WO2019237404A1 - 一种自动调节亮度的pm-oled显示器及其制作方法 - Google Patents

一种自动调节亮度的pm-oled显示器及其制作方法 Download PDF

Info

Publication number
WO2019237404A1
WO2019237404A1 PCT/CN2018/091957 CN2018091957W WO2019237404A1 WO 2019237404 A1 WO2019237404 A1 WO 2019237404A1 CN 2018091957 W CN2018091957 W CN 2018091957W WO 2019237404 A1 WO2019237404 A1 WO 2019237404A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
oled display
device structure
display
photosensitive
Prior art date
Application number
PCT/CN2018/091957
Other languages
English (en)
French (fr)
Inventor
李源
赵云
何会楼
Original Assignee
信利半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信利半导体有限公司 filed Critical 信利半导体有限公司
Publication of WO2019237404A1 publication Critical patent/WO2019237404A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays

Definitions

  • the invention relates to the field of PM-OLED displays, in particular to a PM-OLED display with automatic brightness adjustment and a manufacturing method thereof.
  • OLED displays are displays made using organic electroluminescent diodes. Because OLED has self-luminous characteristics, it does not require backlight, high contrast, thin thickness, wide viewing angle, fast response speed, can be made into a flexible display panel, a wide temperature range, simple structure and manufacturing process, etc. It is considered to be the emerging application technology of next-generation flat panel displays.
  • the OLED industry has a very bright future, and companies in the industry are also trying to accumulate development experience. However, the weak upstream links of the domestic industrial chain and the lack of supporting capabilities in the industry have created relatively large development obstacles for manufacturers.
  • the present invention provides a manufacturing method of integrating a photoresistor device in a PM-OLED display box.
  • the present invention is to solve the technical problem that the PM-OLED display in the prior art cannot automatically adjust the brightness of the device when it is not equipped with an external photosensitive device and a circuit.
  • a new PM-OLED display with automatic brightness adjustment is provided.
  • the PM-OLED display with automatic brightness has the characteristics of simple structure and the ability to automatically adjust the brightness of the device without external photosensitive devices and circuits.
  • the display of the invention Integrating the photoresistor structure in the blank area of the non-display area of the display does not need to re-design the basic structure of the display, nor does it need to embed the photoresistor structure into the TFT pixel structure like the AM-OLED display, making the display structure design complicated
  • the manufacturing process requires high-precision ( ⁇ 3 ⁇ m) exposure equipment and the cost and efficiency of expensive high-precision MASK, and it does not need external photosensors and external circuits.
  • the circuit of the light-sensitive device structure of the present invention needs the FPC circuit of the display itself. As a jumper, the structure is simple, the integration is high, and the cost is low.
  • a PM-OLED display that automatically adjusts brightness.
  • the PM-OLED display that automatically adjusts brightness includes a device substrate formed with a light-emitting device structure, and a back cover that is aligned with the device substrate through a sealed frame.
  • the photosensitive device structure in the area between the sealed frame and the effective display area is connected in series on a line of a Vcc lead or a Vpp lead between the driving IC and the FPC.
  • the photosensitive device structure is completed in a region between the outer edge of the effective display area and the sealing frame. Making.
  • the photosensitive device structure is an area between the outermost functional wiring connecting the pixel electrode and the sealing frame before the device substrate and the back cover are packaged. The fabrication of the photosensitive device structure is completed.
  • the number of the photosensitive device structures is at least one.
  • the photosensitive device structure is a photosensitive device structure having a comb-shaped or spiral-shaped or spiral-shaped conductive material layer.
  • the photosensitive device structure includes a positive electrode and a negative electrode matched with each other, and an insulating layer covering the positive electrode and the negative electrode is located in the Photoelectric material layer and conductive material layer above the insulating layer, wherein the insulating layer has at least two vias to expose a part of the positive electrode and the negative electrode, respectively, and the photoelectric material layer covers the insulating layer, but cannot cover the insulating layer.
  • the conductive material layer covers the via hole and the insulating layer; the conductive material layer is provided with a gap to separate the conductive material layer into two parts that are not connected, and passes through the hole and the positive electrode and The negative electrode is connected; the gap is located on the photovoltaic material layer.
  • a method for manufacturing a PM-OLED display with automatic brightness adjustment includes the following steps:
  • Step 1 Fabricate a positive electrode, a negative electrode, and an insulating layer of an anode, a functional wiring, and a photosensitive device structure on a large-sized device substrate.
  • the insulating layer is provided with at least two vias to expose a part of the positive electrode and the negative electrode, respectively.
  • the photosensitive device structure is disposed in a region between the sealing frame and an effective display area;
  • the functional traces include the following parts: part of the functional traces are used to connect each anode on the light emitting device structure to the driver IC binding bit, and some functional traces are used to connect each cathode on the light emitting device structure to the driver IC binding Positioning, part of the functional traces are used to connect the positive and negative electrodes on the photosensitive device structure to the FPC binding bit, and part of the functional traces are used to connect the driving IC binding bit and the FPC binding bit;
  • Step 2 forming an organic light-emitting material layer above the anode, and forming a photovoltaic material layer on the insulating layer of the photosensitive device structure, which avoids the via hole;
  • Step 3 forming a conductive material layer over the organic light emitting material layer and the photoelectric material layer;
  • Step 4 Apply a sealant to the back cover of the large board and / or the device substrate of the large board, apply a liquid desiccant or attach a solid desiccant to the back cover side, and then align the back cover with the device substrate. ;
  • Step 5 cutting and singulation of the large board device that has been completed and packaged, binding the driver IC and binding FPC to complete the device manufacturing.
