例的具体实施过程中,GIS处理单元210将h k以标签的形式显示在GIS地图上第k点对应的位置,可以呈现出增强现实的效果,操控人员可以方便、直观地确定无人机100的飞行高度。
优选地,c的取值为0.5m~1.5m。
无人机100在植保作业时,无人机100一般在距离农作物叶尖以上1m左右,因此,c的取值优选为0.5m~1.5m。
优选地,h k≥2m。
对于低矮农作物,无人机100需要在距离地面以上2m左右。因此,无人机100的飞行高度不能小于2m。
一种基于GIS的无人机植保方法,包括以下步骤:
S1.获取无人机的当前位置并显示在GIS地图上;
S2.采集农田的深度点云数据,将深度点云数据存储为集合D={d 1,d 2,……,d m},其中d i=(X i,Y i,Z i),X i、Y i、Z i分别表示第i点在直角坐标系X-Y-Z下的坐标值,所述直角坐标系的X-Y平面为水平面,i=1,2,……,m,m为深度点云数据中点的总数,提取集合D内第i点的Z i,根据Z i区 分第i点的对应的位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合A中;
S3.提取集合A内第k点的X k、Y k,根据(X k,Y k)将第k点显示在GIS地图上,k=1,2,……,n,n为集合A中点的总数;
S4.根据GIS地图上各个点的布局在手动控制模式和自动控制模式之间切换;
S5.当切换为手动控制模式时,接收操控人员发出的飞行控制指令;当切换为自动控制模式时,根据X k、Y k规划无人机飞行路线,根据无人机飞行路线形成飞行控制指令;
S6.根据飞行控制命令控制无人机对农田进行植保。
当无人机在农田中飞行时,采集农田的深度点云数据并将深度点云数据存储为集合D,集合D内的每个元素代表每一个点,每个元素都存储了每一个点在三维的直角坐标系X-Y-Z下的坐标值,也即集合D内第i个元素d i存储了第i点的X i、Y i、Z i。直角坐标系的X-Y平面为水平面,Z轴对应的方向是垂直于水平面的。
在农田中有种植农作物的位置和没有种植农作物的位置在高度上有明显区别的,所采集的Z i是不同的,因此可以根据第i点的Z i区分第i点对应的位置是否有种植农作物。因为有种植农作物的位置需要无人机去植保,该位置必须包含在无人机的飞行路径上,所以将根据Z i判断为对应的位置有种植农作物的点均放置在集合A中。
根据集合A内各个点在水平面上的坐标(X k,Y k),将集合A内各个点绘制在GIS地图上,在GIS地图上即显示无人机需要进行植保的区域。
根据GIS地图各个点的布局选择切换为手动控制模式还是切换为自动控制模式。
如果当前控制模式切换为手动控制模式时,操控人员可以根据GIS地图上所显示的需要植保的区域以及GIS地图上所显示的无人机当前位置,发出飞行控制命令,从而实现手动控制无人机在需要植保区域进行精准且不遗漏地植保。
如果当前控制模式切换为自动控制模式时,根据集合A内各个点在水平面上的坐标(X k,Y k)形成飞行控制命令,从而实现自动控制无人机在需要植保区 域进行精准且不遗漏地植保。
在本实施例中,所述步骤S4具体可以包括以下步骤:
S41.计算出显示在GIS地图上相距最远的两点之间的植保距离和/或显示在GIS地图上距离无人机操控地点最远的点与无人机操控地点之间的操控距离;
S42.根据植保距离和/或操控距离的大小决定切换为自动控制模式或手动控制模式。
手动控制模式与自动控制模式相比,手动控制模式可以让操控人员灵活地根据实际农田情况控制在植保作业区域内各个点无人机停留的时间,从而控制各个点的植保时间。
当植保距离或操控距离太远时,通过操控人员的手动控制可能会无法远距离地操控无人机进行植保作业。因此,计算出显示在GIS地图上相距最远的两点之间的植保距离和/或显示在GIS地图上距离无人机操控地点最远的点与无人机操控地点之间的操控距离,当植保距离和/或操控距离太大时,将当前控制模式切换为自动控制模式。
在本实施例中,所述步骤S4具体也可以包括以下步骤:
S41.计算出显示在GIS地图上所有点的离散度;
S42.根据离散度的高低决定切换为自动控制模式或手动控制模式。