  • the photosensitive device structure is manufactured by a yellow light device and a vapor deposition device.
  • step 1 it further includes forming a pixel isolation grid and a cathode isolation column on a large-plate device substrate.
  • the basic stack structure of the organic light-emitting material from bottom to top is: HIL (hole injection layer), HTL (hole transport layer) ), EML (light emitting layer), ETL (electron transport layer), EIL (electron injection layer).
  • the present invention integrates a photoresistor in the device of a PM-OLED display, and drives the change of the resistance value of the photoresistor through the photoresistor's perception of changes in the illumination of the external environment, thereby automatically adjusting the display state of the PM-OLED device Lightness and darkness.
  • Photoresistors belong to a class of special resistance devices made of semiconductor materials, and their working principle is based on the internal photoelectric effect.
  • the photoresistor is very sensitive to visible light. The stronger the light, the lower the resistance value (as the ambient light intensity increases, the resistance value decreases rapidly), and the bright resistance value can be as small as 1K ⁇ or less.
  • the PM-OLED display device When there is no light irradiation, it shows a high resistance state, and the dark resistance generally reaches about 1.5M ⁇ .
  • the resistance of the photoresistor When the PM-OLED display device has high ambient illumination (such as outdoor environment or indoor normal lighting), the resistance of the photoresistor is relatively low (generally impedance of several ohms to several thousand ohms), which will not affect the display device.
  • a method for fabricating a photosensitive device structure in a PM-OLED display device wherein the PM-OLED device may be planar rigid or flexible and bendable; it may be a common shape or a special shape.
  • the manufacturing process is: before the substrate and the back cover of the PM-OLED display are packaged, the manufacturing of the photosensitive device structure is completed, and the photosensitive device structure is packaged in the device.
  • the beneficial effect of the present invention is that the photoresistor is integrated into the device, but is placed in the area between the AA area and the VA area, and the light resistance is detected by the photoresistor, so that no external photoresistor or In the case of a step-down circuit, the effect of PM-OLED device brightness can also be automatically adjusted; the display of the present invention integrates a photoresistor structure in a blank area of a non-display area within the display, without the need to re-design the basic structure of the display, and The need to embed a photoresistor structure into a TFT pixel structure like an AM-OLED display complicates the display structure design and requires high-precision ( ⁇ 3 ⁇ m) exposure equipment in the manufacturing process, as well as the cost and efficiency of expensive high-precision MASK, not to mention An external photosensitive sensor and an external circuit are required.
  • the circuit of the photosensitive device structure of the present invention needs the FPC circuit of the display as a jumper.
  • the structure is simple, the integration is high, and the cost is low.
  • the photoelectric material of the photosensitive device structure is Made in a vacuum environment and encapsulated inside a sealed frame, no additional resin materials required Photoelectric material moisture sealing process, when the photosensitive device solves the structural design of the outer box, the need to use a transparent material Waterproof (or moisture) protection.
  • FIG. 1 is a schematic diagram of an equivalent circuit of a PM-OLED display device having a photosensitive device structure according to the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of a PM-OLED display device according to the present invention.
  • the specific structure of the light-emitting device is not shown. It shows a part of the functional wiring connected to the anode of the light-emitting device structure and the function of the cathode connected to the structure of the light-emitting device. Line is not shown;
  • FIG. 3 is a partially enlarged view at A in FIG. 2; FIG.
  • FIG. 4 is a schematic structural diagram of another embodiment of a PM-OLED display device according to the present invention, in which a specific light-emitting device structure is not shown, showing some functional wirings connecting the anode of the light-emitting device structure and the function of connecting the cathode of the light-emitting device structure Wiring is not shown;
  • FIG. 5 is a schematic structural diagram of another embodiment of a PM-OLED display device according to the present invention.
  • the specific structure of the light-emitting device is not shown, and it shows a part of the functional wiring connecting the anode of the light-emitting device structure and the function of connecting the cathode of the light-emitting device structure. Wiring is not shown;
  • FIG. 6 is a schematic structural diagram of still another embodiment of a PM-OLED display device according to the present invention, in which a specific light-emitting device structure is not shown, showing some functional wirings connecting the anode of the light-emitting device structure and the function of connecting the cathode of the light-emitting device structure Wiring is not shown;
  • FIG. 7 is a cross-sectional view at B-B in FIG. 3;
  • FIG. 8 is a schematic diagram of an embodiment of a conductive material layer in a photosensitive device structure in the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of a conductive material layer in a photosensitive device structure in the present invention.
  • FIG. 10 is a schematic flowchart of a manufacturing method of a PM-OLED display with automatic brightness adjustment according to the present invention.
  • the PM-OLED display with automatically adjusted brightness includes a device substrate 1 formed with a light emitting device structure 2 and a sealed frame 3 and The back cover of the device substrate 1 which is aligned and aligned, further includes a photosensitive device structure 4 located in an area between the sealing frame 3 and an effective display area (AA area), which is connected in series with a Vcc lead between the driving IC 5 and the FPC 6 or The line of the Vpp lead, that is, the photosensitive device structure 4 is not disposed in the driving pixel structure, but is arranged above the line of the FPC6 input to the Vcc lead or Vpp lead of the drive IC5 before the input terminal of the drive IC5.
  • the display of the present invention integrates the photoresistor structure in a blank area of the non-display area within the display, without the need to re-design the basic structure of the display design, and without the need to embed the photoresistor structure into the TFT like an AM-OLED display.