当离散度较大时表明需要植保作业区域跨度很大,植保作业时间也会相应的很长,为了避免操控人员进行长时间的植保操控,计算出显示在GIS地图上所有点的离散度,当离散度较高时,将当前控制模式切换为自动控制模式。
具体地,可以获取GIS地图上所有点在水平面上的坐标(X k,Y k),计算这些坐标的方差或者标准差,用方差或者标准差来衡量显示在GIS地图上所有点的离散度。并且设置一预定的方差阈值或者标准差阈值,当计算出来的方差或者标准差大于预定的方差阈值或者标准差阈值时,说明离散度大,此时可以切换为自动控制模式。当计算出来的方差或者标准差小于或等于预定的方差阈值或者标准差阈值时,说明离散度小,此时可以切换为手动控制模式。
在本实施例中,所述步骤S2中,还采集农田的彩色点云数据并将彩色点云数据添加在集合D中,d i=(X i,Y i,Z i,R i,G i,B i),R i、G i、B i分别表示第i点三个颜色通道的值,提取集合D内第i点的R i、G i、B i,根据R i、G i、B i区分第 i点对应的位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合B中,将集合B、集合A与集合B的交集或者集合A与集合B的并集作为集合A。
当无人机在农田中飞行时,彩色摄像机采集农田的彩色点云数据,彩色点云数据添加在集合D中,集合D内的每个元素除了存储每一个点的三维坐标以外,还存储了每一个点三个颜色通道的值,也即集合D内第i个元素d i存储了第i点的X i、Y i、Z i、R i、G i、B i
在农田中有种植农作物的位置和没有种植农作物的位置在颜色上是有明显区别的,用彩色摄像机所采集的R i、G i、B i是不同的,因此可以根据第i点的R i、G i、B i区分第i点对应的位置是否有种植农作物,将根据R i、G i、B i判断为对应的位置有种植农作物的点均放置在集合B中。
不同农作物在农田中的高度、颜色是不同的。有一些农作物生长高度较高,根据Z i去判断第i点对应的位置是否有种植农作物较为准确;有一些农作物颜色较有辨识度,根据R i、G i、B i去判断第i点对应的位置是否有种植农作物较为准确。因此,在实际中根据农田所种植农作物的特点,可以单独根据Z i去判断,也可以单独根据R i、G i、B i去判断,将集合B作为集合A,还可以结合Z i、R i、G i、B i综合去判断,将集合A和集合B的交集或并集作为集合A。
根据集合A内各个点在水平面上的坐标(X k,Y k),将集合A内各个点绘制在GIS地图上,在GIS地图上即显示无人机需要进行植保的区域,提高在GIS地图上所显示的需要植保区域的精准度,无论是在手动控制模式下还是在自动控制模式下,都可以实现更加精准的植保。
优选地,所述步骤S3中,还将集合A内各个点根据X k、Y k的大小排列顺序,并按照该顺序对集合A内各个点在GIS地图上进行连线。
根据X k、Y k的大小顺序将显示在GIS地图上的各个点进行连线,所连成的线即为无人机的飞行路径。
在手动控制模式下,操控人员可以方便、直观地确定无人机的飞行路径,根据该连线可以控制无人机精准植保,且保证每一个种植农作物的位置都被植保了。
在本实施例中,还包括以下步骤:所述步骤S3中,还提取集合A内第k点 的Z k,根据Z k计算第k点的飞行高度h k=Z k+c,c为无人机与农作物的距离,将h k显示在GIS地图上;
所述步骤S5中,当切换为自动控制模式时,还根据h k规划无人机飞行高度,根据无人机飞行路线、无人机飞行高度形成飞行控制指令。
无人机在植保作业时,为了保证植保的质量,需要与农作物叶尖保持一定距离,既要保证对农作物的有效植保,又要避免无人机旋翼所造成的强气流对农作物造成伤害。因此,通过计算无人机的飞行高度,在GIS地图上绘制集合A内各个点的同时,将各个点的飞行高度也显示出来,在手动操控模式下操控人员可以根据所显示的飞行高度精准地控制无人机对农作物进行植保时的高度。计算出的飞行高度,使得在自动操控模式下也可以精准地控制无人机对农作物进行植保时的高度。