  • the pixel structure makes the display structure design complicated and requires high-precision ( ⁇ 3 ⁇ m) exposure equipment and the cost and efficiency of expensive high-precision MASK during the manufacturing process, and does not require external photosensors and external circuits.
  • the photosensor of the present invention The structured circuit needs to use the FPC circuit of the display as a jumper.
  • the structure is simple, the integration is high, and the cost is low.
  • the photoelectric material of the photosensitive device structure 4 is made in a vacuum environment and encapsulated inside the sealed frame 3. There is no need to add additional resin materials, which solves the problem that when the structure of the photosensitive device is designed outside the box, a transparent material needs to be used for waterproof (or moisture-proof) protection.
  • the main improvement of this embodiment is to integrate the photosensitive device structure 4 on the device substrate 1 to achieve the purpose of light control.
  • the remaining components can be designed according to the existing PM-OLED display structure.
  • the light emitting device structure 2 includes M * N pixel units arranged in a matrix, which can be divided into N rows and M columns, that is, there are N anodes and M cathodes.
  • the anode and the cathode respectively correspond to two electrodes of the light emitting pixel.
  • Each anode and cathode is respectively connected to the scanning terminal pin and the common terminal pin of the driving IC 5 through a functional wiring, which is convenient for the driving IC 5 to drive and control the anode and the cathode row by row and column by column.
  • the layout of the anode and cathode of PM-OLED devices can be different according to the design and definition of different driving IC5 pins, that is, each of the row electrodes and column electrodes can also be function
  • the wiring is connected to the common terminal pin and the scanning terminal pin of the driving IC5, which is convenient for the driving IC5 to drive and control the cathode and anode row by row and column by column.
  • the basic principle of this embodiment is as follows: When the PM-OLED display has a relatively high ambient illumination (brightness), such as when the outdoor environment or indoors is turned on for normal lighting, the resistance of the photoresistor is relatively low, generally a few ohms to several thousand ohms. The impedance does not affect the normal driving voltage of the display device, and the brightness of the display device is not affected.
  • the photosensitive device structure 4 is completed in a region between the outer edge of the AA area and the sealing frame 3. Is a relatively wide area made between the outermost functional trace 7 and the sealed frame 3, such as the lower left corner (as shown in Figures 2 and 3), the lower right corner (as shown in Figure 4), and the upper left of the periphery of the display area. Side and upper right side (as shown in FIG. 5) and at least one position of the top side (as shown in FIG. 6). Correspondingly, it can also be arranged in other similar areas, as long as the purpose of this embodiment is achieved.
  • the photosensitive device structure 4 may be one or multiple, and appropriate adjustments may be made according to actual conditions. Increasing the number of photosensitive device structures can improve the sensitivity and reliability of the product, and can prevent the failure of a single photosensitive device structure, and the other one can continue to play a role.
  • the photosensitive device structure 4 specifically includes the following: two electrode sheets are matched and separated from each other: one is a positive electrode 41 and the other is a negative electrode 42, and the driving IC 5 and the FPC 6 are connected in series through a wiring. Between the Vcc leads or Vpp leads.
  • An insulating layer 43 is also provided above the electrode sheet, and the insulating layer 43 is provided with two vias, respectively, to expose parts of the positive electrode 41 and the negative electrode 42; the insulating layer 43 is provided with a photovoltaic material layer 44, but the photovoltaic The material layer does not cover and fill the two vias.
  • the photovoltaic material layer is preferably but not limited to an inorganic photovoltaic material such as a sulfide luminescent material.
  • the photovoltaic material layer 44 is provided with a conductive material layer 45 that covers the insulating layer 43 and fills the two.
  • the via hole is formed on the above-mentioned via hole of the photovoltaic material 44 and the insulating layer 43, but cannot exceed the outer edge of the insulating layer 43.
  • a gap 46 is formed in the middle of the conductive material layer 45 to separate the conductive material layer into two parts that are not connected, and is connected to the positive electrode 41 and the negative electrode 42 through holes, respectively. The gap 46 is located in the photovoltaic material layer 44 on.
  • the slit 46 may be comb-shaped, spiral-shaped, or spiral-shaped, or other shapes, as shown in FIGS. 8 and 9.
  • the photoelectric material layer 44 When the photoelectric material layer 44 is electrically excited by light, it can communicate with the conductive material layer 45, that is, communicate with the positive and negative electrodes 42, and the photoresistor conducts electricity, thereby realizing the function of the photoresistor in this embodiment.
  • the material of the positive electrode and the negative electrode is preferably, but not limited to, ITO (transparent indium tin oxide),
  • Single-layer or multi-layer conductive film composed of IZO (transparent indium zinc oxide), nano-silver, magnesium-silver alloy, graphene or molybdenum, aluminum, titanium, silver, gold, indium and other metals; the method of making electrode patterns is not limited to wet Etching, laser dry etching or special gas dry etching.
  • the manufacturing method of the conductive material layer above the photoelectric material is not limited to PVD (sputtering, evaporation, ion plating, etc.), CVD, coating (including inkjet printing), or attaching.
  • the wavelength of the light wave induced by the photoelectric material layer is not limited to the ultraviolet wave band, the infrared wave band, and the visible light wave band.
  • this embodiment also provides a manufacturing method of a PM-OLED display with automatic brightness adjustment.
  • the manufacturing method includes the following steps:
  • Step 1 Fabricate an anode in each effective display area on the large-scale device substrate and etch it into parallel-arranged row electrodes; make functional traces in the non-display area on the large-scale device substrate and seal the A positive electrode, a negative electrode, and an insulating layer of the photosensitive device structure are fabricated in a region between the display regions, and the insulating layer is provided with at least two via holes to expose a part of the positive electrode and the negative electrode, respectively.
  • the functional traces include the following parts: part of the functional traces are used to connect each anode on the light emitting device structure to the driver IC binding bit, and some functional traces are used to connect each cathode on the light emitting device structure to the driver IC binding For positioning, a part of the functional traces is used to connect the positive and negative electrodes on the photosensitive device structure to the FPC binding bit, and a part of the functional traces is used to connect the driving IC binding bit and the FPC binding bit.
  • step 1 it further includes forming a pixel isolation grid and a cathode isolation pillar on the large-plate device substrate.
  • step 2 an organic light emitting material layer is formed above the anode, and a photovoltaic material layer is formed on the insulating layer of the photosensitive device structure, which avoids the via hole.
  • the basic stacking structure of the organic light-emitting material from bottom to top is: HIL (hole injection layer), HTL (hole transport layer), EML (light emitting layer), ETL (electron transport layer), EIL (Electron injection layer).
  • a conductive material layer is formed above the organic light-emitting material layer and the photoelectric material layer; the conductive material layer on the organic light-emitting material layer is separated by a cathode isolation column to form a plurality of rows of electrodes as the cathode of the PM-OLED.
  • the photosensitive device structure 4 specifically includes the following: two electrode sheets are matched and separated from each other: one is a positive electrode 41 and the other is a negative electrode 42, and the driving IC 5 and the FPC 6 are connected in series through a wiring. Between the Vcc leads or Vpp leads.
  • An insulating layer 43 is also provided above the electrode sheet, and the insulating layer 43 is provided with two vias, respectively, to expose parts of the positive electrode 41 and the negative electrode 42; the insulating layer 43 is provided with a photovoltaic material layer 44, but the photovoltaic The material layer does not cover and fill the two vias.
  • the photovoltaic material layer is preferably but not limited to an inorganic photovoltaic material such as a sulfide luminescent material.
  • the photovoltaic material layer 44 is provided with a conductive material layer 45 that covers the insulating layer 43 and fills the two.
  • the via hole is formed on the above-mentioned via hole of the photovoltaic material 44 and the insulating layer 43, but cannot exceed the outer edge of the insulating layer 43.
  • a gap 46 is provided in the middle of the conductive material layer 45 so as to separate the conductive material layer into two parts that are not connected, and are connected to the positive electrode 41 and the negative electrode 42 through holes, respectively.
  • the gap 46 is located in the photovoltaic material On layer 44.
  • the slit 46 may be comb-shaped, spiral-shaped, or spiral-shaped, or other shapes, as shown in FIGS. 8 and 9.
  • the photoelectric material layer 44 When the photoelectric material layer 44 is electrically excited by light, it can communicate with the conductive material layer 45, that is, communicate with the positive and negative electrodes 42, and the photoresistor conducts electricity, thereby realizing the function of the photoresistor in this embodiment.
  • the material of the positive electrode and the negative electrode is preferably but not limited to ITO (transparent indium tin oxide), IZO (transparent indium zinc oxide), nano silver, magnesium silver alloy, graphene or molybdenum, aluminum, titanium, silver, gold,
  • ITO transparent indium tin oxide
  • IZO transparent indium zinc oxide
  • a single-layer conductive film or a multi-layer conductive film composed of metal such as indium; the production method of electrode patterns is not limited to processing methods such as wet etching, laser dry etching, or special gas dry etching.
  • the manufacturing method of the conductive material layer above the photoelectric material is not limited to PVD (sputtering, evaporation, ion plating, etc.), CVD, coating (including inkjet printing), or attaching.
  • the wavelength of the light wave induced by the photoelectric material layer is not limited to the ultraviolet wave band, the
  • the fabrication of the photosensitive device structure 4 does not require the use of complicated TFT Array fabrication processes and equipment, and can be completed using simple yellow light equipment and evaporation equipment.
  • Step 4 Apply the sealant sealant 3 on the back cover of the large board and / or the device substrate of the large board, apply a liquid desiccant or attach a solid desiccant on the back cover side, and then align the back cover with the device substrate.
  • Encapsulation step 4 is generally completed in a nitrogen environment, and the water and oxygen content in the nitrogen environment are less than 10 ppm);
  • Step 5 Cut and divide the large board device that has been assembled and packaged, bind the driver IC5 and FPC6, and bind the FPC6, that is, use the FPC6 line as a jumper to connect the photosensitive device structure 4 in series to the driver. On the line of the Vcc or Vpp lead between IC5 and FPC6, the device fabrication is completed.
  • the display of the present invention integrates the photoresistor structure in a blank area of the non-display area in the display, and does not need to re-design the basic structure of the display, nor does it need to embed the photoresistor structure like the AM-OLED display.
  • the design of the display structure becomes complicated, and the manufacturing process requires high-precision ( ⁇ 3 ⁇ m) exposure equipment and the cost and efficiency of expensive high-precision MASK, and does not require an external photosensitive sensor and external circuit.
  • the circuit of the photosensitive device structure needs the FPC circuit of the display itself as a jumper.
  • the structure is simple, the integration is high, and the cost is low.
  • the photoelectric material of the photosensitive device structure 4 is made in a vacuum environment and packaged in a sealed frame 3 Inside, there is no need to add additional resin-based materials, which solves the problem that when the structure of the photosensitive device is designed outside the box, it is necessary to use transparent materials for waterproof (or moisture-proof) protection.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种自动调节亮度的PM-OLED显示器及其制作方法,所述自动调节亮度的PM-OLED显示器包括形成有发光器件结构(2)的器件基板(1)和经密封框(3)与所述器件基板(1)对位贴合的后盖,还包括位于所述密封框(3)与有效显示区(AA)之间区域的光敏器件结构(4),其串联在驱动IC(5)与FPC(6)之间的Vcc引线或Vpp引线的线路上。该显示器将光敏电阻结构集成在显示器内的非显示区域的空白区,无需重新修改设计显示器的基本结构,也不需要像AM-OLED显示器将光敏电阻结构嵌入到TFT像素结构,更不需要外置光敏传感器和外部电路,该光敏器件结构的线路需要借助显示器本身的FPC线路作为跳线,结构简单,集成度高,成本较低。