在本实施例的具体实施过程中,将h k以标签的形式显示在GIS地图上第k点对应的位置,可以呈现出增强现实的效果,操控人员可以方便、直观地确定无人机的飞行高度。
优选地,c的取值为0.5m~1.5m。
无人机在植保作业时,无人机一般在距离农作物叶尖以上1m左右,因此,c的取值优选为0.5m~1.5m。
优选地,h k≥2m。
对于低矮农作物,无人机需要在距离地面以上2m左右。因此,无人机的飞行高度不能小于2m。
相同或相似的标号对应相同或相似的部件;
附图中描述位置关系的仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种基于GIS的无人机植保系统,包括无人机,其特征在于,还包括监控终端,所述无人机设有定位单元、深度摄像机、飞行执行单元,所述监控终端包括GIS处理单元、手动控制单元、自动控制单元以及控制模式切换单元;所述定位单元,用于获取无人机当前位置并发送到GIS处理单元;
    所述深度摄像机,用于采集农田的深度点云数据,将深度点云数据存储为集合D={d 1,d 2,……,d m},其中d i=(X i,Y i,Z i),X i、Y i、Z i分别表示第i点在直角坐标系X-Y-Z下的坐标值,所述直角坐标系的X-Y平面为水平面,Z轴对应的方向是垂直于水平面的,i=1,2,……,m,m,m为深度点云数据中点的总数,并将集合D发送到GIS处理单元;
    所述GIS处理单元,用于接收定位单元发送的无人机当前位置并显示在GIS地图上,还用于接收深度摄像机发送的集合D,提取集合D内第i点的Z i,根据Z i区分第i点的对应的位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合A中,提取集合A内第k点的X k、Y k,根据(X k,Y k)将第k点显示在GIS地图上,k=1,2,……,n,n为集合A中点的总数;所述控制模式切换单元,用于从GIS处理单元中获取GIS地图,根据GIS地图上各个点的布局在手动控制模式和自动控制模式之间切换;
    当切换为手动控制模式时,所述手动控制单元用于接收操控人员发出的飞行控制指令并发送到飞行执行单元;
    当切换为自动控制模式时,所述自动控制单元用于从GIS处理单元获取X k、Y k并根据X k、Y k规划无人机飞行路线,根据无人机飞行路线形成飞行控制指令并发送到飞行执行单元;
    所述飞行执行单元,用于接收手动控制单元和/或自动控制单元发送的飞行控制命令,根据飞行控制命令控制无人机对农田进行植保。
  2. 根据权利要求1所述的基于GIS的无人机植保系统,其特征在于,所述控制模式切换单元包括距离计算模块、切换决策模块;
    所述距离计算模块,用于计算出显示在GIS地图上相距最远的两点之间的植保距离和/或显示在GIS地图上距离无人机操控地点最远的点与无人机操控 地点之间的操控距离,并将植保距离和/或操控距离发送到切换判断模块;
    所述切换决策模块,用于接收距离计算模块发送的植保距离和/或操控距离,根据植保距离和/或操控距离的大小决定切换为自动控制模式或手动控制模式。
  3. 根据权利要求2所述的基于GIS的无人机植保系统,其特征在于,所述控制模式切换单元还包括离散度计算模块;
    所述离散度计算模块,用于计算出显示在GIS地图上所有点的离散度,并将离散度发送到切换决策单元;
    所述切换决策单元还用于接收离散度计算模块发送的离散度,根据离散度的高低决定切换为自动控制模式或手动控制模式。
  4. 根据权利要求1-3任一项所述的基于GIS的无人机植保系统,其特征在于,所述无人机还设有彩色摄像机;
    所述彩色摄像机,用于采集农田的彩色点云数据并将彩色点云数据添加在集合D中,d i=(X i,Y i,Z i,R i,G i,B i),R i、G i、B i分别表示第i点三个颜色通道的值,并将集合D发送到GIS处理单元;
    所述GIS处理单元还用于接收彩色摄像机发送的集合D,提取集合D内第i点的R i、G i、B i,根据R i、G i、B i区分第i点对应的位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合B中,将集合B、集合A与集合B的交集或者集合A与集合B的并集作为集合A。