Description

一种自动调节亮度的PM-OLED显示器及其制作方法 技术领域
本发明涉及PM-OLED显示器领域,具体涉及一种自动调节亮度的PM-OLED显示器及其制作方法。
背景技术
OLED显示屏是利用有机电致发光二极管制成的显示屏。由于OLED具有自发光特性,不需背光源、对比度高、厚度薄、视角广、反应速度快、可制作成挠曲性显示面板、使用温度范围广、构造及制程较简单等优异之特性,被认为是下一代的平面显示器新兴应用技术。OLED产业前景非常广阔,业内企业也正在努力积累发展经验,但国内产业链上游环节薄弱,行业的配套能力欠缺等因素为广大厂商制造了比较大的发展障碍。
现有搭载PM-OLED显示器的电子产品在不同亮度(光照度)的环境中,在没有搭载外部光敏器件和电路的情况下,是无法自动调节器件本身亮度的。为了解决上述问题,并实现这一功能,本发明提供一种将光敏电阻器件集成在PM-OLED显示器盒内的制作方法。
技术问题
本发明所要解决的是现有技术中存在的PM-OLED显示器没有搭载外部光敏器件和电路的情况下,是无法自动调节器件本身亮度的技术问题。提供一种新的自动调节亮度的PM-OLED显示器,该自动调节亮度的PM-OLED显示器具有结构简单、能够在没有搭载外部光敏器件和电路的情况下自动调节器件亮度的特点;本发明的显示器将光敏电阻结构集成在显示器内的非显示区域的空白区,无需重新修改设计显示器的基本结构,也不需要像AM-OLED显示器将光敏电阻结构嵌入到TFT像素结构内使得显示器结构设计变得复杂而且制程中需要高精度(≤3μm)的曝光设备以及昂贵的高精度MASK的成本及效率问题,更不需要外置光敏传感器和外部电路,本发明光敏器件结构的线路需要借助显示器本身的FPC线路作为跳线,结构简单,集成度高,成本较低。
技术解决方案
为解决上述技术问题,采用的技术方案如下:
一种自动调节亮度的PM-OLED显示器,所述自动调节亮度的PM-OLED显示器包括形成有发光器件结构的器件基板和经密封框与所述器件基板对位贴合的后盖,还包括位于所述密封框与有效显示区之间区域的光敏器件结构,其串联在驱动IC与FPC之间的Vcc引线或Vpp引线的线路上。
作为本发明提供的自动调节亮度的PM-OLED显示器的一种改进,所述光敏器件结构是在器件基板与后盖封装之前,在有效显示区外边缘与密封框之间的区域完成光敏器件结构的制作。
作为本发明提供的自动调节亮度的PM-OLED显示器的一种改进,所述光敏器件结构是在器件基板与后盖封装之前,在连接像素电极的最外围功能走线与密封框之间的区域完成光敏器件结构的制作。
作为本发明提供的自动调节亮度的PM-OLED显示器的一种改进,所述光敏器件结构的数量至少一个。
作为本发明提供的自动调节亮度的PM-OLED显示器的一种改进,所述光敏器件结构为具有梳状或螺旋状或回旋状导电材料层的光敏器件结构。
作为本发明提供的自动调节亮度的PM-OLED显示器的一种改进,所述光敏器件结构包括相互匹配的正电极和负电极,覆盖在所述正电极和负电极上方的绝缘层,位于所述绝缘层上方的光电材料层和导电材料层,其中,所述绝缘层开设至少两个过孔以分别露出部分正电极和负电极,所述光电材料层覆盖所述绝缘层,但不能覆盖绝缘层的过孔;所述导电材料层覆盖所述过孔和绝缘层;所述导电材料层开设有缝隙以将所述导电材料层隔成不连接的两部分,分别经过孔与所述正电极和负电极连接;该缝隙位于所述光电材料层上。
一种自动调节亮度的PM-OLED显示器制作方法,该方法包括以下步骤:
步骤1,在大板器件基板上制作阳极、功能走线及光敏器件结构的正电极、负电极和绝缘层,所述绝缘层开设至少两个过孔以分别露出部分正电极和负电极;所述光敏器件结构设置在所述密封框与有效显示区之间的区域;
所述功能走线包括如下部分:一部分功能走线用于连接发光器件结构上的每个阳极至驱动IC绑定位,一部分功能走线用于连接发光器件结构上的每个阴极至驱动IC绑定位,一部分功能走线用于连接所述光敏器件结构上的正负电极至FPC绑定位,还有一部分功能走线用于连接驱动IC绑定位和FPC绑定位;
步骤2,在阳极上方形成有机发光材料层,在光敏器件结构的绝缘层上形成光电材料层,其避开所述过孔;
步骤3,在所述有机发光材料层和光电材料层上方形成导电材料层;
步骤4,在大板后盖和/或大板器件基板上涂布密封框胶,在后盖侧涂布液体干燥剂或貼附固态干燥剂,然后将后盖与器件基板对位贴合封装;
步骤5,对完成贴合封装的大板器件进行切割、分粒,绑定驱动IC以及绑定FPC,完成器件制作。
作为本发明提供的自动调节亮度的PM-OLED显示器制作方法的一种改进,所述光敏器件结构通过黄光设备及蒸镀设备完成制作。
作为本发明提供的自动调节亮度的PM-OLED显示器制作方法的一种改进,在步骤1中,还包括在大板器件基板上形成像素隔离网格和阴极隔离柱。
作为本发明提供的自动调节亮度的PM-OLED显示器制作方法的一种改进,所述有机发光材料的基本堆叠结构由下往上依次为:HIL(空穴注入层)、HTL(空穴传输层)、EML(发光层)、ETL(电子传输层)、EIL(电子注入层)。
本发明的工作原理:本发明通过在PM-OLED显示器的器件内集成一个光敏电阻,通过光敏电阻对外部环境照度变化的感知,带动光敏电阻的阻值变化,进而自动调节PM-OLED器件显示状态的明暗度。光敏电阻属于一类采用半导体材料制成的特殊电阻器件,其工作原理是基于内光电效应。光敏电阻对可见光线十分敏感,光照愈强,阻值愈低(随着环境光照强度的升高,电阻值迅速降低),亮电阻值可小至1KΩ以下。其在无光照射时,呈现高阻状态,暗电阻一般可达1.5MΩ左右。当PM-OLED显示器件在环境照度比较高的时候(如室外环境或室内开启正常照明时),光敏电阻的阻值比较低(一般为几欧姆到几千欧姆的阻抗),不会影响显示器件的正常驱动电压(Vcc/Vpp),显示器件的亮度不受影响;当环境的亮度降低后,光敏电阻的阻抗随之增加,PM-OLED的驱动电压(Vcc/Vpp)会随之下降,器件的亮度也就随之下降,使得PM-OLED的亮度在比较黑暗的环境中变得比较柔和、不会对视觉产生强烈的刺激。
把光敏器件结构制作在PM-OLED显示器件内的方法,其中所述的PM-OLED器件可以是平面刚性的,也可以是柔性可弯曲的;可以是普通的形状,也可以是异型的。制作的流程为:在PM-OLED显示器的基板与后盖封装之前,完成光敏器件结构的制作,并将光敏器件结构封装在器件内。
有益效果
本发明的有益效果:通过将光敏电阻集成到器件内部,但是,是放置在AA区与VA区之间的区域,并通过光敏电阻对于光线强度的检测,达到在没有搭载外部光敏器件和或升降压电路的情况下,也能自动调节PM-OLED器件亮度的效果;本发明的显示器将光敏电阻结构集成在显示器内的非显示区域的空白区,无需重新修改设计显示器的基本结构,也不需要像AM-OLED显示器将光敏电阻结构嵌入到TFT像素结构内使得显示器结构设计变得复杂而且制程中需要高精度(≤3μm)的曝光设备以及昂贵的高精度MASK的成本及效率问题,更不需要外置光敏传感器和外部电路,本发明光敏器件结构的线路需要借助显示器本身的FPC线路作为跳线,结构简单,集成度高,成本较低;同时,所述光敏器件结构的光电材料是在真空环境下制作并封装在密封框内部,无需另外追加树脂类材料对光电材料进行密封防湿处理,解决了当光敏器件结构设计在盒外时,需要采用透明的材料进行防水(或防湿)保护的问题。
附图说明
图1为本发明具有光敏器件结构的PM-OLED显示器件等效电路示意图;
图2为本发明PM-OLED显示器件一种实施例的结构示意图,其中具体的发光器件结构未显示,示出连接发光器件结构的阳极的部分功能走线,连接发光器件结构的阴极的功能走线未显示;
图3为图2中A处的局部放大图;
图4为本发明PM-OLED显示器件另一种实施例的结构示意图,其中具体的发光器件结构未显示,示出连接发光器件结构的阳极的部分功能走线,连接发光器件结构的阴极的功能走线未显示;
图5为本发明PM-OLED显示器件又一种实施例的结构示意图,其中具体的发光器件结构未显示,示出连接发光器件结构的阳极的部分功能走线,连接发光器件结构的阴极的功能走线未显示;
图6为本发明PM-OLED显示器件再一种实施例的结构示意图,其中具体的发光器件结构未显示,示出连接发光器件结构的阳极的部分功能走线,连接发光器件结构的阴极的功能走线未显示;
图7为图3中B-B处的剖视图;
图8为本发明中光敏器件结构中导电材料层的一种实施例的示意图;
图9为本发明中光敏器件结构中导电材料层的另一种实施例的示意图;
图10为本发明自动调节亮度的PM-OLED显示器制作方法的流程示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参考图1至6,本实施例提供一种自动调节亮度的PM-OLED显示器,所述自动调节亮度的PM-OLED显示器包括形成有发光器件结构2的器件基板1和经密封框3与所述器件基板1对位贴合的后盖,还包括位于所述密封框3与有效显示区(AA区)之间区域的光敏器件结构4,其串联在驱动IC5与FPC6之间的Vcc引线或Vpp引线的线路上,即所述光敏器件结构4不是设置在驱动像素结构内,而是在驱动IC5输入端之前,设置在FPC6输入到驱动IC5的Vcc引线或Vpp引线的线路上面。采用上述的设计结构,本发明的显示器将光敏电阻结构集成在显示器内的非显示区域的空白区,无需重新修改设计显示器的基本结构,也不需要像AM-OLED显示器将光敏电阻结构嵌入到TFT像素结构内使得显示器结构设计变得复杂而且制程中需要高精度(≤3μm)的曝光设备以及昂贵的高精度MASK的成本及效率问题,更不需要外置光敏传感器和外部电路,本发明光敏器件结构的线路需要借助显示器本身的FPC线路作为跳线,结构简单,集成度高,成本较低;同时,所述光敏器件结构4的光电材料是在真空环境下制作并封装在密封框3内部,无需另外追加树脂类材料,解决了当光敏器件结构设计在盒外时,则需要采用透明的材料进行防水(或防湿)保护的问题。
本实施例主要改进点在集成光敏器件结构4到器件基板1上,达到光控的目的。其余组件均可按现有的PM-OLED显示器的结构设计。一般地,所述发光器件结构2包括矩阵排列的M*N个像素单元,可分为N行和M列即有N个阳极和M个阴极。其中阳极和阴极分别对应发光像素的两个电极。每个阳极和阴极分别通过功能走线连接到所述驱动IC5的扫描端管脚和公共端管脚,便于所述驱动IC5逐行、逐列驱动控制阳极和阴极。
需要说明的是,关于PM-OLED器件的阳极与阴极的排版方式,可依据不同的驱动IC5引脚的设计和定义方式的不同而不同,即上述每个行电极和列电极还可以分别通过功能走线连接到所述驱动IC5的公共端管脚和扫描端管脚,便于所述驱动IC5逐行、逐列驱动控制阴极和阳极。
本实施例基本原理如下:当PM-OLED显示器在环境照度(亮度)比较高的时候,如室外环境或室内开启正常照明时,光敏电阻的阻值比较低,一般为几欧姆到几千欧姆的阻抗,不会影响显示器件的正常驱动电压,显示器件的亮度不受影响;当环境的照度(亮度)降低后,光敏电阻的阻抗随之增加,由于光敏电阻是串联在驱动IC5与FPC6之间的Vcc引线或Vpp引线的线路上,所以输入到PM-OLED显示器件的驱动电压(Vcc/Vpp)会随之下降,显示器件的亮度也就随之下降,使得PM-OLED的亮度在比较黑暗的环境中PM-OLED的亮度会变得比较柔和、不会对视觉产生强烈的刺激。
请参考图2至6,本发明中所述光敏器件结构4是在器件基板1与后盖封装之前,在AA区外边缘与密封框3之间的区域完成光敏器件结构4的制作,优选地,是制作在最外围功能走线7与密封框3之间的相对宽阔的区域,如显示区外围的左下角(如图2、3所示)、右下角(如图4所示)、左上侧和右上侧(如图5所示)及顶侧(如图6所示)的至少一个位置。相应地,也可以在其它的类似区域布设,只要实现本实施例的目的即可。所述光敏器件结构4可以是一个,也可以是多个,可根据实际情况作出适当的调整。增加光敏器件结构的数量,可以提高产品的灵敏度和可靠性,可以防止单个光敏器件结构发生失效时,另外的一个可以继续发挥作用。