  5. 根据权利要求2所述的基于GIS的无人机植保系统,其特征在于,所述GIS处理单元还用于提取集合A内第k点的Z k,根据Z k计算第k点的飞行高度h k=Z k+c,c为无人机与农作物的距离,并将h k显示在GIS地图上;
    所述自动控制单元还用于从GIS处理单元获取h k并根据h k规划无人机飞行高度,根据无人机飞行路线、无人机飞行高度形成飞行控制指令并发送到飞行执行单元。
  6. 一种基于GIS的无人机植保方法,其特征在于,包括以下步骤:
    S1.获取无人机的当前位置并显示在GIS地图上;
    S2.采集农田的深度点云数据,将深度点云数据存储为集合D={d 1,d 2,……,d m},其中d i=(X i,Y i,Z i),X i、Y i、Z i分别表示第i点在直角坐标系X-Y-Z下的坐标值,所述直角坐标系的X-Y平面为水平面,Z轴对应的方向是垂直于水平面的,i=1,2,……,m,m为深度点云数据中点的总数,提取集合D内第i点的Z i,根据Z i区分第i点的对应的位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合A中;
    S3.提取集合A内第k点的X k、Y k,根据(X k,Y k)将第k点显示在GIS地图上,k=1,2,……,n,n为集合A中点的总数;
    S4.根据GIS地图上各个点的布局在手动控制模式和自动控制模式之间切换;
    S5.当切换为手动控制模式时,接收操控人员发出的飞行控制指令;当切换为自动控制模式时,根据X k、Y k规划无人机飞行路线,根据无人机飞行路线形成飞行控制指令;
    S6.根据飞行控制命令控制无人机对农田进行植保。
  7. 根据权利要求6所述的基于GIS的无人机植保方法,其特征在于,所述步骤S4具体包括以下步骤:
    S41.计算出显示在GIS地图上相距最远的两点之间的植保距离和/或显示在GIS地图上距离无人机操控地点最远的点与无人机操控地点之间的操控距离;
    S42.根据植保距离和/或操控距离的大小决定切换为自动控制模式或手动控制模式。
  8. 根据权利要求6所述的基于GIS的无人机植保方法,其特征在于,所述步骤S4具体包括以下步骤:
    S41.计算出显示在GIS地图上所有点的离散度;
    S42.根据离散度的高低决定切换为自动控制模式或手动控制模式。
  9. 根据权利要求6-8任一项所述的基于GIS的无人机植保方法,其特征在于,所述步骤S2中,还采集农田的彩色点云数据并将彩色点云数据添加在集合D中,d i=(X i,Y i,Z i,R i,G i,B i),R i、G i、B i分别表示第i点三个颜色通道的值,提取集合D内第i点的R i、G i、B i,根据R i、G i、B i区分第i点对应的 位置是否有种植农作物,若第i点对应的位置有种植农作物,则将d i放置在集合B中,将集合B、集合A与集合B的交集或者集合A与集合B的并集作为集合A。
  10. 根据权利要求9所述的基于GIS的无人机植保方法,其特征在于,所述步骤S3中,还提取集合A内第k点的Z k,根据Z k计算第k点的飞行高度h k=Z k+c,c为无人机与农作物的距离,将h k显示在GIS地图上;
    所述步骤S5中,当切换为自动控制模式时,还根据h k规划无人机飞行高度,根据无人机飞行路线、无人机飞行高度形成飞行控制指令。
PCT/CN2018/092220 2018-06-13 2018-06-21 一种基于gis的无人机植保系统及方法 WO2019237413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810608281.7A CN108717301B (zh) 2018-06-13 2018-06-13 一种基于gis的无人机植保系统及方法
CN201810608281.7 2018-06-13

Publications (1)

Publication Number Publication Date
WO2019237413A1 true WO2019237413A1 (zh) 2019-12-19

Family

ID=63912901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092220 WO2019237413A1 (zh) 2018-06-13 2018-06-21 一种基于gis的无人机植保系统及方法

Country Status (2)

Country Link
CN (1) CN108717301B (zh)
WO (1) WO2019237413A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142564A (zh) * 2019-12-31 2020-05-12 唐山坤翼创新科技有限公司 集群植保无人机通信方法
CN111142563A (zh) * 2019-12-31 2020-05-12 唐山坤翼创新科技有限公司 集群植保无人机作业控制方法
CN113465894A (zh) * 2021-06-21 2021-10-01 扬州大学 一种多功能植保试验平台

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109766049A (zh) * 2018-12-14 2019-05-17 广州极飞科技有限公司 为作业设备分配目标地块的方法和控制设备
CN112258329A (zh) * 2020-10-10 2021-01-22 贵州省山地资源研究所 一种山地农业种植园区地理信息管理系统
CN113934232A (zh) * 2021-11-02 2022-01-14 山东交通学院 基于虚拟图像控制的植保无人机航线规划系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216505A (ja) * 1989-02-17 1990-08-29 Mitsui Eng & Shipbuild Co Ltd 有索無人潜水機の深度制御方法
US20100094460A1 (en) * 2008-10-09 2010-04-15 Samsung Electronics Co., Ltd. Method and apparatus for simultaneous localization and mapping of robot
CN105173085A (zh) * 2015-09-18 2015-12-23 山东农业大学 无人机变量施药自动控制系统及方法
CN105539851A (zh) * 2015-12-09 2016-05-04 华南农业大学 基于无线传感网的无人机农药精准喷施作业系统及方法
CN105761265A (zh) * 2016-02-23 2016-07-13 英华达(上海)科技有限公司 利用影像深度信息提供避障的方法及无人飞行载具
CN106020233A (zh) * 2016-07-08 2016-10-12 聂浩然 无人机植保作业系统、用于植保作业的无人机及控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101193115B1 (ko) * 2011-10-07 2012-10-19 한국항공우주산업 주식회사 3d 전자 지도 시스템
US20150130936A1 (en) * 2013-11-08 2015-05-14 Dow Agrosciences Llc Crop monitoring system
CN103885454B (zh) * 2014-03-07 2016-07-13 华南农业大学 农用飞行器跟随冠层特征参数飞行的作业方法及装置
CN106454209B (zh) * 2015-08-06 2019-08-06 航天图景(北京)科技有限公司 基于时空信息融合技术的无人机应急快反数据链系统及方法
CN205121347U (zh) * 2015-11-06 2016-03-30 中国航空工业经济技术研究院 一种农用植保无人机播撒控制系统
CN105438476A (zh) * 2015-12-17 2016-03-30 石河子市智农科技发展有限公司 基于无人机的自动精准调控喷洒农作物化控剂的设备
CN205284762U (zh) * 2016-01-13 2016-06-08 仲恺农业工程学院 一种基于gps的多旋翼无人机定位及农药喷洒系统
CN106200683B (zh) * 2016-07-04 2019-01-15 佛山昊航科技有限公司 无人机植保系统及植保方法
CN205872464U (zh) * 2016-07-11 2017-01-11 纳智源科技(唐山)有限责任公司 无人机系统
CN106325295B (zh) * 2016-08-29 2019-04-19 林为庆 一种基于无人机的野外行动态势图生成系统及其方法
CN106845360A (zh) * 2016-12-27 2017-06-13 郑州大学 基于无人机遥感的高分辨率农作物表面模型构造方法
CN107450577A (zh) * 2017-07-25 2017-12-08 天津大学 基于多传感器的无人机智能感知系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216505A (ja) * 1989-02-17 1990-08-29 Mitsui Eng & Shipbuild Co Ltd 有索無人潜水機の深度制御方法
US20100094460A1 (en) * 2008-10-09 2010-04-15 Samsung Electronics Co., Ltd. Method and apparatus for simultaneous localization and mapping of robot
CN105173085A (zh) * 2015-09-18 2015-12-23 山东农业大学 无人机变量施药自动控制系统及方法
CN105539851A (zh) * 2015-12-09 2016-05-04 华南农业大学 基于无线传感网的无人机农药精准喷施作业系统及方法
CN105761265A (zh) * 2016-02-23 2016-07-13 英华达(上海)科技有限公司 利用影像深度信息提供避障的方法及无人飞行载具
CN106020233A (zh) * 2016-07-08 2016-10-12 聂浩然 无人机植保作业系统、用于植保作业的无人机及控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111142564A (zh) * 2019-12-31 2020-05-12 唐山坤翼创新科技有限公司 集群植保无人机通信方法
CN111142563A (zh) * 2019-12-31 2020-05-12 唐山坤翼创新科技有限公司 集群植保无人机作业控制方法
CN113465894A (zh) * 2021-06-21 2021-10-01 扬州大学 一种多功能植保试验平台