具体地,如图7所示,所述光敏器件结构4具体包括如下:两个电极片相互匹配分隔排列:一个为正电极41、一个为负电极42,以通过走线串联在驱动IC5与FPC6之间的Vcc引线或Vpp引线的线路上。在电极片的上方还设置有绝缘层43,绝缘层43开有两个过孔,分别将正电极41和负电极42的部分露出;绝缘层43上设置有光电材料层44,但所述光电材料层不覆盖填充两个过孔,所述光电材料层优选但不限定为无机光电材料如硫化物发光材料;光电材料层44上设有导电材料层45,其覆盖绝缘层43及填充两个过孔,制作在所述光电材料44和绝缘层43的过孔上面,但不可超过绝缘层43的外边缘。所述导电材料层45中间开设有缝隙46以将所述导电材料层隔成不连接的两部分,分别经过孔与所述正电极41和负电极42连接,该缝隙46位于所述光电材料层44上。所述缝隙46可以是梳状或螺旋状或回旋状,也可以是其他形状,如图8、9所示。在光电材料层44受光激发导电时,可连通所述导电材料层45,即连通正负电极42,光敏电阻导电,从而实现了本实施例的光敏电阻的功能。
其中,所述正电极、负电极材质优选但不限于ITO(透明氧化铟锡)、
IZO(透明氧化铟锌)、纳米银、镁银合金、石墨烯或钼、铝、钛、银、金、铟等金属组成的单层导电膜或多层导电膜;电极图案制作方式不限于湿式蚀刻、激光干刻或特殊气体干式蚀刻等加工方式。所述光电材料上方的导电材料层的制作方式不限于PVD(溅射、蒸镀、离子镀等)、CVD、涂布(含喷墨打印)或貼附等形式。所述光电材料层感应的光波波长不限于紫外波段、红外波段和可见光波段。
请参考图10,本实施例还提供一种自动调节亮度的PM-OLED显示器制作方法,该制作方法包括以下步骤:
步骤1,在大板器件基板上的每一有效显示区内制作阳极,并蚀刻为平行排布的行电极;在大板器件基板上的非显示区内制作功能走线及在密封框与有效显示区之间的区域制作光敏器件结构的正电极、负电极和绝缘层,所述绝缘层开设至少两个过孔以分别露出部分正电极和负电极。所述功能走线包括如下部分:一部分功能走线用于连接发光器件结构上的每个阳极至驱动IC绑定位,一部分功能走线用于连接发光器件结构上的每个阴极至驱动IC绑定位,还有一部分功能走线用于连接所述光敏器件结构上的正负电极至FPC绑定位,还有一部分功能走线用于连接所述驱动IC绑定位和FPC绑定位。
具体实现是,在步骤1中,还包括在大板器件基板上形成像素隔离网格和阴极隔离柱。
步骤2,在阳极上方形成有机发光材料层,在光敏器件结构的绝缘层上形成光电材料层,其避开所述过孔。
具体实现时,所述有机发光材料的基本堆叠结构由下往上依次为:HIL(空穴注入层)、HTL(空穴传输层)、EML(发光层)、ETL(电子传输层)、EIL(电子注入层)。
步骤3,在所述有机发光材料层和光电材料层上方形成导电材料层;位于所述有机发光材料层上的导电材料层被阴极隔离柱隔开形成若干列电极作为PM-OLED的阴极。
具体地,如图7所示,所述光敏器件结构4具体包括如下:两个电极片相互匹配分隔排列:一个为正电极41、一个为负电极42,以通过走线串联在驱动IC5与FPC6之间的Vcc引线或Vpp引线的线路上。在电极片的上方还设置有绝缘层43,绝缘层43开有两个过孔,分别将正电极41和负电极42的部分露出;绝缘层43上设置有光电材料层44,但所述光电材料层不覆盖填充两个过孔,所述光电材料层优选但不限定为无机光电材料如硫化物发光材料;光电材料层44上设有导电材料层45,其覆盖绝缘层43及填充两个过孔,制作在所述光电材料44和绝缘层43的过孔上面,但不可超过绝缘层43的外边缘。所述导电材料层45中间开设有缝隙46,以便将所述导电材料层隔成不连接的两部分,分别经过孔与所述正电极41和负电极42连接,该缝隙46位于所述光电材料层44上。所述缝隙46可以是梳状或螺旋状或回旋状,也可以是其他形状,如图8、9所示。在光电材料层44受光激发导电时,可连通所述导电材料层45,即连通正负电极42,光敏电阻导电,从而实现了本实施例的光敏电阻的功能。
其中,所述正电极、负电极材质优选但不限于ITO(透明氧化铟锡)、IZO(透明氧化铟锌)、纳米银、镁银合金、石墨烯或钼、铝、钛、银、金、铟等金属组成的单层导电膜或多层导电膜;电极图案制作方式不限于湿式蚀刻、激光干刻或特殊气体干式蚀刻等加工方式。所述光电材料上方的导电材料层的制作方式不限于PVD(溅射、蒸镀、离子镀等)、CVD、涂布(含喷墨打印)或貼附等形式。所述光电材料层感应的光波波长不限于紫外波段、红外波段和可见光波段。
所述光敏器件结构4的制作不需要借助复杂的TFT Array制作工艺及设备,使用简单的黄光设备及蒸镀设备即可完成制作。
步骤4,在大板后盖和/或大板器件基板上涂布密封框胶3,在后盖侧涂布液体干燥剂或貼附固态干燥剂,然后将后盖与器件基板对位贴合封装(步骤4一般都是在氮气环境下完成的,且氮气环境中水和氧的含量都低于10ppm);
步骤5,对完成贴合封装的大板器件进行切割、分粒,绑定驱动IC5以及绑定FPC6,绑定完FPC6,即借助FPC6的线路作为跳线将所述光敏器件结构4串联在驱动IC5与FPC6之间的Vcc或Vpp引线的线路上,完成器件制作。
采用上述方法制得的显示器,本发明的显示器将光敏电阻结构集成在显示器内的非显示区域的空白区,无需重新修改设计显示器的基本结构,也不需要像AM-OLED显示器将光敏电阻结构嵌入到TFT像素结构内使得显示器结构设计变得复杂而且制程中需要高精度(≤3μm)的曝光设备以及昂贵的高精度MASK的成本及效率问题,更不需要外置光敏传感器和外部电路,本发明光敏器件结构的线路需要借助显示器本身的FPC线路作为跳线,结构简单,集成度高,成本较低;同时,所述光敏器件结构4的光电材料是在真空环境下制作并封装在密封框3内部,无需另外追加树脂类材料,解决了当光敏器件结构设计在盒外时,则需要采用透明的材料进行防水(或防湿)保护的问题。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员能够理解本发明,但是本发明不仅限于具体实施方式的范围,对本技术领域的普通技术人员而言,只要各种变化只要在所附的权利要求限定和确定的本发明精神和范围内,一切利用本发明构思的发明创造均在保护之列。

Claims (10)

  1. 一种自动调节亮度的PM-OLED显示器,其特征在于:所述自动调节亮度的PM-OLED显示器包括形成有发光器件结构的器件基板和经密封框与所述器件基板对位贴合的后盖,还包括位于所述密封框与有效显示区之间区域的光敏器件结构,其串联在驱动IC与FPC之间的Vcc引线或Vpp引线的线路上。
  2. 根据权利要求1所述的自动调节亮度的PM-OLED显示器,其特征在于:所述光敏器件结构是在器件基板与后盖封装之前,在有效显示区外边缘与密封框之间的区域完成光敏器件结构的制作。
  3. 根据权利要求2所述的自动调节亮度的PM-OLED显示器,其特征在于:所述光敏器件结构是在器件基板与后盖封装之前,在连接像素电极的最外围功能走线与密封框之间的区域完成光敏器件结构的制作。
  4. 根据权利要求1所述的自动调节亮度的PM-OLED显示器,其特征在于:所述光敏器件结构的数量至少一个。
  5. 根据权利要求1所述的自动调节亮度的PM-OLED显示器,其特征在于:所述光敏器件结构为具有梳状或螺旋状或回旋状导电材料层的光敏器件结构。
  6. 根据权利要求1或5所述的自动调节亮度的PM-OLED显示器,其特征在于:所述光敏器件结构包括相互匹配的正电极和负电极,覆盖在所述正电极和负电极上方的绝缘层,位于所述绝缘层上方的光电材料层和导电材料层,其中,所述绝缘层开设至少两个过孔以分别露出部分正电极和负电极,所述光电材料层避开所述过孔,所述导电材料层覆盖所述过孔及光电材料层,且不超出绝缘层的外边缘;所述导电材料层开设有缝隙以将所述导电材料层隔成不连接的两部分,分别经过孔与所述正电极和负电极连接;该缝隙位于所述光电材料层上。
  7. 一种自动调节亮度的PM-OLED显示器制作方法,其特征在于:包括以下步骤:
    步骤1,在大板器件基板上制作阳极、功能走线及光敏器件结构的正电极、负电极和绝缘层,所述绝缘层开设至少两个过孔以分别露出部分正电极和负电极;所述光敏器件结构设置在所述密封框与有效显示区之间的区域;所述功能走线包括如下部分:一部分功能走线用于连接发光器件结构上的每个阳极至驱动IC绑定位,一部分功能走线用于连接发光器件结构上的每个阴极至驱动IC绑定位,一部分功能走线用于连接所述光敏器件结构上的正负电极至FPC绑定位,还有一部分功能走线用于连接驱动IC绑定位和FPC绑定位;
    步骤2,在阳极上方形成有机发光材料层,在光敏器件结构的绝缘层上形成光电材料层,其避开所述过孔;
    步骤3,在所述有机发光材料层和光电材料层上方形成导电材料层;
    步骤4,在大板后盖和/或大板器件基板上涂布密封框胶,在后盖侧涂布液体干燥剂或貼附固态干燥剂,然后将后盖与器件基板对位贴合封装;
    步骤5,对完成贴合封装的大板器件进行切割、分粒,绑定驱动IC以及绑定FPC,完成器件制作。
  8. 根据权利要求1所述的自动调节亮度的PM-OLED显示器制作方法,其特征在于:所述光敏器件结构通过黄光设备及蒸镀设备完成制作。
  9. 根据权利要求1所述的自动调节亮度的PM-OLED显示器制作方法,其特征在于:在步骤1中,还包括在大板器件基板上形成像素隔离网格和阴极隔离柱。
  10. 根据权利要求1所述的自动调节亮度的PM-OLED显示器制作方法,其特征在于:所述有机发光材料的基本堆叠结构由下往上依次为:HIL、HTL、EML、ETL、EIL。
PCT/CN2018/091957 2018-06-12 2018-06-20 一种自动调节亮度的pm-oled显示器及其制作方法 WO2019237404A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810597636.7 2018-06-12
CN201810597636.7A CN108962942B (zh) 2018-06-12 2018-06-12 一种自动调节亮度的pm-oled显示器及其制作方法

Publications (1)

Publication Number Publication Date
WO2019237404A1 true WO2019237404A1 (zh) 2019-12-19

Family

ID=64488202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091957 WO2019237404A1 (zh) 2018-06-12 2018-06-20 一种自动调节亮度的pm-oled显示器及其制作方法

Country Status (2)

Country Link
CN (1) CN108962942B (zh)
WO (1) WO2019237404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551499A (zh) * 2020-11-26 2022-05-27 荣耀终端有限公司 显示屏及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113450691B (zh) * 2021-06-24 2023-08-08 京东方科技集团股份有限公司 一种显示模组以及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274023A1 (en) * 2005-06-06 2006-12-07 Sultenfuss Andrew T System and method for portable information handling system integrated backlight control
CN101097335A (zh) * 2006-06-30 2008-01-02 Lg.菲利浦Lcd株式会社 液晶显示器件及其制造方法
CN101153967A (zh) * 2006-09-29 2008-04-02 群康科技(深圳)有限公司 液晶显示器
CN103207490A (zh) * 2013-03-28 2013-07-17 北京京东方光电科技有限公司 一种阵列基板及其制造方法和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767013B2 (ja) * 2003-03-26 2011-09-07 株式会社半導体エネルギー研究所 光センサ
KR100957585B1 (ko) * 2003-10-15 2010-05-13 삼성전자주식회사 광 감지부를 갖는 전자 디스플레이 장치
JP2007232795A (ja) * 2006-02-27 2007-09-13 Hitachi Displays Ltd 有機el表示装置
JP5289709B2 (ja) * 2007-01-09 2013-09-11 株式会社ジャパンディスプレイ 調光機能を備えた画像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274023A1 (en) * 2005-06-06 2006-12-07 Sultenfuss Andrew T System and method for portable information handling system integrated backlight control
CN101097335A (zh) * 2006-06-30 2008-01-02 Lg.菲利浦Lcd株式会社 液晶显示器件及其制造方法
CN101153967A (zh) * 2006-09-29 2008-04-02 群康科技(深圳)有限公司 液晶显示器
CN103207490A (zh) * 2013-03-28 2013-07-17 北京京东方光电科技有限公司 一种阵列基板及其制造方法和显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551499A (zh) * 2020-11-26 2022-05-27 荣耀终端有限公司 显示屏及电子设备
CN114551499B (zh) * 2020-11-26 2023-01-13 荣耀终端有限公司 显示屏及电子设备

Also Published As

Publication number Publication date
CN108962942B (zh) 2021-01-26
CN108962942A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
US9985085B2 (en) Array substrate for narrow frame design, manufacturing method thereof and display device
CN100483731C (zh) 包含电致发光装置的影像显示系统及其制造方法
JP6989494B2 (ja) 表示装置およびビアホールの電気接続構造
TWI467528B (zh) 發光二極體顯示面板及其製作方法
US9577215B2 (en) Display device with glass frit sealing portion
US8044426B2 (en) Light emitting device capable of removing height difference between contact region and pixel region and method for fabricating the same
KR20160013489A (ko) 표시 장치 및 그 제조 방법
US20210367186A1 (en) Oled display panel and manufacturing method
WO2023280110A1 (zh) 显示基板及其制备方法
KR20220031889A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
US9911802B2 (en) Display device and method for manufacturing the same
KR20050068859A (ko) 유기전계 발광소자와 그 제조방법
WO2022213582A1 (zh) 显示面板和显示装置
KR20150134953A (ko) 유기전계 발광표시장치 및 그 제조방법
US9502684B2 (en) Organic electroluminescence device and method for manufacturing the same
WO2018205587A1 (zh) 显示基板及其制作方法、显示装置
WO2019237404A1 (zh) 一种自动调节亮度的pm-oled显示器及其制作方法
US20230157096A1 (en) Display substrate and method for manufacturing the same, and display apparatus
KR101950837B1 (ko) 유기전계발광소자 및 그 제조방법
CN112151694A (zh) 显示面板及其制作方法
KR20160060835A (ko) 유기발광다이오드 표시장치 및 그 제조방법
KR20220138488A (ko) 표시 장치 및 그 제조 방법
CN112310309A (zh) Oled显示面板的封装盖板及oled显示面板的封装方法
US20070210701A1 (en) Dual Screen Organic Electroluminescent Display
WO2021144881A1 (ja) 表示装置及び表示装置用母基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922567

Country of ref document: EP

Kind code of ref document: A1