Also Published As

Publication number Publication date
CN108717301B (zh) 2022-02-15
CN108717301A (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2019237413A1 (zh) 一种基于gis的无人机植保系统及方法
CN106020237B (zh) 植保无人机的多机作业航线规划及其喷洒作业方法和系统
JP2017144811A (ja) 無人飛行体による薬剤散布方法、および、プログラム
EP3119178A1 (en) Method and system for navigating an agricultural vehicle on a land area
CN109792951B (zh) 用于杂交水稻授粉的无人机航线校正系统及其校正方法
JPH06113607A (ja) 屋外作業自動化システム
JP6656038B2 (ja) ブドウの栽培管理方法
CN103770943A (zh) 一种智能施药无人直升机
CN106483978A (zh) 一种无人机作业语音引导装置及其方法
CN108901366B (zh) 一种天地一体化柑橘采摘方法
CN106371417A (zh) 基于无人机的智能农业系统
US20200317335A1 (en) Unmanned aerial vehicle action plan creation system, method and program
WO2018189848A1 (ja) 無人飛行体による薬剤散布方法、および、プログラム
CN109247324A (zh) 一膜六行栽培模式下棉花脱叶药剂的航空喷施作业方法
CN105162042A (zh) 输电线路无人机单塔巡视路径规范控制方法
CN110825100A (zh) 一种植保固定翼无人机自主起飞降落控制方法
CN107656536A (zh) 一种用于植保无人机的自动喷洒方法
WO2023204243A1 (ja) 森林管理システムおよび森林管理方法
CN113232865A (zh) 一种基于机器视觉的农用无人机喷药系统及方法
JP2019088217A (ja) 圃場作業支援端末、圃場作業機、および、圃場作業支援プログラム
WO2019237411A1 (zh) 一种用于手动操控的无人机植保监控系统及方法
KR20190076227A (ko) 자동 장애물 회피와 전자동 비행 농업용 드론 제어 방식
CN206301211U (zh) 一种无人机作业语音引导装置
WO2019237412A1 (zh) 一种用于自动操控的无人机植保监控系统及方法
US20220046859A1 (en) System and method for selective harvesting at night or under poor visibility conditions, night dilution and agriculture data collection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922441

Country of ref document: EP

Kind code of ref document: A1